Barely porous organic cages for hydrogen isotope separation

The separation of hydrogen isotopes for applications such as nuclear fusion is a major challenge. Current technologies are energy intensive and inefficient. Nanoporous materials have the potential to separate hydrogen isotopes by kinetic quantum sieving, but high separation selectivity tends to corr...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 366; no. 6465; pp. 613 - 620
Main Authors Liu, Ming, Zhang, Linda, Little, Marc A., Kapil, Venkat, Ceriotti, Michele, Yang, Siyuan, Ding, Lifeng, Holden, Daniel L., Balderas-Xicohténcatl, Rafael, He, Donglin, Clowes, Rob, Chong, Samantha Y., Schütz, Gisela, Chen, Linjiang, Hirscher, Michael, Cooper, Andrew I.
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 01.11.2019
The American Association for the Advancement of Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The separation of hydrogen isotopes for applications such as nuclear fusion is a major challenge. Current technologies are energy intensive and inefficient. Nanoporous materials have the potential to separate hydrogen isotopes by kinetic quantum sieving, but high separation selectivity tends to correlate with low adsorption capacity, which can prohibit process scale-up. In this study, we use organic synthesis to modify the internal cavities of cage molecules to produce hybrid materials that are excellent quantum sieves. By combining small-pore and large-pore cages together in a single solid, we produce a material with optimal separation performance that combines an excellent deuterium/hydrogen selectivity (8.0) with a high deuterium uptake (4.7 millimoles per gram).
AbstractList The separation of hydrogen isotopes for applications such as nuclear fusion is a major challenge. Current technologies are energy intensive and inefficient. Nanoporous materials have the potential to separate hydrogen isotopes by kinetic quantum sieving, but high separation selectivity tends to correlate with low adsorption capacity, which can prohibit process scale-up. In this study, we use organic synthesis to modify the internal cavities of cage molecules to produce hybrid materials that are excellent quantum sieves. By combining small-pore and large-pore cages together in a single solid, we produce a material with optimal separation performance that combines an excellent deuterium/hydrogen selectivity (8.0) with a high deuterium uptake (4.7 millimoles per gram).The separation of hydrogen isotopes for applications such as nuclear fusion is a major challenge. Current technologies are energy intensive and inefficient. Nanoporous materials have the potential to separate hydrogen isotopes by kinetic quantum sieving, but high separation selectivity tends to correlate with low adsorption capacity, which can prohibit process scale-up. In this study, we use organic synthesis to modify the internal cavities of cage molecules to produce hybrid materials that are excellent quantum sieves. By combining small-pore and large-pore cages together in a single solid, we produce a material with optimal separation performance that combines an excellent deuterium/hydrogen selectivity (8.0) with a high deuterium uptake (4.7 millimoles per gram).
The separation of hydrogen isotopes for applications such as nuclear fusion is a major challenge. Current technologies are energy intensive and inefficient. Nanoporous materials have the potential to separate hydrogen isotopes by kinetic quantum sieving, but high separation selectivity tends to correlate with low adsorption capacity, which can prohibit process scale-up. In this study, we use organic synthesis to modify the internal cavities of cage molecules to produce hybrid materials that are excellent quantum sieves. By combining small-pore and large-pore cages together in a single solid, we produce a material with optimal separation performance that combines an excellent deuterium/hydrogen selectivity (8.0) with a high deuterium uptake (4.7 millimoles per gram).
Quantum sieves for hydrogen isotopesOne method for improving the efficiency of separation of hydrogen from deuterium (D) is to exploit kinetic quantum sieving with nanoporous solids. This method requires ultrafine pore apertures (around 3 angstroms), which usually leads to low pore volumes and low D2 adsorption capacities. Liu et al. used organic synthesis to tune the pore size of the internal cavities of organic cage molecules. A hybrid cocrystal contained both a small-pore cage that imparted high selectivity and a larger-pore cage that enabled high D2 uptake.Science, this issue p. 613The separation of hydrogen isotopes for applications such as nuclear fusion is a major challenge. Current technologies are energy intensive and inefficient. Nanoporous materials have the potential to separate hydrogen isotopes by kinetic quantum sieving, but high separation selectivity tends to correlate with low adsorption capacity, which can prohibit process scale-up. In this study, we use organic synthesis to modify the internal cavities of cage molecules to produce hybrid materials that are excellent quantum sieves. By combining small-pore and large-pore cages together in a single solid, we produce a material with optimal separation performance that combines an excellent deuterium/hydrogen selectivity (8.0) with a high deuterium uptake (4.7 millimoles per gram).
One method for improving the efficiency of separation of hydrogen from deuterium (D) is to exploit kinetic quantum sieving with nanoporous solids. This method requires ultrafine pore apertures (around 3 angstroms), which usually leads to low pore volumes and low D 2 adsorption capacities. Liu et al. used organic synthesis to tune the pore size of the internal cavities of organic cage molecules. A hybrid cocrystal contained both a small-pore cage that imparted high selectivity and a larger-pore cage that enabled high D 2 uptake. Science , this issue p. 613 Cocrystals of modified molecular organic crystals can separate hydrogen from deuterium through kinetic quantum sieving. The separation of hydrogen isotopes for applications such as nuclear fusion is a major challenge. Current technologies are energy intensive and inefficient. Nanoporous materials have the potential to separate hydrogen isotopes by kinetic quantum sieving, but high separation selectivity tends to correlate with low adsorption capacity, which can prohibit process scale-up. In this study, we use organic synthesis to modify the internal cavities of cage molecules to produce hybrid materials that are excellent quantum sieves. By combining small-pore and large-pore cages together in a single solid, we produce a material with optimal separation performance that combines an excellent deuterium/hydrogen selectivity (8.0) with a high deuterium uptake (4.7 millimoles per gram).
Author Ceriotti, Michele
Balderas-Xicohténcatl, Rafael
Cooper, Andrew I.
Liu, Ming
Schütz, Gisela
Yang, Siyuan
Kapil, Venkat
Little, Marc A.
Clowes, Rob
Hirscher, Michael
Ding, Lifeng
Holden, Daniel L.
Zhang, Linda
He, Donglin
Chong, Samantha Y.
Chen, Linjiang
Author_xml – sequence: 1
  givenname: Ming
  surname: Liu
  fullname: Liu, Ming
– sequence: 2
  givenname: Linda
  surname: Zhang
  fullname: Zhang, Linda
– sequence: 3
  givenname: Marc A.
  surname: Little
  fullname: Little, Marc A.
– sequence: 4
  givenname: Venkat
  surname: Kapil
  fullname: Kapil, Venkat
– sequence: 5
  givenname: Michele
  surname: Ceriotti
  fullname: Ceriotti, Michele
– sequence: 6
  givenname: Siyuan
  surname: Yang
  fullname: Yang, Siyuan
– sequence: 7
  givenname: Lifeng
  surname: Ding
  fullname: Ding, Lifeng
– sequence: 8
  givenname: Daniel L.
  surname: Holden
  fullname: Holden, Daniel L.
– sequence: 9
  givenname: Rafael
  surname: Balderas-Xicohténcatl
  fullname: Balderas-Xicohténcatl, Rafael
– sequence: 10
  givenname: Donglin
  surname: He
  fullname: He, Donglin
– sequence: 11
  givenname: Rob
  surname: Clowes
  fullname: Clowes, Rob
– sequence: 12
  givenname: Samantha Y.
  surname: Chong
  fullname: Chong, Samantha Y.
– sequence: 13
  givenname: Gisela
  surname: Schütz
  fullname: Schütz, Gisela
– sequence: 14
  givenname: Linjiang
  surname: Chen
  fullname: Chen, Linjiang
– sequence: 15
  givenname: Michael
  surname: Hirscher
  fullname: Hirscher, Michael
– sequence: 16
  givenname: Andrew I.
  surname: Cooper
  fullname: Cooper, Andrew I.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31672893$$D View this record in MEDLINE/PubMed
BookMark eNp1kM1LAzEQxYMo2qpnT8qCFy-rSWbzhScVv6DgRc8hzc7WLdvNmmzB_veubfUgCANzmN97vHljstuGFgk5YfSSMS6vkq-x9Xjp3KcquNohI0aNyA2nsEtGlILMNVXigIxTmlM63AzskwNgUnFtYESub13EZpV1IYZlykKcubb2mXczTFkVYva-KmOYYZvVKfShwyxh56Lr69Aekb3KNQmPt_uQvD3cv9495ZOXx-e7m0nuC1H0eVVxLtAYnJYgVAXKoxBaUm2mFTCjqHK-NKi5osa5gjko_DBSSMGphxIOycXGt4vhY4mpt4s6eWwa1-IQ2nJgTILWSg7o-R90HpaxHdKtKUZBCRiosy21nC6wtF2sFy6u7E8tAyA2gI8hpYiV9XW__rmPrm4so_a7frut327rH3RXf3Q_1v8rTjeKeepD_MW51AUopeELhiiS9g
CitedBy_id crossref_primary_10_1021_jacs_3c07635
crossref_primary_10_1021_jacs_1c09992
crossref_primary_10_1246_cl_200477
crossref_primary_10_1021_acs_chemrev_9b00803
crossref_primary_10_1002_adfm_202423564
crossref_primary_10_1002_anie_202420048
crossref_primary_10_1002_chem_202302116
crossref_primary_10_1021_jacs_0c07367
crossref_primary_10_1039_D4SC05309E
crossref_primary_10_1021_acsami_0c16516
crossref_primary_10_1021_jacs_0c04885
crossref_primary_10_1039_D0CC02544E
crossref_primary_10_1038_s41893_025_01537_5
crossref_primary_10_1016_j_cclet_2024_109966
crossref_primary_10_1002_anie_202318362
crossref_primary_10_1016_j_seppur_2023_126001
crossref_primary_10_1002_ange_202102982
crossref_primary_10_1016_j_fusengdes_2020_111838
crossref_primary_10_1002_adma_202408416
crossref_primary_10_1055_a_2041_5362
crossref_primary_10_1038_s41467_024_51431_5
crossref_primary_10_1021_acs_cgd_0c00388
crossref_primary_10_1016_j_cclet_2023_109201
crossref_primary_10_1039_D3DT01143G
crossref_primary_10_1080_10610278_2024_2398575
crossref_primary_10_1002_adhm_202401117
crossref_primary_10_1038_s41467_021_24042_7
crossref_primary_10_1016_j_chempr_2023_03_027
crossref_primary_10_1021_acsmaterialsau_2c00051
crossref_primary_10_1021_jacs_4c10217
crossref_primary_10_1021_jacs_4c17520
crossref_primary_10_1038_s41467_021_24344_w
crossref_primary_10_1039_D4SC04207G
crossref_primary_10_1002_ange_202100675
crossref_primary_10_1002_ange_202007454
crossref_primary_10_1002_anie_202210478
crossref_primary_10_1002_ange_202007571
crossref_primary_10_1039_D0CC07120J
crossref_primary_10_1039_D2NA00790H
crossref_primary_10_1016_j_ccr_2023_215402
crossref_primary_10_1002_ange_202202450
crossref_primary_10_1016_j_poly_2022_116041
crossref_primary_10_3390_molecules30030462
crossref_primary_10_1021_cbe_3c00099
crossref_primary_10_1039_D2CC03692D
crossref_primary_10_1021_acsami_2c18221
crossref_primary_10_1021_acs_cgd_4c01186
crossref_primary_10_1021_jacs_1c01694
crossref_primary_10_1016_j_seppur_2023_126025
crossref_primary_10_1007_s12274_019_2571_9
crossref_primary_10_1039_D3QM00715D
crossref_primary_10_1021_acsnano_2c04655
crossref_primary_10_1021_jacs_4c01654
crossref_primary_10_1021_acsami_2c12927
crossref_primary_10_3390_molecules27082570
crossref_primary_10_1080_00268976_2021_1942277
crossref_primary_10_1021_jacs_0c08243
crossref_primary_10_1021_acs_jpclett_4c01399
crossref_primary_10_1088_1361_6528_ad9b33
crossref_primary_10_1016_j_microc_2024_110967
crossref_primary_10_1039_D4QO01142B
crossref_primary_10_1002_ange_202409432
crossref_primary_10_1039_D4CP03549F
crossref_primary_10_1016_j_micromeso_2020_110820
crossref_primary_10_1002_anie_202211780
crossref_primary_10_1016_j_jechem_2022_03_035
crossref_primary_10_1016_j_fuel_2022_124989
crossref_primary_10_1016_j_seppur_2024_126732
crossref_primary_10_3390_app13169372
crossref_primary_10_1039_D0CS01142H
crossref_primary_10_1016_j_aca_2021_339376
crossref_primary_10_1021_acs_nanolett_4c03881
crossref_primary_10_1016_j_jhazmat_2021_125860
crossref_primary_10_1021_acs_inorgchem_0c03590
crossref_primary_10_1039_D3SC05343A
crossref_primary_10_1002_anie_201916131
crossref_primary_10_1039_D2SC01876D
crossref_primary_10_1002_adfm_201909842
crossref_primary_10_1016_j_memsci_2025_123814
crossref_primary_10_1021_acsami_0c22288
crossref_primary_10_1016_j_seppur_2023_124660
crossref_primary_10_1039_D2SC00395C
crossref_primary_10_1002_ijch_202400025
crossref_primary_10_1039_D2TA05420E
crossref_primary_10_1126_science_aba4997
crossref_primary_10_1002_anie_202415346
crossref_primary_10_1021_acsomega_1c07041
crossref_primary_10_1021_acs_chemrev_2c00140
crossref_primary_10_1063_5_0226249
crossref_primary_10_1021_acsanm_1c03859
crossref_primary_10_1021_acsomega_4c04186
crossref_primary_10_1007_s11426_024_2461_2
crossref_primary_10_20517_cs_2024_01
crossref_primary_10_1021_acssuschemeng_1c04459
crossref_primary_10_1039_D1QO00685A
crossref_primary_10_1039_D0CP00330A
crossref_primary_10_1039_D4CC04150J
crossref_primary_10_1039_D4SC04295F
crossref_primary_10_1002_adfm_202404681
crossref_primary_10_1038_s41467_021_26397_3
crossref_primary_10_1002_aic_18504
crossref_primary_10_1002_open_201900357
crossref_primary_10_1021_acs_chemrev_2c00155
crossref_primary_10_1016_j_chempr_2021_02_016
crossref_primary_10_1021_acs_inorgchem_2c03473
crossref_primary_10_1016_j_jece_2025_116078
crossref_primary_10_1021_jacs_1c11731
crossref_primary_10_1039_D0FD00022A
crossref_primary_10_1021_acsmaterialslett_3c00885
crossref_primary_10_1016_j_jallcom_2022_166488
crossref_primary_10_1021_acsanm_3c02188
crossref_primary_10_1016_j_ijhydene_2020_05_096
crossref_primary_10_1002_nadc_20204095515
crossref_primary_10_1016_j_seppur_2024_130641
crossref_primary_10_1021_jacs_0c03330
crossref_primary_10_1038_s41467_020_20744_6
crossref_primary_10_1039_D4AN00551A
crossref_primary_10_1002_adfm_202405320
crossref_primary_10_1002_anie_202007454
crossref_primary_10_1002_adma_202414724
crossref_primary_10_1016_j_tet_2023_133336
crossref_primary_10_1021_acs_chemmater_2c00233
crossref_primary_10_1039_D2NJ00734G
crossref_primary_10_1002_ejoc_202100892
crossref_primary_10_1002_adfm_202106116
crossref_primary_10_1021_jacs_0c03444
crossref_primary_10_1039_D0SC00049C
crossref_primary_10_1039_D2CC04719E
crossref_primary_10_7209_tanso_2021_145
crossref_primary_10_1002_chem_202403936
crossref_primary_10_1021_acs_orglett_4c01438
crossref_primary_10_1002_zaac_202100357
crossref_primary_10_1021_acs_iecr_3c01182
crossref_primary_10_1038_s41467_024_44922_y
crossref_primary_10_1063_5_0120386
crossref_primary_10_1002_ange_202415346
crossref_primary_10_1038_s41586_022_05310_y
crossref_primary_10_1039_D0DT02806A
crossref_primary_10_1016_j_cej_2019_123485
crossref_primary_10_1002_aic_18283
crossref_primary_10_1002_ange_202011213
crossref_primary_10_1002_ange_202423226
crossref_primary_10_1021_acsami_2c07829
crossref_primary_10_1021_acsanm_3c02000
crossref_primary_10_1016_j_ccr_2020_213485
crossref_primary_10_1021_acs_iecr_0c01096
crossref_primary_10_1021_acsmaterialslett_4c02383
crossref_primary_10_1016_j_matt_2024_05_008
crossref_primary_10_1063_1_5141950
crossref_primary_10_3390_ma17235708
crossref_primary_10_1021_jacs_9b12527
crossref_primary_10_1038_s41467_024_46809_4
crossref_primary_10_1039_D3CC05091B
crossref_primary_10_1007_s11426_022_1562_8
crossref_primary_10_1021_acsami_3c17965
crossref_primary_10_1021_jacs_3c14213
crossref_primary_10_1039_D1QM00894C
crossref_primary_10_1002_anie_202007571
crossref_primary_10_1021_acs_orglett_4c00033
crossref_primary_10_1002_cplu_202200006
crossref_primary_10_1002_adma_202005745
crossref_primary_10_1039_D1CC01650D
crossref_primary_10_1007_s11705_022_2202_y
crossref_primary_10_1007_s40242_022_1454_x
crossref_primary_10_1016_j_fuel_2024_133754
crossref_primary_10_1039_D2CC01014C
crossref_primary_10_1002_adma_202301589
crossref_primary_10_1002_anie_202202450
crossref_primary_10_1002_ange_202409296
crossref_primary_10_1002_chem_202301437
crossref_primary_10_1016_j_advmem_2024_100125
crossref_primary_10_1002_chem_202005276
crossref_primary_10_1039_D4DT00261J
crossref_primary_10_1016_j_ccr_2024_216068
crossref_primary_10_1021_acsami_2c06966
crossref_primary_10_1039_D4CC03769C
crossref_primary_10_1002_ange_201916131
crossref_primary_10_1002_ange_202306722
crossref_primary_10_1016_j_chempr_2023_12_006
crossref_primary_10_1016_j_ijhydene_2023_08_241
crossref_primary_10_1016_j_seppur_2023_123148
crossref_primary_10_1021_acs_chemrev_2c00198
crossref_primary_10_1021_acs_jpclett_3c02667
crossref_primary_10_1039_D4QI02802C
crossref_primary_10_1016_j_matt_2021_04_027
crossref_primary_10_1002_anie_202421756
crossref_primary_10_1039_D4DT03018D
crossref_primary_10_1016_j_xcrp_2021_100470
crossref_primary_10_1002_anie_202421753
crossref_primary_10_1016_j_microc_2021_106650
crossref_primary_10_1039_D2CS00856D
crossref_primary_10_1002_anie_202409432
crossref_primary_10_1007_s12274_022_4888_1
crossref_primary_10_3762_bjoc_21_30
crossref_primary_10_1002_adfm_202302033
crossref_primary_10_1002_anie_202416050
crossref_primary_10_1039_D4TA07124G
crossref_primary_10_1002_ange_202210478
crossref_primary_10_1039_D2CC02041F
crossref_primary_10_1002_anie_202100675
crossref_primary_10_1021_jacs_4c16508
crossref_primary_10_1038_s41578_020_00268_7
crossref_primary_10_1126_sciadv_abn7035
crossref_primary_10_1038_s41467_021_25255_6
crossref_primary_10_1039_D1NJ03965B
crossref_primary_10_1002_ange_202420048
crossref_primary_10_1021_acssuschemeng_1c05003
crossref_primary_10_1039_D3SC05093A
crossref_primary_10_1002_anie_202418917
crossref_primary_10_1021_jacs_4c05852
crossref_primary_10_1002_cssc_202000562
crossref_primary_10_1002_anie_202102982
crossref_primary_10_2139_ssrn_3960514
crossref_primary_10_1002_cplu_202000143
crossref_primary_10_1016_j_cclet_2021_02_063
crossref_primary_10_1007_s11783_021_1412_8
crossref_primary_10_1002_chem_202404548
crossref_primary_10_3390_catal11030358
crossref_primary_10_1016_j_ijhydene_2021_10_039
crossref_primary_10_1039_D3CC04522F
crossref_primary_10_1002_anie_202409296
crossref_primary_10_1002_adfm_202501580
crossref_primary_10_1002_ange_202416050
crossref_primary_10_1021_acs_analchem_1c03626
crossref_primary_10_1002_ange_202418917
crossref_primary_10_1038_s41557_023_01415_7
crossref_primary_10_1002_anie_202420086
crossref_primary_10_1039_D1CC01507A
crossref_primary_10_1002_anie_202218706
crossref_primary_10_1039_D2CC05283K
crossref_primary_10_1002_adma_202202290
crossref_primary_10_1002_ange_202211780
crossref_primary_10_1021_acs_inorgchem_4c05225
crossref_primary_10_1002_anie_202306722
crossref_primary_10_1039_D4SC08569H
crossref_primary_10_1002_ange_202421753
crossref_primary_10_1002_anie_202011213
crossref_primary_10_1360_SSC_2023_0190
crossref_primary_10_1016_j_ccr_2024_215859
crossref_primary_10_1002_ange_202421756
crossref_primary_10_1055_a_1977_1765
crossref_primary_10_1039_D3SC01816D
crossref_primary_10_1021_acs_chemmater_2c01502
crossref_primary_10_1016_j_scib_2022_11_010
crossref_primary_10_1021_acs_accounts_0c00582
crossref_primary_10_1039_D2SC01782B
crossref_primary_10_1021_jacs_0c04277
crossref_primary_10_1016_j_cej_2024_152673
crossref_primary_10_1039_D4TA07355J
crossref_primary_10_1016_j_ijhydene_2023_12_283
crossref_primary_10_1021_acs_chemmater_4c01808
crossref_primary_10_1016_j_seppur_2024_130492
crossref_primary_10_1038_s41467_023_39871_x
crossref_primary_10_1016_j_coche_2023_100901
crossref_primary_10_1016_j_apcatb_2022_121487
crossref_primary_10_1039_D3CC00522D
crossref_primary_10_1002_ange_202102813
crossref_primary_10_1039_D0TA10004H
crossref_primary_10_1039_D0CS01347A
crossref_primary_10_1016_j_cjche_2022_04_003
crossref_primary_10_1016_j_seppur_2024_131219
crossref_primary_10_1002_adma_202206524
crossref_primary_10_1002_chem_202100891
crossref_primary_10_1002_anie_202102813
crossref_primary_10_1021_acs_chemrev_2c00667
crossref_primary_10_1039_C9TA14254A
crossref_primary_10_1016_j_jmst_2020_09_044
crossref_primary_10_2139_ssrn_4147021
crossref_primary_10_1021_acsnano_1c08605
crossref_primary_10_1016_j_electacta_2023_142780
crossref_primary_10_1016_j_seppur_2022_121286
crossref_primary_10_1016_j_apsusc_2024_159596
crossref_primary_10_1002_ange_202420086
crossref_primary_10_1002_anie_202423226
crossref_primary_10_1016_j_seppur_2024_129130
crossref_primary_10_1002_ange_202318362
crossref_primary_10_1039_D4CC04306E
crossref_primary_10_1016_j_memsci_2024_123391
crossref_primary_10_1038_s41467_023_38728_7
crossref_primary_10_1039_D3QM00217A
crossref_primary_10_1021_acsami_1c04573
crossref_primary_10_1002_ange_202218706
crossref_primary_10_1021_acs_accounts_1c00108
crossref_primary_10_1038_d41586_020_01797_5
Cites_doi 10.1021/acs.langmuir.7b03580
10.1080/18811248.2002.9715219
10.1021/jp060748p
10.1021/jp070186p
10.1088/0953-8984/22/33/334207
10.1038/nchem.1550
10.1021/ja9621760
10.1080/08927022.2015.1010082
10.1021/jp0542470
10.1021/jacs.5b11797
10.1126/science.aaf6323
10.1080/00268979500101571
10.1107/S2053229614024218
10.1016/S0263-7855(96)00043-4
10.1063/1.2770708
10.1002/anie.201307443
10.1038/natrevmats.2016.53
10.1002/anie.200601991
10.1021/ja0502573
10.1038/nature10125
10.1039/C4CP00709C
10.1002/anie.201208156
10.1021/ja402103u
10.1016/j.cpc.2018.09.020
10.1021/acscentsci.7b00145
10.1088/0953-8984/14/40/318
10.1107/S2059798318009191
10.1126/science.1069513
10.1002/ejic.201600253
10.1021/bk-1978-0068.ch009
10.1016/j.micromeso.2011.08.020
10.1016/0021-9991(77)90121-8
10.1016/j.micromeso.2017.12.035
10.1038/nature21419
10.1063/1.4772676
10.1021/ja302071t
10.1016/j.seppur.2015.03.036
10.1107/S0021889808042726
10.1021/acs.jpclett.5b01545
10.1002/anie.201308924
10.1021/ja710144k
10.1126/science.1220131
10.1038/nmat2545
10.1107/S0907444993011333
10.1021/jp064745o
10.1126/science.aac9726
10.1021/ja077469f
10.1107/S1600576714022985
10.1021/ct300849w
10.1103/PhysRevLett.58.1648
10.1107/S2053273314026370
10.1126/science.1234071
10.1039/c3ta01544k
10.1021/nn405420t
10.1016/j.cej.2009.04.068
10.1039/b600349d
10.1021/jp054511p
10.1016/0009-2614(94)01372-3
10.1016/j.cpc.2013.09.018
10.13182/FST08-A1842
10.1016/j.memsci.2008.04.030
10.1039/c2cp40962c
10.1016/j.ijhydene.2017.03.222
10.1021/ct100684s
10.1021/bk-1978-0068.ch001
10.1039/C7CS00153C
10.1021/ja503223j
10.1002/cphc.201900183
10.1063/1.441588
10.1002/adma.201805293
10.1073/pnas.1203365109
10.1103/PhysRevLett.109.100604
10.1002/adma.201203383
10.1021/ct050065y
10.1021/ar5003126
10.1515/zkri-2018-2150
10.1063/1.446740
10.1016/j.micromeso.2018.05.026
10.1021/ja066098k
10.1016/j.micromeso.2015.03.017
10.1002/anie.201203117
10.1149/1.2783303
10.1002/anie.201005301
10.13182/FST05-A900
10.1063/1.4802990
10.1007/s10909-009-9917-8
10.1021/ja305809u
10.1103/PhysRevLett.82.956
10.1039/B614254K
10.13182/FST08-A1844
10.1021/ja409594s
10.1007/s00214-005-0655-y
10.1038/nmat4035
ContentType Journal Article
Copyright Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
– notice: Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.aax7427
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 620
ExternalDocumentID 31672893
10_1126_science_aax7427
26843778
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: European Research Council
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AFBNE
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JENOY
JLS
JSG
JST
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QS-
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
.GJ
.GO
.HR
0-V
186
3EH
4.4
41~
42X
4R4
692
79B
7X7
7XC
88E
88I
8AF
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8GL
8WZ
97F
A6W
AADHG
AAFWJ
AAJYS
AAKAS
AAYJJ
AAYOK
AAYXX
ABBHK
ABCQX
ABDPE
ABJCF
ABPMR
ABUWG
ABXSQ
ACHIC
ACQAM
ACTDY
ADBBV
ADMHC
ADQXQ
ADULT
ADZCM
AEUYN
AEXZC
AFCHL
AFKRA
AFQQW
AJUXI
AQVQM
ARALO
ARAPS
ATCPS
AZQEC
BBNVY
BBWZM
BCU
BEC
BENPR
BGLVJ
BHPHI
BKNYI
BKSAR
BPHCQ
BVXVI
C2-
C51
CCPQU
CITATION
CJNVE
D0S
D1I
D1J
D1K
DCCCD
DWQXO
D~A
EAU
EGS
EJD
EWM
EX3
FYUFA
GICCO
GNUQQ
GUQSH
HCIFZ
HGD
HMCUK
HQ3
HTVGU
HVGLF
IAG
IBG
IEP
IER
IPC
IPSME
ISN
ITC
J5H
J9C
JAAYA
JBMMH
JHFFW
JKQEH
JLXEF
JPM
K-O
K6-
K9-
KB.
KQ8
L6V
LK5
LK8
LPU
M0K
M0R
M1P
M2O
M2P
M2Q
M7P
M7R
M7S
N4W
OK1
P62
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PQEDU
PROAC
PSQYO
PTHSS
PV9
PYCSY
QJJ
R05
RNS
RZL
SA0
SJFOW
SKT
UBY
UHU
UKHRP
VOH
WOQ
WOW
X7L
XIH
XKJ
XOL
YJ6
YXB
YYQ
ZCG
ZGI
ZVL
ZVM
ZXP
ZY4
~H1
GX1
NPM
UIG
YCJ
ZKG
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c454t-ff225e99ebd357f37ce5586089bf319707acd9e82709aa41a34c34c656520c3d3
ISSN 0036-8075
1095-9203
IngestDate Fri Jul 11 07:43:32 EDT 2025
Fri Jul 25 10:54:00 EDT 2025
Thu Apr 03 06:59:43 EDT 2025
Tue Jul 01 01:51:35 EDT 2025
Thu Apr 24 23:02:10 EDT 2025
Thu Jul 03 21:41:14 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6465
Language English
License Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c454t-ff225e99ebd357f37ce5586089bf319707acd9e82709aa41a34c34c656520c3d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0008-1480
0000-0001-8761-191X
0000-0002-3095-875X
0000-0002-5514-412X
0000-0002-5512-8162
0000-0002-1994-0591
0000-0002-3143-2119
0000-0003-0201-1021
0000-0003-0324-2198
0000-0003-2571-2832
0000-0002-0382-5863
OpenAccessLink http://infoscience.epfl.ch/record/272644
PMID 31672893
PQID 2311103753
PQPubID 1256
PageCount 8
ParticipantIDs proquest_miscellaneous_2311638876
proquest_journals_2311103753
pubmed_primary_31672893
crossref_citationtrail_10_1126_science_aax7427
crossref_primary_10_1126_science_aax7427
jstor_primary_26843778
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20191101
2019-11-00
2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 20191101
  day: 1
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2019
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_87_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_85_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_89_2
e_1_3_2_60_2
e_1_3_2_83_2
e_1_3_2_81_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_75_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_73_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_79_2
e_1_3_2_96_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_77_2
e_1_3_2_92_2
e_1_3_2_94_2
e_1_3_2_50_2
e_1_3_2_71_2
e_1_3_2_90_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_65_2
e_1_3_2_86_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_63_2
e_1_3_2_84_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_69_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_67_2
e_1_3_2_88_2
e_1_3_2_61_2
e_1_3_2_82_2
e_1_3_2_80_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_95_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_78_2
e_1_3_2_2_2
e_1_3_2_91_2
e_1_3_2_93_2
e_1_3_2_72_2
e_1_3_2_70_2
References_xml – ident: e_1_3_2_66_2
  doi: 10.1021/acs.langmuir.7b03580
– ident: e_1_3_2_62_2
  doi: 10.1080/18811248.2002.9715219
– ident: e_1_3_2_96_2
– ident: e_1_3_2_57_2
  doi: 10.1021/jp060748p
– ident: e_1_3_2_92_2
  doi: 10.1021/jp070186p
– ident: e_1_3_2_61_2
  doi: 10.1088/0953-8984/22/33/334207
– ident: e_1_3_2_27_2
  doi: 10.1038/nchem.1550
– ident: e_1_3_2_74_2
  doi: 10.1021/ja9621760
– ident: e_1_3_2_75_2
  doi: 10.1080/08927022.2015.1010082
– ident: e_1_3_2_76_2
  doi: 10.1021/jp0542470
– ident: e_1_3_2_82_2
  doi: 10.1021/jacs.5b11797
– ident: e_1_3_2_12_2
  doi: 10.1126/science.aaf6323
– ident: e_1_3_2_38_2
  doi: 10.1080/00268979500101571
– ident: e_1_3_2_51_2
  doi: 10.1107/S2053229614024218
– ident: e_1_3_2_72_2
  doi: 10.1016/S0263-7855(96)00043-4
– ident: e_1_3_2_80_2
  doi: 10.1063/1.2770708
– ident: e_1_3_2_47_2
  doi: 10.1002/anie.201307443
– ident: e_1_3_2_26_2
  doi: 10.1038/natrevmats.2016.53
– ident: e_1_3_2_68_2
  doi: 10.1002/anie.200601991
– ident: e_1_3_2_59_2
  doi: 10.1021/ja0502573
– ident: e_1_3_2_35_2
  doi: 10.1038/nature10125
– ident: e_1_3_2_58_2
  doi: 10.1039/C4CP00709C
– ident: e_1_3_2_29_2
  doi: 10.1002/anie.201208156
– ident: e_1_3_2_36_2
  doi: 10.1021/ja402103u
– ident: e_1_3_2_90_2
  doi: 10.1016/j.cpc.2018.09.020
– ident: e_1_3_2_53_2
  doi: 10.1021/acscentsci.7b00145
– ident: e_1_3_2_73_2
  doi: 10.1088/0953-8984/14/40/318
– ident: e_1_3_2_49_2
  doi: 10.1107/S2059798318009191
– ident: e_1_3_2_85_2
  doi: 10.1126/science.1069513
– ident: e_1_3_2_5_2
  doi: 10.1002/ejic.201600253
– ident: e_1_3_2_3_2
  doi: 10.1021/bk-1978-0068.ch009
– ident: e_1_3_2_71_2
  doi: 10.1016/j.micromeso.2011.08.020
– ident: e_1_3_2_94_2
  doi: 10.1016/0021-9991(77)90121-8
– ident: e_1_3_2_17_2
  doi: 10.1016/j.micromeso.2017.12.035
– ident: e_1_3_2_43_2
  doi: 10.1038/nature21419
– ident: e_1_3_2_89_2
  doi: 10.1063/1.4772676
– ident: e_1_3_2_33_2
  doi: 10.1021/ja302071t
– ident: e_1_3_2_54_2
  doi: 10.1016/j.seppur.2015.03.036
– ident: e_1_3_2_52_2
  doi: 10.1107/S0021889808042726
– ident: e_1_3_2_14_2
  doi: 10.1021/acs.jpclett.5b01545
– ident: e_1_3_2_42_2
  doi: 10.1002/anie.201308924
– ident: e_1_3_2_20_2
  doi: 10.1021/ja710144k
– ident: e_1_3_2_24_2
  doi: 10.1126/science.1220131
– ident: e_1_3_2_25_2
  doi: 10.1038/nmat2545
– ident: e_1_3_2_44_2
  doi: 10.1107/S0907444993011333
– ident: e_1_3_2_64_2
  doi: 10.1021/jp064745o
– ident: e_1_3_2_22_2
  doi: 10.1126/science.aac9726
– ident: e_1_3_2_34_2
  doi: 10.1021/ja077469f
– ident: e_1_3_2_48_2
  doi: 10.1107/S1600576714022985
– ident: e_1_3_2_79_2
  doi: 10.1021/ct300849w
– ident: e_1_3_2_86_2
  doi: 10.1103/PhysRevLett.58.1648
– ident: e_1_3_2_50_2
  doi: 10.1107/S2053273314026370
– ident: e_1_3_2_11_2
  doi: 10.1126/science.1234071
– ident: e_1_3_2_21_2
  doi: 10.1039/c3ta01544k
– ident: e_1_3_2_19_2
  doi: 10.1021/nn405420t
– ident: e_1_3_2_56_2
  doi: 10.1016/j.cej.2009.04.068
– ident: e_1_3_2_13_2
  doi: 10.1039/b600349d
– ident: e_1_3_2_15_2
  doi: 10.1021/jp054511p
– ident: e_1_3_2_6_2
  doi: 10.1016/0009-2614(94)01372-3
– ident: e_1_3_2_45_2
– ident: e_1_3_2_95_2
  doi: 10.1016/j.cpc.2013.09.018
– ident: e_1_3_2_55_2
  doi: 10.13182/FST08-A1842
– ident: e_1_3_2_10_2
  doi: 10.1016/j.memsci.2008.04.030
– ident: e_1_3_2_88_2
  doi: 10.1039/c2cp40962c
– ident: e_1_3_2_63_2
  doi: 10.1016/j.ijhydene.2017.03.222
– ident: e_1_3_2_77_2
  doi: 10.1021/ct100684s
– ident: e_1_3_2_2_2
  doi: 10.1021/bk-1978-0068.ch001
– ident: e_1_3_2_8_2
  doi: 10.1039/C7CS00153C
– ident: e_1_3_2_30_2
  doi: 10.1021/ja503223j
– ident: e_1_3_2_46_2
  doi: 10.1002/cphc.201900183
– ident: e_1_3_2_84_2
  doi: 10.1063/1.441588
– ident: e_1_3_2_9_2
  doi: 10.1002/adma.201805293
– ident: e_1_3_2_87_2
  doi: 10.1073/pnas.1203365109
– ident: e_1_3_2_91_2
  doi: 10.1103/PhysRevLett.109.100604
– ident: e_1_3_2_7_2
  doi: 10.1002/adma.201203383
– ident: e_1_3_2_78_2
  doi: 10.1021/ct050065y
– ident: e_1_3_2_32_2
  doi: 10.1021/ar5003126
– ident: e_1_3_2_39_2
  doi: 10.1515/zkri-2018-2150
– ident: e_1_3_2_83_2
  doi: 10.1063/1.446740
– ident: e_1_3_2_18_2
  doi: 10.1016/j.micromeso.2018.05.026
– ident: e_1_3_2_37_2
  doi: 10.1021/ja066098k
– ident: e_1_3_2_23_2
  doi: 10.1016/j.micromeso.2015.03.017
– ident: e_1_3_2_41_2
  doi: 10.1002/anie.201203117
– ident: e_1_3_2_60_2
  doi: 10.1149/1.2783303
– ident: e_1_3_2_40_2
  doi: 10.1002/anie.201005301
– ident: e_1_3_2_65_2
  doi: 10.13182/FST05-A900
– ident: e_1_3_2_93_2
  doi: 10.1063/1.4802990
– ident: e_1_3_2_4_2
  doi: 10.1007/s10909-009-9917-8
– ident: e_1_3_2_70_2
  doi: 10.1021/ja305809u
– ident: e_1_3_2_16_2
  doi: 10.1103/PhysRevLett.82.956
– ident: e_1_3_2_67_2
  doi: 10.1039/B614254K
– ident: e_1_3_2_69_2
  doi: 10.13182/FST08-A1844
– ident: e_1_3_2_31_2
  doi: 10.1021/ja409594s
– ident: e_1_3_2_81_2
  doi: 10.1007/s00214-005-0655-y
– ident: e_1_3_2_28_2
  doi: 10.1038/nmat4035
SSID ssj0009593
Score 2.6724043
Snippet The separation of hydrogen isotopes for applications such as nuclear fusion is a major challenge. Current technologies are energy intensive and inefficient....
One method for improving the efficiency of separation of hydrogen from deuterium (D) is to exploit kinetic quantum sieving with nanoporous solids. This method...
Quantum sieves for hydrogen isotopesOne method for improving the efficiency of separation of hydrogen from deuterium (D) is to exploit kinetic quantum sieving...
SourceID proquest
pubmed
crossref
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 613
SubjectTerms Adsorption
Apertures
Cage molecules
Cages
Cavities
Deuterium
Hydrogen
Hydrogen isotopes
Isotope separation
Isotopes
Kinetics
Nuclear fusion
Pore size
Porosity
Selectivity
Sieves
Ultrafines
Title Barely porous organic cages for hydrogen isotope separation
URI https://www.jstor.org/stable/26843778
https://www.ncbi.nlm.nih.gov/pubmed/31672893
https://www.proquest.com/docview/2311103753
https://www.proquest.com/docview/2311638876
Volume 366
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA_aIvgitlq9WiWCD5Vjj71kk83i09V6nB8UwSv0bUmyWSrIbbnbgvWvd7KZ_RB6YoVjOfaSHOQ3mcwk85sh5A0zLOGyKKJSaxkliWaRYU5FxiiTWWasKptsn2dycZ58uhAXPV2xYZfUZmJ_3cor-R9U4R3g6lmyd0C2GxRewHfAF56AMDz_CWNfrMCfTlRrH8gaCjTZsdU-b4MPH7y8KdYV9B5_31R1deXGGxdSfSMWaJS26xuMze4CZwBbF4k4C_ECbfgAdmvPEvDoYJohh64Fe9lzV-4y7FCdYjbjsJkEDRr74o8s5kMVy0NlFZQlmUgx0JkykFFx-5UNN-4WzT6oRekmWv8Enz7tN7H24n4x-5Z_PZ3nXz6efb5Pdhk4D6D9dmcnpyfzrcmYMeXTgEzV_sEf1koIWN3uijQmyfIxeYS-BJ0Fwdgj99xqnzwI1UVv9skezuSGHmNy8bdPyLsgMzTIDEWZoY3MUECEtjJDUWZoLzNPyfn8w_L9IsICGpFNRFJHZQna2mWZMwUXaclT64RQMlaZKUH1pnGqbZE5xdI40zqZap5Y-ICJL1hsecEPyM6qWrnnhOqYa6GnNk6l9TXKVeEKUSoulfHsaDsik3aicovZ5X2Rkx9542UymePM5jizI3LcdbgKiVW2Nz1oZr5r5zMU8TRVI3LUQpHjstzk4LBMPflV8BF53f0MStPfhOmVg8lt2sDGA5bAiDwLEHaD-9QQDKz4w78P_oI87JfUEdmp19fuJdintXmF4vYbdUeUZw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Barely+porous+organic+cages+for+hydrogen+isotope+separation&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.date=2019-11-01&rft.pub=The+American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=366&rft.issue=6465&rft.spage=613&rft.epage=620&rft_id=info:doi/10.1126%2Fscience.aax7427&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon