Optimizing the hit finding algorithm for liquid argon TPC neutrino detectors using parallel architectures

Neutrinos are particles that interact rarely, so identifying them requires large detectors which produce lots of data. Processing this data with the computing power available is becoming even more difficult as the detectors increase in size to reach their physics goals. Liquid argon time projection...

Full description

Saved in:
Bibliographic Details
Published inJournal of instrumentation Vol. 17; no. 1; p. P01026
Main Authors Berkman, Sophie, Cerati, Giuseppe, Knoepfel, Kyle, Mengel, Marc, Reinsvold Hall, Allison, Wang, Michael, Gravelle, Brian, Norris, Boyana
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.01.2022
Institute of Physics (IOP)
Subjects
Online AccessGet full text
ISSN1748-0221
1748-0221
DOI10.1088/1748-0221/17/01/P01026

Cover

Loading…
Abstract Neutrinos are particles that interact rarely, so identifying them requires large detectors which produce lots of data. Processing this data with the computing power available is becoming even more difficult as the detectors increase in size to reach their physics goals. Liquid argon time projection chamber (LArTPC) neutrino experiments are expected to grow in the next decade to have 100 times more wires than in currently operating experiments, and modernization of LArTPC reconstruction code, including parallelization both at data- and instruction-level, will help to mitigate this challenge. The LArTPC hit finding algorithm is used across multiple experiments through a common software framework. In this paper we discuss a parallel implementation of this algorithm. Using a standalone setup we find speedup factors of two times from vectorization and 30–100 times from multi-threading on Intel architectures. The new version has been incorporated back into the framework so that it can be used by experiments. On a serial execution, the integrated version is about 10 times faster than the previous one and, once parallelization is enabled, further speedups comparable to the standalone program are achieved.
AbstractList Neutrinos are particles that interact rarely, so identifying them requires large detectors which produce lots of data. Processing this data with the computing power available is becoming even more difficult as the detectors increase in size to reach their physics goals.Liquid argon time projection chamber (LArTPC) neutrino experiments are expected to grow in the next decade to have 100 times more wires than in currently operating experiments, and modernization of LArTPC reconstruction code, including parallelization both at data- and instruction-level, will help to mitigate this challenge.The LArTPC hit finding algorithm is used across multiple experiments through a common software framework. In this paper we discuss a parallel implementation of this algorithm. Using a standalone setup we find speedup factors of two times from vectorization and 30–100 times from multi-threading on Intel architectures. The new version has been incorporated back into the framework so that it can be used by experiments. On a serial execution, the integrated version is about 10 times faster than the previous one and, once parallelization is enabled, further speedups comparable to the standalone program are achieved.
Neutrinos are particles that interact rarely, so identifying them requires large detectors which produce lots of data. Processing this data with the computing power available is becoming even more difficult as the detectors increase in size to reach their physics goals. Liquid argon time projection chamber (LArTPC) neutrino experiments are expected to grow in the next decade to have 100 times more wires than in currently operating experiments, and modernization of LArTPC reconstruction code, including parallelization both at data- and instruction-level, will help to mitigate this challenge. The LArTPC hit finding algorithm is used across multiple experiments through a common software framework. In this paper we discuss a parallel implementation of this algorithm. Using a standalone setup we find speedup factors of two times from vectorization and 30–100 times from multi-threading on Intel architectures. The new version has been incorporated back into the framework so that it can be used by experiments. On a serial execution, the integrated version is about 10 times faster than the previous one and, once parallelization is enabled, further speedups comparable to the standalone program are achieved.
Neutrinos are particles that interact rarely, so identifying them requires large detectors which produce lots of data. Processing this data with the computing power available is becoming even more difficult as the detectors increase in size to reach their physics goals. Liquid argon time projection chamber (LArTPC) neutrino experiments are expected to grow in the next decade to have 100 times more wires than in currently operating experiments, and modernization of LArTPC reconstruction code, including parallelization both at data- and instruction-level, will help to mitigate this challenge. The LArTPC hit finding algorithm is used across multiple experiments through a common software framework. In this paper we discuss a parallel implementation of this algorithm. Using a standalone setup we find speedup factors of two times from vectorization and 30–100 times from multi-threading on Intel architectures. The new version has been incorporated back into the framework so that it can be used by experiments. On a serial execution, the integrated version is about 10 times faster than the previous one and, once parallelization is enabled, more speedups comparable to the standalone program are achieved.
Author Knoepfel, Kyle
Wang, Michael
Gravelle, Brian
Norris, Boyana
Mengel, Marc
Berkman, Sophie
Cerati, Giuseppe
Reinsvold Hall, Allison
Author_xml – sequence: 1
  givenname: Sophie
  surname: Berkman
  fullname: Berkman, Sophie
  organization: Scientific Computing Division, Fermi National Accelerator Laboratory, Kirk Road and Pine Street, Batavia, IL 60510, U.S.A
– sequence: 2
  givenname: Giuseppe
  surname: Cerati
  fullname: Cerati, Giuseppe
  organization: Scientific Computing Division, Fermi National Accelerator Laboratory, Kirk Road and Pine Street, Batavia, IL 60510, U.S.A
– sequence: 3
  givenname: Kyle
  surname: Knoepfel
  fullname: Knoepfel, Kyle
  organization: Scientific Computing Division, Fermi National Accelerator Laboratory, Kirk Road and Pine Street, Batavia, IL 60510, U.S.A
– sequence: 4
  givenname: Marc
  surname: Mengel
  fullname: Mengel, Marc
  organization: Scientific Computing Division, Fermi National Accelerator Laboratory, Kirk Road and Pine Street, Batavia, IL 60510, U.S.A
– sequence: 5
  givenname: Allison
  surname: Reinsvold Hall
  fullname: Reinsvold Hall, Allison
  organization: Scientific Computing Division, Fermi National Accelerator Laboratory, Kirk Road and Pine Street, Batavia, IL 60510, U.S.A
– sequence: 6
  givenname: Michael
  surname: Wang
  fullname: Wang, Michael
  organization: Scientific Computing Division, Fermi National Accelerator Laboratory, Kirk Road and Pine Street, Batavia, IL 60510, U.S.A
– sequence: 7
  givenname: Brian
  surname: Gravelle
  fullname: Gravelle, Brian
  organization: Departmente of Computr and Information Science, University of Oregon, East 13th Avenue, Eugene, OR 97403, U.S.A
– sequence: 8
  givenname: Boyana
  surname: Norris
  fullname: Norris, Boyana
  organization: Departmente of Computr and Information Science, University of Oregon, East 13th Avenue, Eugene, OR 97403, U.S.A
BackLink https://www.osti.gov/servlets/purl/1824839$$D View this record in Osti.gov
BookMark eNqFkFtLAzEQhYMoqNW_IEHfhNoke2kWfJHiDQR9qM8hm03alG2yJtkH_fXOsqIiQiGQCfOdmZNzjPaddxqhM0quKOF8Ruc5nxLGKFQzQmcvhBJW7qGj78b-r_oQHce4IaSoipwcIfvcJbu1H9atcFprvLYJG-ua4S3blQ82rbfY-IBb-9bbBsuw8g4vXxbY6T4F6zxudNIq-RBxHwddJ4NsW90Cq2Ae9Pqg4wk6MLKN-vTrnqDXu9vl4mH69Hz_uLh5mqq8yNNUlbnSJqNlratKzuuSG1pzpRjRPKsKUhmZKwndgmQ5_D-bm1pWTDYNr3lVZ9kEnY9zfUxWRDUYWCvvHPgQlLMcxgB0MUJd8G-9jklsfB8c-BKsZHBoUTGgypFSwccYtBFdsFsZ3gUlYsheDLGKIVaoBKFizB6E13-EYEMm610K0ra75Zej3Prux9jGOvD5GxRdYwBm_8A7NnwCdq2qSw
CitedBy_id crossref_primary_10_1088_1748_0221_18_04_P04034
crossref_primary_10_3389_fdata_2024_1485344
Cites_doi 10.1109/csie.2009.950
10.2172/1156551
10.1103/PhysRevD.99.092001
10.1145/1465482.1465560
10.1016/S0168-9002(97)00048-X
10.1088/1748-0221/15/09/P09030
10.1007/978-1-84996-169-1_19
10.1103/PhysRevLett.121.221801
10.1051/epjconf/201921405013
10.1088/1748-0221/12/07/P07010
10.1088/1748-0221/13/07/P07006
10.1145/2807591.2807623
10.1088/1742-6596/898/4/042057
10.2172/1668374
10.1109/99.660313
10.1088/1748-0221/12/02/P02017
10.1088/1748-0221/13/07/P07007
10.1103/PhysRevApplied.15.064071
10.1140/epjc/s10052-017-5481-6
10.1088/1742-6596/78/1/012057
10.1088/1748-0221/15/08/T08008
10.1088/1748-0221/15/12/P12004
10.1088/1742-6596/396/2/022020
10.1088/1748-0221/12/08/P08003
10.1103/PhysRevD.64.112007
10.1098/rsta.2019.0061
10.1016/j.nima.2004.02.044
10.1109/TNS.2005.860152
10.1145/1498765.1498785
ContentType Journal Article
Copyright 2022 IOP Publishing Ltd and Sissa Medialab
Copyright_xml – notice: 2022 IOP Publishing Ltd and Sissa Medialab
CorporateAuthor Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
CorporateAuthor_xml – name: Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
DBID AAYXX
CITATION
7U5
8FD
L7M
OIOZB
OTOTI
DOI 10.1088/1748-0221/17/01/P01026
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList Technology Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1748-0221
ExternalDocumentID 1824839
10_1088_1748_0221_17_01_P01026
JINST_016P_0721
GroupedDBID 1JI
5B3
5GY
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
ABCXL
ABJNI
ABQJV
ABVAM
ACAFW
ACGFO
ACGFS
ACHIP
ADWVK
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
HAK
IJHAN
IOP
IZVLO
KOT
LAP
M45
MV1
N5L
N9A
PJBAE
RIN
RNS
ROL
RPA
SY9
VSI
W28
ZMT
AAYXX
ADEQX
CITATION
7U5
8FD
L7M
KNG
OIOZB
OTOTI
RW3
ID FETCH-LOGICAL-c454t-c64cef316be99a7b68f1b8cc20e839509fa4ca6be503410837fba92add8b89b33
IEDL.DBID IOP
ISSN 1748-0221
IngestDate Mon Jan 23 02:20:47 EST 2023
Sun Jun 29 12:16:09 EDT 2025
Thu Apr 24 23:08:07 EDT 2025
Tue Jul 01 01:41:43 EDT 2025
Tue Jan 25 23:14:12 EST 2022
Wed Aug 21 03:32:48 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c454t-c64cef316be99a7b68f1b8cc20e839509fa4ca6be503410837fba92add8b89b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
AC02-07CH11359
USDOE Office of Science (SC), High Energy Physics (HEP)
FERMILAB-PUB-21-310-SCD; arXiv:2107.00812
ORCID 0000000247139646
0000000316538553
0000000335480262
OpenAccessLink https://www.osti.gov/servlets/purl/1824839
PQID 2622621592
PQPubID 4562433
PageCount 11
ParticipantIDs iop_journals_10_1088_1748_0221_17_01_P01026
proquest_journals_2622621592
crossref_citationtrail_10_1088_1748_0221_17_01_P01026
crossref_primary_10_1088_1748_0221_17_01_P01026
osti_scitechconnect_1824839
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
– name: United States
PublicationTitle Journal of instrumentation
PublicationTitleAlternate J. Instrum
PublicationYear 2022
Publisher IOP Publishing
Institute of Physics (IOP)
Publisher_xml – name: IOP Publishing
– name: Institute of Physics (IOP)
References Acciarri (bdbc2d17d1762db9a61b9395ab86e1567) 2017; 12
Abi (bfab2bd2e94fb60b36ee8c8b2fd32e016) 2020
bc179efc24a7602493bd41fc9f75f1dd5
Lantz (b616cbfb1c98b7b49d8cbb0d036e95079) 2020; 15
Abi (b270e324913465c520fefba7cbc35b974) 2020; 15
Aguilar-Arevalo (bc8e1a66f3156d225fdffb1051871e2a0) 2001; 64
Brun (b1b7575e70468ce77f0a41fbb1fc93f01) 1997; 389
Green (b63912bf9d780a6bb63bd87aa6f11701f) 2012; 396
Abi (b3bd00f0b58a0da416e71d0525f15d390) 2020; 15
Aguilar-Arevalo (bcafac138a2de238d060536c81e4640a2) 2018; 121
b1cfeb83b873c48ea4beafc0584467172
b021a17b11b3270a9007999acea64db69
b90ef671013222fc92f0b863c9bc5dadc
bab58c3d23f25832de807772cb54f5627
Baller (bcd9c8291f65a4bffa1b8ed66f4d9bbe3) 2017; 12
bab7a37a2661ec9bda56227ade2bbc727
b70997a98d29d732d48c5890307305620
Acciarri (bbc9e6798a6e48cb11a3018f30516be75) 2017; 12
Amerio (b64732ccad4d3ce805eaa454bb36e2233) 2004; 527
Adams (be72d5fc4b567f277c8285ec5d6620204) 2018; 13
b3b9f817f82440f088491133a34dabeb8
ba7a6f27e05f1744afb5b6fb2c882fe74
b76cf00fc6e9b0fbbd7dba267ac6cfaa2
Pordes (b8c28d1990383b8f5fcef86db38f51a24) 2007; 78
Antonello (b122806cc65eb1f5e6d633a27beb62d38) 2015
Snider (b75f9c39b5efbbff6e6dbaed80cfad98e) 2017; 898
Adams (b2822b46ba77cd2f6c27cce9e7073ccbb) 2018; 13
Adams (b4d2ef737e75fe9ebfcfed0969dfbd64f) 2019; 99
bc76ff74a9fd70b29c1140e46108598ac
b56ba686e4309779fb90f506f70c037b2
Acciarri (bb4ddd0117bede5f280931c2d36f33fa4) 2018; 78
Abratenko (bbc520327fe760d4dfb7b7b21a82c956e) 2021; 15
Green (be2ffa4074d9231a6c1967a7353590039) 2019; 214
Hatlo (b4b829a40a73bcd6a9d4960452deac319) 2005; 52
References_xml – ident: b3b9f817f82440f088491133a34dabeb8
  doi: 10.1109/csie.2009.950
– ident: bc179efc24a7602493bd41fc9f75f1dd5
  doi: 10.2172/1156551
– volume: 99
  year: 2019
  ident: b4d2ef737e75fe9ebfcfed0969dfbd64f
  article-title: Deep neural network for pixel-level electromagnetic particle identification in the MicroBooNE liquid argon time projection chamber
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.99.092001
– ident: b1cfeb83b873c48ea4beafc0584467172
– ident: b56ba686e4309779fb90f506f70c037b2
– ident: b76cf00fc6e9b0fbbd7dba267ac6cfaa2
  doi: 10.1145/1465482.1465560
– year: 2015
  ident: b122806cc65eb1f5e6d633a27beb62d38
  article-title: A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam
– volume: 389
  start-page: 81
  year: 1997
  ident: b1b7575e70468ce77f0a41fbb1fc93f01
  article-title: ROOT: An object oriented data analysis framework
  publication-title: Nucl. Instrum. Meth. A
  doi: 10.1016/S0168-9002(97)00048-X
– volume: 15
  year: 2020
  ident: b616cbfb1c98b7b49d8cbb0d036e95079
  article-title: Speeding up particle track reconstruction using a parallel Kalman filter algorithm
  publication-title: JINST
  doi: 10.1088/1748-0221/15/09/P09030
– ident: bab58c3d23f25832de807772cb54f5627
  doi: 10.1007/978-1-84996-169-1_19
– volume: 121
  year: 2018
  ident: bcafac138a2de238d060536c81e4640a2
  article-title: Significant Excess of ElectronLike Events in the MiniBooNE Short-Baseline Neutrino Experiment
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.221801
– volume: 214
  start-page: 05013
  year: 2019
  ident: be2ffa4074d9231a6c1967a7353590039
  article-title: Spack-Based Packaging and Development for HEP
  publication-title: EPJ Web Conf.
  doi: 10.1051/epjconf/201921405013
– volume: 12
  year: 2017
  ident: bcd9c8291f65a4bffa1b8ed66f4d9bbe3
  article-title: Liquid argon TPC signal formation, signal processing and reconstruction techniques
  publication-title: JINST
  doi: 10.1088/1748-0221/12/07/P07010
– ident: b90ef671013222fc92f0b863c9bc5dadc
– volume: 13
  year: 2018
  ident: be72d5fc4b567f277c8285ec5d6620204
  article-title: Ionization electron signal processing in single phase LArTPCs. Part I. Algorithm Description and quantitative evaluation with MicroBooNE simulation
  publication-title: JINST
  doi: 10.1088/1748-0221/13/07/P07006
– ident: b021a17b11b3270a9007999acea64db69
  doi: 10.1145/2807591.2807623
– volume: 898
  year: 2017
  ident: b75f9c39b5efbbff6e6dbaed80cfad98e
  article-title: LArSoft: Toolkit for Simulation, Reconstruction and Analysis of Liquid Argon TPC Neutrino Detectors
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/898/4/042057
– ident: b70997a98d29d732d48c5890307305620
  doi: 10.2172/1668374
– ident: bab7a37a2661ec9bda56227ade2bbc727
  doi: 10.1109/99.660313
– volume: 12
  year: 2017
  ident: bdbc2d17d1762db9a61b9395ab86e1567
  article-title: Design and Construction of the MicroBooNE Detector
  publication-title: JINST
  doi: 10.1088/1748-0221/12/02/P02017
– volume: 13
  year: 2018
  ident: b2822b46ba77cd2f6c27cce9e7073ccbb
  article-title: Ionization electron signal processing in single phase LArTPCs. Part II. Data/simulation comparison and performance in MicroBooNE
  publication-title: JINST
  doi: 10.1088/1748-0221/13/07/P07007
– volume: 15
  year: 2021
  ident: bbc520327fe760d4dfb7b7b21a82c956e
  article-title: Cosmic Ray Background Rejection with Wire-Cell LArTPC Event Reconstruction in the MicroBooNE Detector
  publication-title: Phys. Rev. Applied
  doi: 10.1103/PhysRevApplied.15.064071
– year: 2020
  ident: bfab2bd2e94fb60b36ee8c8b2fd32e016
  article-title: Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics
– volume: 78
  start-page: 82
  year: 2018
  ident: bb4ddd0117bede5f280931c2d36f33fa4
  article-title: The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-017-5481-6
– volume: 78
  year: 2007
  ident: b8c28d1990383b8f5fcef86db38f51a24
  article-title: The Open Science Grid
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/78/1/012057
– volume: 15
  year: 2020
  ident: b270e324913465c520fefba7cbc35b974
  article-title: Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume I Introduction to DUNE
  publication-title: JINST
  doi: 10.1088/1748-0221/15/08/T08008
– volume: 15
  year: 2020
  ident: b3bd00f0b58a0da416e71d0525f15d390
  article-title: First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform
  publication-title: JINST
  doi: 10.1088/1748-0221/15/12/P12004
– volume: 396
  year: 2012
  ident: b63912bf9d780a6bb63bd87aa6f11701f
  article-title: The Art Framework
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/396/2/022020
– volume: 12
  year: 2017
  ident: bbc9e6798a6e48cb11a3018f30516be75
  article-title: Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC
  publication-title: JINST
  doi: 10.1088/1748-0221/12/08/P08003
– volume: 64
  year: 2001
  ident: bc8e1a66f3156d225fdffb1051871e2a0
  article-title: Evidence for neutrino oscillations from the observation of ν̅_e appearance in a ν̅_μ beam
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.64.112007
– ident: ba7a6f27e05f1744afb5b6fb2c882fe74
  doi: 10.1098/rsta.2019.0061
– volume: 527
  start-page: 329
  year: 2004
  ident: b64732ccad4d3ce805eaa454bb36e2233
  article-title: Design, construction and tests of the ICARUS T600 detector
  publication-title: Nucl. Instrum. Meth. A
  doi: 10.1016/j.nima.2004.02.044
– volume: 52
  start-page: 2818
  year: 2005
  ident: b4b829a40a73bcd6a9d4960452deac319
  article-title: Developments of mathematical software libraries for the LHC experiments
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2005.860152
– ident: bc76ff74a9fd70b29c1140e46108598ac
  doi: 10.1145/1498765.1498785
SSID ssj0059540
Score 2.281017
Snippet Neutrinos are particles that interact rarely, so identifying them requires large detectors which produce lots of data. Processing this data with the computing...
SourceID osti
proquest
crossref
iop
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage P01026
SubjectTerms Algorithms
Argon
Data processing methods
Detectors
Digital signal processing (DSP)
Experiments
INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY
Modernization
Neutrinos
Performance of High Energy Physics Detectors
Radiation counters
Sensors
Software architectures (event data models, frameworks and databases)
Vector processing (computers)
Title Optimizing the hit finding algorithm for liquid argon TPC neutrino detectors using parallel architectures
URI https://iopscience.iop.org/article/10.1088/1748-0221/17/01/P01026
https://www.proquest.com/docview/2622621592
https://www.osti.gov/servlets/purl/1824839
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9wgEB416aU99F118xJScqu8a2OM4VhFjaJISfaQSL0hYGHj1rG3u95Lfn0GP9psqiqqegN5sPEYZj48wwfAkdNxYlOcgByXbRFzuY9kzEykc0mtdFpqHSK65xf89JqdfcuGbMJ2L0y96E3_GIsdUXCnwj4hTkwQQ4sIXU-CpUmcTKaBFo1vwfNUoLMJe_gup4MxziQikmFj8F_bbvikLXwu2ucaZ9gf9rl1OievwQzd7XJNfozXjRnbu0dMjv_1Pm_gVQ9JyZeuwVt45qp38PIBUeF7KC7RstwWd1ghiBjJTdGQNtqNdV3O62XR3NwSxL-kLH6uixnRy3ldkavpMalc4PuvajJzTRshWJGQaz8ngXS8LF1JHsYyVh_g-uTr1fFp1B_SEFmWsSaynFnn04QbJ6XODRc-McJaGjvEXghHvGZW49UsRoeJgC_3RkuKZlUYIU2afoTtqq7cJyBSWmbCApVxyrI8HJZFDfXG-Zzr2McjyIbPpGzPYB4O0ihVG0kXQgVVqqBKLKk4UZ0qRzD51W7RcXg82eIzfi3VT-fVk9KHG9LfC0T2GxJqMfMj2A1jSuFwCPS8NuQxWRQTlKGiRrA3DLXfN6IcwTFiMkl3_qlDu_CChl0a7Z-iPdhulmu3j9ipMQft7LgHGr4L8g
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4Blar20DfqFmgttbcqm8RxnPhYASv6gj2AxM2yvfaSNiTb3eyFX99xkgWWqkJVb7YyzmNsjz9nZj4DfLAqik2CE5Djti1gNnOBiJgOVCaoEVYJpbxH9_sxPzpjX87T8w04vM6FqWe96R9isSMK7lTYB8TlIWLoPMClJ8ZSGMXh2NOi8XA2cZvwIE140ubxnYxXBjkViEpWycF_bb-2Lm3is9FG1zjL_rDR7cIzetoFiCxavkIfb_JzuGz00FzdYXP87296Bk96aEo-dY2ew4atXsDjW4SFL6E4QQtzWVxhhSByJBdFQ1qvN9ZVOa3nRXNxSRAHk7L4tSwmRM2ndUVOx_uksp73v6rJxDatp2BBfMz9lHjy8bK0Jbnt01i8grPR4en-UdAf1hAYlrImMJwZ65KYayuEyjTPXaxzY2hkEYMhLHGKGYVX0wgXTgR-mdNKUDSvuc6FTpJt2Krqyr4GIoRh2m9UGacszfyhWVRTp63LuIpcNIB01VXS9Ezm_kCNUrYe9TyXXp3SqxNLMoplp84BhNftZh2Xx70tPmKPyX5aL-6Vfr8m_aNAhL8mIbFDB7Djx5XEIeFpeo2PZzIollOGihrA7mq43dyIcgTJiM0EffNPL_QOHo4PRvLb5-OvO_CI-sSN9ufRLmw186XdQzjV6LftZPkNk0sRVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+the+hit+finding+algorithm+for+liquid+argon+TPC+neutrino+detectors+using+parallel+architectures&rft.jtitle=Journal+of+instrumentation&rft.au=Berkman%2C+Sophie&rft.au=Cerati%2C+Giuseppe&rft.au=Knoepfel%2C+Kyle&rft.au=Mengel%2C+Marc&rft.date=2022-01-01&rft.pub=IOP+Publishing&rft.eissn=1748-0221&rft.volume=17&rft.issue=1&rft.spage=P01026&rft_id=info:doi/10.1088%2F1748-0221%2F17%2F01%2FP01026&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-0221&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-0221&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-0221&client=summon