Cryptic diversity of cellulose-degrading gut bacteria in industrialized humans
Humans, like all mammals, depend on the gut microbiome for digestion of cellulose, the main component of plant fiber. However, evidence for cellulose fermentation in the human gut is scarce. We have identified ruminococcal species in the gut microbiota of human populations that assemble functional m...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 383; no. 6688; p. eadj9223 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
15.03.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0036-8075 1095-9203 1095-9203 |
DOI | 10.1126/science.adj9223 |
Cover
Abstract | Humans, like all mammals, depend on the gut microbiome for digestion of cellulose, the main component of plant fiber. However, evidence for cellulose fermentation in the human gut is scarce. We have identified ruminococcal species in the gut microbiota of human populations that assemble functional multienzymatic cellulosome structures capable of degrading plant cell wall polysaccharides. One of these species, which is strongly associated with humans, likely originated in the ruminant gut and was subsequently transferred to the human gut, potentially during domestication where it underwent diversification and diet-related adaptation through the acquisition of genes from other gut microbes. Collectively, these species are abundant and widespread among ancient humans, hunter-gatherers, and rural populations but are rare in populations from industrialized societies thus indicating potential disappearance in response to the westernized lifestyle.
The guts of urbanized people worldwide are known to contain less microbial biodiversity than those of humans living rurally. The worry is that the loss of key species contributes to the increasing prevalence of poor metabolic health among urbanized people. By searching for key genes involved in cellulose degradation in metagenome-assembled genomes, Moraïs
et al
. discovered cellulolytic bacteria in humans. All candidate
Ruminococcus
species assembled active cellulosomes, enzyme complexes capable of degrading microcrystalline cellulose. Three species were distinguished with phylogenies indicating derivation from primate and ruminant hosts, and they showed specific host preferences and ongoing host adaptation. The occurrence of cellulolytic bacteria in humans reveals that a complicated process of dynamic co-evolution occurs in the gut and is possibly regulated by environment. —Caroline Ash
Cellulolytic human gut bacteria are scarce in urban societies but abundant in ancient and hunter-gatherer microbiomes. |
---|---|
AbstractList | Humans, like all mammals, depend on the gut microbiome for digestion of cellulose, the main component of plant fiber. However, evidence for cellulose fermentation in the human gut is scarce. We have identified ruminococcal species in the gut microbiota of human populations that assemble functional multienzymatic cellulosome structures capable of degrading plant cell wall polysaccharides. One of these species, which is strongly associated with humans, likely originated in the ruminant gut and was subsequently transferred to the human gut, potentially during domestication where it underwent diversification and diet-related adaptation through the acquisition of genes from other gut microbes. Collectively, these species are abundant and widespread among ancient humans, hunter-gatherers, and rural populations but are rare in populations from industrialized societies thus indicating potential disappearance in response to the westernized lifestyle.
The guts of urbanized people worldwide are known to contain less microbial biodiversity than those of humans living rurally. The worry is that the loss of key species contributes to the increasing prevalence of poor metabolic health among urbanized people. By searching for key genes involved in cellulose degradation in metagenome-assembled genomes, Moraïs
et al
. discovered cellulolytic bacteria in humans. All candidate
Ruminococcus
species assembled active cellulosomes, enzyme complexes capable of degrading microcrystalline cellulose. Three species were distinguished with phylogenies indicating derivation from primate and ruminant hosts, and they showed specific host preferences and ongoing host adaptation. The occurrence of cellulolytic bacteria in humans reveals that a complicated process of dynamic co-evolution occurs in the gut and is possibly regulated by environment. —Caroline Ash
Cellulolytic human gut bacteria are scarce in urban societies but abundant in ancient and hunter-gatherer microbiomes. Humans, like all mammals, depend on the gut microbiome for digestion of cellulose, the main component of plant fiber. However, evidence for cellulose fermentation in the human gut is scarce. We have identified ruminococcal species in the gut microbiota of human populations that assemble functional multienzymatic cellulosome structures capable of degrading plant cell wall polysaccharides. One of these species, which is strongly associated with humans, likely originated in the ruminant gut and was subsequently transferred to the human gut, potentially during domestication where it underwent diversification and diet-related adaptation through the acquisition of genes from other gut microbes. Collectively, these species are abundant and widespread among ancient humans, hunter-gatherers, and rural populations but are rare in populations from industrialized societies thus indicating potential disappearance in response to the westernized lifestyle. Editor’s summaryThe guts of urbanized people worldwide are known to contain less microbial biodiversity than those of humans living rurally. The worry is that the loss of key species contributes to the increasing prevalence of poor metabolic health among urbanized people. By searching for key genes involved in cellulose degradation in metagenome-assembled genomes, Moraïs et al. discovered cellulolytic bacteria in humans. All candidate Ruminococcus species assembled active cellulosomes, enzyme complexes capable of degrading microcrystalline cellulose. Three species were distinguished with phylogenies indicating derivation from primate and ruminant hosts, and they showed specific host preferences and ongoing host adaptation. The occurrence of cellulolytic bacteria in humans reveals that a complicated process of dynamic co-evolution occurs in the gut and is possibly regulated by environment. —Caroline AshINTRODUCTIONMammals, including humans, rely on their gut’s microbial community to break down plant cell wall components, notably cellulose and associated polysaccharides. However, there is limited evidence for cellulose fermentation in the human gut despite the benefits of cellulose-containing dietary fiber for gut-microbiome health and overall human well-being.RATIONALEBy investigating the presence of heretofore undescribed bacterial species within the human-gut microbiota that degrade complex cellulosic polysaccharides, we can reveal their potential sources and understand their intricate adaptations to diverse host lifestyles and diets. Insight into the prevalence and abundance of these bacteria across diverse mammalian species and a wide range of human populations will provide critical knowledge of their evolutionary origins, ancestral associations, and trajectories that enabled their incorporation into the human gut.RESULTSPreviously unknown ruminococcal species were discovered in the human-gut microbiota and provisionally named Candidatus Ruminococcus primaciens, Ruminococcus hominiciens, and Ruminococcus ruminiciens, all of which assemble functional multienzymatic cellulosome systems that degrade crystalline cellulose. These species are prevalent among the great apes and other nonhuman primates, ancient human societies, hunter-gatherer communities, and rural populations. Although widespread geographically they are conspicuously rare within industrialized societies. Notably, they exhibit distinct host preferences wherein R. hominiciens is associated primarily with humans and great apes and R. primaciens predominantly inhabits the gut of nonhuman primates and ancient human populations. Moreover, these species display host-specific diversification, forming distinct clades within the phylogenetic tree and aligning with their respective hosts. Our evolutionary analysis strongly suggests that R. hominiciens likely originated in the ruminant gut and later transferred to humans, possibly during domestication. High gene expression levels were observed for these species, reflecting their considerable activity in their respective gut systems. Furthermore, their gene expression profile aligns with their hosts’ dietary preferences, highlighting their adaptability. Our analyses show that these novel species adapt to their host ecosystems by acquiring genes from co-resident gut microbes. The human-associated strains possess functional adaptability highlighted by the acquisition of genes that can degrade specific plant fibers of monocots such as maize, rice, and wheat—major components of the human diet. Likewise, the nonhuman primate–associated strain exhibits the potential for degrading chitin, a polymer abundant in the insect exoskeleton, part of the diet of nonhuman primates. Our data provide insight into the ongoing colonization of these species within the human gut, particularly those originating from ruminants and nonhuman primates. Specific strains appear to represent intermediates between primate- and rumen-gut ecosystems, as evidenced by their gene content during establishment in the human intestine.CONCLUSIONOur accumulated data indicate that ruminococcal lineages were more widespread in the past, evidenced by the high prevalence and abundance of these strains in ancient human populations and among hunter gatherer communities and rural societies, combined with their global distribution and low prevalence in industrialized societies. Differences in their prevalence among human populations may reflect dietary variation between industrialized and nonindustrialized societies. Dietary fiber intake appears to be a key factor as high-fiber diets are reported among Hadza hunter-gatherers whereas lower fiber intake is observed in rural populations and the least consumption of fiber occurs in industrialized societies. These findings collectively imply a decline of these species in the human gut, likely influenced by the shift toward westernized lifestyles, potentially impacting energy balance and other health-related aspects. The presence of transitional strains that recently colonized the human gut indicates that ruminants and nonhuman primates could be a source and reservoir for cellulosome-producing ruminococcal strains, which continue to colonize and adapt to the human gut. There may be potential for intentional reintroduction or enrichment of these species in the human gut through targeted dietary approaches and specialized probiotics. Humans, like all mammals, depend on the gut microbiome for digestion of cellulose, the main component of plant fiber. However, evidence for cellulose fermentation in the human gut is scarce. We have identified ruminococcal species in the gut microbiota of human populations that assemble functional multienzymatic cellulosome structures capable of degrading plant cell wall polysaccharides. One of these species, which is strongly associated with humans, likely originated in the ruminant gut and was subsequently transferred to the human gut, potentially during domestication where it underwent diversification and diet-related adaptation through the acquisition of genes from other gut microbes. Collectively, these species are abundant and widespread among ancient humans, hunter-gatherers, and rural populations but are rare in populations from industrialized societies thus indicating potential disappearance in response to the westernized lifestyle.Humans, like all mammals, depend on the gut microbiome for digestion of cellulose, the main component of plant fiber. However, evidence for cellulose fermentation in the human gut is scarce. We have identified ruminococcal species in the gut microbiota of human populations that assemble functional multienzymatic cellulosome structures capable of degrading plant cell wall polysaccharides. One of these species, which is strongly associated with humans, likely originated in the ruminant gut and was subsequently transferred to the human gut, potentially during domestication where it underwent diversification and diet-related adaptation through the acquisition of genes from other gut microbes. Collectively, these species are abundant and widespread among ancient humans, hunter-gatherers, and rural populations but are rare in populations from industrialized societies thus indicating potential disappearance in response to the westernized lifestyle. |
Author | Kapust, Nils Martin, William F. Levin, Liron Nagies, Falk S. P. Moraïs, Sarah Yadav, Madhav P. Artan-Furman, Avital Zorea, Alvah Bayer, Edward A. Lamed, Eva Bolam, David N. Winkler, Sarah Mizrahi, Itzhak |
Author_xml | – sequence: 1 givenname: Sarah orcidid: 0000-0001-9026-2386 surname: Moraïs fullname: Moraïs, Sarah organization: National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel., Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel., The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel – sequence: 2 givenname: Sarah orcidid: 0000-0002-6675-9939 surname: Winkler fullname: Winkler, Sarah organization: National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel., Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel., The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel – sequence: 3 givenname: Alvah orcidid: 0000-0001-6543-2259 surname: Zorea fullname: Zorea, Alvah organization: National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel., Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel., The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel – sequence: 4 givenname: Liron orcidid: 0009-0003-1591-7903 surname: Levin fullname: Levin, Liron organization: Bioinformatics Core Facility, llse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel – sequence: 5 givenname: Falk S. P. surname: Nagies fullname: Nagies, Falk S. P. organization: Department of Biology, Institute for Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, D-40225, Düsseldorf, Germany – sequence: 6 givenname: Nils orcidid: 0000-0001-8178-254X surname: Kapust fullname: Kapust, Nils organization: Department of Biology, Institute for Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, D-40225, Düsseldorf, Germany – sequence: 7 givenname: Eva surname: Lamed fullname: Lamed, Eva organization: Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001 Israel – sequence: 8 givenname: Avital surname: Artan-Furman fullname: Artan-Furman, Avital organization: Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001 Israel – sequence: 9 givenname: David N. orcidid: 0000-0003-0314-3122 surname: Bolam fullname: Bolam, David N. organization: Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK – sequence: 10 givenname: Madhav P. surname: Yadav fullname: Yadav, Madhav P. organization: US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA – sequence: 11 givenname: Edward A. surname: Bayer fullname: Bayer, Edward A. organization: National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel., Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel., Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001 Israel – sequence: 12 givenname: William F. orcidid: 0000-0003-1478-6449 surname: Martin fullname: Martin, William F. organization: Department of Biology, Institute for Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, D-40225, Düsseldorf, Germany – sequence: 13 givenname: Itzhak orcidid: 0000-0001-6636-8818 surname: Mizrahi fullname: Mizrahi, Itzhak organization: National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel., Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel., The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38484069$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc2LFDEQxYOsuLOjZ2_S4MVL7-azO7kIMrirsOhFzyEf1bMZepIxSS-Mf73d7KzoggiBItTvParqXaCzmCIg9JrgS0Jod1VcgOjg0vidopQ9QyuClWgVxewMrTBmXStxL87RRSk7jOeeYi_QOZNcctypFfqyycdDDa7x4R5yCfXYpKFxMI7TmAq0HrbZ-BC3zXaqjTWuQg6mCXF-fip1_ozhJ_jmbtqbWF6i54MZC7w61TX6fv3x2-ZTe_v15vPmw23ruOC1HQQmUiraE99xYFRxjH2v5MCtsE46YtjguLRghJpBbAk4btlgh8ELq4Ct0fsH38Nk9-AdxJrNqA857E0-6mSC_rsTw53epnvdd0T0nZgN3p0McvoxQal6H8qytomQpqIZEaxTSnD8X5QqIanqlpuv0dsn6C5NOc6XWKhOEsypmqk3fw7_e-rHVGZAPAAup1IyDNqFampIyy5h1ATrJX19Sl-f0p91V090j9b_UvwCmNq2lg |
CitedBy_id | crossref_primary_10_1128_aem_01759_24 crossref_primary_10_1093_ismejo_wrae109 crossref_primary_10_1016_j_carbpol_2024_122442 crossref_primary_10_3390_nano14131082 crossref_primary_10_1051_medsci_2024190 crossref_primary_10_1038_s41522_025_00650_9 crossref_primary_10_3390_metabo15030185 crossref_primary_10_1016_j_tifs_2024_104802 crossref_primary_10_1016_j_biotechadv_2025_108523 crossref_primary_10_1002_mnfr_202400806 crossref_primary_10_1016_j_chom_2024_05_011 crossref_primary_10_1111_1751_7915_14542 crossref_primary_10_1016_j_greenca_2024_06_001 crossref_primary_10_1016_j_foodchem_2024_141254 crossref_primary_10_1016_j_bbabio_2024_149495 crossref_primary_10_1016_j_cell_2024_12_034 crossref_primary_10_3390_nu16183049 crossref_primary_10_1016_j_foodres_2025_115843 crossref_primary_10_3389_frfst_2024_1469470 crossref_primary_10_1038_s41598_024_61909_3 crossref_primary_10_1038_s41467_024_52598_7 crossref_primary_10_1016_j_celrep_2024_115018 |
Cites_doi | 10.1016/S0168-6496(03)00207-1 10.1038/ismej.2017.126 10.1093/molbev/msx116 10.1371/journal.pone.0099221 10.1093/molbev/msaa015 10.1093/molbev/msp062 10.1016/j.syapm.2022.126305 10.7554/eLife.05224 10.1093/nar/25.17.3389 10.1186/s40168-016-0201-2 10.1186/1471-2105-12-323 10.1038/nature11450 10.1111/j.1574-6968.2008.01234.x 10.1186/1471-2105-12-124 10.1038/s41396-020-0634-2 10.1099/ijs.0.027375-0 10.3389/fmicb.2020.00125 10.1016/S0959-440X(98)80143-7 10.1093/bioinformatics/btu153 10.1007/s00253-006-0802-y 10.3390/microorganisms7090347 10.1016/j.cub.2015.04.055 10.3389/fmicb.2021.594075 10.1038/s41396-018-0175-0 10.1101/gr.186072.114 10.1038/s41598-021-81257-w 10.1080/10635150290069913 10.1038/s41467-018-04204-w 10.1371/journal.pone.0025329 10.1038/srep42355 10.1038/ncomms8481 10.3389/fendo.2020.00025 10.1038/s41396-018-0256-0 10.1038/s41559-017-0193 10.1093/nar/gky418 10.1038/s41564-017-0084-4 10.1111/1462-2920.13047 10.1038/s41598-021-81668-9 10.1002/mbo3.981 10.1007/BF02109483 10.1021/ac60147a030 10.1128/JB.187.22.7569-7578.2005 10.1038/s41586-021-03532-0 10.1038/nature08821 10.1038/s41598-021-89719-x 10.32614/CRAN.package.superheat 10.1128/JB.00143-07 10.1007/978-3-319-24277-4 10.1016/j.syapm.2015.03.007 10.1038/s43705-021-00017-z 10.1016/j.cell.2023.05.046 10.1093/jn/111.2.287 10.1038/s41586-019-0965-1 10.1016/j.chom.2018.05.012 10.1016/0016-5085(80)90438-2 10.1111/1462-2920.12868 10.1152/physiolgenomics.00112.2022 10.1186/s13059-016-0997-x 10.1371/journal.pgen.1009200 10.1038/s41522-022-00309-9 10.1002/jmr.749 10.1038/s41587-019-0202-3 10.1186/s42523-021-00093-5 10.1038/ismej.2016.62 10.1128/mSystems.00815-20 10.1126/science.abb5352 10.1128/genomeA.00897-15 10.1038/nature12198 10.1038/nrmicro.2016.164 10.1093/nar/gkt1178 10.3389/fmicb.2015.01543 10.1371/journal.pone.0061217 10.1093/bioinformatics/btv428 10.1038/s41564-023-01388-w 10.1128/mBio.00508-12 10.1186/s40168-019-0664-z 10.1093/molbev/msy096 10.1074/jbc.M113.466672 10.1111/1749-4877.12585 10.1128/aem.54.6.1530-1535.1988 |
ContentType | Journal Article |
Copyright | Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1126/science.adj9223 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef MEDLINE Materials Research Database MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | eadj9223 |
ExternalDocumentID | PMC7615765 38484069 10_1126_science_adj9223 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: European Research Council grantid: 101018894 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW RZL SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YJ6 YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ CGR CUY CVF ECM EIF GX1 NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c454t-f501889271d64e329400d798f4b5bc8c1a3fc48bea591880b1ec4b3fbffd5b9e3 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Thu Aug 21 18:35:38 EDT 2025 Thu Sep 04 20:55:47 EDT 2025 Fri Sep 05 08:34:11 EDT 2025 Wed Aug 13 04:04:56 EDT 2025 Sat May 31 02:13:10 EDT 2025 Tue Jul 01 03:14:06 EDT 2025 Thu Apr 24 23:02:52 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6688 |
Language | English |
License | exclusive licensee American Association for the Advancement of Science. No claim to original US government works. https://www.sciencemag.org/about/science-licenses-journal-article-reuse |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c454t-f501889271d64e329400d798f4b5bc8c1a3fc48bea591880b1ec4b3fbffd5b9e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0003-1591-7903 0000-0001-8178-254X 0000-0001-6636-8818 0000-0002-6675-9939 0000-0003-0314-3122 0000-0001-9026-2386 0000-0001-6543-2259 0000-0003-1478-6449 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7615765 |
PMID | 38484069 |
PQID | 2956810429 |
PQPubID | 1256 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7615765 proquest_miscellaneous_3153699540 proquest_miscellaneous_2958296920 proquest_journals_2956810429 pubmed_primary_38484069 crossref_citationtrail_10_1126_science_adj9223 crossref_primary_10_1126_science_adj9223 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-15 20240315 |
PublicationDateYYYYMMDD | 2024-03-15 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2024 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_87_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_85_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_89_2 e_1_3_2_60_2 e_1_3_2_83_2 e_1_3_2_81_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_75_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_73_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_79_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_77_2 e_1_3_2_50_2 e_1_3_2_71_2 Moraïs S. (e_1_3_2_7_2) 2019 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_65_2 e_1_3_2_86_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_63_2 e_1_3_2_84_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_69_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_67_2 e_1_3_2_88_2 e_1_3_2_61_2 e_1_3_2_82_2 e_1_3_2_80_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_76_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 Freeman H. J. (e_1_3_2_5_2) 1978; 38 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_78_2 e_1_3_2_2_2 e_1_3_2_72_2 e_1_3_2_70_2 |
References_xml | – ident: e_1_3_2_9_2 doi: 10.1016/S0168-6496(03)00207-1 – ident: e_1_3_2_46_2 doi: 10.1038/ismej.2017.126 – volume: 38 start-page: 2912 year: 1978 ident: e_1_3_2_5_2 article-title: A double-blind study on the effect of purified cellulose dietary fiber on 1,2-dimethylhydrazine-induced rat colonic neoplasia publication-title: Cancer Res. – ident: e_1_3_2_76_2 doi: 10.1093/molbev/msx116 – ident: e_1_3_2_34_2 doi: 10.1371/journal.pone.0099221 – ident: e_1_3_2_71_2 doi: 10.1093/molbev/msaa015 – ident: e_1_3_2_75_2 doi: 10.1093/molbev/msp062 – ident: e_1_3_2_24_2 doi: 10.1016/j.syapm.2022.126305 – ident: e_1_3_2_66_2 doi: 10.7554/eLife.05224 – ident: e_1_3_2_40_2 doi: 10.1093/nar/25.17.3389 – ident: e_1_3_2_60_2 doi: 10.1186/s40168-016-0201-2 – ident: e_1_3_2_88_2 doi: 10.1186/1471-2105-12-323 – ident: e_1_3_2_55_2 doi: 10.1038/nature11450 – ident: e_1_3_2_16_2 doi: 10.1111/j.1574-6968.2008.01234.x – ident: e_1_3_2_32_2 doi: 10.1186/1471-2105-12-124 – ident: e_1_3_2_64_2 doi: 10.1038/s41396-020-0634-2 – ident: e_1_3_2_10_2 doi: 10.1099/ijs.0.027375-0 – ident: e_1_3_2_61_2 doi: 10.3389/fmicb.2020.00125 – ident: e_1_3_2_4_2 doi: 10.1016/S0959-440X(98)80143-7 – ident: e_1_3_2_8_2 – ident: e_1_3_2_43_2 doi: 10.1093/bioinformatics/btu153 – ident: e_1_3_2_79_2 doi: 10.1007/s00253-006-0802-y – ident: e_1_3_2_44_2 doi: 10.3390/microorganisms7090347 – ident: e_1_3_2_28_2 doi: 10.1016/j.cub.2015.04.055 – ident: e_1_3_2_50_2 doi: 10.3389/fmicb.2021.594075 – ident: e_1_3_2_31_2 doi: 10.1038/s41396-018-0175-0 – ident: e_1_3_2_20_2 doi: 10.1101/gr.186072.114 – ident: e_1_3_2_57_2 doi: 10.1038/s41598-021-81257-w – ident: e_1_3_2_72_2 doi: 10.1080/10635150290069913 – ident: e_1_3_2_65_2 doi: 10.1038/s41467-018-04204-w – ident: e_1_3_2_17_2 doi: 10.1371/journal.pone.0025329 – ident: e_1_3_2_80_2 doi: 10.1038/srep42355 – ident: e_1_3_2_39_2 doi: 10.1038/ncomms8481 – ident: e_1_3_2_3_2 doi: 10.3389/fendo.2020.00025 – ident: e_1_3_2_63_2 doi: 10.1038/s41396-018-0256-0 – ident: e_1_3_2_70_2 doi: 10.1038/s41559-017-0193 – ident: e_1_3_2_77_2 – ident: e_1_3_2_42_2 doi: 10.1093/nar/gky418 – ident: e_1_3_2_56_2 doi: 10.1038/s41564-017-0084-4 – ident: e_1_3_2_12_2 doi: 10.1111/1462-2920.13047 – ident: e_1_3_2_62_2 doi: 10.1038/s41598-021-81668-9 – ident: e_1_3_2_68_2 doi: 10.1002/mbo3.981 – ident: e_1_3_2_74_2 doi: 10.1007/BF02109483 – ident: e_1_3_2_81_2 doi: 10.1021/ac60147a030 – ident: e_1_3_2_85_2 – ident: e_1_3_2_35_2 doi: 10.1128/JB.187.22.7569-7578.2005 – volume-title: Islands in the stream: From individual to communal fiber degradation in the rumen ecosystem year: 2019 ident: e_1_3_2_7_2 – ident: e_1_3_2_26_2 doi: 10.1038/s41586-021-03532-0 – ident: e_1_3_2_58_2 doi: 10.1038/nature08821 – ident: e_1_3_2_27_2 doi: 10.1038/s41598-021-89719-x – ident: e_1_3_2_86_2 doi: 10.32614/CRAN.package.superheat – ident: e_1_3_2_22_2 doi: 10.1128/JB.00143-07 – ident: e_1_3_2_84_2 doi: 10.1007/978-3-319-24277-4 – ident: e_1_3_2_78_2 doi: 10.1016/j.syapm.2015.03.007 – ident: e_1_3_2_25_2 doi: 10.1038/s43705-021-00017-z – ident: e_1_3_2_48_2 doi: 10.1016/j.cell.2023.05.046 – ident: e_1_3_2_14_2 doi: 10.1093/jn/111.2.287 – ident: e_1_3_2_19_2 doi: 10.1038/s41586-019-0965-1 – ident: e_1_3_2_2_2 doi: 10.1016/j.chom.2018.05.012 – ident: e_1_3_2_6_2 doi: 10.1016/0016-5085(80)90438-2 – ident: e_1_3_2_11_2 doi: 10.1111/1462-2920.12868 – ident: e_1_3_2_52_2 doi: 10.1152/physiolgenomics.00112.2022 – ident: e_1_3_2_45_2 doi: 10.1186/s13059-016-0997-x – ident: e_1_3_2_38_2 doi: 10.1371/journal.pgen.1009200 – ident: e_1_3_2_51_2 doi: 10.1038/s41522-022-00309-9 – ident: e_1_3_2_33_2 doi: 10.1002/jmr.749 – ident: e_1_3_2_18_2 doi: 10.1038/s41587-019-0202-3 – ident: e_1_3_2_53_2 doi: 10.1186/s42523-021-00093-5 – ident: e_1_3_2_67_2 doi: 10.1038/ismej.2016.62 – ident: e_1_3_2_47_2 doi: 10.1128/mSystems.00815-20 – ident: e_1_3_2_54_2 doi: 10.1126/science.abb5352 – ident: e_1_3_2_69_2 doi: 10.1128/genomeA.00897-15 – ident: e_1_3_2_59_2 doi: 10.1038/nature12198 – ident: e_1_3_2_13_2 doi: 10.1038/nrmicro.2016.164 – ident: e_1_3_2_89_2 – ident: e_1_3_2_21_2 doi: 10.1093/nar/gkt1178 – ident: e_1_3_2_29_2 doi: 10.3389/fmicb.2015.01543 – ident: e_1_3_2_83_2 doi: 10.1371/journal.pone.0061217 – ident: e_1_3_2_73_2 doi: 10.1093/bioinformatics/btv428 – ident: e_1_3_2_30_2 doi: 10.1038/s41564-023-01388-w – ident: e_1_3_2_82_2 doi: 10.1128/mBio.00508-12 – ident: e_1_3_2_87_2 doi: 10.1186/s40168-019-0664-z – ident: e_1_3_2_23_2 doi: 10.1128/JB.00143-07 – ident: e_1_3_2_41_2 doi: 10.1093/molbev/msy096 – ident: e_1_3_2_36_2 doi: 10.1074/jbc.M113.466672 – ident: e_1_3_2_49_2 doi: 10.1111/1749-4877.12585 – ident: e_1_3_2_15_2 doi: 10.1128/aem.54.6.1530-1535.1988 – ident: e_1_3_2_37_2 doi: 10.1371/journal.pgen.1009200 |
SSID | ssj0009593 |
Score | 2.574109 |
Snippet | Humans, like all mammals, depend on the gut microbiome for digestion of cellulose, the main component of plant fiber. However, evidence for cellulose... Editor’s summaryThe guts of urbanized people worldwide are known to contain less microbial biodiversity than those of humans living rurally. The worry is that... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | eadj9223 |
SubjectTerms | Adaptability Apes Bacteria Bioaccumulation Biodiversity Cell walls Cellulolytic bacteria Cellulose Cellulose - metabolism Cellulose fibers cellulosome Cellulosomes Chitin Coevolution Crystalline cellulose Degradation Diet Dietary fiber Dietary Fiber - metabolism Dietary intake digestion Digestive system Domestication Ecosystems Energy balance Evolution Exoskeleton Exoskeletons Fermentation Food intake Gastrointestinal Microbiome - genetics Gastrointestinal Microbiome - physiology Gastrointestinal tract Gene expression Genes Genomes Host preferences Human populations Humans Industrial Development industrialization Insects Intermediates Intestinal microflora intestinal microorganisms Intestine lifestyle Mammals Microbiota Microorganisms Monkeys & apes Phylogeny Plant fibers Polymers Polysaccharides Populations Preferences Primates Probiotics Reintroduction ruminants Ruminococcus Ruminococcus - classification Ruminococcus - enzymology Ruminococcus - genetics Rural populations Saccharides Species Vegetable fibers Well being |
Title | Cryptic diversity of cellulose-degrading gut bacteria in industrialized humans |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38484069 https://www.proquest.com/docview/2956810429 https://www.proquest.com/docview/2958296920 https://www.proquest.com/docview/3153699540 https://pubmed.ncbi.nlm.nih.gov/PMC7615765 |
Volume | 383 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb5wwELW2iSr1UjXp17Zp5Uo9pKpYATYGHzdpV1HV5JSoUS_IxqbdKoIoQKTkR-Q3d4wNgWxWSntByBgEzPN4PJ55g9BHTcIs0Up7AVGJRyURnsh95Wk_SmLCRcyU8XccHrGDE_rtNDqdTG4GUUtNLWfZ9b15Jf8jVWgDuZos2X-QbP9QaIBzkC8cQcJwfJCM9y-uzg3hqhoGVxhXfHNWVtpThgiiTVr51dSfpeVlFsbDsewLdiyvweJsC_VVQzu1G_Jgf_Z7OgNJ9sGJcxtC0EUUuNsG7oVDgFi7Gb-oVhzQP2Ad7BIRR-0_S7BkbfbN5W3rd5jCbZ6EycwbeitCasK1bL5mp4EdAbKdf6zS9U29yNAnQ61MbH0bBz_GbPG_VYU_KFGpZ0L94aHNXx5Ta9-Z8vpAxHYJFLLUPSB1D3iENsM4Ntv-m_O9L3uLtTTOjixqkIbVvcPYzllZvNyNwR0YNcfP0FO3GsFzC60tNNHFNnps65NebaMtJ88K7zp68k_P0ZFDHe5Rh8sc34M6DKjDHerwssBj1GGLuhfoZPH1eP_Ac1U5vIxGtPZyQwGZ8DAOFKMw1DnMAirmSU5lJLMkCwTJM5pILSJuyP5koDPQAbnMcxVJrslLtFGUhX6NMFFURTyBOYQZQzLgglBBVS59JgIVRlM06_5hmjnKelM55SxdI7cp2u1vOLdsLeu77nRCSd2QrtKQt_x8YKNN0Yf-Mihc8xNFocum7ZOEnAFe1_chYEcww7QIfV5ZOffvQ-B7Tbr5FMUjBPQdDOH7-Eqx_N0Sv8ew_IhZ9ObhX_kWPbkdhTtoo75o9Duwomv53kH7L-QJ0Ck |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cryptic+diversity+of+cellulose-degrading+gut+bacteria+in+industrialized+humans&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Mora%C3%AFs%2C+Sarah&rft.au=Winkler%2C+Sarah&rft.au=Zorea%2C+Alvah&rft.au=Levin%2C+Liron&rft.date=2024-03-15&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=383&rft.issue=6688&rft_id=info:doi/10.1126%2Fscience.adj9223&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_adj9223 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |