Pure rate effect on the concrete compressive strength in the split Hopkinson pressure bar test
•Strain acceleration and geometry of a specimen lead to inertia effects in SHPB test.•Concrete SHPB tests were performed.•DIF considering the pure rate effect was proposed.•Proposed DIF provided an accurate prediction for the apparent dynamic strength. The dynamic increase factor (DIF) has been wide...
Saved in:
Published in | International journal of impact engineering Vol. 113; pp. 191 - 202 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.03.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Strain acceleration and geometry of a specimen lead to inertia effects in SHPB test.•Concrete SHPB tests were performed.•DIF considering the pure rate effect was proposed.•Proposed DIF provided an accurate prediction for the apparent dynamic strength.
The dynamic increase factor (DIF) has been widely used to consider the rate effect in the analysis and design of concrete structures that are subject to impact loads. A variety of DIFs have been proposed by many researchers based on the results of dynamic material tests such as the split Hopkinson pressure bar (SHPB) test. These DIFs have been adopted in authoritative design guidelines and model codes such as the ACI 349–13, ACI 370R-14, fib MC2010, and UFC 3-340-02. However, previous studies did not properly consider the strain acceleration and the geometrical characteristics of the test specimens that cause the axial and radial inertia forces which influence the test results. For this reason, predictions can become non conservative when these DIFs are used in the analysis and design of concrete structures that are subject to impact or impulsive loads. In this study, to overcome the limitations of existing DIFs, a new concrete DIF that excludes inertia effects by considering the strain acceleration and geometry of the specimens has been proposed based on SHPB test results. The proposed DIF was numerically validated using finite element analyses. Compared with other existing DIFs, the results show improved predictions of the enhancement of the concrete compressive strength due to rate effect. |
---|---|
AbstractList | •Strain acceleration and geometry of a specimen lead to inertia effects in SHPB test.•Concrete SHPB tests were performed.•DIF considering the pure rate effect was proposed.•Proposed DIF provided an accurate prediction for the apparent dynamic strength.
The dynamic increase factor (DIF) has been widely used to consider the rate effect in the analysis and design of concrete structures that are subject to impact loads. A variety of DIFs have been proposed by many researchers based on the results of dynamic material tests such as the split Hopkinson pressure bar (SHPB) test. These DIFs have been adopted in authoritative design guidelines and model codes such as the ACI 349–13, ACI 370R-14, fib MC2010, and UFC 3-340-02. However, previous studies did not properly consider the strain acceleration and the geometrical characteristics of the test specimens that cause the axial and radial inertia forces which influence the test results. For this reason, predictions can become non conservative when these DIFs are used in the analysis and design of concrete structures that are subject to impact or impulsive loads. In this study, to overcome the limitations of existing DIFs, a new concrete DIF that excludes inertia effects by considering the strain acceleration and geometry of the specimens has been proposed based on SHPB test results. The proposed DIF was numerically validated using finite element analyses. Compared with other existing DIFs, the results show improved predictions of the enhancement of the concrete compressive strength due to rate effect. The dynamic increase factor (DIF) has been widely used to consider the rate effect in the analysis and design of concrete structures that are subject to impact loads. A variety of DIFs have been proposed by many researchers based on the results of dynamic material tests such as the split Hopkinson pressure bar (SHPB) test. These DIFs have been adopted in authoritative design guidelines and model codes such as the ACI 349-13, ACI 370R-14, fib MC2010, and UFC 3-340-02. However, previous studies did not properly consider the strain acceleration and the geometrical characteristics of the test specimens that cause the axial and radial inertia forces which influence the test results. For this reason, predictions can become non conservative when these DIFs are used in the analysis and design of concrete structures that are subject to impact or impulsive loads. In this study, to overcome the limitations of existing DrFs, a new concrete DIF that excludes inertia effects by considering the strain acceleration and geometry of the specimens has been proposed based on SHPB test results. The proposed DIF was numerically validated using finite element analyses. Compared with other existing DIFs, the results show improved predictions of the enhancement of the concrete compressive strength due to rate effect. |
Author | Lee, Sangho Kim, Kyoung-Min Cho, Jae-Yeol Park, Jamin |
Author_xml | – sequence: 1 givenname: Sangho surname: Lee fullname: Lee, Sangho email: purity235@snu.ac.kr organization: Department of Civil and Environmental Engineering, Seoul National University, 35-508, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea – sequence: 2 givenname: Kyoung-Min surname: Kim fullname: Kim, Kyoung-Min email: ekfzl006@snu.ac.kr organization: Department of Civil and Environmental Engineering, Seoul National University, 35-508, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea – sequence: 3 givenname: Jamin surname: Park fullname: Park, Jamin email: jaminpark86@gmail.com organization: Institute of Construction and Environmental Engineering, Seoul National University, 316-406, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea – sequence: 4 givenname: Jae-Yeol surname: Cho fullname: Cho, Jae-Yeol email: jycho@snu.ac.kr organization: Department of Civil and Environmental Engineering, Seoul National University, 35-312, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea |
BookMark | eNqFkE1LxDAURYMoOH78BQm4bk0madKCC0XUEQZ0oeDKkKavTupMUpOM4L834-jGjav3FvfcC-cA7TrvAKETSkpKqDgbSjvY1QjutZwSKktKS0KrHTShtWwKVpFmF02IZLyQnD3vo4MYB5KDpCIT9PKwDoCDToCh78Ek7B1OC8DGOxMgbZ7VGCBG-wE4ppBn0gLbbSiOS5vwzI9v1sUMfgc3ha0OOEFMR2iv18sIxz_3ED3dXD9ezYr5_e3d1eW8MLziqTCy1TVthOx1Da2QbdMZLXjdVboRtSRMQKWNrrjhRpqO1ayd8rqFpp0KJkzNDtHptncM_n2dh9Xg18HlSTUlQjLBqeA5JbYpE3yMAXo1BrvS4VNRojYu1aB-XaqNS0Wpyi4zeP4HNDbpZL1LQdvl__jFFoes4MNCUNFYcAY6G7Jy1Xn7X8UXcOKYlA |
CitedBy_id | crossref_primary_10_1016_j_jobe_2023_106195 crossref_primary_10_2339_politeknik_555271 crossref_primary_10_1016_j_coldregions_2023_103907 crossref_primary_10_1016_j_cemconcomp_2022_104554 crossref_primary_10_1016_j_ijimpeng_2018_11_003 crossref_primary_10_1177_20414196221092466 crossref_primary_10_1617_s11527_021_01869_6 crossref_primary_10_1177_2041419618819506 crossref_primary_10_1016_j_cemconcomp_2022_104517 crossref_primary_10_1016_j_cemconcomp_2020_103703 crossref_primary_10_1061_JMCEE7_MTENG_16979 crossref_primary_10_1016_j_jobe_2022_104769 crossref_primary_10_3390_ma11081274 crossref_primary_10_1016_j_conbuildmat_2024_137535 crossref_primary_10_1016_j_conbuildmat_2024_137579 crossref_primary_10_1016_j_ijsolstr_2019_07_029 crossref_primary_10_1016_j_conbuildmat_2020_119823 crossref_primary_10_1016_j_conbuildmat_2024_137499 crossref_primary_10_1142_S0219455424400157 crossref_primary_10_1007_s43452_022_00457_x crossref_primary_10_1016_j_conbuildmat_2021_123875 crossref_primary_10_1016_j_conbuildmat_2021_125739 crossref_primary_10_1016_j_tafmec_2023_103777 crossref_primary_10_1016_j_cemconcomp_2021_104108 crossref_primary_10_1016_j_ijimpeng_2021_104132 crossref_primary_10_1177_2041419618763921 crossref_primary_10_1016_j_conbuildmat_2023_134402 crossref_primary_10_1007_s42791_023_00061_x crossref_primary_10_1016_j_conbuildmat_2024_137226 crossref_primary_10_1016_j_compstruct_2020_112330 crossref_primary_10_1016_j_conbuildmat_2023_132993 crossref_primary_10_1016_j_advengsoft_2018_10_002 crossref_primary_10_1016_j_jobe_2023_107666 crossref_primary_10_1016_j_jobe_2024_108856 crossref_primary_10_1111_str_12377 crossref_primary_10_1016_j_jallcom_2019_06_153 crossref_primary_10_1061_JMCEE7_MTENG_18062 crossref_primary_10_3151_jact_22_267 crossref_primary_10_3151_jact_19_1040 crossref_primary_10_1016_j_ijrmms_2022_105325 crossref_primary_10_1617_s11527_021_01846_z crossref_primary_10_1016_j_conbuildmat_2022_128197 crossref_primary_10_1016_j_conbuildmat_2022_128270 crossref_primary_10_1007_s43452_021_00233_3 crossref_primary_10_1016_j_cemconcomp_2020_103769 crossref_primary_10_1016_j_jmps_2021_104413 crossref_primary_10_1016_j_rineng_2023_101319 crossref_primary_10_3390_ma14092267 crossref_primary_10_1177_0954406218813386 crossref_primary_10_3390_ma18030552 crossref_primary_10_1007_s10338_021_00218_y crossref_primary_10_1016_j_jclepro_2022_133648 crossref_primary_10_1617_s11527_023_02266_x crossref_primary_10_1016_j_ijimpeng_2019_103314 crossref_primary_10_1016_j_jobe_2024_111692 crossref_primary_10_1016_j_conbuildmat_2018_12_144 crossref_primary_10_1016_j_cemconcomp_2019_103430 crossref_primary_10_3390_ma16145140 crossref_primary_10_1007_s11668_024_01897_8 crossref_primary_10_1615_CompMechComputApplIntJ_2023048028 crossref_primary_10_1016_j_finel_2024_104211 crossref_primary_10_1051_e3sconf_202019801042 crossref_primary_10_1155_2020_8874191 crossref_primary_10_3390_ma14174933 crossref_primary_10_1016_j_ijimpeng_2021_104079 crossref_primary_10_1016_j_cemconcomp_2020_103816 crossref_primary_10_1680_jmacr_24_00087 crossref_primary_10_1016_j_conbuildmat_2023_131359 crossref_primary_10_1016_j_conbuildmat_2023_132526 crossref_primary_10_3103_S0025654423601064 crossref_primary_10_3390_ma15092995 crossref_primary_10_1142_S1758825124500881 crossref_primary_10_1007_s11771_021_4754_2 crossref_primary_10_1016_j_dt_2021_05_003 crossref_primary_10_3390_ma15010210 |
Cites_doi | 10.1016/j.cemconres.2013.05.008 10.1016/S0734-743X(01)00020-3 10.1016/j.ijimpeng.2009.06.012 10.1016/j.ijimpeng.2009.04.010 10.1016/0022-5096(63)90050-4 10.1260/2041-4196.2.1.127 10.1088/0022-3727/22/12/014 10.1016/S0020-7683(02)00526-7 10.1007/BF02472016 10.1016/S0734-743X(97)00023-7 10.1016/j.ijimpeng.2005.12.001 10.1016/j.ijimpeng.2009.04.009 10.1007/s11340-014-9899-6 10.1016/S0045-7949(97)00018-7 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright Elsevier BV Mar 2018 |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier BV Mar 2018 |
DBID | 6I. AAFTH AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1016/j.ijimpeng.2017.11.015 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3509 |
EndPage | 202 |
ExternalDocumentID | 10_1016_j_ijimpeng_2017_11_015 S0734743X17305651 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABXDB ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K TN5 UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 7TB 8BQ 8FD EFKBS FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c454t-c7ba81967fa8eb67b9dca648d5a9687036e5aca54c4c7cd383b248be9b2636c83 |
IEDL.DBID | .~1 |
ISSN | 0734-743X |
IngestDate | Fri Jul 25 07:04:24 EDT 2025 Tue Jul 01 03:54:26 EDT 2025 Thu Apr 24 22:59:35 EDT 2025 Tue Jul 16 04:31:03 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Dynamic increase factor Split Hopkinson pressure bar Inertia effect Rate effect Concrete compressive strength |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c454t-c7ba81967fa8eb67b9dca648d5a9687036e5aca54c4c7cd383b248be9b2636c83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0734743X17305651 |
PQID | 2067364164 |
PQPubID | 2045463 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2067364164 crossref_primary_10_1016_j_ijimpeng_2017_11_015 crossref_citationtrail_10_1016_j_ijimpeng_2017_11_015 elsevier_sciencedirect_doi_10_1016_j_ijimpeng_2017_11_015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2018 2018-03-00 20180301 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: March 2018 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of impact engineering |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Heard, Martin, Nie, Slawson (bib0021) 2014; 54 Grote, Park, Zhou (bib0009) 2001; 25 (bib0020) 2014 Newmark, Haltiwanger (bib0025) 1962 Davies, Hunter (bib0014) 1963; 11 Zhang, Wu, Li, Huang (bib0008) 2009; 36 Mihashi, Wittmann (bib0018) 1980; 25 Malvar, Crawford, Wesevich, Simons (bib0024) 1997; 19 Li, Lu, Meng (bib0007) 2009; 36 (bib0002) 2014 (bib0004) 2013; 70 Li, Meng (bib0001) 2003; 40 Macgregor, Wight (bib0017) 2011 Tedesco, Powell, Ross, Hughes (bib0026) 1997; 64 Hao, Hao, Jiang, Zhou (bib0013) 2013; 52 Zhang, Quek, Wang (bib0022) 2011; 39 Lu, Li (bib0012) 2011; 2 Forrestal, Wright, Chen (bib0016) 2007; 34 (bib0005) 2008 (bib0003) 2014 Kim, Sirijaroonchai, Ek-Tawil, Naaman (bib0010) 2010; 37 (bib0019) 2016 Gorham (bib0015) 1989; 22 Magallanes, Wu, Malvar, Crawford (bib0011) 2010 Bischoff, Perry (bib0006) 1991; 24 Gray, Kuhn, Medlin (bib0023) 2000 Kim (10.1016/j.ijimpeng.2017.11.015_bib0010) 2010; 37 Tedesco (10.1016/j.ijimpeng.2017.11.015_bib0026) 1997; 64 Davies (10.1016/j.ijimpeng.2017.11.015_bib0014) 1963; 11 (10.1016/j.ijimpeng.2017.11.015_bib0004) 2013; 70 Hao (10.1016/j.ijimpeng.2017.11.015_bib0013) 2013; 52 Gorham (10.1016/j.ijimpeng.2017.11.015_bib0015) 1989; 22 Forrestal (10.1016/j.ijimpeng.2017.11.015_bib0016) 2007; 34 (10.1016/j.ijimpeng.2017.11.015_bib0002) 2014 (10.1016/j.ijimpeng.2017.11.015_bib0003) 2014 Li (10.1016/j.ijimpeng.2017.11.015_bib0001) 2003; 40 Magallanes (10.1016/j.ijimpeng.2017.11.015_bib0011) 2010 Lu (10.1016/j.ijimpeng.2017.11.015_bib0012) 2011; 2 (10.1016/j.ijimpeng.2017.11.015_bib0020) 2014 Gray (10.1016/j.ijimpeng.2017.11.015_bib0023) 2000 Heard (10.1016/j.ijimpeng.2017.11.015_bib0021) 2014; 54 Zhang (10.1016/j.ijimpeng.2017.11.015_bib0022) 2011; 39 Grote (10.1016/j.ijimpeng.2017.11.015_bib0009) 2001; 25 Mihashi (10.1016/j.ijimpeng.2017.11.015_bib0018) 1980; 25 Newmark (10.1016/j.ijimpeng.2017.11.015_bib0025) 1962 Zhang (10.1016/j.ijimpeng.2017.11.015_bib0008) 2009; 36 Malvar (10.1016/j.ijimpeng.2017.11.015_bib0024) 1997; 19 (10.1016/j.ijimpeng.2017.11.015_bib0019) 2016 (10.1016/j.ijimpeng.2017.11.015_bib0005) 2008 Li (10.1016/j.ijimpeng.2017.11.015_bib0007) 2009; 36 Bischoff (10.1016/j.ijimpeng.2017.11.015_bib0006) 1991; 24 Macgregor (10.1016/j.ijimpeng.2017.11.015_bib0017) 2011 |
References_xml | – volume: 19 start-page: 847 year: 1997 end-page: 873 ident: bib0024 article-title: A plasticity concrete material model for DYNA3D publication-title: Int J Impact Eng – year: 2011 ident: bib0017 article-title: Reinforced concrete: mechanics and design – volume: 64 start-page: 1053 year: 1997 end-page: 1067 ident: bib0026 article-title: A strain-rate-dependent concrete material model for ADINA publication-title: Comput Struct – year: 2014 ident: bib0003 article-title: Report for the design of concrete structures for blast effects – volume: 54 start-page: 1343 year: 2014 end-page: 1354 ident: bib0021 article-title: Annular pulse shaping technique for large-diameter kolsky bar experiments on concrete publication-title: Exp Mech – year: 2010 ident: bib0011 article-title: Recent improvements to release III of the K&C concrete model publication-title: Proceedings of 11th International LS-DYNA Users Conference, Livermore Software Technology Corporation – volume: 37 start-page: 141 year: 2010 end-page: 149 ident: bib0010 article-title: Numerical simulation of the split hopkinson pressure bar test technique for concrete under compression publication-title: Int J Impact Eng – year: 2008 ident: bib0005 article-title: Structures to resist the effects of accidental explosions – volume: 22 start-page: 1888 year: 1989 end-page: 1893 ident: bib0015 article-title: Specimen inertia in high strain-rate compression publication-title: J Phys D – year: 1962 ident: bib0025 article-title: AFSWC-TDR-62-138 – volume: 52 start-page: 63 year: 2013 end-page: 70 ident: bib0013 article-title: Experimental confirmation of some factors influencing dynamic concrete compressive strengths in high-speed impact tests publication-title: Cement Concr Res – volume: 39 start-page: 1 year: 2011 end-page: 10 ident: bib0022 article-title: Effect of specimen size on static strength and dynamic increase factor of high-strength concrete from SHPB test publication-title: J Test Eval – year: 2014 ident: bib0002 article-title: Code requirements for nuclear safety-related concrete structures (ACI 349-13) & commentary – volume: 70 year: 2013 ident: bib0004 publication-title: Code-type models for concrete behaviour: state-of-the-art report – volume: 25 start-page: 5 year: 1980 end-page: 54 ident: bib0018 article-title: Stochastic approach to study the influence of rate of loading on strength of concrete publication-title: Heron – start-page: 462 year: 2000 end-page: 476 ident: bib0023 article-title: ASM h – volume: 36 start-page: 1327 year: 2009 end-page: 1334 ident: bib0008 article-title: Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split hopkinson pressure bar tests. Part I: experiments publication-title: Int J Impact Eng – volume: 40 start-page: 343 year: 2003 end-page: 360 ident: bib0001 article-title: About the dynamic strength enhancement of concrete-like materials in a split hopkinson pressure bar test publication-title: Int J Solids Struct – volume: 36 start-page: 1335 year: 2009 end-page: 1345 ident: bib0007 article-title: Further Investigation on the dynamic compressive strength enhancement of concrete-like materials based on split hopkinson pressure bar tests. Part II: numerical simulations publication-title: Int J Impact Eng – year: 2014 ident: bib0020 article-title: Standard test method for static modulus of elasticity and poisson's ratio of concrete in compression – volume: 25 start-page: 869 year: 2001 end-page: 886 ident: bib0009 article-title: Dynamic behavior of concrete at high strain rates and pressures: i. Experimental characterization publication-title: Int J Impact Eng – volume: 34 start-page: 405 year: 2007 end-page: 411 ident: bib0016 article-title: The effect of radial inertia on brittle samples during the split hopkinson pressure bar test publication-title: Int J Impact Eng – volume: 24 start-page: 425 year: 1991 end-page: 450 ident: bib0006 article-title: Compressive behavior of concrete at high-strain rates publication-title: Mater Struct – year: 2016 ident: bib0019 article-title: Standard test method for compressive strength of cylindrical concrete specimens – volume: 11 start-page: 155 year: 1963 end-page: 179 ident: bib0014 article-title: the dynamic compression testing of solids by the method of the split hopkinson pressure bar publication-title: J Mech Phys Solids – volume: 2 start-page: 127 year: 2011 end-page: 138 ident: bib0012 article-title: a correction methodology to determine the strain-rate effect on the compressive strength of brittle materials based on SHPB testing publication-title: Int J Protective Struct – volume: 39 start-page: 1 issue: 5 year: 2011 ident: 10.1016/j.ijimpeng.2017.11.015_bib0022 article-title: Effect of specimen size on static strength and dynamic increase factor of high-strength concrete from SHPB test publication-title: J Test Eval – volume: 52 start-page: 63 year: 2013 ident: 10.1016/j.ijimpeng.2017.11.015_bib0013 article-title: Experimental confirmation of some factors influencing dynamic concrete compressive strengths in high-speed impact tests publication-title: Cement Concr Res doi: 10.1016/j.cemconres.2013.05.008 – volume: 25 start-page: 869 issue: 9 year: 2001 ident: 10.1016/j.ijimpeng.2017.11.015_bib0009 article-title: Dynamic behavior of concrete at high strain rates and pressures: i. Experimental characterization publication-title: Int J Impact Eng doi: 10.1016/S0734-743X(01)00020-3 – year: 2008 ident: 10.1016/j.ijimpeng.2017.11.015_bib0005 – year: 2014 ident: 10.1016/j.ijimpeng.2017.11.015_bib0002 – year: 2016 ident: 10.1016/j.ijimpeng.2017.11.015_bib0019 – volume: 25 start-page: 5 issue: 3 year: 1980 ident: 10.1016/j.ijimpeng.2017.11.015_bib0018 article-title: Stochastic approach to study the influence of rate of loading on strength of concrete publication-title: Heron – volume: 37 start-page: 141 issue: 2 year: 2010 ident: 10.1016/j.ijimpeng.2017.11.015_bib0010 article-title: Numerical simulation of the split hopkinson pressure bar test technique for concrete under compression publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2009.06.012 – volume: 36 start-page: 1335 issue: 12 year: 2009 ident: 10.1016/j.ijimpeng.2017.11.015_bib0007 article-title: Further Investigation on the dynamic compressive strength enhancement of concrete-like materials based on split hopkinson pressure bar tests. Part II: numerical simulations publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2009.04.010 – volume: 11 start-page: 155 issue: 3 year: 1963 ident: 10.1016/j.ijimpeng.2017.11.015_bib0014 article-title: the dynamic compression testing of solids by the method of the split hopkinson pressure bar publication-title: J Mech Phys Solids doi: 10.1016/0022-5096(63)90050-4 – volume: 2 start-page: 127 issue: 1 year: 2011 ident: 10.1016/j.ijimpeng.2017.11.015_bib0012 article-title: a correction methodology to determine the strain-rate effect on the compressive strength of brittle materials based on SHPB testing publication-title: Int J Protective Struct doi: 10.1260/2041-4196.2.1.127 – year: 2011 ident: 10.1016/j.ijimpeng.2017.11.015_bib0017 – year: 2014 ident: 10.1016/j.ijimpeng.2017.11.015_bib0020 – start-page: 462 year: 2000 ident: 10.1016/j.ijimpeng.2017.11.015_bib0023 – year: 2014 ident: 10.1016/j.ijimpeng.2017.11.015_bib0003 – volume: 22 start-page: 1888 issue: 12 year: 1989 ident: 10.1016/j.ijimpeng.2017.11.015_bib0015 article-title: Specimen inertia in high strain-rate compression publication-title: J Phys D doi: 10.1088/0022-3727/22/12/014 – volume: 40 start-page: 343 issue: 2 year: 2003 ident: 10.1016/j.ijimpeng.2017.11.015_bib0001 article-title: About the dynamic strength enhancement of concrete-like materials in a split hopkinson pressure bar test publication-title: Int J Solids Struct doi: 10.1016/S0020-7683(02)00526-7 – volume: 70 year: 2013 ident: 10.1016/j.ijimpeng.2017.11.015_bib0004 – volume: 24 start-page: 425 issue: 144 year: 1991 ident: 10.1016/j.ijimpeng.2017.11.015_bib0006 article-title: Compressive behavior of concrete at high-strain rates publication-title: Mater Struct doi: 10.1007/BF02472016 – volume: 19 start-page: 847 issue: 9-10 year: 1997 ident: 10.1016/j.ijimpeng.2017.11.015_bib0024 article-title: A plasticity concrete material model for DYNA3D publication-title: Int J Impact Eng doi: 10.1016/S0734-743X(97)00023-7 – volume: 34 start-page: 405 issue: 3 year: 2007 ident: 10.1016/j.ijimpeng.2017.11.015_bib0016 article-title: The effect of radial inertia on brittle samples during the split hopkinson pressure bar test publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2005.12.001 – volume: 36 start-page: 1327 issue: 12 year: 2009 ident: 10.1016/j.ijimpeng.2017.11.015_bib0008 article-title: Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split hopkinson pressure bar tests. Part I: experiments publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2009.04.009 – year: 2010 ident: 10.1016/j.ijimpeng.2017.11.015_bib0011 article-title: Recent improvements to release III of the K&C concrete model – volume: 54 start-page: 1343 issue: 8 year: 2014 ident: 10.1016/j.ijimpeng.2017.11.015_bib0021 article-title: Annular pulse shaping technique for large-diameter kolsky bar experiments on concrete publication-title: Exp Mech doi: 10.1007/s11340-014-9899-6 – volume: 64 start-page: 1053 issue: 5-6 year: 1997 ident: 10.1016/j.ijimpeng.2017.11.015_bib0026 article-title: A strain-rate-dependent concrete material model for ADINA publication-title: Comput Struct doi: 10.1016/S0045-7949(97)00018-7 – year: 1962 ident: 10.1016/j.ijimpeng.2017.11.015_bib0025 |
SSID | ssj0017050 |
Score | 2.484486 |
Snippet | •Strain acceleration and geometry of a specimen lead to inertia effects in SHPB test.•Concrete SHPB tests were performed.•DIF considering the pure rate effect... The dynamic increase factor (DIF) has been widely used to consider the rate effect in the analysis and design of concrete structures that are subject to impact... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 191 |
SubjectTerms | Acceleration Cement Compressive strength Concrete Concrete compressive strength Concrete structures Design analysis Dynamic increase factor Finite element method Geometry Impact loads Inertia Inertia effect Mathematical models Rate effect Split Hopkinson pressure bar Split Hopkinson pressure bars |
Title | Pure rate effect on the concrete compressive strength in the split Hopkinson pressure bar test |
URI | https://dx.doi.org/10.1016/j.ijimpeng.2017.11.015 https://www.proquest.com/docview/2067364164 |
Volume | 113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QXOCAeIrHQDlw7TYyJ2mP0wQaIBASIO1ElGQpdIIOjY4jvx27DwQIiQO3trKrynHsz5X9hbEjIQImJYmVqnTdCFRKey7o8nwTFRLnEkfDyZdXangH5yM5WmCDZhaG2irr2F_F9DJa1086tTU7L1nWuUHnBMx_o2NNMLgcowbQ5OXt9882D2KLKf-zoHBE0l-mhCftbJIhOM0fqMVLt4nNk47H_T1B_QjVZf45XWOrNXDk_erb1tlCyDfYyhc6wU12fz2fBU7cD7xq0-DTnCPA41jzIjgs6OK5anx9C5ymRPKH4pFnldArwtGC110zqFgK0gudnXEEpMUWuzs9uR0Mo_r8hMiDhCLy2llM-EqnNg5OaZeMvVUQj6VNVEzMW0FabyV48NqPsVZ1AmKHKyRUT_m4t80W82kedhgPPQeQaCESEBDksXWo5bqp7Xop0tTuMtkYzfiaXJzOuHgyTRfZxDTGNmRsrDwMGnuXdT71Xip6jT81kmZNzDdHMZgD_tRtNYto6q36aoi_vqcQl8LeP169z5bxLq6601pssZjNwwHClcIdlv54yJb6ZxfDqw_r0OwE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8MwDI3QOAAHxKcYDMiBa9etS9L2iBBowEBIgLQTUZKl0Am6aes48tux23QaCGkHblVrV5WT2M_Vs03IWRBYCEocMlWuWx4TCZ45GxbzTYSNtY41Fiff3YvuM7vp8_4KuahqYZBW6Xx_6dMLb-3u-M6a_jhN_UfYnAziX78dIgzGMupVBscXxxg0v-Y8D2wXU_xoAWkPxRfKhIfNdJgCOs1ekeMVNrGdJ87H_TtC_fLVRQC62iKbDjnS8_LjtsmKzXbIxkI_wV3y8jCbWIrNH2jJ06CjjALCo5D0AjrM8eKjZL5-WoplItlr_kbTUmgKeDSnjjYDioUgvlCrCQVEmu-R56vLp4uu5wYoeIZxlnsm1AoivggTFVktQh0PjBIsGnAViwhbb1mujOLMMBOaASSrOmCRhiUKREeYqLNPatkosweE2o5mLA6DIGYBs7ytNGjpVqJahgdJouqEV0aTxnUXxyEX77KikQ1lZWyJxobUQ4Kx68Sf643L_hpLNeJqTeSPnSIhCCzVbVSLKN1ZnUpsYN8RAEzZ4T9efUrWuk93Pdm7vr89IuvwJCqpag1SyyczewzYJdcnxd78BlkN7ZI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pure+rate+effect+on+the+concrete+compressive+strength+in+the+split+Hopkinson+pressure+bar+test&rft.jtitle=International+journal+of+impact+engineering&rft.au=Lee%2C+Sangho&rft.au=Kim%2C+Kyoung-Min&rft.au=Park%2C+Jamin&rft.au=Cho%2C+Jae-Yeol&rft.date=2018-03-01&rft.pub=Elsevier+Ltd&rft.issn=0734-743X&rft.eissn=1879-3509&rft.volume=113&rft.spage=191&rft.epage=202&rft_id=info:doi/10.1016%2Fj.ijimpeng.2017.11.015&rft.externalDocID=S0734743X17305651 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-743X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-743X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-743X&client=summon |