Cryptic diversity of cellulose-degrading gut bacteria in industrialized humans

Humans, like all mammals, depend on the gut microbiome for digestion of cellulose, the main component of plant fiber. However, evidence for cellulose fermentation in the human gut is scarce. We have identified ruminococcal species in the gut microbiota of human populations that assemble functional m...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 383; no. 6688; p. eadj9223
Main Authors Moraïs, Sarah, Winkler, Sarah, Zorea, Alvah, Levin, Liron, Nagies, Falk S. P., Kapust, Nils, Lamed, Eva, Artan-Furman, Avital, Bolam, David N., Yadav, Madhav P., Bayer, Edward A., Martin, William F., Mizrahi, Itzhak
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 15.03.2024
Subjects
Online AccessGet full text
ISSN0036-8075
1095-9203
1095-9203
DOI10.1126/science.adj9223

Cover

Abstract Humans, like all mammals, depend on the gut microbiome for digestion of cellulose, the main component of plant fiber. However, evidence for cellulose fermentation in the human gut is scarce. We have identified ruminococcal species in the gut microbiota of human populations that assemble functional multienzymatic cellulosome structures capable of degrading plant cell wall polysaccharides. One of these species, which is strongly associated with humans, likely originated in the ruminant gut and was subsequently transferred to the human gut, potentially during domestication where it underwent diversification and diet-related adaptation through the acquisition of genes from other gut microbes. Collectively, these species are abundant and widespread among ancient humans, hunter-gatherers, and rural populations but are rare in populations from industrialized societies thus indicating potential disappearance in response to the westernized lifestyle. The guts of urbanized people worldwide are known to contain less microbial biodiversity than those of humans living rurally. The worry is that the loss of key species contributes to the increasing prevalence of poor metabolic health among urbanized people. By searching for key genes involved in cellulose degradation in metagenome-assembled genomes, Moraïs et al . discovered cellulolytic bacteria in humans. All candidate Ruminococcus species assembled active cellulosomes, enzyme complexes capable of degrading microcrystalline cellulose. Three species were distinguished with phylogenies indicating derivation from primate and ruminant hosts, and they showed specific host preferences and ongoing host adaptation. The occurrence of cellulolytic bacteria in humans reveals that a complicated process of dynamic co-evolution occurs in the gut and is possibly regulated by environment. —Caroline Ash Cellulolytic human gut bacteria are scarce in urban societies but abundant in ancient and hunter-gatherer microbiomes.
AbstractList Humans, like all mammals, depend on the gut microbiome for digestion of cellulose, the main component of plant fiber. However, evidence for cellulose fermentation in the human gut is scarce. We have identified ruminococcal species in the gut microbiota of human populations that assemble functional multienzymatic cellulosome structures capable of degrading plant cell wall polysaccharides. One of these species, which is strongly associated with humans, likely originated in the ruminant gut and was subsequently transferred to the human gut, potentially during domestication where it underwent diversification and diet-related adaptation through the acquisition of genes from other gut microbes. Collectively, these species are abundant and widespread among ancient humans, hunter-gatherers, and rural populations but are rare in populations from industrialized societies thus indicating potential disappearance in response to the westernized lifestyle. The guts of urbanized people worldwide are known to contain less microbial biodiversity than those of humans living rurally. The worry is that the loss of key species contributes to the increasing prevalence of poor metabolic health among urbanized people. By searching for key genes involved in cellulose degradation in metagenome-assembled genomes, Moraïs et al . discovered cellulolytic bacteria in humans. All candidate Ruminococcus species assembled active cellulosomes, enzyme complexes capable of degrading microcrystalline cellulose. Three species were distinguished with phylogenies indicating derivation from primate and ruminant hosts, and they showed specific host preferences and ongoing host adaptation. The occurrence of cellulolytic bacteria in humans reveals that a complicated process of dynamic co-evolution occurs in the gut and is possibly regulated by environment. —Caroline Ash Cellulolytic human gut bacteria are scarce in urban societies but abundant in ancient and hunter-gatherer microbiomes.
Humans, like all mammals, depend on the gut microbiome for digestion of cellulose, the main component of plant fiber. However, evidence for cellulose fermentation in the human gut is scarce. We have identified ruminococcal species in the gut microbiota of human populations that assemble functional multienzymatic cellulosome structures capable of degrading plant cell wall polysaccharides. One of these species, which is strongly associated with humans, likely originated in the ruminant gut and was subsequently transferred to the human gut, potentially during domestication where it underwent diversification and diet-related adaptation through the acquisition of genes from other gut microbes. Collectively, these species are abundant and widespread among ancient humans, hunter-gatherers, and rural populations but are rare in populations from industrialized societies thus indicating potential disappearance in response to the westernized lifestyle.
Editor’s summaryThe guts of urbanized people worldwide are known to contain less microbial biodiversity than those of humans living rurally. The worry is that the loss of key species contributes to the increasing prevalence of poor metabolic health among urbanized people. By searching for key genes involved in cellulose degradation in metagenome-assembled genomes, Moraïs et al. discovered cellulolytic bacteria in humans. All candidate Ruminococcus species assembled active cellulosomes, enzyme complexes capable of degrading microcrystalline cellulose. Three species were distinguished with phylogenies indicating derivation from primate and ruminant hosts, and they showed specific host preferences and ongoing host adaptation. The occurrence of cellulolytic bacteria in humans reveals that a complicated process of dynamic co-evolution occurs in the gut and is possibly regulated by environment. —Caroline AshINTRODUCTIONMammals, including humans, rely on their gut’s microbial community to break down plant cell wall components, notably cellulose and associated polysaccharides. However, there is limited evidence for cellulose fermentation in the human gut despite the benefits of cellulose-containing dietary fiber for gut-microbiome health and overall human well-being.RATIONALEBy investigating the presence of heretofore undescribed bacterial species within the human-gut microbiota that degrade complex cellulosic polysaccharides, we can reveal their potential sources and understand their intricate adaptations to diverse host lifestyles and diets. Insight into the prevalence and abundance of these bacteria across diverse mammalian species and a wide range of human populations will provide critical knowledge of their evolutionary origins, ancestral associations, and trajectories that enabled their incorporation into the human gut.RESULTSPreviously unknown ruminococcal species were discovered in the human-gut microbiota and provisionally named Candidatus Ruminococcus primaciens, Ruminococcus hominiciens, and Ruminococcus ruminiciens, all of which assemble functional multienzymatic cellulosome systems that degrade crystalline cellulose. These species are prevalent among the great apes and other nonhuman primates, ancient human societies, hunter-gatherer communities, and rural populations. Although widespread geographically they are conspicuously rare within industrialized societies. Notably, they exhibit distinct host preferences wherein R. hominiciens is associated primarily with humans and great apes and R. primaciens predominantly inhabits the gut of nonhuman primates and ancient human populations. Moreover, these species display host-specific diversification, forming distinct clades within the phylogenetic tree and aligning with their respective hosts. Our evolutionary analysis strongly suggests that R. hominiciens likely originated in the ruminant gut and later transferred to humans, possibly during domestication. High gene expression levels were observed for these species, reflecting their considerable activity in their respective gut systems. Furthermore, their gene expression profile aligns with their hosts’ dietary preferences, highlighting their adaptability. Our analyses show that these novel species adapt to their host ecosystems by acquiring genes from co-resident gut microbes. The human-associated strains possess functional adaptability highlighted by the acquisition of genes that can degrade specific plant fibers of monocots such as maize, rice, and wheat—major components of the human diet. Likewise, the nonhuman primate–associated strain exhibits the potential for degrading chitin, a polymer abundant in the insect exoskeleton, part of the diet of nonhuman primates. Our data provide insight into the ongoing colonization of these species within the human gut, particularly those originating from ruminants and nonhuman primates. Specific strains appear to represent intermediates between primate- and rumen-gut ecosystems, as evidenced by their gene content during establishment in the human intestine.CONCLUSIONOur accumulated data indicate that ruminococcal lineages were more widespread in the past, evidenced by the high prevalence and abundance of these strains in ancient human populations and among hunter gatherer communities and rural societies, combined with their global distribution and low prevalence in industrialized societies. Differences in their prevalence among human populations may reflect dietary variation between industrialized and nonindustrialized societies. Dietary fiber intake appears to be a key factor as high-fiber diets are reported among Hadza hunter-gatherers whereas lower fiber intake is observed in rural populations and the least consumption of fiber occurs in industrialized societies. These findings collectively imply a decline of these species in the human gut, likely influenced by the shift toward westernized lifestyles, potentially impacting energy balance and other health-related aspects. The presence of transitional strains that recently colonized the human gut indicates that ruminants and nonhuman primates could be a source and reservoir for cellulosome-producing ruminococcal strains, which continue to colonize and adapt to the human gut. There may be potential for intentional reintroduction or enrichment of these species in the human gut through targeted dietary approaches and specialized probiotics.
Humans, like all mammals, depend on the gut microbiome for digestion of cellulose, the main component of plant fiber. However, evidence for cellulose fermentation in the human gut is scarce. We have identified ruminococcal species in the gut microbiota of human populations that assemble functional multienzymatic cellulosome structures capable of degrading plant cell wall polysaccharides. One of these species, which is strongly associated with humans, likely originated in the ruminant gut and was subsequently transferred to the human gut, potentially during domestication where it underwent diversification and diet-related adaptation through the acquisition of genes from other gut microbes. Collectively, these species are abundant and widespread among ancient humans, hunter-gatherers, and rural populations but are rare in populations from industrialized societies thus indicating potential disappearance in response to the westernized lifestyle.Humans, like all mammals, depend on the gut microbiome for digestion of cellulose, the main component of plant fiber. However, evidence for cellulose fermentation in the human gut is scarce. We have identified ruminococcal species in the gut microbiota of human populations that assemble functional multienzymatic cellulosome structures capable of degrading plant cell wall polysaccharides. One of these species, which is strongly associated with humans, likely originated in the ruminant gut and was subsequently transferred to the human gut, potentially during domestication where it underwent diversification and diet-related adaptation through the acquisition of genes from other gut microbes. Collectively, these species are abundant and widespread among ancient humans, hunter-gatherers, and rural populations but are rare in populations from industrialized societies thus indicating potential disappearance in response to the westernized lifestyle.
Author Kapust, Nils
Martin, William F.
Levin, Liron
Nagies, Falk S. P.
Moraïs, Sarah
Yadav, Madhav P.
Artan-Furman, Avital
Zorea, Alvah
Bayer, Edward A.
Lamed, Eva
Bolam, David N.
Winkler, Sarah
Mizrahi, Itzhak
Author_xml – sequence: 1
  givenname: Sarah
  orcidid: 0000-0001-9026-2386
  surname: Moraïs
  fullname: Moraïs, Sarah
  organization: National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel., Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel., The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
– sequence: 2
  givenname: Sarah
  orcidid: 0000-0002-6675-9939
  surname: Winkler
  fullname: Winkler, Sarah
  organization: National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel., Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel., The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
– sequence: 3
  givenname: Alvah
  orcidid: 0000-0001-6543-2259
  surname: Zorea
  fullname: Zorea, Alvah
  organization: National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel., Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel., The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
– sequence: 4
  givenname: Liron
  orcidid: 0009-0003-1591-7903
  surname: Levin
  fullname: Levin, Liron
  organization: Bioinformatics Core Facility, llse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
– sequence: 5
  givenname: Falk S. P.
  surname: Nagies
  fullname: Nagies, Falk S. P.
  organization: Department of Biology, Institute for Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, D-40225, Düsseldorf, Germany
– sequence: 6
  givenname: Nils
  orcidid: 0000-0001-8178-254X
  surname: Kapust
  fullname: Kapust, Nils
  organization: Department of Biology, Institute for Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, D-40225, Düsseldorf, Germany
– sequence: 7
  givenname: Eva
  surname: Lamed
  fullname: Lamed, Eva
  organization: Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001 Israel
– sequence: 8
  givenname: Avital
  surname: Artan-Furman
  fullname: Artan-Furman, Avital
  organization: Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001 Israel
– sequence: 9
  givenname: David N.
  orcidid: 0000-0003-0314-3122
  surname: Bolam
  fullname: Bolam, David N.
  organization: Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
– sequence: 10
  givenname: Madhav P.
  surname: Yadav
  fullname: Yadav, Madhav P.
  organization: US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
– sequence: 11
  givenname: Edward A.
  surname: Bayer
  fullname: Bayer, Edward A.
  organization: National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel., Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel., Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001 Israel
– sequence: 12
  givenname: William F.
  orcidid: 0000-0003-1478-6449
  surname: Martin
  fullname: Martin, William F.
  organization: Department of Biology, Institute for Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, D-40225, Düsseldorf, Germany
– sequence: 13
  givenname: Itzhak
  orcidid: 0000-0001-6636-8818
  surname: Mizrahi
  fullname: Mizrahi, Itzhak
  organization: National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel., Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel., The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38484069$$D View this record in MEDLINE/PubMed
BookMark eNqFkc2LFDEQxYOsuLOjZ2_S4MVL7-azO7kIMrirsOhFzyEf1bMZepIxSS-Mf73d7KzoggiBItTvParqXaCzmCIg9JrgS0Jod1VcgOjg0vidopQ9QyuClWgVxewMrTBmXStxL87RRSk7jOeeYi_QOZNcctypFfqyycdDDa7x4R5yCfXYpKFxMI7TmAq0HrbZ-BC3zXaqjTWuQg6mCXF-fip1_ozhJ_jmbtqbWF6i54MZC7w61TX6fv3x2-ZTe_v15vPmw23ruOC1HQQmUiraE99xYFRxjH2v5MCtsE46YtjguLRghJpBbAk4btlgh8ELq4Ct0fsH38Nk9-AdxJrNqA857E0-6mSC_rsTw53epnvdd0T0nZgN3p0McvoxQal6H8qytomQpqIZEaxTSnD8X5QqIanqlpuv0dsn6C5NOc6XWKhOEsypmqk3fw7_e-rHVGZAPAAup1IyDNqFampIyy5h1ATrJX19Sl-f0p91V090j9b_UvwCmNq2lg
CitedBy_id crossref_primary_10_1128_aem_01759_24
crossref_primary_10_1093_ismejo_wrae109
crossref_primary_10_1016_j_carbpol_2024_122442
crossref_primary_10_3390_nano14131082
crossref_primary_10_1051_medsci_2024190
crossref_primary_10_1038_s41522_025_00650_9
crossref_primary_10_3390_metabo15030185
crossref_primary_10_1016_j_tifs_2024_104802
crossref_primary_10_1016_j_biotechadv_2025_108523
crossref_primary_10_1002_mnfr_202400806
crossref_primary_10_1016_j_chom_2024_05_011
crossref_primary_10_1111_1751_7915_14542
crossref_primary_10_1016_j_greenca_2024_06_001
crossref_primary_10_1016_j_foodchem_2024_141254
crossref_primary_10_1016_j_bbabio_2024_149495
crossref_primary_10_1016_j_cell_2024_12_034
crossref_primary_10_3390_nu16183049
crossref_primary_10_1016_j_foodres_2025_115843
crossref_primary_10_3389_frfst_2024_1469470
crossref_primary_10_1038_s41598_024_61909_3
crossref_primary_10_1038_s41467_024_52598_7
crossref_primary_10_1016_j_celrep_2024_115018
Cites_doi 10.1016/S0168-6496(03)00207-1
10.1038/ismej.2017.126
10.1093/molbev/msx116
10.1371/journal.pone.0099221
10.1093/molbev/msaa015
10.1093/molbev/msp062
10.1016/j.syapm.2022.126305
10.7554/eLife.05224
10.1093/nar/25.17.3389
10.1186/s40168-016-0201-2
10.1186/1471-2105-12-323
10.1038/nature11450
10.1111/j.1574-6968.2008.01234.x
10.1186/1471-2105-12-124
10.1038/s41396-020-0634-2
10.1099/ijs.0.027375-0
10.3389/fmicb.2020.00125
10.1016/S0959-440X(98)80143-7
10.1093/bioinformatics/btu153
10.1007/s00253-006-0802-y
10.3390/microorganisms7090347
10.1016/j.cub.2015.04.055
10.3389/fmicb.2021.594075
10.1038/s41396-018-0175-0
10.1101/gr.186072.114
10.1038/s41598-021-81257-w
10.1080/10635150290069913
10.1038/s41467-018-04204-w
10.1371/journal.pone.0025329
10.1038/srep42355
10.1038/ncomms8481
10.3389/fendo.2020.00025
10.1038/s41396-018-0256-0
10.1038/s41559-017-0193
10.1093/nar/gky418
10.1038/s41564-017-0084-4
10.1111/1462-2920.13047
10.1038/s41598-021-81668-9
10.1002/mbo3.981
10.1007/BF02109483
10.1021/ac60147a030
10.1128/JB.187.22.7569-7578.2005
10.1038/s41586-021-03532-0
10.1038/nature08821
10.1038/s41598-021-89719-x
10.32614/CRAN.package.superheat
10.1128/JB.00143-07
10.1007/978-3-319-24277-4
10.1016/j.syapm.2015.03.007
10.1038/s43705-021-00017-z
10.1016/j.cell.2023.05.046
10.1093/jn/111.2.287
10.1038/s41586-019-0965-1
10.1016/j.chom.2018.05.012
10.1016/0016-5085(80)90438-2
10.1111/1462-2920.12868
10.1152/physiolgenomics.00112.2022
10.1186/s13059-016-0997-x
10.1371/journal.pgen.1009200
10.1038/s41522-022-00309-9
10.1002/jmr.749
10.1038/s41587-019-0202-3
10.1186/s42523-021-00093-5
10.1038/ismej.2016.62
10.1128/mSystems.00815-20
10.1126/science.abb5352
10.1128/genomeA.00897-15
10.1038/nature12198
10.1038/nrmicro.2016.164
10.1093/nar/gkt1178
10.3389/fmicb.2015.01543
10.1371/journal.pone.0061217
10.1093/bioinformatics/btv428
10.1038/s41564-023-01388-w
10.1128/mBio.00508-12
10.1186/s40168-019-0664-z
10.1093/molbev/msy096
10.1074/jbc.M113.466672
10.1111/1749-4877.12585
10.1128/aem.54.6.1530-1535.1988
ContentType Journal Article
Copyright Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1126/science.adj9223
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
MEDLINE

Materials Research Database
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage eadj9223
ExternalDocumentID PMC7615765
38484069
10_1126_science_adj9223
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: European Research Council
  grantid: 101018894
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
RZL
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YJ6
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
CGR
CUY
CVF
ECM
EIF
GX1
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c454t-f501889271d64e329400d798f4b5bc8c1a3fc48bea591880b1ec4b3fbffd5b9e3
ISSN 0036-8075
1095-9203
IngestDate Thu Aug 21 18:35:38 EDT 2025
Thu Sep 04 20:55:47 EDT 2025
Fri Sep 05 08:34:11 EDT 2025
Wed Aug 13 04:04:56 EDT 2025
Sat May 31 02:13:10 EDT 2025
Tue Jul 01 03:14:06 EDT 2025
Thu Apr 24 23:02:52 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6688
Language English
License exclusive licensee American Association for the Advancement of Science. No claim to original US government works. https://www.sciencemag.org/about/science-licenses-journal-article-reuse
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c454t-f501889271d64e329400d798f4b5bc8c1a3fc48bea591880b1ec4b3fbffd5b9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0003-1591-7903
0000-0001-8178-254X
0000-0001-6636-8818
0000-0002-6675-9939
0000-0003-0314-3122
0000-0001-9026-2386
0000-0001-6543-2259
0000-0003-1478-6449
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7615765
PMID 38484069
PQID 2956810429
PQPubID 1256
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7615765
proquest_miscellaneous_3153699540
proquest_miscellaneous_2958296920
proquest_journals_2956810429
pubmed_primary_38484069
crossref_citationtrail_10_1126_science_adj9223
crossref_primary_10_1126_science_adj9223
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-15
20240315
PublicationDateYYYYMMDD 2024-03-15
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2024
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_87_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_85_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_89_2
e_1_3_2_60_2
e_1_3_2_83_2
e_1_3_2_81_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_75_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_73_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_79_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_77_2
e_1_3_2_50_2
e_1_3_2_71_2
Moraïs S. (e_1_3_2_7_2) 2019
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_65_2
e_1_3_2_86_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_63_2
e_1_3_2_84_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_69_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_67_2
e_1_3_2_88_2
e_1_3_2_61_2
e_1_3_2_82_2
e_1_3_2_80_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
Freeman H. J. (e_1_3_2_5_2) 1978; 38
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_78_2
e_1_3_2_2_2
e_1_3_2_72_2
e_1_3_2_70_2
References_xml – ident: e_1_3_2_9_2
  doi: 10.1016/S0168-6496(03)00207-1
– ident: e_1_3_2_46_2
  doi: 10.1038/ismej.2017.126
– volume: 38
  start-page: 2912
  year: 1978
  ident: e_1_3_2_5_2
  article-title: A double-blind study on the effect of purified cellulose dietary fiber on 1,2-dimethylhydrazine-induced rat colonic neoplasia
  publication-title: Cancer Res.
– ident: e_1_3_2_76_2
  doi: 10.1093/molbev/msx116
– ident: e_1_3_2_34_2
  doi: 10.1371/journal.pone.0099221
– ident: e_1_3_2_71_2
  doi: 10.1093/molbev/msaa015
– ident: e_1_3_2_75_2
  doi: 10.1093/molbev/msp062
– ident: e_1_3_2_24_2
  doi: 10.1016/j.syapm.2022.126305
– ident: e_1_3_2_66_2
  doi: 10.7554/eLife.05224
– ident: e_1_3_2_40_2
  doi: 10.1093/nar/25.17.3389
– ident: e_1_3_2_60_2
  doi: 10.1186/s40168-016-0201-2
– ident: e_1_3_2_88_2
  doi: 10.1186/1471-2105-12-323
– ident: e_1_3_2_55_2
  doi: 10.1038/nature11450
– ident: e_1_3_2_16_2
  doi: 10.1111/j.1574-6968.2008.01234.x
– ident: e_1_3_2_32_2
  doi: 10.1186/1471-2105-12-124
– ident: e_1_3_2_64_2
  doi: 10.1038/s41396-020-0634-2
– ident: e_1_3_2_10_2
  doi: 10.1099/ijs.0.027375-0
– ident: e_1_3_2_61_2
  doi: 10.3389/fmicb.2020.00125
– ident: e_1_3_2_4_2
  doi: 10.1016/S0959-440X(98)80143-7
– ident: e_1_3_2_8_2
– ident: e_1_3_2_43_2
  doi: 10.1093/bioinformatics/btu153
– ident: e_1_3_2_79_2
  doi: 10.1007/s00253-006-0802-y
– ident: e_1_3_2_44_2
  doi: 10.3390/microorganisms7090347
– ident: e_1_3_2_28_2
  doi: 10.1016/j.cub.2015.04.055
– ident: e_1_3_2_50_2
  doi: 10.3389/fmicb.2021.594075
– ident: e_1_3_2_31_2
  doi: 10.1038/s41396-018-0175-0
– ident: e_1_3_2_20_2
  doi: 10.1101/gr.186072.114
– ident: e_1_3_2_57_2
  doi: 10.1038/s41598-021-81257-w
– ident: e_1_3_2_72_2
  doi: 10.1080/10635150290069913
– ident: e_1_3_2_65_2
  doi: 10.1038/s41467-018-04204-w
– ident: e_1_3_2_17_2
  doi: 10.1371/journal.pone.0025329
– ident: e_1_3_2_80_2
  doi: 10.1038/srep42355
– ident: e_1_3_2_39_2
  doi: 10.1038/ncomms8481
– ident: e_1_3_2_3_2
  doi: 10.3389/fendo.2020.00025
– ident: e_1_3_2_63_2
  doi: 10.1038/s41396-018-0256-0
– ident: e_1_3_2_70_2
  doi: 10.1038/s41559-017-0193
– ident: e_1_3_2_77_2
– ident: e_1_3_2_42_2
  doi: 10.1093/nar/gky418
– ident: e_1_3_2_56_2
  doi: 10.1038/s41564-017-0084-4
– ident: e_1_3_2_12_2
  doi: 10.1111/1462-2920.13047
– ident: e_1_3_2_62_2
  doi: 10.1038/s41598-021-81668-9
– ident: e_1_3_2_68_2
  doi: 10.1002/mbo3.981
– ident: e_1_3_2_74_2
  doi: 10.1007/BF02109483
– ident: e_1_3_2_81_2
  doi: 10.1021/ac60147a030
– ident: e_1_3_2_85_2
– ident: e_1_3_2_35_2
  doi: 10.1128/JB.187.22.7569-7578.2005
– volume-title: Islands in the stream: From individual to communal fiber degradation in the rumen ecosystem
  year: 2019
  ident: e_1_3_2_7_2
– ident: e_1_3_2_26_2
  doi: 10.1038/s41586-021-03532-0
– ident: e_1_3_2_58_2
  doi: 10.1038/nature08821
– ident: e_1_3_2_27_2
  doi: 10.1038/s41598-021-89719-x
– ident: e_1_3_2_86_2
  doi: 10.32614/CRAN.package.superheat
– ident: e_1_3_2_22_2
  doi: 10.1128/JB.00143-07
– ident: e_1_3_2_84_2
  doi: 10.1007/978-3-319-24277-4
– ident: e_1_3_2_78_2
  doi: 10.1016/j.syapm.2015.03.007
– ident: e_1_3_2_25_2
  doi: 10.1038/s43705-021-00017-z
– ident: e_1_3_2_48_2
  doi: 10.1016/j.cell.2023.05.046
– ident: e_1_3_2_14_2
  doi: 10.1093/jn/111.2.287
– ident: e_1_3_2_19_2
  doi: 10.1038/s41586-019-0965-1
– ident: e_1_3_2_2_2
  doi: 10.1016/j.chom.2018.05.012
– ident: e_1_3_2_6_2
  doi: 10.1016/0016-5085(80)90438-2
– ident: e_1_3_2_11_2
  doi: 10.1111/1462-2920.12868
– ident: e_1_3_2_52_2
  doi: 10.1152/physiolgenomics.00112.2022
– ident: e_1_3_2_45_2
  doi: 10.1186/s13059-016-0997-x
– ident: e_1_3_2_38_2
  doi: 10.1371/journal.pgen.1009200
– ident: e_1_3_2_51_2
  doi: 10.1038/s41522-022-00309-9
– ident: e_1_3_2_33_2
  doi: 10.1002/jmr.749
– ident: e_1_3_2_18_2
  doi: 10.1038/s41587-019-0202-3
– ident: e_1_3_2_53_2
  doi: 10.1186/s42523-021-00093-5
– ident: e_1_3_2_67_2
  doi: 10.1038/ismej.2016.62
– ident: e_1_3_2_47_2
  doi: 10.1128/mSystems.00815-20
– ident: e_1_3_2_54_2
  doi: 10.1126/science.abb5352
– ident: e_1_3_2_69_2
  doi: 10.1128/genomeA.00897-15
– ident: e_1_3_2_59_2
  doi: 10.1038/nature12198
– ident: e_1_3_2_13_2
  doi: 10.1038/nrmicro.2016.164
– ident: e_1_3_2_89_2
– ident: e_1_3_2_21_2
  doi: 10.1093/nar/gkt1178
– ident: e_1_3_2_29_2
  doi: 10.3389/fmicb.2015.01543
– ident: e_1_3_2_83_2
  doi: 10.1371/journal.pone.0061217
– ident: e_1_3_2_73_2
  doi: 10.1093/bioinformatics/btv428
– ident: e_1_3_2_30_2
  doi: 10.1038/s41564-023-01388-w
– ident: e_1_3_2_82_2
  doi: 10.1128/mBio.00508-12
– ident: e_1_3_2_87_2
  doi: 10.1186/s40168-019-0664-z
– ident: e_1_3_2_23_2
  doi: 10.1128/JB.00143-07
– ident: e_1_3_2_41_2
  doi: 10.1093/molbev/msy096
– ident: e_1_3_2_36_2
  doi: 10.1074/jbc.M113.466672
– ident: e_1_3_2_49_2
  doi: 10.1111/1749-4877.12585
– ident: e_1_3_2_15_2
  doi: 10.1128/aem.54.6.1530-1535.1988
– ident: e_1_3_2_37_2
  doi: 10.1371/journal.pgen.1009200
SSID ssj0009593
Score 2.574109
Snippet Humans, like all mammals, depend on the gut microbiome for digestion of cellulose, the main component of plant fiber. However, evidence for cellulose...
Editor’s summaryThe guts of urbanized people worldwide are known to contain less microbial biodiversity than those of humans living rurally. The worry is that...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage eadj9223
SubjectTerms Adaptability
Apes
Bacteria
Bioaccumulation
Biodiversity
Cell walls
Cellulolytic bacteria
Cellulose
Cellulose - metabolism
Cellulose fibers
cellulosome
Cellulosomes
Chitin
Coevolution
Crystalline cellulose
Degradation
Diet
Dietary fiber
Dietary Fiber - metabolism
Dietary intake
digestion
Digestive system
Domestication
Ecosystems
Energy balance
Evolution
Exoskeleton
Exoskeletons
Fermentation
Food intake
Gastrointestinal Microbiome - genetics
Gastrointestinal Microbiome - physiology
Gastrointestinal tract
Gene expression
Genes
Genomes
Host preferences
Human populations
Humans
Industrial Development
industrialization
Insects
Intermediates
Intestinal microflora
intestinal microorganisms
Intestine
lifestyle
Mammals
Microbiota
Microorganisms
Monkeys & apes
Phylogeny
Plant fibers
Polymers
Polysaccharides
Populations
Preferences
Primates
Probiotics
Reintroduction
ruminants
Ruminococcus
Ruminococcus - classification
Ruminococcus - enzymology
Ruminococcus - genetics
Rural populations
Saccharides
Species
Vegetable fibers
Well being
Title Cryptic diversity of cellulose-degrading gut bacteria in industrialized humans
URI https://www.ncbi.nlm.nih.gov/pubmed/38484069
https://www.proquest.com/docview/2956810429
https://www.proquest.com/docview/2958296920
https://www.proquest.com/docview/3153699540
https://pubmed.ncbi.nlm.nih.gov/PMC7615765
Volume 383
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb5wwELW2iSr1UjXp17Zp5Uo9pKpYATYGHzdpV1HV5JSoUS_IxqbdKoIoQKTkR-Q3d4wNgWxWSntByBgEzPN4PJ55g9BHTcIs0Up7AVGJRyURnsh95Wk_SmLCRcyU8XccHrGDE_rtNDqdTG4GUUtNLWfZ9b15Jf8jVWgDuZos2X-QbP9QaIBzkC8cQcJwfJCM9y-uzg3hqhoGVxhXfHNWVtpThgiiTVr51dSfpeVlFsbDsewLdiyvweJsC_VVQzu1G_Jgf_Z7OgNJ9sGJcxtC0EUUuNsG7oVDgFi7Gb-oVhzQP2Ad7BIRR-0_S7BkbfbN5W3rd5jCbZ6EycwbeitCasK1bL5mp4EdAbKdf6zS9U29yNAnQ61MbH0bBz_GbPG_VYU_KFGpZ0L94aHNXx5Ta9-Z8vpAxHYJFLLUPSB1D3iENsM4Ntv-m_O9L3uLtTTOjixqkIbVvcPYzllZvNyNwR0YNcfP0FO3GsFzC60tNNHFNnps65NebaMtJ88K7zp68k_P0ZFDHe5Rh8sc34M6DKjDHerwssBj1GGLuhfoZPH1eP_Ac1U5vIxGtPZyQwGZ8DAOFKMw1DnMAirmSU5lJLMkCwTJM5pILSJuyP5koDPQAbnMcxVJrslLtFGUhX6NMFFURTyBOYQZQzLgglBBVS59JgIVRlM06_5hmjnKelM55SxdI7cp2u1vOLdsLeu77nRCSd2QrtKQt_x8YKNN0Yf-Mihc8xNFocum7ZOEnAFe1_chYEcww7QIfV5ZOffvQ-B7Tbr5FMUjBPQdDOH7-Eqx_N0Sv8ew_IhZ9ObhX_kWPbkdhTtoo75o9Duwomv53kH7L-QJ0Ck
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cryptic+diversity+of+cellulose-degrading+gut+bacteria+in+industrialized+humans&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Mora%C3%AFs%2C+Sarah&rft.au=Winkler%2C+Sarah&rft.au=Zorea%2C+Alvah&rft.au=Levin%2C+Liron&rft.date=2024-03-15&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=383&rft.issue=6688&rft_id=info:doi/10.1126%2Fscience.adj9223&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_adj9223
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon