Optimizing the hit finding algorithm for liquid argon TPC neutrino detectors using parallel architectures
Neutrinos are particles that interact rarely, so identifying them requires large detectors which produce lots of data. Processing this data with the computing power available is becoming even more difficult as the detectors increase in size to reach their physics goals. Liquid argon time projection...
Saved in:
Published in | Journal of instrumentation Vol. 17; no. 1; p. P01026 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.01.2022
Institute of Physics (IOP) |
Subjects | |
Online Access | Get full text |
ISSN | 1748-0221 1748-0221 |
DOI | 10.1088/1748-0221/17/01/P01026 |
Cover
Loading…
Abstract | Neutrinos are particles that interact rarely, so identifying them requires large detectors which produce lots of data. Processing this data with the computing power available is becoming even more difficult as the detectors increase in size to reach their physics goals.
Liquid argon time projection chamber (LArTPC) neutrino experiments are expected to grow in the next decade to have 100 times more wires than in currently operating experiments, and modernization of LArTPC reconstruction code, including parallelization both at data- and instruction-level, will help to mitigate this challenge.
The LArTPC hit finding algorithm is used across multiple experiments through a common software framework. In this paper we discuss a parallel implementation of this algorithm. Using a standalone setup we find speedup factors of two times from vectorization and 30–100 times from multi-threading on Intel architectures. The new version has been incorporated back into the framework so that it can be used by experiments. On a serial execution, the integrated version is about 10 times faster than the previous one and, once parallelization is enabled, further speedups comparable to the standalone program are achieved. |
---|---|
AbstractList | Neutrinos are particles that interact rarely, so identifying them requires large detectors which produce lots of data. Processing this data with the computing power available is becoming even more difficult as the detectors increase in size to reach their physics goals.Liquid argon time projection chamber (LArTPC) neutrino experiments are expected to grow in the next decade to have 100 times more wires than in currently operating experiments, and modernization of LArTPC reconstruction code, including parallelization both at data- and instruction-level, will help to mitigate this challenge.The LArTPC hit finding algorithm is used across multiple experiments through a common software framework. In this paper we discuss a parallel implementation of this algorithm. Using a standalone setup we find speedup factors of two times from vectorization and 30–100 times from multi-threading on Intel architectures. The new version has been incorporated back into the framework so that it can be used by experiments. On a serial execution, the integrated version is about 10 times faster than the previous one and, once parallelization is enabled, further speedups comparable to the standalone program are achieved. Neutrinos are particles that interact rarely, so identifying them requires large detectors which produce lots of data. Processing this data with the computing power available is becoming even more difficult as the detectors increase in size to reach their physics goals. Liquid argon time projection chamber (LArTPC) neutrino experiments are expected to grow in the next decade to have 100 times more wires than in currently operating experiments, and modernization of LArTPC reconstruction code, including parallelization both at data- and instruction-level, will help to mitigate this challenge. The LArTPC hit finding algorithm is used across multiple experiments through a common software framework. In this paper we discuss a parallel implementation of this algorithm. Using a standalone setup we find speedup factors of two times from vectorization and 30–100 times from multi-threading on Intel architectures. The new version has been incorporated back into the framework so that it can be used by experiments. On a serial execution, the integrated version is about 10 times faster than the previous one and, once parallelization is enabled, further speedups comparable to the standalone program are achieved. Neutrinos are particles that interact rarely, so identifying them requires large detectors which produce lots of data. Processing this data with the computing power available is becoming even more difficult as the detectors increase in size to reach their physics goals. Liquid argon time projection chamber (LArTPC) neutrino experiments are expected to grow in the next decade to have 100 times more wires than in currently operating experiments, and modernization of LArTPC reconstruction code, including parallelization both at data- and instruction-level, will help to mitigate this challenge. The LArTPC hit finding algorithm is used across multiple experiments through a common software framework. In this paper we discuss a parallel implementation of this algorithm. Using a standalone setup we find speedup factors of two times from vectorization and 30–100 times from multi-threading on Intel architectures. The new version has been incorporated back into the framework so that it can be used by experiments. On a serial execution, the integrated version is about 10 times faster than the previous one and, once parallelization is enabled, more speedups comparable to the standalone program are achieved. |
Author | Knoepfel, Kyle Wang, Michael Gravelle, Brian Norris, Boyana Mengel, Marc Berkman, Sophie Cerati, Giuseppe Reinsvold Hall, Allison |
Author_xml | – sequence: 1 givenname: Sophie surname: Berkman fullname: Berkman, Sophie organization: Scientific Computing Division, Fermi National Accelerator Laboratory, Kirk Road and Pine Street, Batavia, IL 60510, U.S.A – sequence: 2 givenname: Giuseppe surname: Cerati fullname: Cerati, Giuseppe organization: Scientific Computing Division, Fermi National Accelerator Laboratory, Kirk Road and Pine Street, Batavia, IL 60510, U.S.A – sequence: 3 givenname: Kyle surname: Knoepfel fullname: Knoepfel, Kyle organization: Scientific Computing Division, Fermi National Accelerator Laboratory, Kirk Road and Pine Street, Batavia, IL 60510, U.S.A – sequence: 4 givenname: Marc surname: Mengel fullname: Mengel, Marc organization: Scientific Computing Division, Fermi National Accelerator Laboratory, Kirk Road and Pine Street, Batavia, IL 60510, U.S.A – sequence: 5 givenname: Allison surname: Reinsvold Hall fullname: Reinsvold Hall, Allison organization: Scientific Computing Division, Fermi National Accelerator Laboratory, Kirk Road and Pine Street, Batavia, IL 60510, U.S.A – sequence: 6 givenname: Michael surname: Wang fullname: Wang, Michael organization: Scientific Computing Division, Fermi National Accelerator Laboratory, Kirk Road and Pine Street, Batavia, IL 60510, U.S.A – sequence: 7 givenname: Brian surname: Gravelle fullname: Gravelle, Brian organization: Departmente of Computr and Information Science, University of Oregon, East 13th Avenue, Eugene, OR 97403, U.S.A – sequence: 8 givenname: Boyana surname: Norris fullname: Norris, Boyana organization: Departmente of Computr and Information Science, University of Oregon, East 13th Avenue, Eugene, OR 97403, U.S.A |
BackLink | https://www.osti.gov/servlets/purl/1824839$$D View this record in Osti.gov |
BookMark | eNqFkFtLAzEQhYMoqNW_IEHfhNoke2kWfJHiDQR9qM8hm03alG2yJtkH_fXOsqIiQiGQCfOdmZNzjPaddxqhM0quKOF8Ruc5nxLGKFQzQmcvhBJW7qGj78b-r_oQHce4IaSoipwcIfvcJbu1H9atcFprvLYJG-ua4S3blQ82rbfY-IBb-9bbBsuw8g4vXxbY6T4F6zxudNIq-RBxHwddJ4NsW90Cq2Ae9Pqg4wk6MLKN-vTrnqDXu9vl4mH69Hz_uLh5mqq8yNNUlbnSJqNlratKzuuSG1pzpRjRPKsKUhmZKwndgmQ5_D-bm1pWTDYNr3lVZ9kEnY9zfUxWRDUYWCvvHPgQlLMcxgB0MUJd8G-9jklsfB8c-BKsZHBoUTGgypFSwccYtBFdsFsZ3gUlYsheDLGKIVaoBKFizB6E13-EYEMm610K0ra75Zej3Prux9jGOvD5GxRdYwBm_8A7NnwCdq2qSw |
CitedBy_id | crossref_primary_10_1088_1748_0221_18_04_P04034 crossref_primary_10_3389_fdata_2024_1485344 |
Cites_doi | 10.1109/csie.2009.950 10.2172/1156551 10.1103/PhysRevD.99.092001 10.1145/1465482.1465560 10.1016/S0168-9002(97)00048-X 10.1088/1748-0221/15/09/P09030 10.1007/978-1-84996-169-1_19 10.1103/PhysRevLett.121.221801 10.1051/epjconf/201921405013 10.1088/1748-0221/12/07/P07010 10.1088/1748-0221/13/07/P07006 10.1145/2807591.2807623 10.1088/1742-6596/898/4/042057 10.2172/1668374 10.1109/99.660313 10.1088/1748-0221/12/02/P02017 10.1088/1748-0221/13/07/P07007 10.1103/PhysRevApplied.15.064071 10.1140/epjc/s10052-017-5481-6 10.1088/1742-6596/78/1/012057 10.1088/1748-0221/15/08/T08008 10.1088/1748-0221/15/12/P12004 10.1088/1742-6596/396/2/022020 10.1088/1748-0221/12/08/P08003 10.1103/PhysRevD.64.112007 10.1098/rsta.2019.0061 10.1016/j.nima.2004.02.044 10.1109/TNS.2005.860152 10.1145/1498765.1498785 |
ContentType | Journal Article |
Copyright | 2022 IOP Publishing Ltd and Sissa Medialab |
Copyright_xml | – notice: 2022 IOP Publishing Ltd and Sissa Medialab |
CorporateAuthor | Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States) |
CorporateAuthor_xml | – name: Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States) |
DBID | AAYXX CITATION 7U5 8FD L7M OIOZB OTOTI |
DOI | 10.1088/1748-0221/17/01/P01026 |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1748-0221 |
ExternalDocumentID | 1824839 10_1088_1748_0221_17_01_P01026 JINST_016P_0721 |
GroupedDBID | 1JI 5B3 5GY 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AATNI ABCXL ABJNI ABQJV ABVAM ACAFW ACGFO ACGFS ACHIP ADWVK AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN HAK IJHAN IOP IZVLO KOT LAP M45 MV1 N5L N9A PJBAE RIN RNS ROL RPA SY9 VSI W28 ZMT AAYXX ADEQX CITATION 7U5 8FD L7M KNG OIOZB OTOTI RW3 |
ID | FETCH-LOGICAL-c454t-c64cef316be99a7b68f1b8cc20e839509fa4ca6be503410837fba92add8b89b33 |
IEDL.DBID | IOP |
ISSN | 1748-0221 |
IngestDate | Mon Jan 23 02:20:47 EST 2023 Sun Jun 29 12:16:09 EDT 2025 Thu Apr 24 23:08:07 EDT 2025 Tue Jul 01 01:41:43 EDT 2025 Tue Jan 25 23:14:12 EST 2022 Wed Aug 21 03:32:48 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c454t-c64cef316be99a7b68f1b8cc20e839509fa4ca6be503410837fba92add8b89b33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 AC02-07CH11359 USDOE Office of Science (SC), High Energy Physics (HEP) FERMILAB-PUB-21-310-SCD; arXiv:2107.00812 |
ORCID | 0000000247139646 0000000316538553 0000000335480262 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1824839 |
PQID | 2622621592 |
PQPubID | 4562433 |
PageCount | 11 |
ParticipantIDs | iop_journals_10_1088_1748_0221_17_01_P01026 proquest_journals_2622621592 crossref_citationtrail_10_1088_1748_0221_17_01_P01026 crossref_primary_10_1088_1748_0221_17_01_P01026 osti_scitechconnect_1824839 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol – name: United States |
PublicationTitle | Journal of instrumentation |
PublicationTitleAlternate | J. Instrum |
PublicationYear | 2022 |
Publisher | IOP Publishing Institute of Physics (IOP) |
Publisher_xml | – name: IOP Publishing – name: Institute of Physics (IOP) |
References | Acciarri (bdbc2d17d1762db9a61b9395ab86e1567) 2017; 12 Abi (bfab2bd2e94fb60b36ee8c8b2fd32e016) 2020 bc179efc24a7602493bd41fc9f75f1dd5 Lantz (b616cbfb1c98b7b49d8cbb0d036e95079) 2020; 15 Abi (b270e324913465c520fefba7cbc35b974) 2020; 15 Aguilar-Arevalo (bc8e1a66f3156d225fdffb1051871e2a0) 2001; 64 Brun (b1b7575e70468ce77f0a41fbb1fc93f01) 1997; 389 Green (b63912bf9d780a6bb63bd87aa6f11701f) 2012; 396 Abi (b3bd00f0b58a0da416e71d0525f15d390) 2020; 15 Aguilar-Arevalo (bcafac138a2de238d060536c81e4640a2) 2018; 121 b1cfeb83b873c48ea4beafc0584467172 b021a17b11b3270a9007999acea64db69 b90ef671013222fc92f0b863c9bc5dadc bab58c3d23f25832de807772cb54f5627 Baller (bcd9c8291f65a4bffa1b8ed66f4d9bbe3) 2017; 12 bab7a37a2661ec9bda56227ade2bbc727 b70997a98d29d732d48c5890307305620 Acciarri (bbc9e6798a6e48cb11a3018f30516be75) 2017; 12 Amerio (b64732ccad4d3ce805eaa454bb36e2233) 2004; 527 Adams (be72d5fc4b567f277c8285ec5d6620204) 2018; 13 b3b9f817f82440f088491133a34dabeb8 ba7a6f27e05f1744afb5b6fb2c882fe74 b76cf00fc6e9b0fbbd7dba267ac6cfaa2 Pordes (b8c28d1990383b8f5fcef86db38f51a24) 2007; 78 Antonello (b122806cc65eb1f5e6d633a27beb62d38) 2015 Snider (b75f9c39b5efbbff6e6dbaed80cfad98e) 2017; 898 Adams (b2822b46ba77cd2f6c27cce9e7073ccbb) 2018; 13 Adams (b4d2ef737e75fe9ebfcfed0969dfbd64f) 2019; 99 bc76ff74a9fd70b29c1140e46108598ac b56ba686e4309779fb90f506f70c037b2 Acciarri (bb4ddd0117bede5f280931c2d36f33fa4) 2018; 78 Abratenko (bbc520327fe760d4dfb7b7b21a82c956e) 2021; 15 Green (be2ffa4074d9231a6c1967a7353590039) 2019; 214 Hatlo (b4b829a40a73bcd6a9d4960452deac319) 2005; 52 |
References_xml | – ident: b3b9f817f82440f088491133a34dabeb8 doi: 10.1109/csie.2009.950 – ident: bc179efc24a7602493bd41fc9f75f1dd5 doi: 10.2172/1156551 – volume: 99 year: 2019 ident: b4d2ef737e75fe9ebfcfed0969dfbd64f article-title: Deep neural network for pixel-level electromagnetic particle identification in the MicroBooNE liquid argon time projection chamber publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.99.092001 – ident: b1cfeb83b873c48ea4beafc0584467172 – ident: b56ba686e4309779fb90f506f70c037b2 – ident: b76cf00fc6e9b0fbbd7dba267ac6cfaa2 doi: 10.1145/1465482.1465560 – year: 2015 ident: b122806cc65eb1f5e6d633a27beb62d38 article-title: A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam – volume: 389 start-page: 81 year: 1997 ident: b1b7575e70468ce77f0a41fbb1fc93f01 article-title: ROOT: An object oriented data analysis framework publication-title: Nucl. Instrum. Meth. A doi: 10.1016/S0168-9002(97)00048-X – volume: 15 year: 2020 ident: b616cbfb1c98b7b49d8cbb0d036e95079 article-title: Speeding up particle track reconstruction using a parallel Kalman filter algorithm publication-title: JINST doi: 10.1088/1748-0221/15/09/P09030 – ident: bab58c3d23f25832de807772cb54f5627 doi: 10.1007/978-1-84996-169-1_19 – volume: 121 year: 2018 ident: bcafac138a2de238d060536c81e4640a2 article-title: Significant Excess of ElectronLike Events in the MiniBooNE Short-Baseline Neutrino Experiment publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.221801 – volume: 214 start-page: 05013 year: 2019 ident: be2ffa4074d9231a6c1967a7353590039 article-title: Spack-Based Packaging and Development for HEP publication-title: EPJ Web Conf. doi: 10.1051/epjconf/201921405013 – volume: 12 year: 2017 ident: bcd9c8291f65a4bffa1b8ed66f4d9bbe3 article-title: Liquid argon TPC signal formation, signal processing and reconstruction techniques publication-title: JINST doi: 10.1088/1748-0221/12/07/P07010 – ident: b90ef671013222fc92f0b863c9bc5dadc – volume: 13 year: 2018 ident: be72d5fc4b567f277c8285ec5d6620204 article-title: Ionization electron signal processing in single phase LArTPCs. Part I. Algorithm Description and quantitative evaluation with MicroBooNE simulation publication-title: JINST doi: 10.1088/1748-0221/13/07/P07006 – ident: b021a17b11b3270a9007999acea64db69 doi: 10.1145/2807591.2807623 – volume: 898 year: 2017 ident: b75f9c39b5efbbff6e6dbaed80cfad98e article-title: LArSoft: Toolkit for Simulation, Reconstruction and Analysis of Liquid Argon TPC Neutrino Detectors publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/898/4/042057 – ident: b70997a98d29d732d48c5890307305620 doi: 10.2172/1668374 – ident: bab7a37a2661ec9bda56227ade2bbc727 doi: 10.1109/99.660313 – volume: 12 year: 2017 ident: bdbc2d17d1762db9a61b9395ab86e1567 article-title: Design and Construction of the MicroBooNE Detector publication-title: JINST doi: 10.1088/1748-0221/12/02/P02017 – volume: 13 year: 2018 ident: b2822b46ba77cd2f6c27cce9e7073ccbb article-title: Ionization electron signal processing in single phase LArTPCs. Part II. Data/simulation comparison and performance in MicroBooNE publication-title: JINST doi: 10.1088/1748-0221/13/07/P07007 – volume: 15 year: 2021 ident: bbc520327fe760d4dfb7b7b21a82c956e article-title: Cosmic Ray Background Rejection with Wire-Cell LArTPC Event Reconstruction in the MicroBooNE Detector publication-title: Phys. Rev. Applied doi: 10.1103/PhysRevApplied.15.064071 – year: 2020 ident: bfab2bd2e94fb60b36ee8c8b2fd32e016 article-title: Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics – volume: 78 start-page: 82 year: 2018 ident: bb4ddd0117bede5f280931c2d36f33fa4 article-title: The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-017-5481-6 – volume: 78 year: 2007 ident: b8c28d1990383b8f5fcef86db38f51a24 article-title: The Open Science Grid publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/78/1/012057 – volume: 15 year: 2020 ident: b270e324913465c520fefba7cbc35b974 article-title: Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume I Introduction to DUNE publication-title: JINST doi: 10.1088/1748-0221/15/08/T08008 – volume: 15 year: 2020 ident: b3bd00f0b58a0da416e71d0525f15d390 article-title: First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform publication-title: JINST doi: 10.1088/1748-0221/15/12/P12004 – volume: 396 year: 2012 ident: b63912bf9d780a6bb63bd87aa6f11701f article-title: The Art Framework publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/396/2/022020 – volume: 12 year: 2017 ident: bbc9e6798a6e48cb11a3018f30516be75 article-title: Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC publication-title: JINST doi: 10.1088/1748-0221/12/08/P08003 – volume: 64 year: 2001 ident: bc8e1a66f3156d225fdffb1051871e2a0 article-title: Evidence for neutrino oscillations from the observation of ν̅_e appearance in a ν̅_μ beam publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.64.112007 – ident: ba7a6f27e05f1744afb5b6fb2c882fe74 doi: 10.1098/rsta.2019.0061 – volume: 527 start-page: 329 year: 2004 ident: b64732ccad4d3ce805eaa454bb36e2233 article-title: Design, construction and tests of the ICARUS T600 detector publication-title: Nucl. Instrum. Meth. A doi: 10.1016/j.nima.2004.02.044 – volume: 52 start-page: 2818 year: 2005 ident: b4b829a40a73bcd6a9d4960452deac319 article-title: Developments of mathematical software libraries for the LHC experiments publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2005.860152 – ident: bc76ff74a9fd70b29c1140e46108598ac doi: 10.1145/1498765.1498785 |
SSID | ssj0059540 |
Score | 2.281017 |
Snippet | Neutrinos are particles that interact rarely, so identifying them requires large detectors which produce lots of data. Processing this data with the computing... |
SourceID | osti proquest crossref iop |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | P01026 |
SubjectTerms | Algorithms Argon Data processing methods Detectors Digital signal processing (DSP) Experiments INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY Modernization Neutrinos Performance of High Energy Physics Detectors Radiation counters Sensors Software architectures (event data models, frameworks and databases) Vector processing (computers) |
Title | Optimizing the hit finding algorithm for liquid argon TPC neutrino detectors using parallel architectures |
URI | https://iopscience.iop.org/article/10.1088/1748-0221/17/01/P01026 https://www.proquest.com/docview/2622621592 https://www.osti.gov/servlets/purl/1824839 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9wgEB416aU99F118xJScqu8a2OM4VhFjaJISfaQSL0hYGHj1rG3u95Lfn0GP9psqiqqegN5sPEYZj48wwfAkdNxYlOcgByXbRFzuY9kzEykc0mtdFpqHSK65xf89JqdfcuGbMJ2L0y96E3_GIsdUXCnwj4hTkwQQ4sIXU-CpUmcTKaBFo1vwfNUoLMJe_gup4MxziQikmFj8F_bbvikLXwu2ucaZ9gf9rl1OievwQzd7XJNfozXjRnbu0dMjv_1Pm_gVQ9JyZeuwVt45qp38PIBUeF7KC7RstwWd1ghiBjJTdGQNtqNdV3O62XR3NwSxL-kLH6uixnRy3ldkavpMalc4PuvajJzTRshWJGQaz8ngXS8LF1JHsYyVh_g-uTr1fFp1B_SEFmWsSaynFnn04QbJ6XODRc-McJaGjvEXghHvGZW49UsRoeJgC_3RkuKZlUYIU2afoTtqq7cJyBSWmbCApVxyrI8HJZFDfXG-Zzr2McjyIbPpGzPYB4O0ihVG0kXQgVVqqBKLKk4UZ0qRzD51W7RcXg82eIzfi3VT-fVk9KHG9LfC0T2GxJqMfMj2A1jSuFwCPS8NuQxWRQTlKGiRrA3DLXfN6IcwTFiMkl3_qlDu_CChl0a7Z-iPdhulmu3j9ipMQft7LgHGr4L8g |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4Blar20DfqFmgttbcqm8RxnPhYASv6gj2AxM2yvfaSNiTb3eyFX99xkgWWqkJVb7YyzmNsjz9nZj4DfLAqik2CE5Djti1gNnOBiJgOVCaoEVYJpbxH9_sxPzpjX87T8w04vM6FqWe96R9isSMK7lTYB8TlIWLoPMClJ8ZSGMXh2NOi8XA2cZvwIE140ubxnYxXBjkViEpWycF_bb-2Lm3is9FG1zjL_rDR7cIzetoFiCxavkIfb_JzuGz00FzdYXP87296Bk96aEo-dY2ew4atXsDjW4SFL6E4QQtzWVxhhSByJBdFQ1qvN9ZVOa3nRXNxSRAHk7L4tSwmRM2ndUVOx_uksp73v6rJxDatp2BBfMz9lHjy8bK0Jbnt01i8grPR4en-UdAf1hAYlrImMJwZ65KYayuEyjTPXaxzY2hkEYMhLHGKGYVX0wgXTgR-mdNKUDSvuc6FTpJt2Krqyr4GIoRh2m9UGacszfyhWVRTp63LuIpcNIB01VXS9Ezm_kCNUrYe9TyXXp3SqxNLMoplp84BhNftZh2Xx70tPmKPyX5aL-6Vfr8m_aNAhL8mIbFDB7Djx5XEIeFpeo2PZzIollOGihrA7mq43dyIcgTJiM0EffNPL_QOHo4PRvLb5-OvO_CI-sSN9ufRLmw186XdQzjV6LftZPkNk0sRVg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+the+hit+finding+algorithm+for+liquid+argon+TPC+neutrino+detectors+using+parallel+architectures&rft.jtitle=Journal+of+instrumentation&rft.au=Berkman%2C+Sophie&rft.au=Cerati%2C+Giuseppe&rft.au=Knoepfel%2C+Kyle&rft.au=Mengel%2C+Marc&rft.date=2022-01-01&rft.pub=IOP+Publishing&rft.eissn=1748-0221&rft.volume=17&rft.issue=1&rft.spage=P01026&rft_id=info:doi/10.1088%2F1748-0221%2F17%2F01%2FP01026&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-0221&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-0221&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-0221&client=summon |