Architecture of African swine fever virus and implications for viral assembly
African swine fever virus (ASFV) is a giant and complex DNA virus that causes a highly contagious and often lethal swine disease for which no vaccine is available. Using an optimized image reconstruction strategy, we solved the ASFV capsid structure up to 4.1 angstroms, which is built from 17,280 pr...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 366; no. 6465; pp. 640 - 644 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
01.11.2019
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | African swine fever virus (ASFV) is a giant and complex DNA virus that causes a highly contagious and often lethal swine disease for which no vaccine is available. Using an optimized image reconstruction strategy, we solved the ASFV capsid structure up to 4.1 angstroms, which is built from 17,280 proteins, including one major (p72) and four minor (M1249L, p17, p49, and H240R) capsid proteins organized into pentasymmetrons and trisymmetrons. The atomic structure of the p72 protein informs putative conformational epitopes, distinguishing ASFV from other nucleocytoplasmic large DNA viruses. The minor capsid proteins form a complicated network below the outer capsid shell, stabilizing the capsid by holding adjacent capsomers together. Acting as core organizers, 100-nanometer-long M1249L proteins run along each edge of the trisymmetrons that bridge two neighboring pentasymmetrons and form extensive intermolecular networks with other capsid proteins, driving the formation of the capsid framework. These structural details unveil the basis of capsid stability and assembly, opening up new avenues for African swine fever vaccine development. |
---|---|
AbstractList | African swine fever virus (ASFV) is a giant and complex DNA virus that causes a highly contagious and often lethal swine disease for which no vaccine is available. Using an optimized image reconstruction strategy, we solved the ASFV capsid structure up to 4.1 angstroms, which is built from 17,280 proteins, including one major (p72) and four minor (M1249L, p17, p49, and H240R) capsid proteins organized into pentasymmetrons and trisymmetrons. The atomic structure of the p72 protein informs putative conformational epitopes, distinguishing ASFV from other nucleocytoplasmic large DNA viruses. The minor capsid proteins form a complicated network below the outer capsid shell, stabilizing the capsid by holding adjacent capsomers together. Acting as core organizers, 100-nanometer-long M1249L proteins run along each edge of the trisymmetrons that bridge two neighboring pentasymmetrons and form extensive intermolecular networks with other capsid proteins, driving the formation of the capsid framework. These structural details unveil the basis of capsid stability and assembly, opening up new avenues for African swine fever vaccine development. African swine fever virus (ASFV) is highly contagious and often lethal. With no vaccine or effective treatment, infections often require large-scale culling of pigs. Wang et al. apply cutting-edge cryo–electron microscopy techniques to determine the structure of this very large DNA virus. An 8.8-angstrom-resolution reconstruction shows the five layers of the virus, and the fourth capsid layer could be reconstructed at 4.8-angstrom resolution. The structure reveals epitopes in the major capsid protein that distinguish ASFV from other nucleocytoplasmic large DNA viruses and shows how the minor capsid proteins stabilize the capsid. Science , this issue p. 640 A structure determined by electron microscopy provides a close-up look at a virus that is often lethal in pigs. African swine fever virus (ASFV) is a giant and complex DNA virus that causes a highly contagious and often lethal swine disease for which no vaccine is available. Using an optimized image reconstruction strategy, we solved the ASFV capsid structure up to 4.1 angstroms, which is built from 17,280 proteins, including one major (p72) and four minor (M1249L, p17, p49, and H240R) capsid proteins organized into pentasymmetrons and trisymmetrons. The atomic structure of the p72 protein informs putative conformational epitopes, distinguishing ASFV from other nucleocytoplasmic large DNA viruses. The minor capsid proteins form a complicated network below the outer capsid shell, stabilizing the capsid by holding adjacent capsomers together. Acting as core organizers, 100-nanometer-long M1249L proteins run along each edge of the trisymmetrons that bridge two neighboring pentasymmetrons and form extensive intermolecular networks with other capsid proteins, driving the formation of the capsid framework. These structural details unveil the basis of capsid stability and assembly, opening up new avenues for African swine fever vaccine development. Unveiling African swine fever virusAfrican swine fever virus (ASFV) is highly contagious and often lethal. With no vaccine or effective treatment, infections often require large-scale culling of pigs. Wang et al. apply cutting-edge cryo–electron microscopy techniques to determine the structure of this very large DNA virus. An 8.8-angstrom-resolution reconstruction shows the five layers of the virus, and the fourth capsid layer could be reconstructed at 4.8-angstrom resolution. The structure reveals epitopes in the major capsid protein that distinguish ASFV from other nucleocytoplasmic large DNA viruses and shows how the minor capsid proteins stabilize the capsid.Science, this issue p. 640African swine fever virus (ASFV) is a giant and complex DNA virus that causes a highly contagious and often lethal swine disease for which no vaccine is available. Using an optimized image reconstruction strategy, we solved the ASFV capsid structure up to 4.1 angstroms, which is built from 17,280 proteins, including one major (p72) and four minor (M1249L, p17, p49, and H240R) capsid proteins organized into pentasymmetrons and trisymmetrons. The atomic structure of the p72 protein informs putative conformational epitopes, distinguishing ASFV from other nucleocytoplasmic large DNA viruses. The minor capsid proteins form a complicated network below the outer capsid shell, stabilizing the capsid by holding adjacent capsomers together. Acting as core organizers, 100-nanometer-long M1249L proteins run along each edge of the trisymmetrons that bridge two neighboring pentasymmetrons and form extensive intermolecular networks with other capsid proteins, driving the formation of the capsid framework. These structural details unveil the basis of capsid stability and assembly, opening up new avenues for African swine fever vaccine development. African swine fever virus (ASFV) is a giant and complex DNA virus that causes a highly contagious and often lethal swine disease for which no vaccine is available. Using an optimized image reconstruction strategy, we solved the ASFV capsid structure up to 4.1 angstroms, which is built from 17,280 proteins, including one major (p72) and four minor (M1249L, p17, p49, and H240R) capsid proteins organized into pentasymmetrons and trisymmetrons. The atomic structure of the p72 protein informs putative conformational epitopes, distinguishing ASFV from other nucleocytoplasmic large DNA viruses. The minor capsid proteins form a complicated network below the outer capsid shell, stabilizing the capsid by holding adjacent capsomers together. Acting as core organizers, 100-nanometer-long M1249L proteins run along each edge of the trisymmetrons that bridge two neighboring pentasymmetrons and form extensive intermolecular networks with other capsid proteins, driving the formation of the capsid framework. These structural details unveil the basis of capsid stability and assembly, opening up new avenues for African swine fever vaccine development.African swine fever virus (ASFV) is a giant and complex DNA virus that causes a highly contagious and often lethal swine disease for which no vaccine is available. Using an optimized image reconstruction strategy, we solved the ASFV capsid structure up to 4.1 angstroms, which is built from 17,280 proteins, including one major (p72) and four minor (M1249L, p17, p49, and H240R) capsid proteins organized into pentasymmetrons and trisymmetrons. The atomic structure of the p72 protein informs putative conformational epitopes, distinguishing ASFV from other nucleocytoplasmic large DNA viruses. The minor capsid proteins form a complicated network below the outer capsid shell, stabilizing the capsid by holding adjacent capsomers together. Acting as core organizers, 100-nanometer-long M1249L proteins run along each edge of the trisymmetrons that bridge two neighboring pentasymmetrons and form extensive intermolecular networks with other capsid proteins, driving the formation of the capsid framework. These structural details unveil the basis of capsid stability and assembly, opening up new avenues for African swine fever vaccine development. |
Author | Bu, Zhigao Wang, Jingfei Rao, Zihe Wang, Nan Li, Fang Wang, Jialing Zhang, Yangling Zhao, Dongming Gao, Yan Wang, Ming Wang, Xiangxi |
Author_xml | – sequence: 1 givenname: Nan surname: Wang fullname: Wang, Nan – sequence: 2 givenname: Dongming surname: Zhao fullname: Zhao, Dongming – sequence: 3 givenname: Jialing surname: Wang fullname: Wang, Jialing – sequence: 4 givenname: Yangling surname: Zhang fullname: Zhang, Yangling – sequence: 5 givenname: Ming surname: Wang fullname: Wang, Ming – sequence: 6 givenname: Yan surname: Gao fullname: Gao, Yan – sequence: 7 givenname: Fang surname: Li fullname: Li, Fang – sequence: 8 givenname: Jingfei surname: Wang fullname: Wang, Jingfei – sequence: 9 givenname: Zhigao surname: Bu fullname: Bu, Zhigao – sequence: 10 givenname: Zihe surname: Rao fullname: Rao, Zihe – sequence: 11 givenname: Xiangxi surname: Wang fullname: Wang, Xiangxi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31624094$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kTFPHDEQhS1EFA6SmgpkiSbNgu2x1-vyhCCJRJQG6tWc1xY-7dqHvUtEfj173IWCIsVoive9mdG8Y3IYU3SEnHJ2ybmor4oNLlp3ifiXSzAHZMGZUZURDA7JgjGoq4ZpdUSOS1kzNmsGPpMj4LWQzMgF-bXM9jGMzo5TdjR5uvQ5WIy0_AnRUe-eXabPIU-FYuxoGDb9LI8hxUJ9epOwp1iKG1b9yxfyyWNf3Nd9PyEPtzf31z-qu9_ff14v7yorlRwrrLVgK5DKC6OB-xVD0XSegza-6yxK0xg0oKGxslMeORMADhA180rWACfk227uJqenyZWxHUKxru8xujSVVgDTXBqumxm9-ICu05TjfN2WqpUwSmwHnu-paTW4rt3kMGB-af89agaudoDNqZTs_DvCWbuNot1H0e6jmB3qg8OG8e1zY8bQ_8d3tvOty5jy-xpRNxL0XK9PUplb |
CitedBy_id | crossref_primary_10_1007_s13238_021_00828_9 crossref_primary_10_3390_pathogens9121078 crossref_primary_10_1073_pnas_2309506120 crossref_primary_10_1128_mbio_01655_24 crossref_primary_10_3390_v13112124 crossref_primary_10_1038_s41467_020_18251_9 crossref_primary_10_1021_jacs_0c04764 crossref_primary_10_1016_j_vetmic_2023_109815 crossref_primary_10_1007_s13238_020_00716_8 crossref_primary_10_1128_jvi_01701_24 crossref_primary_10_3390_cimb46100667 crossref_primary_10_3390_molecules28010170 crossref_primary_10_3390_v16081257 crossref_primary_10_1007_s13238_020_00731_9 crossref_primary_10_1016_j_mcp_2021_101764 crossref_primary_10_1038_s41598_020_74651_3 crossref_primary_10_1016_j_jbc_2023_104872 crossref_primary_10_1016_j_bmc_2021_116055 crossref_primary_10_3390_v14081731 crossref_primary_10_1016_j_cell_2022_01_019 crossref_primary_10_1016_j_talanta_2020_121284 crossref_primary_10_1016_j_micpath_2024_107258 crossref_primary_10_1038_s42254_022_00465_z crossref_primary_10_3389_fmicb_2022_971888 crossref_primary_10_3390_v15020574 crossref_primary_10_1016_j_heliyon_2024_e28426 crossref_primary_10_1128_jvi_01667_21 crossref_primary_10_1016_j_ijbiomac_2024_135983 crossref_primary_10_1016_j_vetmic_2024_110073 crossref_primary_10_1128_jvi_00210_23 crossref_primary_10_3389_fmicb_2023_1169699 crossref_primary_10_1016_j_vetmic_2022_109527 crossref_primary_10_3390_v15041015 crossref_primary_10_1016_j_bsheal_2020_09_002 crossref_primary_10_3389_fmicb_2022_1056117 crossref_primary_10_1038_s41467_024_54461_1 crossref_primary_10_3390_pathogens12101193 crossref_primary_10_1007_s00253_024_13146_x crossref_primary_10_3390_vetsci11120650 crossref_primary_10_1016_j_jbc_2023_104767 crossref_primary_10_1128_jvi_00577_23 crossref_primary_10_1021_acs_nanolett_4c06699 crossref_primary_10_1016_j_gene_2024_148755 crossref_primary_10_3390_vaccines11101577 crossref_primary_10_3390_vaccines9040343 crossref_primary_10_31083_j_fbl2904164 crossref_primary_10_1021_acsinfecdis_3c00506 crossref_primary_10_1128_spectrum_03282_22 crossref_primary_10_3389_fvets_2022_832255 crossref_primary_10_1128_jvi_00268_23 crossref_primary_10_3390_v17020283 crossref_primary_10_1080_22221751_2025_2469636 crossref_primary_10_3390_ani11072039 crossref_primary_10_3390_v15010050 crossref_primary_10_1186_s12917_020_02639_2 crossref_primary_10_3390_ani12182446 crossref_primary_10_1007_s00253_023_12921_6 crossref_primary_10_1016_j_aca_2020_10_011 crossref_primary_10_3389_fvets_2022_844058 crossref_primary_10_3389_fcimb_2023_1163569 crossref_primary_10_1016_S2095_3119_21_63767_X crossref_primary_10_1186_s13568_024_01697_1 crossref_primary_10_3390_ani14131951 crossref_primary_10_3389_fimmu_2022_941579 crossref_primary_10_1002_chem_202403976 crossref_primary_10_1186_s12985_023_02004_3 crossref_primary_10_1093_jmicro_dfab036 crossref_primary_10_1016_j_talanta_2025_127672 crossref_primary_10_1080_22221751_2023_2220572 crossref_primary_10_1128_JVI_01500_21 crossref_primary_10_1128_JVI_02029_20 crossref_primary_10_1002_pro_3805 crossref_primary_10_3389_fvets_2022_1036744 crossref_primary_10_3390_v13122495 crossref_primary_10_3390_pathogens13110981 crossref_primary_10_1155_tbed_6250851 crossref_primary_10_1016_j_isci_2024_109345 crossref_primary_10_1042_BST20191108 crossref_primary_10_1016_j_aca_2022_340244 crossref_primary_10_1038_s41467_020_18250_w crossref_primary_10_1128_jvi_00228_23 crossref_primary_10_1093_gpbjnl_qzae062 crossref_primary_10_1371_journal_pone_0267128 crossref_primary_10_3389_fmicb_2022_1037346 crossref_primary_10_1007_s00705_024_06037_z crossref_primary_10_3390_microorganisms11122846 crossref_primary_10_1016_j_cjac_2024_100479 crossref_primary_10_1039_D4AY01057D crossref_primary_10_3389_fvets_2022_905706 crossref_primary_10_1016_j_cjac_2024_100477 crossref_primary_10_1080_22221751_2023_2220575 crossref_primary_10_1038_s41467_023_38868_w crossref_primary_10_1096_fj_202400931RR crossref_primary_10_3390_v15091845 crossref_primary_10_1016_j_antiviral_2022_105433 crossref_primary_10_1016_j_foodpol_2021_102150 crossref_primary_10_1038_s41422_020_00444_y crossref_primary_10_1128_jvi_01227_22 crossref_primary_10_1016_j_vetmic_2021_109211 crossref_primary_10_1007_s00253_022_11851_z crossref_primary_10_1007_s13238_020_00730_w crossref_primary_10_3390_v14050889 crossref_primary_10_1016_j_virs_2023_03_004 crossref_primary_10_3389_fmicb_2022_802098 crossref_primary_10_3389_fimmu_2024_1361531 crossref_primary_10_1371_journal_ppat_1009784 crossref_primary_10_3724_aauj_2024038 crossref_primary_10_1038_s41467_022_29305_5 crossref_primary_10_3389_fvets_2022_1006895 crossref_primary_10_1016_j_ijbiomac_2024_134852 crossref_primary_10_1038_s41598_023_36788_9 crossref_primary_10_1016_j_hlife_2023_10_007 crossref_primary_10_1107_S2059798323010562 crossref_primary_10_1016_j_virs_2024_05_007 crossref_primary_10_1038_s41467_024_55683_z crossref_primary_10_1016_j_chom_2019_11_004 crossref_primary_10_2743_jve_27_99 crossref_primary_10_1080_21505594_2025_2457949 crossref_primary_10_1186_s44149_024_00123_0 crossref_primary_10_3389_fvets_2023_1085473 crossref_primary_10_1016_j_ijbiomac_2023_127311 crossref_primary_10_1038_s41467_022_34218_4 crossref_primary_10_5940_jcrsj_63_80 crossref_primary_10_1007_s12250_019_00173_6 crossref_primary_10_1128_jvi_00954_22 crossref_primary_10_1016_j_ijbiomac_2024_131695 crossref_primary_10_2222_jsv_70_15 crossref_primary_10_1111_tbed_14527 crossref_primary_10_1007_s13238_020_00714_w crossref_primary_10_3390_v16020312 crossref_primary_10_1371_journal_ppat_1012256 crossref_primary_10_3390_pathogens10020178 crossref_primary_10_1128_spectrum_00809_24 crossref_primary_10_1080_21505594_2023_2232707 crossref_primary_10_3390_v15020311 crossref_primary_10_1128_jvi_00569_23 crossref_primary_10_3389_fmicb_2023_1225469 crossref_primary_10_3390_v12101146 crossref_primary_10_3390_v16030349 crossref_primary_10_1021_acsnano_0c07489 crossref_primary_10_1038_s41421_024_00692_x crossref_primary_10_3390_ani11041124 crossref_primary_10_1007_s12088_024_01305_7 crossref_primary_10_1016_j_talanta_2022_123294 crossref_primary_10_3389_fmicb_2023_1043129 crossref_primary_10_1016_j_virusres_2022_198872 crossref_primary_10_3389_fimmu_2022_995998 crossref_primary_10_1016_j_str_2023_09_008 crossref_primary_10_3390_ani13121967 crossref_primary_10_7554_eLife_103492 crossref_primary_10_3390_life12081255 crossref_primary_10_1111_tbed_14191 crossref_primary_10_1128_jvi_00436_24 crossref_primary_10_3389_fmicb_2023_1126794 crossref_primary_10_3390_life11111214 crossref_primary_10_3390_v13071212 crossref_primary_10_1016_j_jviromet_2023_114725 crossref_primary_10_1038_s41467_023_37681_9 crossref_primary_10_1016_j_vetmic_2023_109776 crossref_primary_10_3389_fchem_2021_804981 crossref_primary_10_1016_j_vetmic_2024_110239 crossref_primary_10_1016_j_crmicr_2024_100232 crossref_primary_10_3389_fimmu_2024_1358960 crossref_primary_10_1089_vim_2020_0038 crossref_primary_10_1016_j_jia_2023_07_039 crossref_primary_10_1016_j_virusres_2024_199412 crossref_primary_10_1093_nar_gkae739 crossref_primary_10_7554_eLife_103492_3 crossref_primary_10_1016_j_tibs_2020_01_007 crossref_primary_10_3390_v13112198 crossref_primary_10_1007_s00705_021_05335_0 crossref_primary_10_1007_s12250_021_00375_x crossref_primary_10_1007_s00253_021_11706_z crossref_primary_10_1186_s44149_024_00141_y crossref_primary_10_3390_v14122660 crossref_primary_10_1128_JVI_02125_19 crossref_primary_10_1016_j_antiviral_2024_106058 crossref_primary_10_1039_D2AY00610C crossref_primary_10_1016_j_vetmic_2020_108832 crossref_primary_10_1128_spectrum_03834_22 crossref_primary_10_1128_jvi_01853_21 crossref_primary_10_3390_v13122552 crossref_primary_10_3390_vaccines8020234 crossref_primary_10_1038_s42004_020_00394_x crossref_primary_10_1016_j_virol_2024_110145 crossref_primary_10_1186_s40104_020_00517_3 crossref_primary_10_3390_v14030575 crossref_primary_10_3390_v13010077 crossref_primary_10_1371_journal_ppat_1011136 crossref_primary_10_1016_j_ijbiomac_2024_130689 crossref_primary_10_3390_v14092021 crossref_primary_10_1128_jvi_01905_21 crossref_primary_10_1360_SSV_2023_0190 crossref_primary_10_1371_journal_pbio_3002005 crossref_primary_10_1128_jvi_00704_23 crossref_primary_10_1021_acssynbio_3c00137 crossref_primary_10_3390_ijms26030921 crossref_primary_10_1038_d41586_019_03237_5 crossref_primary_10_1016_j_ijbiomac_2021_03_059 crossref_primary_10_1186_s12951_022_01730_0 crossref_primary_10_3390_v14102140 crossref_primary_10_1016_j_isci_2024_109050 crossref_primary_10_1128_spectrum_02343_22 crossref_primary_10_3390_vetsci12030193 crossref_primary_10_21015_vtse_v12i3_1909 crossref_primary_10_2139_ssrn_3981309 crossref_primary_10_3389_fmicb_2021_698001 crossref_primary_10_1016_j_aca_2023_341637 crossref_primary_10_1016_j_virol_2024_110277 crossref_primary_10_1096_fj_202002145R crossref_primary_10_1007_s11262_023_02003_0 crossref_primary_10_1016_j_micinf_2024_105348 crossref_primary_10_2139_ssrn_4071612 crossref_primary_10_3390_v13112175 crossref_primary_10_1074_jbc_RA120_014005 crossref_primary_10_3390_v15112275 crossref_primary_10_58318_2957_5702_2023_15_17_34 crossref_primary_10_1038_s41421_020_0151_5 crossref_primary_10_1186_s12951_023_02210_9 crossref_primary_10_1186_s12985_020_01450_7 crossref_primary_10_1007_s00253_021_11339_2 crossref_primary_10_3390_v14010053 crossref_primary_10_3389_fimmu_2024_1373656 crossref_primary_10_1016_j_virol_2024_110283 crossref_primary_10_3748_wjg_v27_i20_2458 crossref_primary_10_3390_ani13233712 crossref_primary_10_32634_0869_8155_2023_368_3_40_45 crossref_primary_10_1128_jvi_00824_23 crossref_primary_10_1073_pnas_2110491119 crossref_primary_10_1093_nar_gkad677 crossref_primary_10_3390_v12090918 crossref_primary_10_1038_s41541_025_01099_9 crossref_primary_10_3390_v15081634 crossref_primary_10_1016_j_virs_2022_03_006 crossref_primary_10_1007_s11686_023_00658_1 crossref_primary_10_1074_jbc_H119_012169 crossref_primary_10_1007_s11427_020_1657_9 crossref_primary_10_1016_j_vetmic_2025_110437 crossref_primary_10_1016_j_virol_2022_04_001 crossref_primary_10_1016_j_micpath_2022_105561 crossref_primary_10_1038_s41467_022_35123_6 crossref_primary_10_1126_science_abc1932 crossref_primary_10_1016_j_ijbiomac_2023_128111 crossref_primary_10_3390_ani12212935 crossref_primary_10_1038_s41598_022_24651_2 crossref_primary_10_3389_fmicb_2023_1310333 crossref_primary_10_3389_fimmu_2022_1002616 crossref_primary_10_3390_v16050798 crossref_primary_10_1007_s00253_024_13249_5 crossref_primary_10_1021_acssynbio_0c00057 crossref_primary_10_1016_j_ijbiomac_2024_134213 crossref_primary_10_1128_spectrum_00714_24 crossref_primary_10_1016_j_jia_2023_02_035 crossref_primary_10_1016_j_virol_2024_110349 crossref_primary_10_1038_s41421_022_00374_6 crossref_primary_10_3389_fmicb_2022_1025758 crossref_primary_10_1016_j_virusres_2020_198099 crossref_primary_10_3390_vetsci9080417 crossref_primary_10_3389_fimmu_2022_947180 crossref_primary_10_1016_j_virusres_2024_199465 crossref_primary_10_3390_v13010039 crossref_primary_10_3389_fmicb_2023_1139494 crossref_primary_10_1016_j_vetmic_2024_110067 crossref_primary_10_1126_science_abc5881 crossref_primary_10_1128_mBio_00789_20 crossref_primary_10_3389_fvets_2022_962438 crossref_primary_10_1128_jvi_00329_22 crossref_primary_10_1073_pnas_1922523117 crossref_primary_10_1007_s11427_021_1904_4 crossref_primary_10_1016_j_ijbiomac_2024_136747 crossref_primary_10_1073_pnas_2112703118 crossref_primary_10_3390_vaccines12111278 crossref_primary_10_1128_jvi_01192_22 crossref_primary_10_3390_pathogens13110957 crossref_primary_10_1016_j_ijbiomac_2023_123264 crossref_primary_10_1186_s12985_024_02570_0 crossref_primary_10_3389_fvets_2024_1441697 crossref_primary_10_1016_j_virusres_2024_199359 crossref_primary_10_1016_j_ijbiomac_2023_127724 crossref_primary_10_1016_j_jbc_2024_107472 crossref_primary_10_1371_journal_ppat_1012770 crossref_primary_10_3389_fmicb_2020_602709 crossref_primary_10_3389_fvets_2021_781373 crossref_primary_10_1016_j_rvsc_2021_10_008 crossref_primary_10_1016_j_virusres_2023_199194 crossref_primary_10_1016_j_vetmic_2025_110475 crossref_primary_10_1021_acs_analchem_2c01588 crossref_primary_10_3390_v13010021 crossref_primary_10_1128_jvi_01923_22 crossref_primary_10_3389_fimmu_2021_715582 crossref_primary_10_3389_fvets_2020_00215 crossref_primary_10_3389_fmicb_2024_1370417 crossref_primary_10_1186_s12985_023_02272_z crossref_primary_10_1007_s00430_024_00804_0 crossref_primary_10_1007_s00705_023_05935_y |
Cites_doi | 10.1128/JVI.01468-06 10.1006/viro.1993.1515 10.1128/JVI.00600-10 10.1128/JVI.75.15.6758-6768.2001 10.1016/j.jsb.2015.11.003 10.1002/jcc.20084 10.1038/nmeth.2472 10.1107/S0907444909042073 10.1016/j.virusres.2012.09.016 10.1038/ncomms9843 10.1073/pnas.1107847108 10.1016/S0368-1742(21)80031-4 10.1016/j.str.2005.08.020 10.1126/science.aao7283 10.1128/JVI.01323-06 10.1038/nature03056 10.1016/j.jmb.2008.11.002 10.1016/j.jsb.2012.09.006 10.1038/nsmb.2255 10.1128/JVI.75.23.11720-11734.2001 10.1038/s41598-017-05824-w 10.1038/nprot.2015.053 10.1016/j.virusres.2015.05.026 10.1107/S0907444904019158 10.1128/jvi.70.8.5689-5694.1996 10.1016/j.str.2011.03.023 10.1038/s41467-017-00024-6 10.1371/journal.ppat.1003367 10.1107/S0907444912001308 10.1016/j.tvjl.2017.12.025 10.1038/s41467-018-06078-4 10.1128/JVI.01293-18 10.1371/journal.pbio.1000092 10.1038/s41467-019-08319-6 10.1371/journal.pbio.0060114 10.1080/22221751.2019.1590128 10.1038/s41467-018-04051-9 10.1016/0042-6822(84)90100-4 10.1073/pnas.1523999113 10.1073/pnas.1408462111 10.1016/j.jsb.2006.05.009 |
ContentType | Journal Article |
Copyright | Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. – notice: Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.aaz1439 |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 644 |
ExternalDocumentID | 31624094 10_1126_science_aaz1439 26843784 |
Genre | Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AEUPB AFBNE AFFDN AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JENOY JLS JSG JST KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QS- RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ .GJ .GO .HR 0-V 186 3EH 4.4 41~ 42X 4R4 692 79B 7X7 7XC 88E 88I 8AF 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8GL 8WZ 97F A6W AADHG AAFWJ AAJYS AAKAS AAYJJ AAYOK AAYXX ABBHK ABCQX ABDPE ABJCF ABPMR ABUWG ABXSQ ACHIC ACQAM ACTDY ADBBV ADMHC ADQXQ ADULT ADZCM AEUYN AEXZC AFCHL AFKRA AFQQW AJUXI AQVQM ARALO ARAPS ATCPS AZQEC BBNVY BBWZM BCU BEC BENPR BGLVJ BHPHI BKNYI BKSAR BPHCQ BVXVI C2- C51 CCPQU CITATION CJNVE D0S D1I D1J D1K DCCCD DWQXO D~A EAU EGS EJD EWM EX3 FYUFA GICCO GNUQQ GUQSH HCIFZ HGD HMCUK HQ3 HTVGU HVGLF IAG IBG IEP IER IPC IPSME ISN ITC J5H J9C JAAYA JBMMH JHFFW JKQEH JLXEF JPM K-O K6- K9- KB. KQ8 L6V LK5 LK8 LPU M0K M0R M1P M2O M2P M2Q M7P M7R M7S N4W OK1 P62 PATMY PCBAR PDBOC PHGZM PHGZT PQEDU PROAC PSQYO PTHSS PV9 PYCSY QJJ R05 RNS RZL SA0 SJFOW SKT UBY UHU UKHRP VOH WOQ WOW X7L XIH XKJ XOL YJ6 YXB YYQ ZCG ZGI ZVL ZVM ZXP ZY4 ~H1 CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c454t-a6720b345f29731fb0a28df1379fddca4989a93738c4d5fa10233e3aa70f54633 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Mon Jul 21 10:53:19 EDT 2025 Fri Jul 25 19:18:57 EDT 2025 Mon Jul 21 06:02:00 EDT 2025 Tue Jul 01 01:51:35 EDT 2025 Thu Apr 24 23:01:52 EDT 2025 Thu Jul 03 21:42:22 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6465 |
Language | English |
License | Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c454t-a6720b345f29731fb0a28df1379fddca4989a93738c4d5fa10233e3aa70f54633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7161-6214 0000-0003-3552-881X 0000-0001-9242-4211 0000-0002-9936-9179 0000-0001-6933-0540 0000-0003-0635-278X 0000-0001-9866-2384 0000-0003-1035-1069 |
OpenAccessLink | https://www.science.org/cms/asset/a64f6d62-4bc9-4957-bbf6-52163e4f3d1e/pap.pdf |
PMID | 31624094 |
PQID | 2306529523 |
PQPubID | 1256 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2307149178 proquest_journals_2306529523 pubmed_primary_31624094 crossref_primary_10_1126_science_aaz1439 crossref_citationtrail_10_1126_science_aaz1439 jstor_primary_26843784 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20191101 2019-11-00 2019-Nov-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 20191101 day: 1 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2019 |
Publisher | American Association for the Advancement of Science The American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 Malmquist W. A. (e_1_3_2_28_2) 1960; 21 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 32169172 - Trends Biochem Sci. 2020 Apr;45(4):276-278 |
References_xml | – ident: e_1_3_2_21_2 doi: 10.1128/JVI.01468-06 – ident: e_1_3_2_15_2 doi: 10.1006/viro.1993.1515 – ident: e_1_3_2_22_2 doi: 10.1128/JVI.00600-10 – ident: e_1_3_2_7_2 doi: 10.1128/JVI.75.15.6758-6768.2001 – ident: e_1_3_2_32_2 doi: 10.1016/j.jsb.2015.11.003 – ident: e_1_3_2_39_2 doi: 10.1002/jcc.20084 – ident: e_1_3_2_31_2 doi: 10.1038/nmeth.2472 – ident: e_1_3_2_42_2 doi: 10.1107/S0907444909042073 – ident: e_1_3_2_5_2 doi: 10.1016/j.virusres.2012.09.016 – ident: e_1_3_2_37_2 doi: 10.1038/ncomms9843 – ident: e_1_3_2_11_2 doi: 10.1073/pnas.1107847108 – ident: e_1_3_2_2_2 doi: 10.1016/S0368-1742(21)80031-4 – ident: e_1_3_2_27_2 doi: 10.1016/j.str.2005.08.020 – ident: e_1_3_2_34_2 doi: 10.1126/science.aao7283 – ident: e_1_3_2_23_2 doi: 10.1128/JVI.01323-06 – ident: e_1_3_2_18_2 doi: 10.1038/nature03056 – ident: e_1_3_2_20_2 doi: 10.1016/j.jmb.2008.11.002 – volume: 21 start-page: 104 year: 1960 ident: e_1_3_2_28_2 article-title: Hemadsorption and cytopathic effect produced by African swine fever virus in swine bone marrow and buffy coat cultures publication-title: Am. J. Vet. Res. – ident: e_1_3_2_33_2 doi: 10.1016/j.jsb.2012.09.006 – ident: e_1_3_2_29_2 doi: 10.1038/nsmb.2255 – ident: e_1_3_2_4_2 doi: 10.1128/JVI.75.23.11720-11734.2001 – ident: e_1_3_2_12_2 doi: 10.1038/s41598-017-05824-w – ident: e_1_3_2_43_2 doi: 10.1038/nprot.2015.053 – ident: e_1_3_2_8_2 doi: 10.1016/j.virusres.2015.05.026 – ident: e_1_3_2_40_2 doi: 10.1107/S0907444904019158 – ident: e_1_3_2_16_2 doi: 10.1128/jvi.70.8.5689-5694.1996 – ident: e_1_3_2_19_2 doi: 10.1016/j.str.2011.03.023 – ident: e_1_3_2_30_2 doi: 10.1038/s41467-017-00024-6 – ident: e_1_3_2_25_2 doi: 10.1371/journal.ppat.1003367 – ident: e_1_3_2_41_2 doi: 10.1107/S0907444912001308 – ident: e_1_3_2_3_2 doi: 10.1016/j.tvjl.2017.12.025 – ident: e_1_3_2_35_2 doi: 10.1038/s41467-018-06078-4 – ident: e_1_3_2_6_2 doi: 10.1128/JVI.01293-18 – ident: e_1_3_2_14_2 doi: 10.1371/journal.pbio.1000092 – ident: e_1_3_2_26_2 doi: 10.1038/s41467-019-08319-6 – ident: e_1_3_2_24_2 doi: 10.1371/journal.pbio.0060114 – ident: e_1_3_2_9_2 doi: 10.1080/22221751.2019.1590128 – ident: e_1_3_2_36_2 doi: 10.1038/s41467-018-04051-9 – ident: e_1_3_2_10_2 doi: 10.1016/0042-6822(84)90100-4 – ident: e_1_3_2_13_2 doi: 10.1073/pnas.1523999113 – ident: e_1_3_2_17_2 doi: 10.1073/pnas.1408462111 – ident: e_1_3_2_38_2 doi: 10.1016/j.jsb.2006.05.009 – reference: 32169172 - Trends Biochem Sci. 2020 Apr;45(4):276-278 |
SSID | ssj0009593 |
Score | 2.6783938 |
Snippet | African swine fever virus (ASFV) is a giant and complex DNA virus that causes a highly contagious and often lethal swine disease for which no vaccine is... African swine fever virus (ASFV) is highly contagious and often lethal. With no vaccine or effective treatment, infections often require large-scale culling of... Unveiling African swine fever virusAfrican swine fever virus (ASFV) is highly contagious and often lethal. With no vaccine or effective treatment, infections... |
SourceID | proquest pubmed crossref jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 640 |
SubjectTerms | African swine fever African Swine Fever Virus - chemistry African Swine Fever Virus - physiology African Swine Fever Virus - ultrastructure Animals Asfarviridae Capsid - physiology Capsid - ultrastructure Capsid Proteins - chemistry Capsid Proteins - immunology Capsid Proteins - ultrastructure Cells, Cultured Cryoelectron Microscopy Deoxyribonucleic acid DNA Epitopes Models, Molecular Protein Conformation Protein Domains Protein Folding Protein Structure, Secondary Proteins Swine Vaccine development Vaccines Virion - chemistry Virion - ultrastructure Virus Assembly Viruses |
Title | Architecture of African swine fever virus and implications for viral assembly |
URI | https://www.jstor.org/stable/26843784 https://www.ncbi.nlm.nih.gov/pubmed/31624094 https://www.proquest.com/docview/2306529523 https://www.proquest.com/docview/2307149178 |
Volume | 366 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJ9BeEBsMAgMZiYehKVViu0782AHTNGl72sTgJbITGyb1Mq0tiPHnOb4kdQWVgJeoii9R_X22z7HPBaE3sMWphpcirWuuUpZrkUqqZQq7k5GNbogorL_z2Tk_uWSnV8OrXu9n7F2yUIP67o9-Jf-DKrwDXK2X7D8g23UKL-A34AtPQBief4XxKL4FsCKl8ava_LuVHY2GP3T47fp26eMwX8fG49a60Nr3jg9BetYTNV673m1nPIif3ZVOBGRnmzjyFgStQUFoFp0ufAzH0ecrEn7-KmdedJ9-mbQbZ1T1FMYtet2daH-S1uM4FIRzilwEhz23zfi1NbNpIUlG48WX-pwrgWWc8WG0mnIfyen3VT7KS6kHUt6B0CfimgDTzcSBTnNOrAq72u46I8S26B7aIqBjkD7aGh29Pzpei9kcokFFflbt97bRg7aHNZnGm7VuVlic4HLxCD0MGgceefrsoJ6e7qL7Pgfpj120E0Cb44MQgvztY3QWMwvPDA7Mwo5Z2DELO2ZhYBaOmYWBG9gxC7fMeoIujz9cvDtJQ-KNtGZDtkglL0imKBsal9nMqEySsjE5LYRpmloyUQopbEysmjUwp234D6qplEVmbHoFuof609lUP0NYUcM0tON1qZkyphREZoUSEkaQ1xlJ0KAduqoOUeltcpRx5bRTwqsw7FUY9gQddA1ufECWzVX3HBZdPRvZiBYlS9B-C04VpvO8srq4vfUmNEGvu2JYbO0Nmpzq2dLVKXIm8qJM0FMPatd5S4bnG0teoO3VxNhH_cXtUr8EkXahXgXq_QInRKSz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Architecture+of+African+swine+fever+virus+and+implications+for+viral+assembly&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Wang%2C+Nan&rft.au=Zhao%2C+Dongming&rft.au=Wang%2C+Jialing&rft.au=Zhang%2C+Yangling&rft.date=2019-11-01&rft.eissn=1095-9203&rft.volume=366&rft.issue=6465&rft.spage=640&rft_id=info:doi/10.1126%2Fscience.aaz1439&rft_id=info%3Apmid%2F31624094&rft.externalDocID=31624094 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |