Barely porous organic cages for hydrogen isotope separation
The separation of hydrogen isotopes for applications such as nuclear fusion is a major challenge. Current technologies are energy intensive and inefficient. Nanoporous materials have the potential to separate hydrogen isotopes by kinetic quantum sieving, but high separation selectivity tends to corr...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 366; no. 6465; pp. 613 - 620 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
01.11.2019
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The separation of hydrogen isotopes for applications such as nuclear fusion is a major challenge. Current technologies are energy intensive and inefficient. Nanoporous materials have the potential to separate hydrogen isotopes by kinetic quantum sieving, but high separation selectivity tends to correlate with low adsorption capacity, which can prohibit process scale-up. In this study, we use organic synthesis to modify the internal cavities of cage molecules to produce hybrid materials that are excellent quantum sieves. By combining small-pore and large-pore cages together in a single solid, we produce a material with optimal separation performance that combines an excellent deuterium/hydrogen selectivity (8.0) with a high deuterium uptake (4.7 millimoles per gram). |
---|---|
AbstractList | The separation of hydrogen isotopes for applications such as nuclear fusion is a major challenge. Current technologies are energy intensive and inefficient. Nanoporous materials have the potential to separate hydrogen isotopes by kinetic quantum sieving, but high separation selectivity tends to correlate with low adsorption capacity, which can prohibit process scale-up. In this study, we use organic synthesis to modify the internal cavities of cage molecules to produce hybrid materials that are excellent quantum sieves. By combining small-pore and large-pore cages together in a single solid, we produce a material with optimal separation performance that combines an excellent deuterium/hydrogen selectivity (8.0) with a high deuterium uptake (4.7 millimoles per gram).The separation of hydrogen isotopes for applications such as nuclear fusion is a major challenge. Current technologies are energy intensive and inefficient. Nanoporous materials have the potential to separate hydrogen isotopes by kinetic quantum sieving, but high separation selectivity tends to correlate with low adsorption capacity, which can prohibit process scale-up. In this study, we use organic synthesis to modify the internal cavities of cage molecules to produce hybrid materials that are excellent quantum sieves. By combining small-pore and large-pore cages together in a single solid, we produce a material with optimal separation performance that combines an excellent deuterium/hydrogen selectivity (8.0) with a high deuterium uptake (4.7 millimoles per gram). The separation of hydrogen isotopes for applications such as nuclear fusion is a major challenge. Current technologies are energy intensive and inefficient. Nanoporous materials have the potential to separate hydrogen isotopes by kinetic quantum sieving, but high separation selectivity tends to correlate with low adsorption capacity, which can prohibit process scale-up. In this study, we use organic synthesis to modify the internal cavities of cage molecules to produce hybrid materials that are excellent quantum sieves. By combining small-pore and large-pore cages together in a single solid, we produce a material with optimal separation performance that combines an excellent deuterium/hydrogen selectivity (8.0) with a high deuterium uptake (4.7 millimoles per gram). Quantum sieves for hydrogen isotopesOne method for improving the efficiency of separation of hydrogen from deuterium (D) is to exploit kinetic quantum sieving with nanoporous solids. This method requires ultrafine pore apertures (around 3 angstroms), which usually leads to low pore volumes and low D2 adsorption capacities. Liu et al. used organic synthesis to tune the pore size of the internal cavities of organic cage molecules. A hybrid cocrystal contained both a small-pore cage that imparted high selectivity and a larger-pore cage that enabled high D2 uptake.Science, this issue p. 613The separation of hydrogen isotopes for applications such as nuclear fusion is a major challenge. Current technologies are energy intensive and inefficient. Nanoporous materials have the potential to separate hydrogen isotopes by kinetic quantum sieving, but high separation selectivity tends to correlate with low adsorption capacity, which can prohibit process scale-up. In this study, we use organic synthesis to modify the internal cavities of cage molecules to produce hybrid materials that are excellent quantum sieves. By combining small-pore and large-pore cages together in a single solid, we produce a material with optimal separation performance that combines an excellent deuterium/hydrogen selectivity (8.0) with a high deuterium uptake (4.7 millimoles per gram). One method for improving the efficiency of separation of hydrogen from deuterium (D) is to exploit kinetic quantum sieving with nanoporous solids. This method requires ultrafine pore apertures (around 3 angstroms), which usually leads to low pore volumes and low D 2 adsorption capacities. Liu et al. used organic synthesis to tune the pore size of the internal cavities of organic cage molecules. A hybrid cocrystal contained both a small-pore cage that imparted high selectivity and a larger-pore cage that enabled high D 2 uptake. Science , this issue p. 613 Cocrystals of modified molecular organic crystals can separate hydrogen from deuterium through kinetic quantum sieving. The separation of hydrogen isotopes for applications such as nuclear fusion is a major challenge. Current technologies are energy intensive and inefficient. Nanoporous materials have the potential to separate hydrogen isotopes by kinetic quantum sieving, but high separation selectivity tends to correlate with low adsorption capacity, which can prohibit process scale-up. In this study, we use organic synthesis to modify the internal cavities of cage molecules to produce hybrid materials that are excellent quantum sieves. By combining small-pore and large-pore cages together in a single solid, we produce a material with optimal separation performance that combines an excellent deuterium/hydrogen selectivity (8.0) with a high deuterium uptake (4.7 millimoles per gram). |
Author | Ceriotti, Michele Balderas-Xicohténcatl, Rafael Cooper, Andrew I. Liu, Ming Schütz, Gisela Yang, Siyuan Kapil, Venkat Little, Marc A. Clowes, Rob Hirscher, Michael Ding, Lifeng Holden, Daniel L. Zhang, Linda He, Donglin Chong, Samantha Y. Chen, Linjiang |
Author_xml | – sequence: 1 givenname: Ming surname: Liu fullname: Liu, Ming – sequence: 2 givenname: Linda surname: Zhang fullname: Zhang, Linda – sequence: 3 givenname: Marc A. surname: Little fullname: Little, Marc A. – sequence: 4 givenname: Venkat surname: Kapil fullname: Kapil, Venkat – sequence: 5 givenname: Michele surname: Ceriotti fullname: Ceriotti, Michele – sequence: 6 givenname: Siyuan surname: Yang fullname: Yang, Siyuan – sequence: 7 givenname: Lifeng surname: Ding fullname: Ding, Lifeng – sequence: 8 givenname: Daniel L. surname: Holden fullname: Holden, Daniel L. – sequence: 9 givenname: Rafael surname: Balderas-Xicohténcatl fullname: Balderas-Xicohténcatl, Rafael – sequence: 10 givenname: Donglin surname: He fullname: He, Donglin – sequence: 11 givenname: Rob surname: Clowes fullname: Clowes, Rob – sequence: 12 givenname: Samantha Y. surname: Chong fullname: Chong, Samantha Y. – sequence: 13 givenname: Gisela surname: Schütz fullname: Schütz, Gisela – sequence: 14 givenname: Linjiang surname: Chen fullname: Chen, Linjiang – sequence: 15 givenname: Michael surname: Hirscher fullname: Hirscher, Michael – sequence: 16 givenname: Andrew I. surname: Cooper fullname: Cooper, Andrew I. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31672893$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kM1LAzEQxYMo2qpnT8qCFy-rSWbzhScVv6DgRc8hzc7WLdvNmmzB_veubfUgCANzmN97vHljstuGFgk5YfSSMS6vkq-x9Xjp3KcquNohI0aNyA2nsEtGlILMNVXigIxTmlM63AzskwNgUnFtYESub13EZpV1IYZlykKcubb2mXczTFkVYva-KmOYYZvVKfShwyxh56Lr69Aekb3KNQmPt_uQvD3cv9495ZOXx-e7m0nuC1H0eVVxLtAYnJYgVAXKoxBaUm2mFTCjqHK-NKi5osa5gjko_DBSSMGphxIOycXGt4vhY4mpt4s6eWwa1-IQ2nJgTILWSg7o-R90HpaxHdKtKUZBCRiosy21nC6wtF2sFy6u7E8tAyA2gI8hpYiV9XW__rmPrm4so_a7frut327rH3RXf3Q_1v8rTjeKeepD_MW51AUopeELhiiS9g |
CitedBy_id | crossref_primary_10_1021_jacs_3c07635 crossref_primary_10_1021_jacs_1c09992 crossref_primary_10_1246_cl_200477 crossref_primary_10_1021_acs_chemrev_9b00803 crossref_primary_10_1002_adfm_202423564 crossref_primary_10_1002_anie_202420048 crossref_primary_10_1002_chem_202302116 crossref_primary_10_1021_jacs_0c07367 crossref_primary_10_1039_D4SC05309E crossref_primary_10_1021_acsami_0c16516 crossref_primary_10_1021_jacs_0c04885 crossref_primary_10_1039_D0CC02544E crossref_primary_10_1038_s41893_025_01537_5 crossref_primary_10_1016_j_cclet_2024_109966 crossref_primary_10_1002_anie_202318362 crossref_primary_10_1016_j_seppur_2023_126001 crossref_primary_10_1002_ange_202102982 crossref_primary_10_1016_j_fusengdes_2020_111838 crossref_primary_10_1002_adma_202408416 crossref_primary_10_1055_a_2041_5362 crossref_primary_10_1038_s41467_024_51431_5 crossref_primary_10_1021_acs_cgd_0c00388 crossref_primary_10_1016_j_cclet_2023_109201 crossref_primary_10_1039_D3DT01143G crossref_primary_10_1080_10610278_2024_2398575 crossref_primary_10_1002_adhm_202401117 crossref_primary_10_1038_s41467_021_24042_7 crossref_primary_10_1016_j_chempr_2023_03_027 crossref_primary_10_1021_acsmaterialsau_2c00051 crossref_primary_10_1021_jacs_4c10217 crossref_primary_10_1021_jacs_4c17520 crossref_primary_10_1038_s41467_021_24344_w crossref_primary_10_1039_D4SC04207G crossref_primary_10_1002_ange_202100675 crossref_primary_10_1002_ange_202007454 crossref_primary_10_1002_anie_202210478 crossref_primary_10_1002_ange_202007571 crossref_primary_10_1039_D0CC07120J crossref_primary_10_1039_D2NA00790H crossref_primary_10_1016_j_ccr_2023_215402 crossref_primary_10_1002_ange_202202450 crossref_primary_10_1016_j_poly_2022_116041 crossref_primary_10_3390_molecules30030462 crossref_primary_10_1021_cbe_3c00099 crossref_primary_10_1039_D2CC03692D crossref_primary_10_1021_acsami_2c18221 crossref_primary_10_1021_acs_cgd_4c01186 crossref_primary_10_1021_jacs_1c01694 crossref_primary_10_1016_j_seppur_2023_126025 crossref_primary_10_1007_s12274_019_2571_9 crossref_primary_10_1039_D3QM00715D crossref_primary_10_1021_acsnano_2c04655 crossref_primary_10_1021_jacs_4c01654 crossref_primary_10_1021_acsami_2c12927 crossref_primary_10_3390_molecules27082570 crossref_primary_10_1080_00268976_2021_1942277 crossref_primary_10_1021_jacs_0c08243 crossref_primary_10_1021_acs_jpclett_4c01399 crossref_primary_10_1088_1361_6528_ad9b33 crossref_primary_10_1016_j_microc_2024_110967 crossref_primary_10_1039_D4QO01142B crossref_primary_10_1002_ange_202409432 crossref_primary_10_1039_D4CP03549F crossref_primary_10_1016_j_micromeso_2020_110820 crossref_primary_10_1002_anie_202211780 crossref_primary_10_1016_j_jechem_2022_03_035 crossref_primary_10_1016_j_fuel_2022_124989 crossref_primary_10_1016_j_seppur_2024_126732 crossref_primary_10_3390_app13169372 crossref_primary_10_1039_D0CS01142H crossref_primary_10_1016_j_aca_2021_339376 crossref_primary_10_1021_acs_nanolett_4c03881 crossref_primary_10_1016_j_jhazmat_2021_125860 crossref_primary_10_1021_acs_inorgchem_0c03590 crossref_primary_10_1039_D3SC05343A crossref_primary_10_1002_anie_201916131 crossref_primary_10_1039_D2SC01876D crossref_primary_10_1002_adfm_201909842 crossref_primary_10_1016_j_memsci_2025_123814 crossref_primary_10_1021_acsami_0c22288 crossref_primary_10_1016_j_seppur_2023_124660 crossref_primary_10_1039_D2SC00395C crossref_primary_10_1002_ijch_202400025 crossref_primary_10_1039_D2TA05420E crossref_primary_10_1126_science_aba4997 crossref_primary_10_1002_anie_202415346 crossref_primary_10_1021_acsomega_1c07041 crossref_primary_10_1021_acs_chemrev_2c00140 crossref_primary_10_1063_5_0226249 crossref_primary_10_1021_acsanm_1c03859 crossref_primary_10_1021_acsomega_4c04186 crossref_primary_10_1007_s11426_024_2461_2 crossref_primary_10_20517_cs_2024_01 crossref_primary_10_1021_acssuschemeng_1c04459 crossref_primary_10_1039_D1QO00685A crossref_primary_10_1039_D0CP00330A crossref_primary_10_1039_D4CC04150J crossref_primary_10_1039_D4SC04295F crossref_primary_10_1002_adfm_202404681 crossref_primary_10_1038_s41467_021_26397_3 crossref_primary_10_1002_aic_18504 crossref_primary_10_1002_open_201900357 crossref_primary_10_1021_acs_chemrev_2c00155 crossref_primary_10_1016_j_chempr_2021_02_016 crossref_primary_10_1021_acs_inorgchem_2c03473 crossref_primary_10_1016_j_jece_2025_116078 crossref_primary_10_1021_jacs_1c11731 crossref_primary_10_1039_D0FD00022A crossref_primary_10_1021_acsmaterialslett_3c00885 crossref_primary_10_1016_j_jallcom_2022_166488 crossref_primary_10_1021_acsanm_3c02188 crossref_primary_10_1016_j_ijhydene_2020_05_096 crossref_primary_10_1002_nadc_20204095515 crossref_primary_10_1016_j_seppur_2024_130641 crossref_primary_10_1021_jacs_0c03330 crossref_primary_10_1038_s41467_020_20744_6 crossref_primary_10_1039_D4AN00551A crossref_primary_10_1002_adfm_202405320 crossref_primary_10_1002_anie_202007454 crossref_primary_10_1002_adma_202414724 crossref_primary_10_1016_j_tet_2023_133336 crossref_primary_10_1021_acs_chemmater_2c00233 crossref_primary_10_1039_D2NJ00734G crossref_primary_10_1002_ejoc_202100892 crossref_primary_10_1002_adfm_202106116 crossref_primary_10_1021_jacs_0c03444 crossref_primary_10_1039_D0SC00049C crossref_primary_10_1039_D2CC04719E crossref_primary_10_7209_tanso_2021_145 crossref_primary_10_1002_chem_202403936 crossref_primary_10_1021_acs_orglett_4c01438 crossref_primary_10_1002_zaac_202100357 crossref_primary_10_1021_acs_iecr_3c01182 crossref_primary_10_1038_s41467_024_44922_y crossref_primary_10_1063_5_0120386 crossref_primary_10_1002_ange_202415346 crossref_primary_10_1038_s41586_022_05310_y crossref_primary_10_1039_D0DT02806A crossref_primary_10_1016_j_cej_2019_123485 crossref_primary_10_1002_aic_18283 crossref_primary_10_1002_ange_202011213 crossref_primary_10_1002_ange_202423226 crossref_primary_10_1021_acsami_2c07829 crossref_primary_10_1021_acsanm_3c02000 crossref_primary_10_1016_j_ccr_2020_213485 crossref_primary_10_1021_acs_iecr_0c01096 crossref_primary_10_1021_acsmaterialslett_4c02383 crossref_primary_10_1016_j_matt_2024_05_008 crossref_primary_10_1063_1_5141950 crossref_primary_10_3390_ma17235708 crossref_primary_10_1021_jacs_9b12527 crossref_primary_10_1038_s41467_024_46809_4 crossref_primary_10_1039_D3CC05091B crossref_primary_10_1007_s11426_022_1562_8 crossref_primary_10_1021_acsami_3c17965 crossref_primary_10_1021_jacs_3c14213 crossref_primary_10_1039_D1QM00894C crossref_primary_10_1002_anie_202007571 crossref_primary_10_1021_acs_orglett_4c00033 crossref_primary_10_1002_cplu_202200006 crossref_primary_10_1002_adma_202005745 crossref_primary_10_1039_D1CC01650D crossref_primary_10_1007_s11705_022_2202_y crossref_primary_10_1007_s40242_022_1454_x crossref_primary_10_1016_j_fuel_2024_133754 crossref_primary_10_1039_D2CC01014C crossref_primary_10_1002_adma_202301589 crossref_primary_10_1002_anie_202202450 crossref_primary_10_1002_ange_202409296 crossref_primary_10_1002_chem_202301437 crossref_primary_10_1016_j_advmem_2024_100125 crossref_primary_10_1002_chem_202005276 crossref_primary_10_1039_D4DT00261J crossref_primary_10_1016_j_ccr_2024_216068 crossref_primary_10_1021_acsami_2c06966 crossref_primary_10_1039_D4CC03769C crossref_primary_10_1002_ange_201916131 crossref_primary_10_1002_ange_202306722 crossref_primary_10_1016_j_chempr_2023_12_006 crossref_primary_10_1016_j_ijhydene_2023_08_241 crossref_primary_10_1016_j_seppur_2023_123148 crossref_primary_10_1021_acs_chemrev_2c00198 crossref_primary_10_1021_acs_jpclett_3c02667 crossref_primary_10_1039_D4QI02802C crossref_primary_10_1016_j_matt_2021_04_027 crossref_primary_10_1002_anie_202421756 crossref_primary_10_1039_D4DT03018D crossref_primary_10_1016_j_xcrp_2021_100470 crossref_primary_10_1002_anie_202421753 crossref_primary_10_1016_j_microc_2021_106650 crossref_primary_10_1039_D2CS00856D crossref_primary_10_1002_anie_202409432 crossref_primary_10_1007_s12274_022_4888_1 crossref_primary_10_3762_bjoc_21_30 crossref_primary_10_1002_adfm_202302033 crossref_primary_10_1002_anie_202416050 crossref_primary_10_1039_D4TA07124G crossref_primary_10_1002_ange_202210478 crossref_primary_10_1039_D2CC02041F crossref_primary_10_1002_anie_202100675 crossref_primary_10_1021_jacs_4c16508 crossref_primary_10_1038_s41578_020_00268_7 crossref_primary_10_1126_sciadv_abn7035 crossref_primary_10_1038_s41467_021_25255_6 crossref_primary_10_1039_D1NJ03965B crossref_primary_10_1002_ange_202420048 crossref_primary_10_1021_acssuschemeng_1c05003 crossref_primary_10_1039_D3SC05093A crossref_primary_10_1002_anie_202418917 crossref_primary_10_1021_jacs_4c05852 crossref_primary_10_1002_cssc_202000562 crossref_primary_10_1002_anie_202102982 crossref_primary_10_2139_ssrn_3960514 crossref_primary_10_1002_cplu_202000143 crossref_primary_10_1016_j_cclet_2021_02_063 crossref_primary_10_1007_s11783_021_1412_8 crossref_primary_10_1002_chem_202404548 crossref_primary_10_3390_catal11030358 crossref_primary_10_1016_j_ijhydene_2021_10_039 crossref_primary_10_1039_D3CC04522F crossref_primary_10_1002_anie_202409296 crossref_primary_10_1002_adfm_202501580 crossref_primary_10_1002_ange_202416050 crossref_primary_10_1021_acs_analchem_1c03626 crossref_primary_10_1002_ange_202418917 crossref_primary_10_1038_s41557_023_01415_7 crossref_primary_10_1002_anie_202420086 crossref_primary_10_1039_D1CC01507A crossref_primary_10_1002_anie_202218706 crossref_primary_10_1039_D2CC05283K crossref_primary_10_1002_adma_202202290 crossref_primary_10_1002_ange_202211780 crossref_primary_10_1021_acs_inorgchem_4c05225 crossref_primary_10_1002_anie_202306722 crossref_primary_10_1039_D4SC08569H crossref_primary_10_1002_ange_202421753 crossref_primary_10_1002_anie_202011213 crossref_primary_10_1360_SSC_2023_0190 crossref_primary_10_1016_j_ccr_2024_215859 crossref_primary_10_1002_ange_202421756 crossref_primary_10_1055_a_1977_1765 crossref_primary_10_1039_D3SC01816D crossref_primary_10_1021_acs_chemmater_2c01502 crossref_primary_10_1016_j_scib_2022_11_010 crossref_primary_10_1021_acs_accounts_0c00582 crossref_primary_10_1039_D2SC01782B crossref_primary_10_1021_jacs_0c04277 crossref_primary_10_1016_j_cej_2024_152673 crossref_primary_10_1039_D4TA07355J crossref_primary_10_1016_j_ijhydene_2023_12_283 crossref_primary_10_1021_acs_chemmater_4c01808 crossref_primary_10_1016_j_seppur_2024_130492 crossref_primary_10_1038_s41467_023_39871_x crossref_primary_10_1016_j_coche_2023_100901 crossref_primary_10_1016_j_apcatb_2022_121487 crossref_primary_10_1039_D3CC00522D crossref_primary_10_1002_ange_202102813 crossref_primary_10_1039_D0TA10004H crossref_primary_10_1039_D0CS01347A crossref_primary_10_1016_j_cjche_2022_04_003 crossref_primary_10_1016_j_seppur_2024_131219 crossref_primary_10_1002_adma_202206524 crossref_primary_10_1002_chem_202100891 crossref_primary_10_1002_anie_202102813 crossref_primary_10_1021_acs_chemrev_2c00667 crossref_primary_10_1039_C9TA14254A crossref_primary_10_1016_j_jmst_2020_09_044 crossref_primary_10_2139_ssrn_4147021 crossref_primary_10_1021_acsnano_1c08605 crossref_primary_10_1016_j_electacta_2023_142780 crossref_primary_10_1016_j_seppur_2022_121286 crossref_primary_10_1016_j_apsusc_2024_159596 crossref_primary_10_1002_ange_202420086 crossref_primary_10_1002_anie_202423226 crossref_primary_10_1016_j_seppur_2024_129130 crossref_primary_10_1002_ange_202318362 crossref_primary_10_1039_D4CC04306E crossref_primary_10_1016_j_memsci_2024_123391 crossref_primary_10_1038_s41467_023_38728_7 crossref_primary_10_1039_D3QM00217A crossref_primary_10_1021_acsami_1c04573 crossref_primary_10_1002_ange_202218706 crossref_primary_10_1021_acs_accounts_1c00108 crossref_primary_10_1038_d41586_020_01797_5 |
Cites_doi | 10.1021/acs.langmuir.7b03580 10.1080/18811248.2002.9715219 10.1021/jp060748p 10.1021/jp070186p 10.1088/0953-8984/22/33/334207 10.1038/nchem.1550 10.1021/ja9621760 10.1080/08927022.2015.1010082 10.1021/jp0542470 10.1021/jacs.5b11797 10.1126/science.aaf6323 10.1080/00268979500101571 10.1107/S2053229614024218 10.1016/S0263-7855(96)00043-4 10.1063/1.2770708 10.1002/anie.201307443 10.1038/natrevmats.2016.53 10.1002/anie.200601991 10.1021/ja0502573 10.1038/nature10125 10.1039/C4CP00709C 10.1002/anie.201208156 10.1021/ja402103u 10.1016/j.cpc.2018.09.020 10.1021/acscentsci.7b00145 10.1088/0953-8984/14/40/318 10.1107/S2059798318009191 10.1126/science.1069513 10.1002/ejic.201600253 10.1021/bk-1978-0068.ch009 10.1016/j.micromeso.2011.08.020 10.1016/0021-9991(77)90121-8 10.1016/j.micromeso.2017.12.035 10.1038/nature21419 10.1063/1.4772676 10.1021/ja302071t 10.1016/j.seppur.2015.03.036 10.1107/S0021889808042726 10.1021/acs.jpclett.5b01545 10.1002/anie.201308924 10.1021/ja710144k 10.1126/science.1220131 10.1038/nmat2545 10.1107/S0907444993011333 10.1021/jp064745o 10.1126/science.aac9726 10.1021/ja077469f 10.1107/S1600576714022985 10.1021/ct300849w 10.1103/PhysRevLett.58.1648 10.1107/S2053273314026370 10.1126/science.1234071 10.1039/c3ta01544k 10.1021/nn405420t 10.1016/j.cej.2009.04.068 10.1039/b600349d 10.1021/jp054511p 10.1016/0009-2614(94)01372-3 10.1016/j.cpc.2013.09.018 10.13182/FST08-A1842 10.1016/j.memsci.2008.04.030 10.1039/c2cp40962c 10.1016/j.ijhydene.2017.03.222 10.1021/ct100684s 10.1021/bk-1978-0068.ch001 10.1039/C7CS00153C 10.1021/ja503223j 10.1002/cphc.201900183 10.1063/1.441588 10.1002/adma.201805293 10.1073/pnas.1203365109 10.1103/PhysRevLett.109.100604 10.1002/adma.201203383 10.1021/ct050065y 10.1021/ar5003126 10.1515/zkri-2018-2150 10.1063/1.446740 10.1016/j.micromeso.2018.05.026 10.1021/ja066098k 10.1016/j.micromeso.2015.03.017 10.1002/anie.201203117 10.1149/1.2783303 10.1002/anie.201005301 10.13182/FST05-A900 10.1063/1.4802990 10.1007/s10909-009-9917-8 10.1021/ja305809u 10.1103/PhysRevLett.82.956 10.1039/B614254K 10.13182/FST08-A1844 10.1021/ja409594s 10.1007/s00214-005-0655-y 10.1038/nmat4035 |
ContentType | Journal Article |
Copyright | Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. – notice: Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.aax7427 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 620 |
ExternalDocumentID | 31672893 10_1126_science_aax7427 26843778 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: European Research Council |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AEUPB AFBNE AFFDN AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JENOY JLS JSG JST KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QS- RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ .GJ .GO .HR 0-V 186 3EH 4.4 41~ 42X 4R4 692 79B 7X7 7XC 88E 88I 8AF 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8GL 8WZ 97F A6W AADHG AAFWJ AAJYS AAKAS AAYJJ AAYOK AAYXX ABBHK ABCQX ABDPE ABJCF ABPMR ABUWG ABXSQ ACHIC ACQAM ACTDY ADBBV ADMHC ADQXQ ADULT ADZCM AEUYN AEXZC AFCHL AFKRA AFQQW AJUXI AQVQM ARALO ARAPS ATCPS AZQEC BBNVY BBWZM BCU BEC BENPR BGLVJ BHPHI BKNYI BKSAR BPHCQ BVXVI C2- C51 CCPQU CITATION CJNVE D0S D1I D1J D1K DCCCD DWQXO D~A EAU EGS EJD EWM EX3 FYUFA GICCO GNUQQ GUQSH HCIFZ HGD HMCUK HQ3 HTVGU HVGLF IAG IBG IEP IER IPC IPSME ISN ITC J5H J9C JAAYA JBMMH JHFFW JKQEH JLXEF JPM K-O K6- K9- KB. KQ8 L6V LK5 LK8 LPU M0K M0R M1P M2O M2P M2Q M7P M7R M7S N4W OK1 P62 PATMY PCBAR PDBOC PHGZM PHGZT PQEDU PROAC PSQYO PTHSS PV9 PYCSY QJJ R05 RNS RZL SA0 SJFOW SKT UBY UHU UKHRP VOH WOQ WOW X7L XIH XKJ XOL YJ6 YXB YYQ ZCG ZGI ZVL ZVM ZXP ZY4 ~H1 GX1 NPM UIG YCJ ZKG 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c454t-ff225e99ebd357f37ce5586089bf319707acd9e82709aa41a34c34c656520c3d3 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Fri Jul 11 07:43:32 EDT 2025 Fri Jul 25 10:54:00 EDT 2025 Thu Apr 03 06:59:43 EDT 2025 Tue Jul 01 01:51:35 EDT 2025 Thu Apr 24 23:02:10 EDT 2025 Thu Jul 03 21:41:14 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6465 |
Language | English |
License | Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c454t-ff225e99ebd357f37ce5586089bf319707acd9e82709aa41a34c34c656520c3d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0008-1480 0000-0001-8761-191X 0000-0002-3095-875X 0000-0002-5514-412X 0000-0002-5512-8162 0000-0002-1994-0591 0000-0002-3143-2119 0000-0003-0201-1021 0000-0003-0324-2198 0000-0003-2571-2832 0000-0002-0382-5863 |
OpenAccessLink | http://infoscience.epfl.ch/record/272644 |
PMID | 31672893 |
PQID | 2311103753 |
PQPubID | 1256 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2311638876 proquest_journals_2311103753 pubmed_primary_31672893 crossref_citationtrail_10_1126_science_aax7427 crossref_primary_10_1126_science_aax7427 jstor_primary_26843778 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20191101 2019-11-00 2019-11-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 20191101 day: 1 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2019 |
Publisher | American Association for the Advancement of Science The American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_87_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_85_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_89_2 e_1_3_2_60_2 e_1_3_2_83_2 e_1_3_2_81_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_75_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_73_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_79_2 e_1_3_2_96_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_77_2 e_1_3_2_92_2 e_1_3_2_94_2 e_1_3_2_50_2 e_1_3_2_71_2 e_1_3_2_90_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_65_2 e_1_3_2_86_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_63_2 e_1_3_2_84_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_69_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_67_2 e_1_3_2_88_2 e_1_3_2_61_2 e_1_3_2_82_2 e_1_3_2_80_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_76_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_95_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_78_2 e_1_3_2_2_2 e_1_3_2_91_2 e_1_3_2_93_2 e_1_3_2_72_2 e_1_3_2_70_2 |
References_xml | – ident: e_1_3_2_66_2 doi: 10.1021/acs.langmuir.7b03580 – ident: e_1_3_2_62_2 doi: 10.1080/18811248.2002.9715219 – ident: e_1_3_2_96_2 – ident: e_1_3_2_57_2 doi: 10.1021/jp060748p – ident: e_1_3_2_92_2 doi: 10.1021/jp070186p – ident: e_1_3_2_61_2 doi: 10.1088/0953-8984/22/33/334207 – ident: e_1_3_2_27_2 doi: 10.1038/nchem.1550 – ident: e_1_3_2_74_2 doi: 10.1021/ja9621760 – ident: e_1_3_2_75_2 doi: 10.1080/08927022.2015.1010082 – ident: e_1_3_2_76_2 doi: 10.1021/jp0542470 – ident: e_1_3_2_82_2 doi: 10.1021/jacs.5b11797 – ident: e_1_3_2_12_2 doi: 10.1126/science.aaf6323 – ident: e_1_3_2_38_2 doi: 10.1080/00268979500101571 – ident: e_1_3_2_51_2 doi: 10.1107/S2053229614024218 – ident: e_1_3_2_72_2 doi: 10.1016/S0263-7855(96)00043-4 – ident: e_1_3_2_80_2 doi: 10.1063/1.2770708 – ident: e_1_3_2_47_2 doi: 10.1002/anie.201307443 – ident: e_1_3_2_26_2 doi: 10.1038/natrevmats.2016.53 – ident: e_1_3_2_68_2 doi: 10.1002/anie.200601991 – ident: e_1_3_2_59_2 doi: 10.1021/ja0502573 – ident: e_1_3_2_35_2 doi: 10.1038/nature10125 – ident: e_1_3_2_58_2 doi: 10.1039/C4CP00709C – ident: e_1_3_2_29_2 doi: 10.1002/anie.201208156 – ident: e_1_3_2_36_2 doi: 10.1021/ja402103u – ident: e_1_3_2_90_2 doi: 10.1016/j.cpc.2018.09.020 – ident: e_1_3_2_53_2 doi: 10.1021/acscentsci.7b00145 – ident: e_1_3_2_73_2 doi: 10.1088/0953-8984/14/40/318 – ident: e_1_3_2_49_2 doi: 10.1107/S2059798318009191 – ident: e_1_3_2_85_2 doi: 10.1126/science.1069513 – ident: e_1_3_2_5_2 doi: 10.1002/ejic.201600253 – ident: e_1_3_2_3_2 doi: 10.1021/bk-1978-0068.ch009 – ident: e_1_3_2_71_2 doi: 10.1016/j.micromeso.2011.08.020 – ident: e_1_3_2_94_2 doi: 10.1016/0021-9991(77)90121-8 – ident: e_1_3_2_17_2 doi: 10.1016/j.micromeso.2017.12.035 – ident: e_1_3_2_43_2 doi: 10.1038/nature21419 – ident: e_1_3_2_89_2 doi: 10.1063/1.4772676 – ident: e_1_3_2_33_2 doi: 10.1021/ja302071t – ident: e_1_3_2_54_2 doi: 10.1016/j.seppur.2015.03.036 – ident: e_1_3_2_52_2 doi: 10.1107/S0021889808042726 – ident: e_1_3_2_14_2 doi: 10.1021/acs.jpclett.5b01545 – ident: e_1_3_2_42_2 doi: 10.1002/anie.201308924 – ident: e_1_3_2_20_2 doi: 10.1021/ja710144k – ident: e_1_3_2_24_2 doi: 10.1126/science.1220131 – ident: e_1_3_2_25_2 doi: 10.1038/nmat2545 – ident: e_1_3_2_44_2 doi: 10.1107/S0907444993011333 – ident: e_1_3_2_64_2 doi: 10.1021/jp064745o – ident: e_1_3_2_22_2 doi: 10.1126/science.aac9726 – ident: e_1_3_2_34_2 doi: 10.1021/ja077469f – ident: e_1_3_2_48_2 doi: 10.1107/S1600576714022985 – ident: e_1_3_2_79_2 doi: 10.1021/ct300849w – ident: e_1_3_2_86_2 doi: 10.1103/PhysRevLett.58.1648 – ident: e_1_3_2_50_2 doi: 10.1107/S2053273314026370 – ident: e_1_3_2_11_2 doi: 10.1126/science.1234071 – ident: e_1_3_2_21_2 doi: 10.1039/c3ta01544k – ident: e_1_3_2_19_2 doi: 10.1021/nn405420t – ident: e_1_3_2_56_2 doi: 10.1016/j.cej.2009.04.068 – ident: e_1_3_2_13_2 doi: 10.1039/b600349d – ident: e_1_3_2_15_2 doi: 10.1021/jp054511p – ident: e_1_3_2_6_2 doi: 10.1016/0009-2614(94)01372-3 – ident: e_1_3_2_45_2 – ident: e_1_3_2_95_2 doi: 10.1016/j.cpc.2013.09.018 – ident: e_1_3_2_55_2 doi: 10.13182/FST08-A1842 – ident: e_1_3_2_10_2 doi: 10.1016/j.memsci.2008.04.030 – ident: e_1_3_2_88_2 doi: 10.1039/c2cp40962c – ident: e_1_3_2_63_2 doi: 10.1016/j.ijhydene.2017.03.222 – ident: e_1_3_2_77_2 doi: 10.1021/ct100684s – ident: e_1_3_2_2_2 doi: 10.1021/bk-1978-0068.ch001 – ident: e_1_3_2_8_2 doi: 10.1039/C7CS00153C – ident: e_1_3_2_30_2 doi: 10.1021/ja503223j – ident: e_1_3_2_46_2 doi: 10.1002/cphc.201900183 – ident: e_1_3_2_84_2 doi: 10.1063/1.441588 – ident: e_1_3_2_9_2 doi: 10.1002/adma.201805293 – ident: e_1_3_2_87_2 doi: 10.1073/pnas.1203365109 – ident: e_1_3_2_91_2 doi: 10.1103/PhysRevLett.109.100604 – ident: e_1_3_2_7_2 doi: 10.1002/adma.201203383 – ident: e_1_3_2_78_2 doi: 10.1021/ct050065y – ident: e_1_3_2_32_2 doi: 10.1021/ar5003126 – ident: e_1_3_2_39_2 doi: 10.1515/zkri-2018-2150 – ident: e_1_3_2_83_2 doi: 10.1063/1.446740 – ident: e_1_3_2_18_2 doi: 10.1016/j.micromeso.2018.05.026 – ident: e_1_3_2_37_2 doi: 10.1021/ja066098k – ident: e_1_3_2_23_2 doi: 10.1016/j.micromeso.2015.03.017 – ident: e_1_3_2_41_2 doi: 10.1002/anie.201203117 – ident: e_1_3_2_60_2 doi: 10.1149/1.2783303 – ident: e_1_3_2_40_2 doi: 10.1002/anie.201005301 – ident: e_1_3_2_65_2 doi: 10.13182/FST05-A900 – ident: e_1_3_2_93_2 doi: 10.1063/1.4802990 – ident: e_1_3_2_4_2 doi: 10.1007/s10909-009-9917-8 – ident: e_1_3_2_70_2 doi: 10.1021/ja305809u – ident: e_1_3_2_16_2 doi: 10.1103/PhysRevLett.82.956 – ident: e_1_3_2_67_2 doi: 10.1039/B614254K – ident: e_1_3_2_69_2 doi: 10.13182/FST08-A1844 – ident: e_1_3_2_31_2 doi: 10.1021/ja409594s – ident: e_1_3_2_81_2 doi: 10.1007/s00214-005-0655-y – ident: e_1_3_2_28_2 doi: 10.1038/nmat4035 |
SSID | ssj0009593 |
Score | 2.6724043 |
Snippet | The separation of hydrogen isotopes for applications such as nuclear fusion is a major challenge. Current technologies are energy intensive and inefficient.... One method for improving the efficiency of separation of hydrogen from deuterium (D) is to exploit kinetic quantum sieving with nanoporous solids. This method... Quantum sieves for hydrogen isotopesOne method for improving the efficiency of separation of hydrogen from deuterium (D) is to exploit kinetic quantum sieving... |
SourceID | proquest pubmed crossref jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 613 |
SubjectTerms | Adsorption Apertures Cage molecules Cages Cavities Deuterium Hydrogen Hydrogen isotopes Isotope separation Isotopes Kinetics Nuclear fusion Pore size Porosity Selectivity Sieves Ultrafines |
Title | Barely porous organic cages for hydrogen isotope separation |
URI | https://www.jstor.org/stable/26843778 https://www.ncbi.nlm.nih.gov/pubmed/31672893 https://www.proquest.com/docview/2311103753 https://www.proquest.com/docview/2311638876 |
Volume | 366 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA_aIvgitlq9WiWCD5Vjj71kk83i09V6nB8UwSv0bUmyWSrIbbnbgvWvd7KZ_RB6YoVjOfaSHOQ3mcwk85sh5A0zLOGyKKJSaxkliWaRYU5FxiiTWWasKptsn2dycZ58uhAXPV2xYZfUZmJ_3cor-R9U4R3g6lmyd0C2GxRewHfAF56AMDz_CWNfrMCfTlRrH8gaCjTZsdU-b4MPH7y8KdYV9B5_31R1deXGGxdSfSMWaJS26xuMze4CZwBbF4k4C_ECbfgAdmvPEvDoYJohh64Fe9lzV-4y7FCdYjbjsJkEDRr74o8s5kMVy0NlFZQlmUgx0JkykFFx-5UNN-4WzT6oRekmWv8Enz7tN7H24n4x-5Z_PZ3nXz6efb5Pdhk4D6D9dmcnpyfzrcmYMeXTgEzV_sEf1koIWN3uijQmyfIxeYS-BJ0Fwdgj99xqnzwI1UVv9skezuSGHmNy8bdPyLsgMzTIDEWZoY3MUECEtjJDUWZoLzNPyfn8w_L9IsICGpFNRFJHZQna2mWZMwUXaclT64RQMlaZKUH1pnGqbZE5xdI40zqZap5Y-ICJL1hsecEPyM6qWrnnhOqYa6GnNk6l9TXKVeEKUSoulfHsaDsik3aicovZ5X2Rkx9542UymePM5jizI3LcdbgKiVW2Nz1oZr5r5zMU8TRVI3LUQpHjstzk4LBMPflV8BF53f0MStPfhOmVg8lt2sDGA5bAiDwLEHaD-9QQDKz4w78P_oI87JfUEdmp19fuJdintXmF4vYbdUeUZw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Barely+porous+organic+cages+for+hydrogen+isotope+separation&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.date=2019-11-01&rft.pub=The+American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=366&rft.issue=6465&rft.spage=613&rft.epage=620&rft_id=info:doi/10.1126%2Fscience.aax7427&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |