Friction behaviors of elastic materials sliding on textured glass surfaces
The friction behaviors of elastomer, polyacetal, and hard-felt writing tips sliding on various textured glass surfaces prepared via micro-slurry-jet technology were investigated via reciprocating friction tests. The friction coefficients of each writing tip could be varied using textured glass surfa...
Saved in:
Published in | Tribology international Vol. 171; p. 107539 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.07.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The friction behaviors of elastomer, polyacetal, and hard-felt writing tips sliding on various textured glass surfaces prepared via micro-slurry-jet technology were investigated via reciprocating friction tests. The friction coefficients of each writing tip could be varied using textured glass surfaces. Adhesive, abrasive, and deformation frictions were observed owing to two types of surface roughness (sub-millimeter-millimeter sized texture and nanometer sized fine roughness). By inducing a surface texture with a smaller pitch (sub-millimeter-millimeter sized texture) than the contact area of the writing tip, the largest changes of friction coefficients were observed for the elastomer. These reductions occurred due to reduced adhesive friction by decreasing real contact areas.
•Friction behaviors of three commercial pen tips on textured glass measured.•Changes in the friction behaviors via reciprocating friction tests observed.•Friction coefficient reduced largest for elastomer due to reduced adhesive friction. |
---|---|
AbstractList | The friction behaviors of elastomer, polyacetal, and hard-felt writing tips sliding on various textured glass surfaces prepared via micro-slurry-jet technology were investigated via reciprocating friction tests. The friction coefficients of each writing tip could be varied using textured glass surfaces. Adhesive, abrasive, and deformation frictions were observed owing to two types of surface roughness (sub-millimeter-millimeter sized texture and nanometer sized fine roughness). By inducing a surface texture with a smaller pitch (sub-millimeter-millimeter sized texture) than the contact area of the writing tip, the largest changes of friction coefficients were observed for the elastomer. These reductions occurred due to reduced adhesive friction by decreasing real contact areas. The friction behaviors of elastomer, polyacetal, and hard-felt writing tips sliding on various textured glass surfaces prepared via micro-slurry-jet technology were investigated via reciprocating friction tests. The friction coefficients of each writing tip could be varied using textured glass surfaces. Adhesive, abrasive, and deformation frictions were observed owing to two types of surface roughness (sub-millimeter-millimeter sized texture and nanometer sized fine roughness). By inducing a surface texture with a smaller pitch (sub-millimeter-millimeter sized texture) than the contact area of the writing tip, the largest changes of friction coefficients were observed for the elastomer. These reductions occurred due to reduced adhesive friction by decreasing real contact areas. •Friction behaviors of three commercial pen tips on textured glass measured.•Changes in the friction behaviors via reciprocating friction tests observed.•Friction coefficient reduced largest for elastomer due to reduced adhesive friction. |
ArticleNumber | 107539 |
Author | Iwao, Masaru Fujita, Naoki Nakanishi, Yoshitaka Yamaguchi, Hajime Kinoshita, Takumi |
Author_xml | – sequence: 1 givenname: Naoki surname: Fujita fullname: Fujita, Naoki email: nfujita@neg.co.jp organization: Research and Development Group., Nippon Electric Glass Co., Ltd., 2–7-1 Seiran, Otsu, Shiga 520–8639, Japan – sequence: 2 givenname: Hajime surname: Yamaguchi fullname: Yamaguchi, Hajime organization: Graduate School of Science and Technology, Kumamoto University, 2–39-1 Kurokami, Chuo-ku, Kumamoto 860–8555, Japan – sequence: 3 givenname: Takumi surname: Kinoshita fullname: Kinoshita, Takumi organization: Research and Development Group., Nippon Electric Glass Co., Ltd., 2–7-1 Seiran, Otsu, Shiga 520–8639, Japan – sequence: 4 givenname: Masaru surname: Iwao fullname: Iwao, Masaru organization: Research and Development Group., Nippon Electric Glass Co., Ltd., 2–7-1 Seiran, Otsu, Shiga 520–8639, Japan – sequence: 5 givenname: Yoshitaka surname: Nakanishi fullname: Nakanishi, Yoshitaka organization: Faculty of Advanced Science and Technology, Kumamoto University, 2–39-1 Kurokami, Chuo-ku, Kumamoto 860–8555, Japan |
BookMark | eNqFkE1LAzEQhoNUsK3-BVnwvDXJ5mMXPCjF-kHBi4K3kE2yNct2U5Ns0X9vyurFS08zzDzvDDwzMOldbwC4RHCBIGLX7SJ6WzvbxwWGGKchp0V1Aqao5FWOCSMTMIUFRDnj1fsZmIXQQgg5qfgUPK-8VdG6PqvNh9xb50Pmmsx0MkSrsq2MxlvZhSx0Vtt-kyUymq84eKOzTaLSZvCNVCacg9Mmkebit87B2-r-dfmYr18enpZ361wRSmKuJSyKRpWyIoxSSbWqkdEFRiVJjcRcyoZoTmpeclY1pVRMlw2hqNYIUaiLObga7-68-xxMiKJ1g-_TS4EZx5yVmNJEsZFS3oXgTSN23m6l_xYIioM30Yo_b-LgTYzeUvDmX1DZKA-Kope2Ox6_HeMmKdhb40VQ1vTKaOuNikI7e-zED9s4kYs |
CitedBy_id | crossref_primary_10_1016_j_triboint_2024_109866 crossref_primary_10_1016_j_triboint_2022_107973 crossref_primary_10_1007_s40544_024_0881_8 crossref_primary_10_1038_s41598_022_19338_7 |
Cites_doi | 10.3389/fmech.2020.00038 10.1016/j.actamat.2004.01.038 10.1049/bsbt.2018.0028 10.1007/s40544-018-0227-5 10.1016/S0043-1648(99)00124-6 10.1016/j.triboint.2021.106932 10.1007/s40544-020-0438-4 10.1016/0043-1648(92)90040-F 10.1016/S0301-679X(96)00063-1 10.1007/s40544-017-0147-9 10.1016/0043-1648(62)90235-1 10.1016/0043-1648(57)90005-4 10.1007/s40544-020-0398-8 10.1007/s40544-015-0075-5 10.1016/j.matpr.2020.12.497 10.1016/j.triboint.2020.106792 10.1299/jbse.19-00388 10.1016/j.precisioneng.2020.09.018 10.1021/jp036362l 10.1016/0043-1648(74)90055-6 10.1016/j.humov.2016.04.006 10.3389/fmech.2020.620233 10.1016/j.asoc.2020.106830 10.1007/s40544-020-0462-4 10.1016/j.jmbbm.2018.01.022 10.1016/0043-1648(86)90092-X 10.1016/j.apsusc.2016.01.169 10.1016/j.triboint.2005.07.016 10.1038/166330a0 10.1007/s40544-013-0018-y 10.1016/j.biotri.2020.100130 10.1016/j.triboint.2016.06.034 10.1016/j.triboint.2014.12.021 10.1007/s40544-018-0203-0 10.1016/j.triboint.2019.106017 10.1016/S0301-679X(02)00046-4 10.1007/s40544-018-0253-3 10.1016/0043-1648(75)90288-4 |
ContentType | Journal Article |
Copyright | 2022 The Authors Copyright Elsevier BV Jul 2022 |
Copyright_xml | – notice: 2022 The Authors – notice: Copyright Elsevier BV Jul 2022 |
DBID | 6I. AAFTH AAYXX CITATION 7SR 7TB 7U5 8BQ 8FD F28 FR3 JG9 L7M |
DOI | 10.1016/j.triboint.2022.107539 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2464 |
ExternalDocumentID | 10_1016_j_triboint_2022_107539 S0301679X22001128 |
GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 29Q 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDEX ABJNI ABMAC ABNUV ABTAH ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSG SSM SST SSZ T5K TN5 WH7 WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 7TB 7U5 8BQ 8FD EFKBS F28 FR3 JG9 L7M |
ID | FETCH-LOGICAL-c454t-da033fc8a94655a5dcb1ed32184b1ea27aaf4d74b78769f8ac6d8f451bd1150d3 |
IEDL.DBID | .~1 |
ISSN | 0301-679X |
IngestDate | Mon Jul 14 07:30:19 EDT 2025 Tue Jul 01 01:42:31 EDT 2025 Thu Apr 24 23:11:12 EDT 2025 Fri Feb 23 02:38:40 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Abrasive Texture Adhesive Ploughing |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c454t-da033fc8a94655a5dcb1ed32184b1ea27aaf4d74b78769f8ac6d8f451bd1150d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0301679X22001128 |
PQID | 2672768255 |
PQPubID | 2045385 |
ParticipantIDs | proquest_journals_2672768255 crossref_primary_10_1016_j_triboint_2022_107539 crossref_citationtrail_10_1016_j_triboint_2022_107539 elsevier_sciencedirect_doi_10_1016_j_triboint_2022_107539 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2022 2022-07-00 20220701 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
PublicationDecade | 2020 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Tribology international |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Bowden (bib1) 1950; 166 Carsten, Andreas, Roman, Nicolas, Frank (bib34) 2016; 367 Etsion (bib9) 2013; 1 Boidi, Grützmacher, Kadiric, Profito, Machado, Gachot, Dini (bib8) 2021; 9 Kasem, Shriki, Ganon, Mizrahi, Abd-Rbo, Domb (bib33) 2019; 7 Dongre, Rajurkar, Raut, Jangam (bib38) 2021; 42 Kato (bib29) 1997; 30 Nakanishi, Nakashima, van der Heide (bib20) 2021; 67 Stupkiewicz, Mróz (bib27) 1999; 231 Simon, Carsten, Andreas (bib24) 2016; 103 Sato, Yamaguchi, Shibata, Nishi, Moriyasu, Harano, Hokkirigawa (bib30) 2020; 23 Moore, Geyer (bib32) 1974; 30 Edachery, Shashank, Kailas (bib37) 2021; 158 Hu, Song, Sandfeld, Liu, Wei (bib13) 2021; 9 Ling, Baba, Nakanishi (bib22) 2018; 80 Tiwari, Tolpenkina, Benthem, Gunnewiek, Persson (bib4) 2021; 6 Bhushan, Nosonovsky (bib15) 2004; 52 Shibata, Nakashima, Nakanishi (bib12) 2019; 14 Nakano, Kono (bib16) 2020; 6 Burwell (bib2) 1957; 1 Xu, Li, Wu (bib7) 2020; 97 Chen, Ye, Zhang, Wei, Zhang, Liu (bib36) 2021; 9 Zhang, Zeng, Matthews, Igartua, Rodiguez-Vidal, Conteras Fortes, Van der Heide (bib18) 2017; 5 Gerth, Dolk, Klassert, Fliesser, Fischer, Nottbusch (bib19) 2016; 48 Muhr, Roberts (bib35) 1992; 158 Myshkin, Kovalev (bib5) 2018; 6 Goddard, Wilman (bib28) 1962; 5 Liu, Sun, Shen (bib17) 2002; 35 Myshkin, Petrokovets, Kovalev (bib6) 2005; 38 Kumar, Verma, Kango, Sharma (bib39) 2021; 26 Gao, Luedtke, Gourdon, Ruths, Israelachvili, Landman (bib3) 2004; 108 Rosenkranz, Costa, Baykara, Martini (bib10) 2021; 155 Kendall (bib26) 1975; 33 Li, Zeng, Liu, Zhou, Qing (bib11) 2020; 8 Baba, Nakashima, Takahashi, Matsubara, Yin, Nakanishi (bib21) 2019; 5 Roumili, Benbahouche, Sangleboeuf (bib23) 2015; 3 Chernyak, Leonov (bib25) 1986; 108 Mishra, Rooij, Shisode, Hazrati, Schipper (bib14) 2020; 142 Mahadi, Riches, Gester, Yeomans, Smith (bib31) 2015; 89 Edachery (10.1016/j.triboint.2022.107539_bib37) 2021; 158 Boidi (10.1016/j.triboint.2022.107539_bib8) 2021; 9 Chernyak (10.1016/j.triboint.2022.107539_bib25) 1986; 108 Bowden (10.1016/j.triboint.2022.107539_bib1) 1950; 166 Zhang (10.1016/j.triboint.2022.107539_bib18) 2017; 5 Nakano (10.1016/j.triboint.2022.107539_bib16) 2020; 6 Kasem (10.1016/j.triboint.2022.107539_bib33) 2019; 7 Ling (10.1016/j.triboint.2022.107539_bib22) 2018; 80 Li (10.1016/j.triboint.2022.107539_bib11) 2020; 8 Kendall (10.1016/j.triboint.2022.107539_bib26) 1975; 33 Stupkiewicz (10.1016/j.triboint.2022.107539_bib27) 1999; 231 Etsion (10.1016/j.triboint.2022.107539_bib9) 2013; 1 Sato (10.1016/j.triboint.2022.107539_bib30) 2020; 23 Bhushan (10.1016/j.triboint.2022.107539_bib15) 2004; 52 Nakanishi (10.1016/j.triboint.2022.107539_bib20) 2021; 67 Carsten (10.1016/j.triboint.2022.107539_bib34) 2016; 367 Myshkin (10.1016/j.triboint.2022.107539_bib6) 2005; 38 Roumili (10.1016/j.triboint.2022.107539_bib23) 2015; 3 Kato (10.1016/j.triboint.2022.107539_bib29) 1997; 30 Gerth (10.1016/j.triboint.2022.107539_bib19) 2016; 48 Rosenkranz (10.1016/j.triboint.2022.107539_bib10) 2021; 155 Muhr (10.1016/j.triboint.2022.107539_bib35) 1992; 158 Hu (10.1016/j.triboint.2022.107539_bib13) 2021; 9 Mishra (10.1016/j.triboint.2022.107539_bib14) 2020; 142 Goddard (10.1016/j.triboint.2022.107539_bib28) 1962; 5 Chen (10.1016/j.triboint.2022.107539_bib36) 2021; 9 Xu (10.1016/j.triboint.2022.107539_bib7) 2020; 97 Kumar (10.1016/j.triboint.2022.107539_bib39) 2021; 26 Moore (10.1016/j.triboint.2022.107539_bib32) 1974; 30 Dongre (10.1016/j.triboint.2022.107539_bib38) 2021; 42 Myshkin (10.1016/j.triboint.2022.107539_bib5) 2018; 6 Liu (10.1016/j.triboint.2022.107539_bib17) 2002; 35 Gao (10.1016/j.triboint.2022.107539_bib3) 2004; 108 Shibata (10.1016/j.triboint.2022.107539_bib12) 2019; 14 Mahadi (10.1016/j.triboint.2022.107539_bib31) 2015; 89 Tiwari (10.1016/j.triboint.2022.107539_bib4) 2021; 6 Baba (10.1016/j.triboint.2022.107539_bib21) 2019; 5 Burwell (10.1016/j.triboint.2022.107539_bib2) 1957; 1 Simon (10.1016/j.triboint.2022.107539_bib24) 2016; 103 |
References_xml | – volume: 231 start-page: 124 year: 1999 end-page: 138 ident: bib27 article-title: A model of third body abrasive friction and wear in hot metal forming publication-title: Wear – volume: 166 start-page: 330 year: 1950 end-page: 334 ident: bib1 article-title: Friction publication-title: Nature – volume: 103 start-page: 167 year: 2016 end-page: 175 ident: bib24 article-title: How to measure the real contact area? A simple marker and relocation foot-printing approach publication-title: Tribol Int – volume: 8 start-page: 301 year: 2020 end-page: 310 ident: bib11 article-title: Tribological properties of textured stator and PTFE-based material in travelling wave ultrasonic motors publication-title: Friction – volume: 23 year: 2020 ident: bib30 article-title: Dry sliding friction and Wear behavior of thermoplastic polyurethane against abrasive paper publication-title: Biotribol – volume: 7 start-page: 351 year: 2019 end-page: 358 ident: bib33 article-title: Rubber plunger surface texturing for friction reduction in medical syringes publication-title: Friction – volume: 6 start-page: 143 year: 2018 end-page: 155 ident: bib5 article-title: Adhesion and surface forces in polymer tribology—A review publication-title: Friction – volume: 9 start-page: 1227 year: 2021 end-page: 1241 ident: bib8 article-title: Fast laser surface texturing of spherical samples to improve the frictional performance of elasto-hydrodynamic lubricated contacts publication-title: Friction – volume: 5 start-page: 8 year: 2019 end-page: 12 ident: bib21 article-title: Micro slurry-jet for surface processing of dental ceramics publication-title: Biosurf Biotribol – volume: 35 start-page: 511 year: 2002 end-page: 522 ident: bib17 article-title: Study of plowing and friction at the surfaces of plastic deformed metals publication-title: Tribol Int – volume: 30 start-page: 333 year: 1997 end-page: 338 ident: bib29 article-title: Abrasive wear of metals publication-title: Tribol Int – volume: 9 start-page: 1050 year: 2021 end-page: 1060 ident: bib36 article-title: Relationship between the real contact behavior and tribological characteristics of cotton fabric publication-title: Friction – volume: 155 year: 2021 ident: bib10 article-title: Synergetic effects of surface texturing and solid lubricants to tailor friction and wear—A review publication-title: Tribol Int – volume: 30 start-page: 1 year: 1974 end-page: 34 ident: bib32 article-title: A review of hysteresis theories for elastomers publication-title: Wear – volume: 89 start-page: 128 year: 2015 end-page: 134 ident: bib31 article-title: Rolling and sliding: separation of adhesion and deformation friction and their relative contribution to total friction publication-title: Tribol Int – volume: 367 start-page: 174 year: 2016 end-page: 180 ident: bib34 article-title: Tailored frictional properties by Penrose inspired surfaces produced by direct laser interference patterning publication-title: Appl Surf Sci – volume: 5 start-page: 207 year: 2017 end-page: 218 ident: bib18 article-title: Finger pad friction and tactile perception of laser treated, stamped and cold rolled micro-structured stainless steel sheet surfaces publication-title: Friction – volume: 158 year: 2021 ident: bib37 article-title: Influence of surface texture directionality and roughness on wettability, sliding angle, contact angle hysteresis, and lubricant entrapment capability publication-title: Tribol Int – volume: 142 year: 2020 ident: bib14 article-title: A material point method based ploughing model to study the effect of asperity geometry on the ploughing behaviour of an elliptical asperity publication-title: Tribol Int – volume: 26 year: 2021 ident: bib39 article-title: Recent progresses and applications in laser-based surface texturing systems publication-title: Mater Today Commun – volume: 108 start-page: 3410 year: 2004 end-page: 3425 ident: bib3 article-title: Frictional forces and Amontons’ law: from the molecular to the macroscopic scale publication-title: J Phys Chem B – volume: 158 start-page: 213 year: 1992 end-page: 228 ident: bib35 article-title: Rubber abrasion and wear publication-title: Wear – volume: 9 start-page: 822 year: 2021 end-page: 839 ident: bib13 article-title: Multiscale study of the dynamic friction coefficient due to asperity plowing publication-title: Friction – volume: 48 start-page: 62 year: 2016 end-page: 73 ident: bib19 article-title: Adapting to the surface: a comparison of handwriting measures when writing on a tablet computer and on paper publication-title: Hum Mov Sci – volume: 5 start-page: 114 year: 1962 end-page: 135 ident: bib28 article-title: A theory of friction and wear during the abrasion of metals publication-title: Wear – volume: 3 start-page: 65 year: 2015 end-page: 71 ident: bib23 article-title: Mechanical strength of soda-lime glass sandblasted by gravitation publication-title: Friction – volume: 1 start-page: 119 year: 1957 end-page: 141 ident: bib2 article-title: Survey of possible wear mechanisms publication-title: Wear – volume: 1 start-page: 195 year: 2013 end-page: 209 ident: bib9 article-title: Modeling of surface texturing in hydrodynamic lubrication publication-title: Friction – volume: 67 start-page: 172 year: 2021 end-page: 177 ident: bib20 article-title: Microstructuring glass surfaces using a combined masking and microslurry-jet machining process publication-title: Precis Eng – volume: 14 start-page: 19 year: 2019 end-page: 00388 ident: bib12 article-title: Anti-fingerprint glass surface created by mechanical removal process publication-title: J Biomech Sci Eng – volume: 52 start-page: 2461 year: 2004 end-page: 2474 ident: bib15 article-title: Comprehensive model for scale effects in friction due to adhesion and two- and three-body deformation (plowing) publication-title: Acta Mater – volume: 97 year: 2020 ident: bib7 article-title: A completed local shrinkage pattern for texture classification publication-title: Appl Soft Comput – volume: 42 start-page: 1145 year: 2021 end-page: 1151 ident: bib38 article-title: Preparation of super-hydrophobic textures by using nanosecond pulsed laser publication-title: Mater Today-Proc – volume: 80 start-page: 59 year: 2018 end-page: 67 ident: bib22 article-title: Fracture-free surfaces of CAD/CAM lithium metasilicate glass-ceramic using micro-slurry jet erosion publication-title: J Mech Behav Biomed Mater – volume: 108 start-page: 105 year: 1986 end-page: 138 ident: bib25 article-title: On the theory of the adhesive friction of elastomers publication-title: Wear – volume: 38 start-page: 910 year: 2005 end-page: 921 ident: bib6 article-title: Tribology of polymers: adhesion, friction, wear, and mass-transfer publication-title: Tribol Int – volume: 33 start-page: 351 year: 1975 end-page: 358 ident: bib26 article-title: Rolling friction and adhesion between smooth solids publication-title: Wear – volume: 6 year: 2021 ident: bib4 article-title: Rubber adhesion and friction: role of surface energy and contamination films publication-title: Front Mech Eng – volume: 6 start-page: 38 year: 2020 ident: bib16 article-title: Transient and steady sliding friction of elastomers: Impact of vertical lift publication-title: Front Mech Eng – volume: 6 start-page: 38 year: 2020 ident: 10.1016/j.triboint.2022.107539_bib16 article-title: Transient and steady sliding friction of elastomers: Impact of vertical lift publication-title: Front Mech Eng doi: 10.3389/fmech.2020.00038 – volume: 52 start-page: 2461 year: 2004 ident: 10.1016/j.triboint.2022.107539_bib15 article-title: Comprehensive model for scale effects in friction due to adhesion and two- and three-body deformation (plowing) publication-title: Acta Mater doi: 10.1016/j.actamat.2004.01.038 – volume: 5 start-page: 8 year: 2019 ident: 10.1016/j.triboint.2022.107539_bib21 article-title: Micro slurry-jet for surface processing of dental ceramics publication-title: Biosurf Biotribol doi: 10.1049/bsbt.2018.0028 – volume: 7 start-page: 351 year: 2019 ident: 10.1016/j.triboint.2022.107539_bib33 article-title: Rubber plunger surface texturing for friction reduction in medical syringes publication-title: Friction doi: 10.1007/s40544-018-0227-5 – volume: 231 start-page: 124 year: 1999 ident: 10.1016/j.triboint.2022.107539_bib27 article-title: A model of third body abrasive friction and wear in hot metal forming publication-title: Wear doi: 10.1016/S0043-1648(99)00124-6 – volume: 158 year: 2021 ident: 10.1016/j.triboint.2022.107539_bib37 article-title: Influence of surface texture directionality and roughness on wettability, sliding angle, contact angle hysteresis, and lubricant entrapment capability publication-title: Tribol Int doi: 10.1016/j.triboint.2021.106932 – volume: 9 start-page: 822 year: 2021 ident: 10.1016/j.triboint.2022.107539_bib13 article-title: Multiscale study of the dynamic friction coefficient due to asperity plowing publication-title: Friction doi: 10.1007/s40544-020-0438-4 – volume: 158 start-page: 213 year: 1992 ident: 10.1016/j.triboint.2022.107539_bib35 article-title: Rubber abrasion and wear publication-title: Wear doi: 10.1016/0043-1648(92)90040-F – volume: 30 start-page: 333 issue: 5 year: 1997 ident: 10.1016/j.triboint.2022.107539_bib29 article-title: Abrasive wear of metals publication-title: Tribol Int doi: 10.1016/S0301-679X(96)00063-1 – volume: 5 start-page: 207 year: 2017 ident: 10.1016/j.triboint.2022.107539_bib18 article-title: Finger pad friction and tactile perception of laser treated, stamped and cold rolled micro-structured stainless steel sheet surfaces publication-title: Friction doi: 10.1007/s40544-017-0147-9 – volume: 5 start-page: 114 issue: 2 year: 1962 ident: 10.1016/j.triboint.2022.107539_bib28 article-title: A theory of friction and wear during the abrasion of metals publication-title: Wear doi: 10.1016/0043-1648(62)90235-1 – volume: 1 start-page: 119 year: 1957 ident: 10.1016/j.triboint.2022.107539_bib2 article-title: Survey of possible wear mechanisms publication-title: Wear doi: 10.1016/0043-1648(57)90005-4 – volume: 9 start-page: 1050 year: 2021 ident: 10.1016/j.triboint.2022.107539_bib36 article-title: Relationship between the real contact behavior and tribological characteristics of cotton fabric publication-title: Friction doi: 10.1007/s40544-020-0398-8 – volume: 3 start-page: 65 year: 2015 ident: 10.1016/j.triboint.2022.107539_bib23 article-title: Mechanical strength of soda-lime glass sandblasted by gravitation publication-title: Friction doi: 10.1007/s40544-015-0075-5 – volume: 42 start-page: 1145 year: 2021 ident: 10.1016/j.triboint.2022.107539_bib38 article-title: Preparation of super-hydrophobic textures by using nanosecond pulsed laser publication-title: Mater Today-Proc doi: 10.1016/j.matpr.2020.12.497 – volume: 155 year: 2021 ident: 10.1016/j.triboint.2022.107539_bib10 article-title: Synergetic effects of surface texturing and solid lubricants to tailor friction and wear—A review publication-title: Tribol Int doi: 10.1016/j.triboint.2020.106792 – volume: 14 start-page: 19 year: 2019 ident: 10.1016/j.triboint.2022.107539_bib12 article-title: Anti-fingerprint glass surface created by mechanical removal process publication-title: J Biomech Sci Eng doi: 10.1299/jbse.19-00388 – volume: 67 start-page: 172 year: 2021 ident: 10.1016/j.triboint.2022.107539_bib20 article-title: Microstructuring glass surfaces using a combined masking and microslurry-jet machining process publication-title: Precis Eng doi: 10.1016/j.precisioneng.2020.09.018 – volume: 108 start-page: 3410 year: 2004 ident: 10.1016/j.triboint.2022.107539_bib3 article-title: Frictional forces and Amontons’ law: from the molecular to the macroscopic scale publication-title: J Phys Chem B doi: 10.1021/jp036362l – volume: 30 start-page: 1 issue: 1 year: 1974 ident: 10.1016/j.triboint.2022.107539_bib32 article-title: A review of hysteresis theories for elastomers publication-title: Wear doi: 10.1016/0043-1648(74)90055-6 – volume: 48 start-page: 62 year: 2016 ident: 10.1016/j.triboint.2022.107539_bib19 article-title: Adapting to the surface: a comparison of handwriting measures when writing on a tablet computer and on paper publication-title: Hum Mov Sci doi: 10.1016/j.humov.2016.04.006 – volume: 6 year: 2021 ident: 10.1016/j.triboint.2022.107539_bib4 article-title: Rubber adhesion and friction: role of surface energy and contamination films publication-title: Front Mech Eng doi: 10.3389/fmech.2020.620233 – volume: 97 year: 2020 ident: 10.1016/j.triboint.2022.107539_bib7 article-title: A completed local shrinkage pattern for texture classification publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106830 – volume: 9 start-page: 1227 year: 2021 ident: 10.1016/j.triboint.2022.107539_bib8 article-title: Fast laser surface texturing of spherical samples to improve the frictional performance of elasto-hydrodynamic lubricated contacts publication-title: Friction doi: 10.1007/s40544-020-0462-4 – volume: 80 start-page: 59 year: 2018 ident: 10.1016/j.triboint.2022.107539_bib22 article-title: Fracture-free surfaces of CAD/CAM lithium metasilicate glass-ceramic using micro-slurry jet erosion publication-title: J Mech Behav Biomed Mater doi: 10.1016/j.jmbbm.2018.01.022 – volume: 108 start-page: 105 issue: 2 year: 1986 ident: 10.1016/j.triboint.2022.107539_bib25 article-title: On the theory of the adhesive friction of elastomers publication-title: Wear doi: 10.1016/0043-1648(86)90092-X – volume: 367 start-page: 174 year: 2016 ident: 10.1016/j.triboint.2022.107539_bib34 article-title: Tailored frictional properties by Penrose inspired surfaces produced by direct laser interference patterning publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2016.01.169 – volume: 38 start-page: 910 year: 2005 ident: 10.1016/j.triboint.2022.107539_bib6 article-title: Tribology of polymers: adhesion, friction, wear, and mass-transfer publication-title: Tribol Int doi: 10.1016/j.triboint.2005.07.016 – volume: 166 start-page: 330 year: 1950 ident: 10.1016/j.triboint.2022.107539_bib1 article-title: Friction publication-title: Nature doi: 10.1038/166330a0 – volume: 1 start-page: 195 year: 2013 ident: 10.1016/j.triboint.2022.107539_bib9 article-title: Modeling of surface texturing in hydrodynamic lubrication publication-title: Friction doi: 10.1007/s40544-013-0018-y – volume: 23 year: 2020 ident: 10.1016/j.triboint.2022.107539_bib30 article-title: Dry sliding friction and Wear behavior of thermoplastic polyurethane against abrasive paper publication-title: Biotribol doi: 10.1016/j.biotri.2020.100130 – volume: 103 start-page: 167 year: 2016 ident: 10.1016/j.triboint.2022.107539_bib24 article-title: How to measure the real contact area? A simple marker and relocation foot-printing approach publication-title: Tribol Int doi: 10.1016/j.triboint.2016.06.034 – volume: 89 start-page: 128 year: 2015 ident: 10.1016/j.triboint.2022.107539_bib31 article-title: Rolling and sliding: separation of adhesion and deformation friction and their relative contribution to total friction publication-title: Tribol Int doi: 10.1016/j.triboint.2014.12.021 – volume: 6 start-page: 143 year: 2018 ident: 10.1016/j.triboint.2022.107539_bib5 article-title: Adhesion and surface forces in polymer tribology—A review publication-title: Friction doi: 10.1007/s40544-018-0203-0 – volume: 142 year: 2020 ident: 10.1016/j.triboint.2022.107539_bib14 article-title: A material point method based ploughing model to study the effect of asperity geometry on the ploughing behaviour of an elliptical asperity publication-title: Tribol Int doi: 10.1016/j.triboint.2019.106017 – volume: 26 year: 2021 ident: 10.1016/j.triboint.2022.107539_bib39 article-title: Recent progresses and applications in laser-based surface texturing systems publication-title: Mater Today Commun – volume: 35 start-page: 511 year: 2002 ident: 10.1016/j.triboint.2022.107539_bib17 article-title: Study of plowing and friction at the surfaces of plastic deformed metals publication-title: Tribol Int doi: 10.1016/S0301-679X(02)00046-4 – volume: 8 start-page: 301 year: 2020 ident: 10.1016/j.triboint.2022.107539_bib11 article-title: Tribological properties of textured stator and PTFE-based material in travelling wave ultrasonic motors publication-title: Friction doi: 10.1007/s40544-018-0253-3 – volume: 33 start-page: 351 issue: 2 year: 1975 ident: 10.1016/j.triboint.2022.107539_bib26 article-title: Rolling friction and adhesion between smooth solids publication-title: Wear doi: 10.1016/0043-1648(75)90288-4 |
SSID | ssj0007497 |
Score | 2.376951 |
Snippet | The friction behaviors of elastomer, polyacetal, and hard-felt writing tips sliding on various textured glass surfaces prepared via micro-slurry-jet technology... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107539 |
SubjectTerms | Abrasive Adhesive Coefficient of friction Elastomers Friction reduction Ploughing Sliding Surface layers Surface roughness Texture |
Title | Friction behaviors of elastic materials sliding on textured glass surfaces |
URI | https://dx.doi.org/10.1016/j.triboint.2022.107539 https://www.proquest.com/docview/2672768255 |
Volume | 171 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWqssCA-BSFUnlgTdM4TpyMVUVViugClbpZdhxLqVBape3Kb-cuH1CQUAe2xPJF0eX8_Ky8uyPkQQHqaeYnjhGBcbhSwtFMeE7gJ0KkOuKRxuTkl1k4mfPpIli0yKjJhUFZZY39FaaXaF2PuLU33XWWua9I5kMRLxjKggBmMYOdC4zy_se3zEPwssEKTnZw9l6W8LKPTaVWWY6aSsZgELh7_NcG9Quqy_1nfEZOa-JIh9W7nZNWml-Qk71ygpdkOi6yMk2BNsn3G7qyNAWCDEYUuGkVbhS4JW5ZFGai8GNXpIaWNJpudoVFkdYVmY8f30YTp-6V4CQ84FvHqIHv2yRSMRZEU4FJtJcaHw9wcKGYUMpyI7iGBRrGNlJJaCLLA08b5ITGvybtfJWnN4SG3DILJ0VYy0BOYqZ9nUZYs4cPrGd53CFB4yCZ1IXEsZ_Fu2wUY0vZOFaiY2Xl2A5xv-zWVSmNgxZx43_5Iygk4P1B227zwWS9LDeS4X_nEA7Fwe0_Hn1HjvGuEu12SXtb7NJ7oCZb3Stjr0eOhk_Pk9kn-E3kjQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8QwDLYOGIAB8RSPAzLAWI5L06YdGBBwOp4LIN0WkiaRDqE7dA8hFv4UfxC7D14SYkBsVVpHkWPZn9XPNsCORq9neJgFVkY2EFrLwHDZDKIwk9KZRCSGipMvr-L2rTjrRJ0avFa1MESrLH1_4dNzb12uNEptNh673cY1gflYph1OtCB0syWz8tw9P2HeNjw4PcZL3uW8dXJz1A7K0QJBJiIxCqzeD0OfJTql_mE6splpOhtSvoMPmkutvbBSGLTnOPWJzmKbeBE1jSUIZUPcdwKmBLoLGpuw9_LBK5Ein-hCpwvoeJ_Kku_3aIpVv9sjEifnuIjJQvpTRPwWG_KA15qHuRKpssNCGQtQc71FmP3Uv3AJzlqDbl4Xwapq_yHre-YQkaMQQzBc2DdDMEsxkuGXxDQZD5xlOW5nw_HAEytsGW7_RYMrMNnr99wqsFh47jE1ReeBaCjlJjQuoSZBYt83vUjXIKoUpLKyczkN0HhQFUXtXlWKVaRYVSh2DRrvco9F745fJdJK_-qLFSoMML_K1qsLU6UfGCpOP7pjzMKj9T9svQ3T7ZvLC3VxenW-ATP0pmAM12FyNBi7TcRFI7OV2yGDu_82_DdpZCEW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Friction+behaviors+of+elastic+materials+sliding+on+textured+glass+surfaces&rft.jtitle=Tribology+international&rft.au=Fujita%2C+Naoki&rft.au=Yamaguchi%2C+Hajime&rft.au=Kinoshita%2C+Takumi&rft.au=Iwao%2C+Masaru&rft.date=2022-07-01&rft.pub=Elsevier+BV&rft.issn=0301-679X&rft.eissn=1879-2464&rft.volume=171&rft.spage=1&rft_id=info:doi/10.1016%2Fj.triboint.2022.107539&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-679X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-679X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-679X&client=summon |