Pure rate effect on the concrete compressive strength in the split Hopkinson pressure bar test

•Strain acceleration and geometry of a specimen lead to inertia effects in SHPB test.•Concrete SHPB tests were performed.•DIF considering the pure rate effect was proposed.•Proposed DIF provided an accurate prediction for the apparent dynamic strength. The dynamic increase factor (DIF) has been wide...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of impact engineering Vol. 113; pp. 191 - 202
Main Authors Lee, Sangho, Kim, Kyoung-Min, Park, Jamin, Cho, Jae-Yeol
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.03.2018
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Strain acceleration and geometry of a specimen lead to inertia effects in SHPB test.•Concrete SHPB tests were performed.•DIF considering the pure rate effect was proposed.•Proposed DIF provided an accurate prediction for the apparent dynamic strength. The dynamic increase factor (DIF) has been widely used to consider the rate effect in the analysis and design of concrete structures that are subject to impact loads. A variety of DIFs have been proposed by many researchers based on the results of dynamic material tests such as the split Hopkinson pressure bar (SHPB) test. These DIFs have been adopted in authoritative design guidelines and model codes such as the ACI 349–13, ACI 370R-14, fib MC2010, and UFC 3-340-02. However, previous studies did not properly consider the strain acceleration and the geometrical characteristics of the test specimens that cause the axial and radial inertia forces which influence the test results. For this reason, predictions can become non conservative when these DIFs are used in the analysis and design of concrete structures that are subject to impact or impulsive loads. In this study, to overcome the limitations of existing DIFs, a new concrete DIF that excludes inertia effects by considering the strain acceleration and geometry of the specimens has been proposed based on SHPB test results. The proposed DIF was numerically validated using finite element analyses. Compared with other existing DIFs, the results show improved predictions of the enhancement of the concrete compressive strength due to rate effect.
AbstractList •Strain acceleration and geometry of a specimen lead to inertia effects in SHPB test.•Concrete SHPB tests were performed.•DIF considering the pure rate effect was proposed.•Proposed DIF provided an accurate prediction for the apparent dynamic strength. The dynamic increase factor (DIF) has been widely used to consider the rate effect in the analysis and design of concrete structures that are subject to impact loads. A variety of DIFs have been proposed by many researchers based on the results of dynamic material tests such as the split Hopkinson pressure bar (SHPB) test. These DIFs have been adopted in authoritative design guidelines and model codes such as the ACI 349–13, ACI 370R-14, fib MC2010, and UFC 3-340-02. However, previous studies did not properly consider the strain acceleration and the geometrical characteristics of the test specimens that cause the axial and radial inertia forces which influence the test results. For this reason, predictions can become non conservative when these DIFs are used in the analysis and design of concrete structures that are subject to impact or impulsive loads. In this study, to overcome the limitations of existing DIFs, a new concrete DIF that excludes inertia effects by considering the strain acceleration and geometry of the specimens has been proposed based on SHPB test results. The proposed DIF was numerically validated using finite element analyses. Compared with other existing DIFs, the results show improved predictions of the enhancement of the concrete compressive strength due to rate effect.
The dynamic increase factor (DIF) has been widely used to consider the rate effect in the analysis and design of concrete structures that are subject to impact loads. A variety of DIFs have been proposed by many researchers based on the results of dynamic material tests such as the split Hopkinson pressure bar (SHPB) test. These DIFs have been adopted in authoritative design guidelines and model codes such as the ACI 349-13, ACI 370R-14, fib MC2010, and UFC 3-340-02. However, previous studies did not properly consider the strain acceleration and the geometrical characteristics of the test specimens that cause the axial and radial inertia forces which influence the test results. For this reason, predictions can become non conservative when these DIFs are used in the analysis and design of concrete structures that are subject to impact or impulsive loads. In this study, to overcome the limitations of existing DrFs, a new concrete DIF that excludes inertia effects by considering the strain acceleration and geometry of the specimens has been proposed based on SHPB test results. The proposed DIF was numerically validated using finite element analyses. Compared with other existing DIFs, the results show improved predictions of the enhancement of the concrete compressive strength due to rate effect.
Author Lee, Sangho
Kim, Kyoung-Min
Cho, Jae-Yeol
Park, Jamin
Author_xml – sequence: 1
  givenname: Sangho
  surname: Lee
  fullname: Lee, Sangho
  email: purity235@snu.ac.kr
  organization: Department of Civil and Environmental Engineering, Seoul National University, 35-508, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea
– sequence: 2
  givenname: Kyoung-Min
  surname: Kim
  fullname: Kim, Kyoung-Min
  email: ekfzl006@snu.ac.kr
  organization: Department of Civil and Environmental Engineering, Seoul National University, 35-508, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea
– sequence: 3
  givenname: Jamin
  surname: Park
  fullname: Park, Jamin
  email: jaminpark86@gmail.com
  organization: Institute of Construction and Environmental Engineering, Seoul National University, 316-406, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea
– sequence: 4
  givenname: Jae-Yeol
  surname: Cho
  fullname: Cho, Jae-Yeol
  email: jycho@snu.ac.kr
  organization: Department of Civil and Environmental Engineering, Seoul National University, 35-312, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea
BookMark eNqFkE1LxDAURYMoOH78BQm4bk0madKCC0XUEQZ0oeDKkKavTupMUpOM4L834-jGjav3FvfcC-cA7TrvAKETSkpKqDgbSjvY1QjutZwSKktKS0KrHTShtWwKVpFmF02IZLyQnD3vo4MYB5KDpCIT9PKwDoCDToCh78Ek7B1OC8DGOxMgbZ7VGCBG-wE4ppBn0gLbbSiOS5vwzI9v1sUMfgc3ha0OOEFMR2iv18sIxz_3ED3dXD9ezYr5_e3d1eW8MLziqTCy1TVthOx1Da2QbdMZLXjdVboRtSRMQKWNrrjhRpqO1ayd8rqFpp0KJkzNDtHptncM_n2dh9Xg18HlSTUlQjLBqeA5JbYpE3yMAXo1BrvS4VNRojYu1aB-XaqNS0Wpyi4zeP4HNDbpZL1LQdvl__jFFoes4MNCUNFYcAY6G7Jy1Xn7X8UXcOKYlA
CitedBy_id crossref_primary_10_1016_j_jobe_2023_106195
crossref_primary_10_2339_politeknik_555271
crossref_primary_10_1016_j_coldregions_2023_103907
crossref_primary_10_1016_j_cemconcomp_2022_104554
crossref_primary_10_1016_j_ijimpeng_2018_11_003
crossref_primary_10_1177_20414196221092466
crossref_primary_10_1617_s11527_021_01869_6
crossref_primary_10_1177_2041419618819506
crossref_primary_10_1016_j_cemconcomp_2022_104517
crossref_primary_10_1016_j_cemconcomp_2020_103703
crossref_primary_10_1061_JMCEE7_MTENG_16979
crossref_primary_10_1016_j_jobe_2022_104769
crossref_primary_10_3390_ma11081274
crossref_primary_10_1016_j_conbuildmat_2024_137535
crossref_primary_10_1016_j_conbuildmat_2024_137579
crossref_primary_10_1016_j_ijsolstr_2019_07_029
crossref_primary_10_1016_j_conbuildmat_2020_119823
crossref_primary_10_1016_j_conbuildmat_2024_137499
crossref_primary_10_1142_S0219455424400157
crossref_primary_10_1007_s43452_022_00457_x
crossref_primary_10_1016_j_conbuildmat_2021_123875
crossref_primary_10_1016_j_conbuildmat_2021_125739
crossref_primary_10_1016_j_tafmec_2023_103777
crossref_primary_10_1016_j_cemconcomp_2021_104108
crossref_primary_10_1016_j_ijimpeng_2021_104132
crossref_primary_10_1177_2041419618763921
crossref_primary_10_1016_j_conbuildmat_2023_134402
crossref_primary_10_1007_s42791_023_00061_x
crossref_primary_10_1016_j_conbuildmat_2024_137226
crossref_primary_10_1016_j_compstruct_2020_112330
crossref_primary_10_1016_j_conbuildmat_2023_132993
crossref_primary_10_1016_j_advengsoft_2018_10_002
crossref_primary_10_1016_j_jobe_2023_107666
crossref_primary_10_1016_j_jobe_2024_108856
crossref_primary_10_1111_str_12377
crossref_primary_10_1016_j_jallcom_2019_06_153
crossref_primary_10_1061_JMCEE7_MTENG_18062
crossref_primary_10_3151_jact_22_267
crossref_primary_10_3151_jact_19_1040
crossref_primary_10_1016_j_ijrmms_2022_105325
crossref_primary_10_1617_s11527_021_01846_z
crossref_primary_10_1016_j_conbuildmat_2022_128197
crossref_primary_10_1016_j_conbuildmat_2022_128270
crossref_primary_10_1007_s43452_021_00233_3
crossref_primary_10_1016_j_cemconcomp_2020_103769
crossref_primary_10_1016_j_jmps_2021_104413
crossref_primary_10_1016_j_rineng_2023_101319
crossref_primary_10_3390_ma14092267
crossref_primary_10_1177_0954406218813386
crossref_primary_10_3390_ma18030552
crossref_primary_10_1007_s10338_021_00218_y
crossref_primary_10_1016_j_jclepro_2022_133648
crossref_primary_10_1617_s11527_023_02266_x
crossref_primary_10_1016_j_ijimpeng_2019_103314
crossref_primary_10_1016_j_jobe_2024_111692
crossref_primary_10_1016_j_conbuildmat_2018_12_144
crossref_primary_10_1016_j_cemconcomp_2019_103430
crossref_primary_10_3390_ma16145140
crossref_primary_10_1007_s11668_024_01897_8
crossref_primary_10_1615_CompMechComputApplIntJ_2023048028
crossref_primary_10_1016_j_finel_2024_104211
crossref_primary_10_1051_e3sconf_202019801042
crossref_primary_10_1155_2020_8874191
crossref_primary_10_3390_ma14174933
crossref_primary_10_1016_j_ijimpeng_2021_104079
crossref_primary_10_1016_j_cemconcomp_2020_103816
crossref_primary_10_1680_jmacr_24_00087
crossref_primary_10_1016_j_conbuildmat_2023_131359
crossref_primary_10_1016_j_conbuildmat_2023_132526
crossref_primary_10_3103_S0025654423601064
crossref_primary_10_3390_ma15092995
crossref_primary_10_1142_S1758825124500881
crossref_primary_10_1007_s11771_021_4754_2
crossref_primary_10_1016_j_dt_2021_05_003
crossref_primary_10_3390_ma15010210
Cites_doi 10.1016/j.cemconres.2013.05.008
10.1016/S0734-743X(01)00020-3
10.1016/j.ijimpeng.2009.06.012
10.1016/j.ijimpeng.2009.04.010
10.1016/0022-5096(63)90050-4
10.1260/2041-4196.2.1.127
10.1088/0022-3727/22/12/014
10.1016/S0020-7683(02)00526-7
10.1007/BF02472016
10.1016/S0734-743X(97)00023-7
10.1016/j.ijimpeng.2005.12.001
10.1016/j.ijimpeng.2009.04.009
10.1007/s11340-014-9899-6
10.1016/S0045-7949(97)00018-7
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier BV Mar 2018
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier BV Mar 2018
DBID 6I.
AAFTH
AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1016/j.ijimpeng.2017.11.015
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3509
EndPage 202
ExternalDocumentID 10_1016_j_ijimpeng_2017_11_015
S0734743X17305651
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
7TB
8BQ
8FD
EFKBS
FR3
JG9
KR7
ID FETCH-LOGICAL-c454t-c7ba81967fa8eb67b9dca648d5a9687036e5aca54c4c7cd383b248be9b2636c83
IEDL.DBID .~1
ISSN 0734-743X
IngestDate Fri Jul 25 07:04:24 EDT 2025
Tue Jul 01 03:54:26 EDT 2025
Thu Apr 24 22:59:35 EDT 2025
Tue Jul 16 04:31:03 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Dynamic increase factor
Split Hopkinson pressure bar
Inertia effect
Rate effect
Concrete compressive strength
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c454t-c7ba81967fa8eb67b9dca648d5a9687036e5aca54c4c7cd383b248be9b2636c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0734743X17305651
PQID 2067364164
PQPubID 2045463
PageCount 12
ParticipantIDs proquest_journals_2067364164
crossref_primary_10_1016_j_ijimpeng_2017_11_015
crossref_citationtrail_10_1016_j_ijimpeng_2017_11_015
elsevier_sciencedirect_doi_10_1016_j_ijimpeng_2017_11_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2018
2018-03-00
20180301
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: March 2018
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of impact engineering
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Heard, Martin, Nie, Slawson (bib0021) 2014; 54
Grote, Park, Zhou (bib0009) 2001; 25
(bib0020) 2014
Newmark, Haltiwanger (bib0025) 1962
Davies, Hunter (bib0014) 1963; 11
Zhang, Wu, Li, Huang (bib0008) 2009; 36
Mihashi, Wittmann (bib0018) 1980; 25
Malvar, Crawford, Wesevich, Simons (bib0024) 1997; 19
Li, Lu, Meng (bib0007) 2009; 36
(bib0002) 2014
(bib0004) 2013; 70
Li, Meng (bib0001) 2003; 40
Macgregor, Wight (bib0017) 2011
Tedesco, Powell, Ross, Hughes (bib0026) 1997; 64
Hao, Hao, Jiang, Zhou (bib0013) 2013; 52
Zhang, Quek, Wang (bib0022) 2011; 39
Lu, Li (bib0012) 2011; 2
Forrestal, Wright, Chen (bib0016) 2007; 34
(bib0005) 2008
(bib0003) 2014
Kim, Sirijaroonchai, Ek-Tawil, Naaman (bib0010) 2010; 37
(bib0019) 2016
Gorham (bib0015) 1989; 22
Magallanes, Wu, Malvar, Crawford (bib0011) 2010
Bischoff, Perry (bib0006) 1991; 24
Gray, Kuhn, Medlin (bib0023) 2000
Kim (10.1016/j.ijimpeng.2017.11.015_bib0010) 2010; 37
Tedesco (10.1016/j.ijimpeng.2017.11.015_bib0026) 1997; 64
Davies (10.1016/j.ijimpeng.2017.11.015_bib0014) 1963; 11
(10.1016/j.ijimpeng.2017.11.015_bib0004) 2013; 70
Hao (10.1016/j.ijimpeng.2017.11.015_bib0013) 2013; 52
Gorham (10.1016/j.ijimpeng.2017.11.015_bib0015) 1989; 22
Forrestal (10.1016/j.ijimpeng.2017.11.015_bib0016) 2007; 34
(10.1016/j.ijimpeng.2017.11.015_bib0002) 2014
(10.1016/j.ijimpeng.2017.11.015_bib0003) 2014
Li (10.1016/j.ijimpeng.2017.11.015_bib0001) 2003; 40
Magallanes (10.1016/j.ijimpeng.2017.11.015_bib0011) 2010
Lu (10.1016/j.ijimpeng.2017.11.015_bib0012) 2011; 2
(10.1016/j.ijimpeng.2017.11.015_bib0020) 2014
Gray (10.1016/j.ijimpeng.2017.11.015_bib0023) 2000
Heard (10.1016/j.ijimpeng.2017.11.015_bib0021) 2014; 54
Zhang (10.1016/j.ijimpeng.2017.11.015_bib0022) 2011; 39
Grote (10.1016/j.ijimpeng.2017.11.015_bib0009) 2001; 25
Mihashi (10.1016/j.ijimpeng.2017.11.015_bib0018) 1980; 25
Newmark (10.1016/j.ijimpeng.2017.11.015_bib0025) 1962
Zhang (10.1016/j.ijimpeng.2017.11.015_bib0008) 2009; 36
Malvar (10.1016/j.ijimpeng.2017.11.015_bib0024) 1997; 19
(10.1016/j.ijimpeng.2017.11.015_bib0019) 2016
(10.1016/j.ijimpeng.2017.11.015_bib0005) 2008
Li (10.1016/j.ijimpeng.2017.11.015_bib0007) 2009; 36
Bischoff (10.1016/j.ijimpeng.2017.11.015_bib0006) 1991; 24
Macgregor (10.1016/j.ijimpeng.2017.11.015_bib0017) 2011
References_xml – volume: 19
  start-page: 847
  year: 1997
  end-page: 873
  ident: bib0024
  article-title: A plasticity concrete material model for DYNA3D
  publication-title: Int J Impact Eng
– year: 2011
  ident: bib0017
  article-title: Reinforced concrete: mechanics and design
– volume: 64
  start-page: 1053
  year: 1997
  end-page: 1067
  ident: bib0026
  article-title: A strain-rate-dependent concrete material model for ADINA
  publication-title: Comput Struct
– year: 2014
  ident: bib0003
  article-title: Report for the design of concrete structures for blast effects
– volume: 54
  start-page: 1343
  year: 2014
  end-page: 1354
  ident: bib0021
  article-title: Annular pulse shaping technique for large-diameter kolsky bar experiments on concrete
  publication-title: Exp Mech
– year: 2010
  ident: bib0011
  article-title: Recent improvements to release III of the K&C concrete model
  publication-title: Proceedings of 11th International LS-DYNA Users Conference, Livermore Software Technology Corporation
– volume: 37
  start-page: 141
  year: 2010
  end-page: 149
  ident: bib0010
  article-title: Numerical simulation of the split hopkinson pressure bar test technique for concrete under compression
  publication-title: Int J Impact Eng
– year: 2008
  ident: bib0005
  article-title: Structures to resist the effects of accidental explosions
– volume: 22
  start-page: 1888
  year: 1989
  end-page: 1893
  ident: bib0015
  article-title: Specimen inertia in high strain-rate compression
  publication-title: J Phys D
– year: 1962
  ident: bib0025
  article-title: AFSWC-TDR-62-138
– volume: 52
  start-page: 63
  year: 2013
  end-page: 70
  ident: bib0013
  article-title: Experimental confirmation of some factors influencing dynamic concrete compressive strengths in high-speed impact tests
  publication-title: Cement Concr Res
– volume: 39
  start-page: 1
  year: 2011
  end-page: 10
  ident: bib0022
  article-title: Effect of specimen size on static strength and dynamic increase factor of high-strength concrete from SHPB test
  publication-title: J Test Eval
– year: 2014
  ident: bib0002
  article-title: Code requirements for nuclear safety-related concrete structures (ACI 349-13) & commentary
– volume: 70
  year: 2013
  ident: bib0004
  publication-title: Code-type models for concrete behaviour: state-of-the-art report
– volume: 25
  start-page: 5
  year: 1980
  end-page: 54
  ident: bib0018
  article-title: Stochastic approach to study the influence of rate of loading on strength of concrete
  publication-title: Heron
– start-page: 462
  year: 2000
  end-page: 476
  ident: bib0023
  article-title: ASM h
– volume: 36
  start-page: 1327
  year: 2009
  end-page: 1334
  ident: bib0008
  article-title: Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split hopkinson pressure bar tests. Part I: experiments
  publication-title: Int J Impact Eng
– volume: 40
  start-page: 343
  year: 2003
  end-page: 360
  ident: bib0001
  article-title: About the dynamic strength enhancement of concrete-like materials in a split hopkinson pressure bar test
  publication-title: Int J Solids Struct
– volume: 36
  start-page: 1335
  year: 2009
  end-page: 1345
  ident: bib0007
  article-title: Further Investigation on the dynamic compressive strength enhancement of concrete-like materials based on split hopkinson pressure bar tests. Part II: numerical simulations
  publication-title: Int J Impact Eng
– year: 2014
  ident: bib0020
  article-title: Standard test method for static modulus of elasticity and poisson's ratio of concrete in compression
– volume: 25
  start-page: 869
  year: 2001
  end-page: 886
  ident: bib0009
  article-title: Dynamic behavior of concrete at high strain rates and pressures: i. Experimental characterization
  publication-title: Int J Impact Eng
– volume: 34
  start-page: 405
  year: 2007
  end-page: 411
  ident: bib0016
  article-title: The effect of radial inertia on brittle samples during the split hopkinson pressure bar test
  publication-title: Int J Impact Eng
– volume: 24
  start-page: 425
  year: 1991
  end-page: 450
  ident: bib0006
  article-title: Compressive behavior of concrete at high-strain rates
  publication-title: Mater Struct
– year: 2016
  ident: bib0019
  article-title: Standard test method for compressive strength of cylindrical concrete specimens
– volume: 11
  start-page: 155
  year: 1963
  end-page: 179
  ident: bib0014
  article-title: the dynamic compression testing of solids by the method of the split hopkinson pressure bar
  publication-title: J Mech Phys Solids
– volume: 2
  start-page: 127
  year: 2011
  end-page: 138
  ident: bib0012
  article-title: a correction methodology to determine the strain-rate effect on the compressive strength of brittle materials based on SHPB testing
  publication-title: Int J Protective Struct
– volume: 39
  start-page: 1
  issue: 5
  year: 2011
  ident: 10.1016/j.ijimpeng.2017.11.015_bib0022
  article-title: Effect of specimen size on static strength and dynamic increase factor of high-strength concrete from SHPB test
  publication-title: J Test Eval
– volume: 52
  start-page: 63
  year: 2013
  ident: 10.1016/j.ijimpeng.2017.11.015_bib0013
  article-title: Experimental confirmation of some factors influencing dynamic concrete compressive strengths in high-speed impact tests
  publication-title: Cement Concr Res
  doi: 10.1016/j.cemconres.2013.05.008
– volume: 25
  start-page: 869
  issue: 9
  year: 2001
  ident: 10.1016/j.ijimpeng.2017.11.015_bib0009
  article-title: Dynamic behavior of concrete at high strain rates and pressures: i. Experimental characterization
  publication-title: Int J Impact Eng
  doi: 10.1016/S0734-743X(01)00020-3
– year: 2008
  ident: 10.1016/j.ijimpeng.2017.11.015_bib0005
– year: 2014
  ident: 10.1016/j.ijimpeng.2017.11.015_bib0002
– year: 2016
  ident: 10.1016/j.ijimpeng.2017.11.015_bib0019
– volume: 25
  start-page: 5
  issue: 3
  year: 1980
  ident: 10.1016/j.ijimpeng.2017.11.015_bib0018
  article-title: Stochastic approach to study the influence of rate of loading on strength of concrete
  publication-title: Heron
– volume: 37
  start-page: 141
  issue: 2
  year: 2010
  ident: 10.1016/j.ijimpeng.2017.11.015_bib0010
  article-title: Numerical simulation of the split hopkinson pressure bar test technique for concrete under compression
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2009.06.012
– volume: 36
  start-page: 1335
  issue: 12
  year: 2009
  ident: 10.1016/j.ijimpeng.2017.11.015_bib0007
  article-title: Further Investigation on the dynamic compressive strength enhancement of concrete-like materials based on split hopkinson pressure bar tests. Part II: numerical simulations
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2009.04.010
– volume: 11
  start-page: 155
  issue: 3
  year: 1963
  ident: 10.1016/j.ijimpeng.2017.11.015_bib0014
  article-title: the dynamic compression testing of solids by the method of the split hopkinson pressure bar
  publication-title: J Mech Phys Solids
  doi: 10.1016/0022-5096(63)90050-4
– volume: 2
  start-page: 127
  issue: 1
  year: 2011
  ident: 10.1016/j.ijimpeng.2017.11.015_bib0012
  article-title: a correction methodology to determine the strain-rate effect on the compressive strength of brittle materials based on SHPB testing
  publication-title: Int J Protective Struct
  doi: 10.1260/2041-4196.2.1.127
– year: 2011
  ident: 10.1016/j.ijimpeng.2017.11.015_bib0017
– year: 2014
  ident: 10.1016/j.ijimpeng.2017.11.015_bib0020
– start-page: 462
  year: 2000
  ident: 10.1016/j.ijimpeng.2017.11.015_bib0023
– year: 2014
  ident: 10.1016/j.ijimpeng.2017.11.015_bib0003
– volume: 22
  start-page: 1888
  issue: 12
  year: 1989
  ident: 10.1016/j.ijimpeng.2017.11.015_bib0015
  article-title: Specimen inertia in high strain-rate compression
  publication-title: J Phys D
  doi: 10.1088/0022-3727/22/12/014
– volume: 40
  start-page: 343
  issue: 2
  year: 2003
  ident: 10.1016/j.ijimpeng.2017.11.015_bib0001
  article-title: About the dynamic strength enhancement of concrete-like materials in a split hopkinson pressure bar test
  publication-title: Int J Solids Struct
  doi: 10.1016/S0020-7683(02)00526-7
– volume: 70
  year: 2013
  ident: 10.1016/j.ijimpeng.2017.11.015_bib0004
– volume: 24
  start-page: 425
  issue: 144
  year: 1991
  ident: 10.1016/j.ijimpeng.2017.11.015_bib0006
  article-title: Compressive behavior of concrete at high-strain rates
  publication-title: Mater Struct
  doi: 10.1007/BF02472016
– volume: 19
  start-page: 847
  issue: 9-10
  year: 1997
  ident: 10.1016/j.ijimpeng.2017.11.015_bib0024
  article-title: A plasticity concrete material model for DYNA3D
  publication-title: Int J Impact Eng
  doi: 10.1016/S0734-743X(97)00023-7
– volume: 34
  start-page: 405
  issue: 3
  year: 2007
  ident: 10.1016/j.ijimpeng.2017.11.015_bib0016
  article-title: The effect of radial inertia on brittle samples during the split hopkinson pressure bar test
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2005.12.001
– volume: 36
  start-page: 1327
  issue: 12
  year: 2009
  ident: 10.1016/j.ijimpeng.2017.11.015_bib0008
  article-title: Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split hopkinson pressure bar tests. Part I: experiments
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2009.04.009
– year: 2010
  ident: 10.1016/j.ijimpeng.2017.11.015_bib0011
  article-title: Recent improvements to release III of the K&C concrete model
– volume: 54
  start-page: 1343
  issue: 8
  year: 2014
  ident: 10.1016/j.ijimpeng.2017.11.015_bib0021
  article-title: Annular pulse shaping technique for large-diameter kolsky bar experiments on concrete
  publication-title: Exp Mech
  doi: 10.1007/s11340-014-9899-6
– volume: 64
  start-page: 1053
  issue: 5-6
  year: 1997
  ident: 10.1016/j.ijimpeng.2017.11.015_bib0026
  article-title: A strain-rate-dependent concrete material model for ADINA
  publication-title: Comput Struct
  doi: 10.1016/S0045-7949(97)00018-7
– year: 1962
  ident: 10.1016/j.ijimpeng.2017.11.015_bib0025
SSID ssj0017050
Score 2.484486
Snippet •Strain acceleration and geometry of a specimen lead to inertia effects in SHPB test.•Concrete SHPB tests were performed.•DIF considering the pure rate effect...
The dynamic increase factor (DIF) has been widely used to consider the rate effect in the analysis and design of concrete structures that are subject to impact...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 191
SubjectTerms Acceleration
Cement
Compressive strength
Concrete
Concrete compressive strength
Concrete structures
Design analysis
Dynamic increase factor
Finite element method
Geometry
Impact loads
Inertia
Inertia effect
Mathematical models
Rate effect
Split Hopkinson pressure bar
Split Hopkinson pressure bars
Title Pure rate effect on the concrete compressive strength in the split Hopkinson pressure bar test
URI https://dx.doi.org/10.1016/j.ijimpeng.2017.11.015
https://www.proquest.com/docview/2067364164
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QXOCAeIrHQDlw7TYyJ2mP0wQaIBASIO1ElGQpdIIOjY4jvx27DwQIiQO3trKrynHsz5X9hbEjIQImJYmVqnTdCFRKey7o8nwTFRLnEkfDyZdXangH5yM5WmCDZhaG2irr2F_F9DJa1086tTU7L1nWuUHnBMx_o2NNMLgcowbQ5OXt9882D2KLKf-zoHBE0l-mhCftbJIhOM0fqMVLt4nNk47H_T1B_QjVZf45XWOrNXDk_erb1tlCyDfYyhc6wU12fz2fBU7cD7xq0-DTnCPA41jzIjgs6OK5anx9C5ymRPKH4pFnldArwtGC110zqFgK0gudnXEEpMUWuzs9uR0Mo_r8hMiDhCLy2llM-EqnNg5OaZeMvVUQj6VNVEzMW0FabyV48NqPsVZ1AmKHKyRUT_m4t80W82kedhgPPQeQaCESEBDksXWo5bqp7Xop0tTuMtkYzfiaXJzOuHgyTRfZxDTGNmRsrDwMGnuXdT71Xip6jT81kmZNzDdHMZgD_tRtNYto6q36aoi_vqcQl8LeP169z5bxLq6601pssZjNwwHClcIdlv54yJb6ZxfDqw_r0OwE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8MwDI3QOAAHxKcYDMiBa9etS9L2iBBowEBIgLQTUZKl0Am6aes48tux23QaCGkHblVrV5WT2M_Vs03IWRBYCEocMlWuWx4TCZ45GxbzTYSNtY41Fiff3YvuM7vp8_4KuahqYZBW6Xx_6dMLb-3u-M6a_jhN_UfYnAziX78dIgzGMupVBscXxxg0v-Y8D2wXU_xoAWkPxRfKhIfNdJgCOs1ekeMVNrGdJ87H_TtC_fLVRQC62iKbDjnS8_LjtsmKzXbIxkI_wV3y8jCbWIrNH2jJ06CjjALCo5D0AjrM8eKjZL5-WoplItlr_kbTUmgKeDSnjjYDioUgvlCrCQVEmu-R56vLp4uu5wYoeIZxlnsm1AoivggTFVktQh0PjBIsGnAViwhbb1mujOLMMBOaASSrOmCRhiUKREeYqLNPatkosweE2o5mLA6DIGYBs7ytNGjpVqJahgdJouqEV0aTxnUXxyEX77KikQ1lZWyJxobUQ4Kx68Sf643L_hpLNeJqTeSPnSIhCCzVbVSLKN1ZnUpsYN8RAEzZ4T9efUrWuk93Pdm7vr89IuvwJCqpag1SyyczewzYJdcnxd78BlkN7ZI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pure+rate+effect+on+the+concrete+compressive+strength+in+the+split+Hopkinson+pressure+bar+test&rft.jtitle=International+journal+of+impact+engineering&rft.au=Lee%2C+Sangho&rft.au=Kim%2C+Kyoung-Min&rft.au=Park%2C+Jamin&rft.au=Cho%2C+Jae-Yeol&rft.date=2018-03-01&rft.pub=Elsevier+Ltd&rft.issn=0734-743X&rft.eissn=1879-3509&rft.volume=113&rft.spage=191&rft.epage=202&rft_id=info:doi/10.1016%2Fj.ijimpeng.2017.11.015&rft.externalDocID=S0734743X17305651
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-743X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-743X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-743X&client=summon