Enantioselective hydrosilylation of unsaturated carbon-heteroatom bonds (C&z.dbd;N, C&z.dbd;O) catalyzed by [Ru-S] complexes: a theoretical study
A detailed theoretical study on the mechanism of enanthioselective hydrosilylation of imines and ketones catalyzed by the ruthenium( ii ) thiolate catalyst [Ru-S] ([ L* -Ru(SDmp)] + [BAr 4 F ] − ) with a chiral monodentate phosphine ligand is carried out in this work. We elucidate all the pathways l...
Saved in:
Published in | RSC advances Vol. 1; no. 16; pp. 9431 - 9437 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
04.03.2020
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A detailed theoretical study on the mechanism of enanthioselective hydrosilylation of imines and ketones catalyzed by the ruthenium(
ii
) thiolate catalyst [Ru-S] ([
L*
-Ru(SDmp)]
+
[BAr
4
F
]
−
) with a chiral monodentate phosphine ligand is carried out in this work. We elucidate all the pathways leading to the main products or by products mediated by the [Ru-S] complex in order to have deep understanding of the chemoselectivity and enantioselectivity. The DFT (Density Functional Theory) calculations show that the reaction mechanism including: (1) Si-H bond cleavage by the dual activity of Ru-S bond; (2) the generation of a sulfur-stabilized silane cation; (3) the electrophilic attack of silane cation to N&z.dbd;C/O&z.dbd;C; (4) hydrogen transfer from Ru to carbon cation. The hydrosilylation products are found to be the final products rather than the dehydrogenative ones, which is consistent with the experimental results. The dehydrogenative silylation reaction pathways which give N- or O-silylated enamine/enol ether are reversible according to our calculations. The computational results also show that the electrophilic attack of silicon to N&z.dbd;C/O&z.dbd;C is the rate-determining step and the ee value can be improved significantly with more bulky model phosphine ligand based on the same calculation methods.
A detailed theoretical study on the mechanism of enanthioselective hydrosilylation of imines and ketones catalyzed by the ruthenium(
ii
) thiolate catalyst with a chiral monodentate phosphine ligand is carried out in this work. |
---|---|
AbstractList | A detailed theoretical study on the mechanism of enanthioselective hydrosilylation of imines and ketones catalyzed by the ruthenium(ii) thiolate catalyst [Ru-S] ([L*-Ru(SDmp)]
[BAr
]
) with a chiral monodentate phosphine ligand is carried out in this work. We elucidate all the pathways leading to the main products or by products mediated by the [Ru-S] complex in order to have deep understanding of the chemoselectivity and enantioselectivity. The DFT (Density Functional Theory) calculations show that the reaction mechanism including: (1) Si-H bond cleavage by the dual activity of Ru-S bond; (2) the generation of a sulfur-stabilized silane cation; (3) the electrophilic attack of silane cation to N[double bond, length as m-dash]C/O[double bond, length as m-dash]C; (4) hydrogen transfer from Ru to carbon cation. The hydrosilylation products are found to be the final products rather than the dehydrogenative ones, which is consistent with the experimental results. The dehydrogenative silylation reaction pathways which give N- or O-silylated enamine/enol ether are reversible according to our calculations. The computational results also show that the electrophilic attack of silicon to N[double bond, length as m-dash]C/O[double bond, length as m-dash]C is the rate-determining step and the ee value can be improved significantly with more bulky model phosphine ligand based on the same calculation methods. A detailed theoretical study on the mechanism of enanthioselective hydrosilylation of imines and ketones catalyzed by the ruthenium( ii ) thiolate catalyst [Ru-S] ([ L* -Ru(SDmp)] + [BAr 4 F ] − ) with a chiral monodentate phosphine ligand is carried out in this work. We elucidate all the pathways leading to the main products or by products mediated by the [Ru-S] complex in order to have deep understanding of the chemoselectivity and enantioselectivity. The DFT (Density Functional Theory) calculations show that the reaction mechanism including: (1) Si-H bond cleavage by the dual activity of Ru-S bond; (2) the generation of a sulfur-stabilized silane cation; (3) the electrophilic attack of silane cation to N&z.dbd;C/O&z.dbd;C; (4) hydrogen transfer from Ru to carbon cation. The hydrosilylation products are found to be the final products rather than the dehydrogenative ones, which is consistent with the experimental results. The dehydrogenative silylation reaction pathways which give N- or O-silylated enamine/enol ether are reversible according to our calculations. The computational results also show that the electrophilic attack of silicon to N&z.dbd;C/O&z.dbd;C is the rate-determining step and the ee value can be improved significantly with more bulky model phosphine ligand based on the same calculation methods. A detailed theoretical study on the mechanism of enanthioselective hydrosilylation of imines and ketones catalyzed by the ruthenium( ii ) thiolate catalyst with a chiral monodentate phosphine ligand is carried out in this work. A detailed theoretical study on the mechanism of enanthioselective hydrosilylation of imines and ketones catalyzed by the ruthenium(ii) thiolate catalyst [Ru–S] ([L*-Ru(SDmp)]⁺[BAr₄F]⁻) with a chiral monodentate phosphine ligand is carried out in this work. We elucidate all the pathways leading to the main products or by products mediated by the [Ru–S] complex in order to have deep understanding of the chemoselectivity and enantioselectivity. The DFT (Density Functional Theory) calculations show that the reaction mechanism including: (1) Si–H bond cleavage by the dual activity of Ru–S bond; (2) the generation of a sulfur-stabilized silane cation; (3) the electrophilic attack of silane cation to NC/OC; (4) hydrogen transfer from Ru to carbon cation. The hydrosilylation products are found to be the final products rather than the dehydrogenative ones, which is consistent with the experimental results. The dehydrogenative silylation reaction pathways which give N- or O-silylated enamine/enol ether are reversible according to our calculations. The computational results also show that the electrophilic attack of silicon to NC/OC is the rate-determining step and the ee value can be improved significantly with more bulky model phosphine ligand based on the same calculation methods. A detailed theoretical study on the mechanism of enanthioselective hydrosilylation of imines and ketones catalyzed by the ruthenium( ii ) thiolate catalyst [Ru–S] ([L*-Ru(SDmp)] + [BAr 4 F ] − ) with a chiral monodentate phosphine ligand is carried out in this work. We elucidate all the pathways leading to the main products or by products mediated by the [Ru–S] complex in order to have deep understanding of the chemoselectivity and enantioselectivity. The DFT (Density Functional Theory) calculations show that the reaction mechanism including: (1) Si–H bond cleavage by the dual activity of Ru–S bond; (2) the generation of a sulfur-stabilized silane cation; (3) the electrophilic attack of silane cation to N C/O C; (4) hydrogen transfer from Ru to carbon cation. The hydrosilylation products are found to be the final products rather than the dehydrogenative ones, which is consistent with the experimental results. The dehydrogenative silylation reaction pathways which give N- or O-silylated enamine/enol ether are reversible according to our calculations. The computational results also show that the electrophilic attack of silicon to N C/O C is the rate-determining step and the ee value can be improved significantly with more bulky model phosphine ligand based on the same calculation methods. A detailed theoretical study on the mechanism of enanthioselective hydrosilylation of imines and ketones catalyzed by the ruthenium( ii ) thiolate catalyst with a chiral monodentate phosphine ligand is carried out in this work. A detailed theoretical study on the mechanism of enanthioselective hydrosilylation of imines and ketones catalyzed by the ruthenium( ii ) thiolate catalyst [Ru–S] ([ L* -Ru(SDmp)] + [BAr 4 F ] − ) with a chiral monodentate phosphine ligand is carried out in this work. We elucidate all the pathways leading to the main products or by products mediated by the [Ru–S] complex in order to have deep understanding of the chemoselectivity and enantioselectivity. The DFT (Density Functional Theory) calculations show that the reaction mechanism including: (1) Si–H bond cleavage by the dual activity of Ru–S bond; (2) the generation of a sulfur-stabilized silane cation; (3) the electrophilic attack of silane cation to NC/OC; (4) hydrogen transfer from Ru to carbon cation. The hydrosilylation products are found to be the final products rather than the dehydrogenative ones, which is consistent with the experimental results. The dehydrogenative silylation reaction pathways which give N- or O-silylated enamine/enol ether are reversible according to our calculations. The computational results also show that the electrophilic attack of silicon to NC/OC is the rate-determining step and the ee value can be improved significantly with more bulky model phosphine ligand based on the same calculation methods. A detailed theoretical study on the mechanism of enanthioselective hydrosilylation of imines and ketones catalyzed by the ruthenium(ii) thiolate catalyst [Ru–S] ([L*-Ru(SDmp)]+[BAr4F]−) with a chiral monodentate phosphine ligand is carried out in this work. We elucidate all the pathways leading to the main products or by products mediated by the [Ru–S] complex in order to have deep understanding of the chemoselectivity and enantioselectivity. The DFT (Density Functional Theory) calculations show that the reaction mechanism including: (1) Si–H bond cleavage by the dual activity of Ru–S bond; (2) the generation of a sulfur-stabilized silane cation; (3) the electrophilic attack of silane cation to N=C/O=C; (4) hydrogen transfer from Ru to carbon cation. The hydrosilylation products are found to be the final products rather than the dehydrogenative ones, which is consistent with the experimental results. The dehydrogenative silylation reaction pathways which give N- or O-silylated enamine/enol ether are reversible according to our calculations. The computational results also show that the electrophilic attack of silicon to N=C/O=C is the rate-determining step and the ee value can be improved significantly with more bulky model phosphine ligand based on the same calculation methods. |
Author | Zhou, Miao-Miao Chen, Guanghui Dang, Li |
AuthorAffiliation | Department of Chemistry Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province Shantou University |
AuthorAffiliation_xml | – name: Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province – name: Department of Chemistry – name: Shantou University |
Author_xml | – sequence: 1 givenname: Miao-Miao surname: Zhou fullname: Zhou, Miao-Miao – sequence: 2 givenname: Guanghui surname: Chen fullname: Chen, Guanghui – sequence: 3 givenname: Li surname: Dang fullname: Dang, Li |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35497244$$D View this record in MEDLINE/PubMed |
BookMark | eNp9klFrFDEQxxep2Fr74ruSIkgVt2az2d2LglCOVoVioeqTSJhNZr0t2eRMssXtt_AbG3u9WouYl0kyv_nzH2buZxvWWcyyhwXdL2gpXirhoaBNTbs72RajvM4ZrcXGjftmthPCGU2nrgpWF_eyzbLiomGcb2U_Dy3Y2LuABlXsz5EsJu1d6M1kIP1b4joy2gBx9BBREwW-dTZfYETvILqBpKcOZG_-9GJft_r1hxdkfT15lvAIZrpIhe1EvpyO-cevRLlhafAHhlcESFyg8xh7BYaEOOrpQXa3AxNw5ypuZ5-PDj_N3-XHJ2_fzw-Oc8UrHnPgKTDRlkJAwZnWCLwDgTiDpusY1anXroZZoRi07YyzqoRawIzPWMca1Zbb2ZuV7nJsB9QKbfRg5NL3A_hJOujl3xnbL-Q3dy4FrSjlLAnsXQl4933EEOXQB4XGgEU3Bsmqhpclo7RJ6JNb6JkbvU3tSVY2FU_uqEjU45uOrq2sp5UAugJUmlDw2EnVx8spJYO9kQWVv3dCzsXpweVOHKWS57dK1qr_hB-tYB_UNfdnwVJ-9395udRd-Qvx082j |
CitedBy_id | crossref_primary_10_1021_acs_inorgchem_0c03695 crossref_primary_10_1002_asia_202201181 crossref_primary_10_1016_j_jorganchem_2022_122483 crossref_primary_10_1021_acs_inorgchem_4c05517 crossref_primary_10_1016_j_jphotochem_2021_113553 crossref_primary_10_1016_j_rechem_2022_100511 |
Cites_doi | 10.1002/chem.200500132 10.1021/jp066479k 10.1007/s00214-007-0310-x 10.1002/ange.200804888 10.1021/acs.chemrev.6b00517 10.1039/b106435p 10.1021/om980399o 10.1016/j.tetlet.2009.01.039 10.1002/jcc.25529 10.1021/op960009e 10.1016/j.bmcl.2007.06.054 10.1021/ja012639o 10.1021/jm200112k 10.1103/PhysRevB.37.785 10.1063/1.3382344 10.1002/anie.197705851 10.1021/jp953748q 10.1002/chem.200901594 10.1021/jo00289a014 10.1002/jcc.20495 10.1016/j.molcata.2007.03.019 10.1016/j.ijhydene.2010.01.116 10.1002/jcc.21759 10.1021/ja405925w 10.1063/1.464913 10.1038/nphoton.2017.5 10.1002/chem.201600386 10.1016/S0957-4166(97)00519-3 10.1002/anie.200353133 10.1002/cssc.201100585 10.1002/anie.200602780 10.1016/j.catcom.2010.10.005 10.1021/jacs.7b10786 10.1002/(SICI)1521-3773(20000103)39:1<44::AID-ANIE44>3.0.CO;2-L 10.1039/C8TA08677J 10.1021/ja002370t 10.1002/chem.201001164 10.1021/acs.organomet.5b00630 10.1063/1.2370993 10.1063/1.448975 10.1021/om0203173 10.1021/ja402922w 10.1021/jacs.8b13075 10.1016/0009-2614(93)89068-S 10.1021/ja00117a014 10.1021/ol0609053 10.1021/ar900196n 10.1021/acs.joc.9b00959 10.1021/jo9008657 10.1021/jp810292n 10.1021/ja513209c 10.1016/S0022-328X(02)01203-2 10.1021/cs200571v 10.1002/1521-3773(20021018)41:20<3892::AID-ANIE3892>3.0.CO;2-A 10.1016/S0040-4020(99)00437-8 10.1021/ja0290072 10.1016/j.molcata.2004.07.012 10.1021/jacs.7b09444 10.1016/0957-4166(96)00192-9 10.1021/ar0300219 10.1021/acs.accounts.7b00306 10.1021/acs.organomet.7b00899 10.1002/anie.200300599 10.1016/S0957-4166(00)80257-8 10.1039/C9TA01188A 10.1002/anie.200804993 10.1016/j.ijhydene.2017.07.206 10.1021/jo034502h 10.1016/0009-2614(93)80086-5 10.1002/anie.201003069 10.1016/j.tetlet.2005.10.076 10.1039/C7CS00602K 10.1021/acssuschemeng.8b03945 10.1021/j100377a021 10.1021/acs.organomet.7b00030 10.1021/om00087a006 10.1007/s00214-018-2270-8 10.1038/nchem.651 10.1021/om5011929 10.1002/asia.200800106 10.1021/jo702068w 10.1039/C6SC01845A 10.1021/jo00430a001 10.1021/om1009186 10.1021/jacs.6b00406 10.1002/adsc.201500288 10.1039/B309185F 10.1016/j.tetasy.2006.02.008 10.1016/S0040-4020(01)91380-8 10.1039/C9RA04135D 10.1021/ja311398j 10.1016/j.ica.2007.11.023 10.1002/ejic.200801107 10.1016/j.ccr.2009.09.033 10.1021/acs.macromol.7b01420 10.1021/om020432d 10.1021/ja909689t 10.1016/j.bmcl.2006.09.078 10.1002/anie.199401111 10.1016/S0040-4039(02)00842-0 10.1002/eem2.12048 10.1021/ja00178a021 10.1021/acs.joc.5b00895 10.1021/om034218g 10.1021/om034004z 10.1016/j.tetlet.2005.03.026 10.1016/0957-4166(96)00191-7 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2020 This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2020 – notice: This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7S9 L.6 5PM |
DOI | 10.1039/c9ra10760f |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2046-2069 |
EndPage | 9437 |
ExternalDocumentID | PMC9050042 35497244 10_1039_C9RA10760F c9ra10760f |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: 21573102 – fundername: ; grantid: Unassigned |
GroupedDBID | 0-7 0R AAGNR AAIWI ABGFH ACGFS ADBBV ADMRA AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV BCNDV BLAPV BSQNT C6K CKLOX EBS EE0 EF- GROUPED_DOAJ HZ H~N J3I JG O9- OK1 R7C R7E R7G RCNCU ROYLF RPMJG RRC RSCEA RVUXY SLH SMJ ZCN 0R~ 53G AAFWJ AAHBH AAJAE AARTK AAWGC AAXHV AAYXX ABEMK ABIQK ABPDG ABXOH AEFDR AESAV AFLYV AFPKN AGEGJ AGRSR AHGCF AKBGW ANUXI APEMP CITATION H13 HZ~ M~E PGMZT RPM -JG NPM 7SR 8BQ 8FD JG9 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c454t-a445429b399a142ddea4fa9ee8a7ff20d512f6a81c2abb84253a69a8482f27cb3 |
ISSN | 2046-2069 |
IngestDate | Thu Aug 21 18:27:24 EDT 2025 Fri Jul 11 10:31:25 EDT 2025 Mon Jun 30 02:23:20 EDT 2025 Thu Jan 02 22:54:10 EST 2025 Tue Jul 01 04:05:14 EDT 2025 Thu Apr 24 22:59:47 EDT 2025 Sat Jan 08 03:40:05 EST 2022 Wed Nov 11 00:36:16 EST 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c454t-a445429b399a142ddea4fa9ee8a7ff20d512f6a81c2abb84253a69a8482f27cb3 |
Notes | 10.1039/c9ra10760f ref. 23 See DOI Electronic supplementary information (ESI) available: Details of computational methods, alternative energy profiles, tables of calculated energies and computed cartesian coordinates, full ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1475-0991 0000-0003-2666-7607 |
OpenAccessLink | http://dx.doi.org/10.1039/c9ra10760f |
PMID | 35497244 |
PQID | 2375442509 |
PQPubID | 2047525 |
PageCount | 7 |
ParticipantIDs | pubmed_primary_35497244 crossref_citationtrail_10_1039_C9RA10760F crossref_primary_10_1039_C9RA10760F rsc_primary_c9ra10760f proquest_miscellaneous_2574332007 proquest_journals_2375442509 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9050042 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-04 |
PublicationDateYYYYMMDD | 2020-03-04 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | RSC advances |
PublicationTitleAlternate | RSC Adv |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Yang (C9RA10760F-(cit17h)/*[position()=1]) 2015; 137 Xu (C9RA10760F-(cit1c)/*[position()=1]) 2007; 17 Takei (C9RA10760F-(cit12i)/*[position()=1]) 2001 Zhu (C9RA10760F-(cit3d)/*[position()=1]) 2010; 2 Pavlovic (C9RA10760F-(cit32c)/*[position()=1]) 2018; 37 Schneider (C9RA10760F-(cit9m)/*[position()=1]) 2009; 4 Newman (C9RA10760F-(cit11c)/*[position()=1]) 1996; 7 Kan (C9RA10760F-(cit12c)/*[position()=1]) 2017; 50 Otocka (C9RA10760F-(cit12b)/*[position()=1]) 2017; 117 Du (C9RA10760F-(cit8g)/*[position()=1]) 2008; 361 Sawamura (C9RA10760F-(cit9c)/*[position()=1]) 1994; 33 Lucas Bao (C9RA10760F-(cit32b)/*[position()=1]) 2017; 46 Brunel (C9RA10760F-(cit5b)/*[position()=1]) 2017; 42 Imamoto (C9RA10760F-(cit9j)/*[position()=1]) 2006; 17 Grimme (C9RA10760F-(cit30b)/*[position()=1]) 2011; 32 Riener (C9RA10760F-(cit9a)/*[position()=1]) 2012; 2 Song (C9RA10760F-(cit13e)/*[position()=1]) 2005; 46 Langer (C9RA10760F-(cit11d)/*[position()=1]) 1996; 7 Masamune (C9RA10760F-(cit2i)/*[position()=1]) 1977; 16 Dahy (C9RA10760F-(cit16a)/*[position()=1]) 2019; 40 Brunner (C9RA10760F-(cit11a)/*[position()=1]) 1984; 3 Hay (C9RA10760F-(cit25c)/*[position()=1]) 1985; 82 Xu (C9RA10760F-(cit17g)/*[position()=1]) 2018; 137 Liu (C9RA10760F-(cit17f)/*[position()=1]) 2018; 6 Pandey (C9RA10760F-(cit1b)/*[position()=1]) 2002; 43 Fernandes (C9RA10760F-(cit8b)/*[position()=1]) 2005; 46 Ohki (C9RA10760F-(cit18a)/*[position()=1]) 2008; 3 Zhao (C9RA10760F-(cit24a)/*[position()=1]) 2008; 120 Noronha (C9RA10760F-(cit8f)/*[position()=1]) 2011; 12 Petersson (C9RA10760F-(cit27)/*[position()=1]) 1988; 89 César (C9RA10760F-(cit14)/*[position()=1]) 2004; 43 Kišić (C9RA10760F-(cit12g)/*[position()=1]) 2015; 357 Zhao (C9RA10760F-(cit24c)/*[position()=1]) 2006; 125 Kromm (C9RA10760F-(cit9e)/*[position()=1]) 2002; 21 Huw (C9RA10760F-(cit13a)/*[position()=1]) 2003; 125 Ojima (C9RA10760F-(cit9b)/*[position()=1]) 1977; 42 Doherty (C9RA10760F-(cit10c)/*[position()=1]) 2002; 650 Nishibayashi (C9RA10760F-(cit13c)/*[position()=1]) 1998; 17 Liu (C9RA10760F-(cit17e)/*[position()=1]) 2019; 2 Wardrop (C9RA10760F-(cit1d)/*[position()=1]) 2006; 8 Nicolaou (C9RA10760F-(cit2e)/*[position()=1]) 2000; 39 Lundin (C9RA10760F-(cit4b)/*[position()=1]) 2009; 121 Song (C9RA10760F-(cit17a)/*[position()=1]) 2019; 141 Stahl (C9RA10760F-(cit20)/*[position()=1]) 2013; 135 Malacea (C9RA10760F-(cit10a)/*[position()=1]) 2010; 254 Evans (C9RA10760F-(cit2f)/*[position()=1]) 1995; 117 Zhao (C9RA10760F-(cit16b)/*[position()=1]) 2019; 84 Zanoni (C9RA10760F-(cit2a)/*[position()=1]) 2003; 68 Hosokawa (C9RA10760F-(cit12j)/*[position()=1]) 2010; 29 Brunel (C9RA10760F-(cit5a)/*[position()=1]) 2010; 35 Tao (C9RA10760F-(cit12h)/*[position()=1]) 2002; 41 Chen (C9RA10760F-(cit3b)/*[position()=1]) 2016; 138 Deng (C9RA10760F-(cit12d)/*[position()=1]) 2015; 80 Tanke (C9RA10760F-(cit10b)/*[position()=1]) 1990; 112 Schneider (C9RA10760F-(cit9k)/*[position()=1]) 2009; 48 Noronha (C9RA10760F-(cit8d)/*[position()=1]) 2009; 50 Fernandes (C9RA10760F-(cit8c)/*[position()=1]) 2007; 272 Liu (C9RA10760F-(cit17d)/*[position()=1]) 2019; 9 Cherney (C9RA10760F-(cit4c)/*[position()=1]) 2013; 135 Liu (C9RA10760F-(cit17c)/*[position()=1]) 2019; 7 Schneider (C9RA10760F-(cit1a)/*[position()=1]) 1992; 3 Crawford (C9RA10760F-(cit32d)/*[position()=1]) 2019 Chen (C9RA10760F-(cit3c)/*[position()=1]) 2016; 7 Schetter (C9RA10760F-(cit2g)/*[position()=1]) 2006; 45 Schneider (C9RA10760F-(cit9l)/*[position()=1]) 2010; 15 Hoyos (C9RA10760F-(cit2b)/*[position()=1]) 2010; 43 Katz (C9RA10760F-(cit1e)/*[position()=1]) 2011; 54 Becke (C9RA10760F-(cit25a)/*[position()=1]) 1993; 98 Nolin (C9RA10760F-(cit8h)/*[position()=1]) 2010; 16 Forster (C9RA10760F-(cit21)/*[position()=1]) 2017; 139 Liu (C9RA10760F-(cit17b)/*[position()=1]) 2019; 7 Grimme (C9RA10760F-(cit30a)/*[position()=1]) 2010; 132 Klei (C9RA10760F-(cit10e)/*[position()=1]) 2002; 21 Trost (C9RA10760F-(cit2c)/*[position()=1]) 1991; vol. 2 Gade (C9RA10760F-(cit11b)/*[position()=1]) 2004; 43 Parasram (C9RA10760F-(cit7b)/*[position()=1]) 2017; 50 Lefranc (C9RA10760F-(cit18b)/*[position()=1]) 2016; 22 Bahr (C9RA10760F-(cit22)/*[position()=1]) 2017; 36 Nikonov (C9RA10760F-(cit8i)/*[position()=1]) 2010; 49 Marenich (C9RA10760F-(cit29)/*[position()=1]) 2009; 113 Murai (C9RA10760F-(cit8a)/*[position()=1]) 1990; 55 Zhou (C9RA10760F-(cit15)/*[position()=1]) 2015; 34 Höllwarth (C9RA10760F-(cit26b)/*[position()=1]) 1993; 208 Pirrung (C9RA10760F-(cit7a)/*[position()=1]) 2001; 123 Zhao (C9RA10760F-(cit24b)/*[position()=1]) 2006; 110 Gonzalez (C9RA10760F-(cit28)/*[position()=1]) 1990; 94 Stahl (C9RA10760F-(cit19b)/*[position()=1]) 2013; 135 Lee (C9RA10760F-(cit25b)/*[position()=1]) 1988; 37 Teng (C9RA10760F-(cit12e)/*[position()=1]) 2017; 139 Martín (C9RA10760F-(cit10d)/*[position()=1]) 2003; 22 Wekesa (C9RA10760F-(cit12f)/*[position()=1]) 2015; 34 Stahl (C9RA10760F-(cit19a)/*[position()=1]) 2013; 135 Breuer (C9RA10760F-(cit3e)/*[position()=1]) 2004; 43 Harrington (C9RA10760F-(cit3a)/*[position()=1]) 1997; 1 Patrick (C9RA10760F-(cit13b)/*[position()=1]) 2003; 36 Duan (C9RA10760F-(cit9g)/*[position()=1]) 2003; 35 Arena (C9RA10760F-(cit9h)/*[position()=1]) 2004; 222 Field (C9RA10760F-(cit10f)/*[position()=1]) 2003; 22 Sun (C9RA10760F-(cit12a)/*[position()=1]) 2008; 73 Sutin (C9RA10760F-(cit3f)/*[position()=1]) 2007; 17 Truhlar (C9RA10760F-(cit32a)/*[position()=1]) 1996; 100 Grimme (C9RA10760F-(cit24d)/*[position()=1]) 2006; 27 Tao (C9RA10760F-(cit11e)/*[position()=1]) 2002; 41 Enders (C9RA10760F-(cit9d)/*[position()=1]) 1997; 8 Paterson (C9RA10760F-(cit2h)/*[position()=1]) 1985; 41 Cesar (C9RA10760F-(cit9i)/*[position()=1]) 2005; 11 Meinardi (C9RA10760F-(cit6)/*[position()=1]) 2017; 11 Ehlers (C9RA10760F-(cit26a)/*[position()=1]) 1993; 208 Lou (C9RA10760F-(cit4a)/*[position()=1]) 2010; 132 Mukaiyama (C9RA10760F-(cit2d)/*[position()=1]) 1999; 55 Noronha (C9RA10760F-(cit8e)/*[position()=1]) 2009; 74 Evans (C9RA10760F-(cit9f)/*[position()=1]) 2003; 125 Li (C9RA10760F-(cit13d)/*[position()=1]) 2012; 5 |
References_xml | – issn: 2009 publication-title: CYLview, 1.0b doi: Legault – issn: 1991 issue: vol. 2 end-page: p 1-53 publication-title: Comprehensive Organic Synthesis doi: Trost Fleming Heathcock – issn: 2016 doi: Frisch Trucks Schlegel Scuseria Robb Cheeseman Scalmani Barone Petersson Nakatsuji Li Caricato Marenich Bloino Janesko Gomperts Mennucci Hratchian Ortiz Izmaylov Sonnenberg Williams-Young Ding Lipparini Egidi Goings Peng Petrone Henderson Ranasinghe Zakrzewski Gao Rega Zheng Liang Hada Ehara Toyota Fukuda Hasegawa Ishida Nakajima Honda Kitao Nakai Vreven Throssell Montgomery Jr Peralta Ogliaro Bearpark Heyd Brothers Kudin Staroverov Keith Kobayashi Normand Raghavachari Rendell Burant Iyengar Tomasi Cossi Millam Klene Adamo Cammi Ochterski Martin Morokuma Farkas Foresman Fox – volume: 11 start-page: 2862 year: 2005 ident: C9RA10760F-(cit9i)/*[position()=1] publication-title: Chem.–Eur. J. doi: 10.1002/chem.200500132 – volume: 110 start-page: 13126 year: 2006 ident: C9RA10760F-(cit24b)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp066479k – volume: 120 start-page: 215 year: 2008 ident: C9RA10760F-(cit24a)/*[position()=1] publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-007-0310-x – volume: 121 start-page: 160 year: 2009 ident: C9RA10760F-(cit4b)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.200804888 – volume: 117 start-page: 4147 year: 2017 ident: C9RA10760F-(cit12b)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00517 – start-page: 2360 year: 2001 ident: C9RA10760F-(cit12i)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/b106435p – volume: 17 start-page: 3420 year: 1998 ident: C9RA10760F-(cit13c)/*[position()=1] publication-title: Organometallics doi: 10.1021/om980399o – volume: 50 start-page: 1407 year: 2009 ident: C9RA10760F-(cit8d)/*[position()=1] publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2009.01.039 – volume: 40 start-page: 62 year: 2019 ident: C9RA10760F-(cit16a)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.25529 – volume: 1 start-page: 72 year: 1997 ident: C9RA10760F-(cit3a)/*[position()=1] publication-title: Org. Process Res. Dev. doi: 10.1021/op960009e – volume: 17 start-page: 4837 year: 2007 ident: C9RA10760F-(cit3f)/*[position()=1] publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2007.06.054 – volume: 125 start-page: 3534 year: 2003 ident: C9RA10760F-(cit9f)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja012639o – volume: 54 start-page: 4092 year: 2011 ident: C9RA10760F-(cit1e)/*[position()=1] publication-title: J. Med. Chem. doi: 10.1021/jm200112k – volume: 37 start-page: 785 year: 1988 ident: C9RA10760F-(cit25b)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.37.785 – volume: 132 start-page: 154104 year: 2010 ident: C9RA10760F-(cit30a)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 16 start-page: 585 year: 1977 ident: C9RA10760F-(cit2i)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.197705851 – volume: 100 start-page: 12771 year: 1996 ident: C9RA10760F-(cit32a)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/jp953748q – volume: 15 start-page: 11515 year: 2010 ident: C9RA10760F-(cit9l)/*[position()=1] publication-title: Chem.–Eur. J. doi: 10.1002/chem.200901594 – volume: 55 start-page: 449 year: 1990 ident: C9RA10760F-(cit8a)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/jo00289a014 – volume: 27 start-page: 1787 year: 2006 ident: C9RA10760F-(cit24d)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 272 start-page: 60 year: 2007 ident: C9RA10760F-(cit8c)/*[position()=1] publication-title: J. Mol. Catal. A: Chem. doi: 10.1016/j.molcata.2007.03.019 – volume: 35 start-page: 3401 year: 2010 ident: C9RA10760F-(cit5a)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.01.116 – volume: 32 start-page: 1456 year: 2011 ident: C9RA10760F-(cit30b)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.21759 – volume: 135 start-page: 10978 year: 2013 ident: C9RA10760F-(cit19a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja405925w – volume: 98 start-page: 5648 year: 1993 ident: C9RA10760F-(cit25a)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.464913 – volume: 11 start-page: 177 year: 2017 ident: C9RA10760F-(cit6)/*[position()=1] publication-title: Nat. Photon. doi: 10.1038/nphoton.2017.5 – volume: 22 start-page: 10009 year: 2016 ident: C9RA10760F-(cit18b)/*[position()=1] publication-title: Chem.–Eur. J. doi: 10.1002/chem.201600386 – volume: 8 start-page: 3571 year: 1997 ident: C9RA10760F-(cit9d)/*[position()=1] publication-title: Tetrahedron: Asymmetry doi: 10.1016/S0957-4166(97)00519-3 – volume: 43 start-page: 1014 year: 2004 ident: C9RA10760F-(cit14)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200353133 – volume: 5 start-page: 396 year: 2012 ident: C9RA10760F-(cit13d)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201100585 – volume: 45 start-page: 7506 year: 2006 ident: C9RA10760F-(cit2g)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200602780 – volume: 12 start-page: 337 year: 2011 ident: C9RA10760F-(cit8f)/*[position()=1] publication-title: Catal. Commun. doi: 10.1016/j.catcom.2010.10.005 – volume: 139 start-page: 16506 year: 2017 ident: C9RA10760F-(cit12e)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10786 – volume: 39 start-page: 44 year: 2000 ident: C9RA10760F-(cit2e)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/(SICI)1521-3773(20000103)39:1<44::AID-ANIE44>3.0.CO;2-L – volume: 7 start-page: 3805 year: 2019 ident: C9RA10760F-(cit17b)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA08677J – volume: 123 start-page: 3638 year: 2001 ident: C9RA10760F-(cit7a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja002370t – volume: 16 start-page: 9555 year: 2010 ident: C9RA10760F-(cit8h)/*[position()=1] publication-title: Chem.–Eur. J. doi: 10.1002/chem.201001164 – volume: 34 start-page: 5051 year: 2015 ident: C9RA10760F-(cit12f)/*[position()=1] publication-title: Organometallics doi: 10.1021/acs.organomet.5b00630 – volume: 125 start-page: 194101 year: 2006 ident: C9RA10760F-(cit24c)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2370993 – volume: 43 start-page: 1014 year: 2004 ident: C9RA10760F-(cit11b)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200353133 – volume: 82 start-page: 299 year: 1985 ident: C9RA10760F-(cit25c)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.448975 – volume: 21 start-page: 4648 year: 2002 ident: C9RA10760F-(cit10e)/*[position()=1] publication-title: Organometallics doi: 10.1021/om0203173 – volume: 135 start-page: 7442 year: 2013 ident: C9RA10760F-(cit4c)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja402922w – volume: 141 start-page: 3630 year: 2019 ident: C9RA10760F-(cit17a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b13075 – volume: 208 start-page: 237 year: 1993 ident: C9RA10760F-(cit26b)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(93)89068-S – volume: 117 start-page: 3448 year: 1995 ident: C9RA10760F-(cit2f)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00117a014 – volume: 8 start-page: 3659 year: 2006 ident: C9RA10760F-(cit1d)/*[position()=1] publication-title: Org. Lett. doi: 10.1021/ol0609053 – volume: 43 start-page: 288 year: 2010 ident: C9RA10760F-(cit2b)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar900196n – volume: 84 start-page: 8552 year: 2019 ident: C9RA10760F-(cit16b)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/acs.joc.9b00959 – volume: 74 start-page: 6960 year: 2009 ident: C9RA10760F-(cit8e)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/jo9008657 – volume: 113 start-page: 6378 year: 2009 ident: C9RA10760F-(cit29)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp810292n – volume: 137 start-page: 2757 year: 2015 ident: C9RA10760F-(cit17h)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja513209c – volume: 650 start-page: 231 year: 2002 ident: C9RA10760F-(cit10c)/*[position()=1] publication-title: Organomet. Chem. doi: 10.1016/S0022-328X(02)01203-2 – volume: 2 start-page: 613 year: 2012 ident: C9RA10760F-(cit9a)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/cs200571v – volume: 41 start-page: 3892 year: 2002 ident: C9RA10760F-(cit12h)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20021018)41:20<3892::AID-ANIE3892>3.0.CO;2-A – start-page: 1021 year: 2019 ident: C9RA10760F-(cit32d)/*[position()=1] publication-title: Synthesis – volume: 55 start-page: 8609 year: 1999 ident: C9RA10760F-(cit2d)/*[position()=1] publication-title: Tetrahedron doi: 10.1016/S0040-4020(99)00437-8 – volume: 125 start-page: 6462 year: 2003 ident: C9RA10760F-(cit13a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0290072 – volume: 222 start-page: 47 year: 2004 ident: C9RA10760F-(cit9h)/*[position()=1] publication-title: J. Mol. Catal. A: Chem. doi: 10.1016/j.molcata.2004.07.012 – volume: 139 start-page: 16334 year: 2017 ident: C9RA10760F-(cit21)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b09444 – volume: 7 start-page: 1599 year: 1996 ident: C9RA10760F-(cit11d)/*[position()=1] publication-title: Tetrahedron: Asymmetry doi: 10.1016/0957-4166(96)00192-9 – volume: 36 start-page: 739 year: 2003 ident: C9RA10760F-(cit13b)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar0300219 – volume: 89 start-page: 2193 year: 1988 ident: C9RA10760F-(cit27)/*[position()=1] publication-title: Chem. Phys. – volume: 50 start-page: 2038 year: 2017 ident: C9RA10760F-(cit7b)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00306 – volume: 37 start-page: 941 year: 2018 ident: C9RA10760F-(cit32c)/*[position()=1] publication-title: Organometallics doi: 10.1021/acs.organomet.7b00899 – volume: 43 start-page: 788 year: 2004 ident: C9RA10760F-(cit3e)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200300599 – volume: 3 start-page: 525 year: 1992 ident: C9RA10760F-(cit1a)/*[position()=1] publication-title: Tetrahedron: Asymmetry doi: 10.1016/S0957-4166(00)80257-8 – volume: 7 start-page: 11944 year: 2019 ident: C9RA10760F-(cit17c)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA01188A – volume: 48 start-page: 1609 year: 2009 ident: C9RA10760F-(cit9k)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200804993 – volume: 42 start-page: 23004 year: 2017 ident: C9RA10760F-(cit5b)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.07.206 – volume: 68 start-page: 6437 year: 2003 ident: C9RA10760F-(cit2a)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/jo034502h – volume: 208 start-page: 111 year: 1993 ident: C9RA10760F-(cit26a)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(93)80086-5 – volume: 49 start-page: 7553 year: 2010 ident: C9RA10760F-(cit8i)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201003069 – volume: 46 start-page: 8881 year: 2005 ident: C9RA10760F-(cit8b)/*[position()=1] publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2005.10.076 – volume: 46 start-page: 7548 year: 2017 ident: C9RA10760F-(cit32b)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00602K – volume: 6 start-page: 15494 year: 2018 ident: C9RA10760F-(cit17f)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b03945 – volume: 94 start-page: 5523 year: 1990 ident: C9RA10760F-(cit28)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100377a021 – volume: 36 start-page: 935 year: 2017 ident: C9RA10760F-(cit22)/*[position()=1] publication-title: Organometallics doi: 10.1021/acs.organomet.7b00030 – volume: 3 start-page: 1354 year: 1984 ident: C9RA10760F-(cit11a)/*[position()=1] publication-title: Organometallics doi: 10.1021/om00087a006 – volume: 41 start-page: 3892 year: 2002 ident: C9RA10760F-(cit11e)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20021018)41:20<3892::AID-ANIE3892>3.0.CO;2-A – volume: 137 start-page: 98 year: 2018 ident: C9RA10760F-(cit17g)/*[position()=1] publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-018-2270-8 – volume: 2 start-page: 546 year: 2010 ident: C9RA10760F-(cit3d)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.651 – volume: 34 start-page: 1479 year: 2015 ident: C9RA10760F-(cit15)/*[position()=1] publication-title: Organometallics doi: 10.1021/om5011929 – volume: 3 start-page: 1625 year: 2008 ident: C9RA10760F-(cit18a)/*[position()=1] publication-title: Chem.–Asian J. doi: 10.1002/asia.200800106 – volume: 73 start-page: 1143 year: 2008 ident: C9RA10760F-(cit12a)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/jo702068w – volume: 7 start-page: 6669 year: 2016 ident: C9RA10760F-(cit3c)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C6SC01845A – volume: 42 start-page: 1671 year: 1977 ident: C9RA10760F-(cit9b)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/jo00430a001 – volume: 29 start-page: 5773 year: 2010 ident: C9RA10760F-(cit12j)/*[position()=1] publication-title: Organometallics doi: 10.1021/om1009186 – volume: 138 start-page: 7212 year: 2016 ident: C9RA10760F-(cit3b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b00406 – volume: 357 start-page: 2540 year: 2015 ident: C9RA10760F-(cit12g)/*[position()=1] publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201500288 – volume: 35 start-page: 2916 year: 2003 ident: C9RA10760F-(cit9g)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/B309185F – volume: 17 start-page: 560 year: 2006 ident: C9RA10760F-(cit9j)/*[position()=1] publication-title: Tetrahedron: Asymmetry doi: 10.1016/j.tetasy.2006.02.008 – volume: 41 start-page: 3569 year: 1985 ident: C9RA10760F-(cit2h)/*[position()=1] publication-title: Tetrahedron doi: 10.1016/S0040-4020(01)91380-8 – volume: 9 start-page: 27710 year: 2019 ident: C9RA10760F-(cit17d)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C9RA04135D – volume: 135 start-page: 1248 year: 2013 ident: C9RA10760F-(cit19b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja311398j – volume: 135 start-page: 10978 year: 2013 ident: C9RA10760F-(cit20)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja405925w – volume: 361 start-page: 3184 year: 2008 ident: C9RA10760F-(cit8g)/*[position()=1] publication-title: Inorg. Chim. Acta doi: 10.1016/j.ica.2007.11.023 – volume: 4 start-page: 493 year: 2009 ident: C9RA10760F-(cit9m)/*[position()=1] publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.200801107 – volume: 254 start-page: 729 year: 2010 ident: C9RA10760F-(cit10a)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2009.09.033 – volume: vol. 2 volume-title: Comprehensive Organic Synthesis year: 1991 ident: C9RA10760F-(cit2c)/*[position()=1] – volume: 50 start-page: 7911 year: 2017 ident: C9RA10760F-(cit12c)/*[position()=1] publication-title: Macromolecules doi: 10.1021/acs.macromol.7b01420 – volume: 21 start-page: 4275 year: 2002 ident: C9RA10760F-(cit9e)/*[position()=1] publication-title: Organometallics doi: 10.1021/om020432d – volume: 132 start-page: 1264 year: 2010 ident: C9RA10760F-(cit4a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja909689t – volume: 17 start-page: 101 year: 2007 ident: C9RA10760F-(cit1c)/*[position()=1] publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2006.09.078 – volume: 33 start-page: 111 year: 1994 ident: C9RA10760F-(cit9c)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.199401111 – volume: 43 start-page: 4425 year: 2002 ident: C9RA10760F-(cit1b)/*[position()=1] publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(02)00842-0 – volume: 2 start-page: 193 year: 2019 ident: C9RA10760F-(cit17e)/*[position()=1] publication-title: Energy Environ. Mater. doi: 10.1002/eem2.12048 – volume: 112 start-page: 7984 year: 1990 ident: C9RA10760F-(cit10b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00178a021 – volume: 80 start-page: 7984 year: 2015 ident: C9RA10760F-(cit12d)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/acs.joc.5b00895 – volume: 22 start-page: 5406 year: 2003 ident: C9RA10760F-(cit10d)/*[position()=1] publication-title: Organometallics doi: 10.1021/om034218g – volume: 22 start-page: 4393 year: 2003 ident: C9RA10760F-(cit10f)/*[position()=1] publication-title: Organometallics doi: 10.1021/om034004z – volume: 46 start-page: 3241 year: 2005 ident: C9RA10760F-(cit13e)/*[position()=1] publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2005.03.026 – volume: 7 start-page: 1597 year: 1996 ident: C9RA10760F-(cit11c)/*[position()=1] publication-title: Tetrahedron: Asymmetry doi: 10.1016/0957-4166(96)00191-7 |
SSID | ssj0000651261 |
Score | 2.3024585 |
Snippet | A detailed theoretical study on the mechanism of enanthioselective hydrosilylation of imines and ketones catalyzed by the ruthenium(
ii
) thiolate catalyst... A detailed theoretical study on the mechanism of enanthioselective hydrosilylation of imines and ketones catalyzed by the ruthenium(ii) thiolate catalyst... |
SourceID | pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9431 |
SubjectTerms | Carbon Cartesian coordinates catalysts Cations Chemistry chemoselectivity cleavage (chemistry) Dehydrogenation Density functional theory enamines Enantiomers enantioselectivity enol ethers hydrogen Hydrogen bonds Hydrosilylation Imines Ketones Lewis acids Ligands phosphine Phosphines Reaction mechanisms Ruthenium Ruthenium compounds silane Silicon silylation |
Title | Enantioselective hydrosilylation of unsaturated carbon-heteroatom bonds (C&z.dbd;N, C&z.dbd;O) catalyzed by [Ru-S] complexes: a theoretical study |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35497244 https://www.proquest.com/docview/2375442509 https://www.proquest.com/docview/2574332007 https://pubmed.ncbi.nlm.nih.gov/PMC9050042 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF31IkFfELeCS6kWQSWq1MVer5OYt2JaVQhalLYogFC0vpFIqR2lsSB94h_4Jn6EP-APmNm1106bB-iLlXhH3sRzPDszPjtDyDPQqnAiS5gJh9iEc8ZNYbuBaYdegPs-WaCqfR42D075m67bXVj4U2Mt5ZNgJ7yYu6_kOlqFc6BX3CX7H5rVF4UT8Bn0C0fQMBz_Scd7yGIZZOeylw1SgPrTCFa9wXA61J5gnp5j7U6BnmUoxgG4egW_wekjFSaDqPusAacjmX_1Gz66kcovHWWTsYAH397B2NtvfBsPJuBj45Dk9YKlGapChpIzBau815C0Af8Isw0yNTS9UNfadF91cj318ab7WtHZ4--KlSdm9lRWVW_L4uHHfslX0FHAp36WK-q_yEw8VFwFZUwB_-nXfj6o0vHKsr0d1JMdgB5ke1XJTnx0VFql5LRKzkrRGU8tadJ2Mgj74V-rLjDa0Ft1QNfNtseLpSguv7bmLi-Wg9VZQ28sbHyjmdSF4FaNziTQHIi5W0yVtbxUzPv9O9-zXLSUi2SZQWQDpnm58-G0-1EnBsEntCGsLUvpOt6Lar4VcqO8-KwfdSU4usrxXRyXLW2k63Rym9wqYh66qwB8hyzE6V1yU9_Qe-TXZSDTS0CmWUJrQKYKyL9__KwgTCWE6XOfFgCmwZQWAKYI4G1awBcHJHxpCV-q4UsPt6l_tEU1dFH4cyeHqY6_UA3Yl1TQGlyphOt9crq_d-IfmEV_ETPkLp-YgnPs1haAjy5szmChFzwRXhy3RStJmBWBIpKmaNshE0GA76sd0fREm7dZwlph4KySpTRL44eEsoiBrxzZdujY3A4twcHNdppe1EzAKWauQbZKbfXCovg-9oAZ9iQJxPF6vtfZlUreN8hTLTtSJWfmSq2XSu8VJum8x7ChNfxOyzPIEz0MysS3gCKNsxxk3BbWLITYwCAPFEb0NCW4DNKaQY8WwGL0syPpoC-L0hewNsgq4EzLV9A1yNr8gd4oStauPd8jslLZiXWyNBnn8WMIEybBhkyvbRSP1197uxeT |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enantioselective+hydrosilylation+of+unsaturated+carbon%E2%80%93heteroatom+bonds+%28C+Created+by+potrace+1.16%2C+written+by+Peter+Selinger+2001-2019+N%2C+CO%29+catalyzed+by+%5BRu%E2%80%93S%5D+complexes%3A+a+theoretical+study&rft.jtitle=RSC+advances&rft.au=Zhou%2C+Miao-Miao&rft.au=Chen%2C+Guanghui&rft.au=Dang%2C+Li&rft.date=2020-03-04&rft.pub=The+Royal+Society+of+Chemistry&rft.eissn=2046-2069&rft.volume=10&rft.issue=16&rft.spage=9431&rft.epage=9437&rft_id=info:doi/10.1039%2Fc9ra10760f&rft_id=info%3Apmid%2F35497244&rft.externalDocID=PMC9050042 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon |