Enantioselective hydrosilylation of unsaturated carbon-heteroatom bonds (C&z.dbd;N, C&z.dbd;O) catalyzed by [Ru-S] complexes: a theoretical study

A detailed theoretical study on the mechanism of enanthioselective hydrosilylation of imines and ketones catalyzed by the ruthenium( ii ) thiolate catalyst [Ru-S] ([ L* -Ru(SDmp)] + [BAr 4 F ] − ) with a chiral monodentate phosphine ligand is carried out in this work. We elucidate all the pathways l...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 1; no. 16; pp. 9431 - 9437
Main Authors Zhou, Miao-Miao, Chen, Guanghui, Dang, Li
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 04.03.2020
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A detailed theoretical study on the mechanism of enanthioselective hydrosilylation of imines and ketones catalyzed by the ruthenium( ii ) thiolate catalyst [Ru-S] ([ L* -Ru(SDmp)] + [BAr 4 F ] − ) with a chiral monodentate phosphine ligand is carried out in this work. We elucidate all the pathways leading to the main products or by products mediated by the [Ru-S] complex in order to have deep understanding of the chemoselectivity and enantioselectivity. The DFT (Density Functional Theory) calculations show that the reaction mechanism including: (1) Si-H bond cleavage by the dual activity of Ru-S bond; (2) the generation of a sulfur-stabilized silane cation; (3) the electrophilic attack of silane cation to N&z.dbd;C/O&z.dbd;C; (4) hydrogen transfer from Ru to carbon cation. The hydrosilylation products are found to be the final products rather than the dehydrogenative ones, which is consistent with the experimental results. The dehydrogenative silylation reaction pathways which give N- or O-silylated enamine/enol ether are reversible according to our calculations. The computational results also show that the electrophilic attack of silicon to N&z.dbd;C/O&z.dbd;C is the rate-determining step and the ee value can be improved significantly with more bulky model phosphine ligand based on the same calculation methods. A detailed theoretical study on the mechanism of enanthioselective hydrosilylation of imines and ketones catalyzed by the ruthenium( ii ) thiolate catalyst with a chiral monodentate phosphine ligand is carried out in this work.
AbstractList A detailed theoretical study on the mechanism of enanthioselective hydrosilylation of imines and ketones catalyzed by the ruthenium(ii) thiolate catalyst [Ru-S] ([L*-Ru(SDmp)] [BAr ] ) with a chiral monodentate phosphine ligand is carried out in this work. We elucidate all the pathways leading to the main products or by products mediated by the [Ru-S] complex in order to have deep understanding of the chemoselectivity and enantioselectivity. The DFT (Density Functional Theory) calculations show that the reaction mechanism including: (1) Si-H bond cleavage by the dual activity of Ru-S bond; (2) the generation of a sulfur-stabilized silane cation; (3) the electrophilic attack of silane cation to N[double bond, length as m-dash]C/O[double bond, length as m-dash]C; (4) hydrogen transfer from Ru to carbon cation. The hydrosilylation products are found to be the final products rather than the dehydrogenative ones, which is consistent with the experimental results. The dehydrogenative silylation reaction pathways which give N- or O-silylated enamine/enol ether are reversible according to our calculations. The computational results also show that the electrophilic attack of silicon to N[double bond, length as m-dash]C/O[double bond, length as m-dash]C is the rate-determining step and the ee value can be improved significantly with more bulky model phosphine ligand based on the same calculation methods.
A detailed theoretical study on the mechanism of enanthioselective hydrosilylation of imines and ketones catalyzed by the ruthenium( ii ) thiolate catalyst [Ru-S] ([ L* -Ru(SDmp)] + [BAr 4 F ] − ) with a chiral monodentate phosphine ligand is carried out in this work. We elucidate all the pathways leading to the main products or by products mediated by the [Ru-S] complex in order to have deep understanding of the chemoselectivity and enantioselectivity. The DFT (Density Functional Theory) calculations show that the reaction mechanism including: (1) Si-H bond cleavage by the dual activity of Ru-S bond; (2) the generation of a sulfur-stabilized silane cation; (3) the electrophilic attack of silane cation to N&z.dbd;C/O&z.dbd;C; (4) hydrogen transfer from Ru to carbon cation. The hydrosilylation products are found to be the final products rather than the dehydrogenative ones, which is consistent with the experimental results. The dehydrogenative silylation reaction pathways which give N- or O-silylated enamine/enol ether are reversible according to our calculations. The computational results also show that the electrophilic attack of silicon to N&z.dbd;C/O&z.dbd;C is the rate-determining step and the ee value can be improved significantly with more bulky model phosphine ligand based on the same calculation methods. A detailed theoretical study on the mechanism of enanthioselective hydrosilylation of imines and ketones catalyzed by the ruthenium( ii ) thiolate catalyst with a chiral monodentate phosphine ligand is carried out in this work.
A detailed theoretical study on the mechanism of enanthioselective hydrosilylation of imines and ketones catalyzed by the ruthenium(ii) thiolate catalyst [Ru–S] ([L*-Ru(SDmp)]⁺[BAr₄F]⁻) with a chiral monodentate phosphine ligand is carried out in this work. We elucidate all the pathways leading to the main products or by products mediated by the [Ru–S] complex in order to have deep understanding of the chemoselectivity and enantioselectivity. The DFT (Density Functional Theory) calculations show that the reaction mechanism including: (1) Si–H bond cleavage by the dual activity of Ru–S bond; (2) the generation of a sulfur-stabilized silane cation; (3) the electrophilic attack of silane cation to NC/OC; (4) hydrogen transfer from Ru to carbon cation. The hydrosilylation products are found to be the final products rather than the dehydrogenative ones, which is consistent with the experimental results. The dehydrogenative silylation reaction pathways which give N- or O-silylated enamine/enol ether are reversible according to our calculations. The computational results also show that the electrophilic attack of silicon to NC/OC is the rate-determining step and the ee value can be improved significantly with more bulky model phosphine ligand based on the same calculation methods.
A detailed theoretical study on the mechanism of enanthioselective hydrosilylation of imines and ketones catalyzed by the ruthenium( ii ) thiolate catalyst [Ru–S] ([L*-Ru(SDmp)] + [BAr 4 F ] − ) with a chiral monodentate phosphine ligand is carried out in this work. We elucidate all the pathways leading to the main products or by products mediated by the [Ru–S] complex in order to have deep understanding of the chemoselectivity and enantioselectivity. The DFT (Density Functional Theory) calculations show that the reaction mechanism including: (1) Si–H bond cleavage by the dual activity of Ru–S bond; (2) the generation of a sulfur-stabilized silane cation; (3) the electrophilic attack of silane cation to N C/O C; (4) hydrogen transfer from Ru to carbon cation. The hydrosilylation products are found to be the final products rather than the dehydrogenative ones, which is consistent with the experimental results. The dehydrogenative silylation reaction pathways which give N- or O-silylated enamine/enol ether are reversible according to our calculations. The computational results also show that the electrophilic attack of silicon to N C/O C is the rate-determining step and the ee value can be improved significantly with more bulky model phosphine ligand based on the same calculation methods. A detailed theoretical study on the mechanism of enanthioselective hydrosilylation of imines and ketones catalyzed by the ruthenium( ii ) thiolate catalyst with a chiral monodentate phosphine ligand is carried out in this work.
A detailed theoretical study on the mechanism of enanthioselective hydrosilylation of imines and ketones catalyzed by the ruthenium( ii ) thiolate catalyst [Ru–S] ([ L* -Ru(SDmp)] + [BAr 4 F ] − ) with a chiral monodentate phosphine ligand is carried out in this work. We elucidate all the pathways leading to the main products or by products mediated by the [Ru–S] complex in order to have deep understanding of the chemoselectivity and enantioselectivity. The DFT (Density Functional Theory) calculations show that the reaction mechanism including: (1) Si–H bond cleavage by the dual activity of Ru–S bond; (2) the generation of a sulfur-stabilized silane cation; (3) the electrophilic attack of silane cation to NC/OC; (4) hydrogen transfer from Ru to carbon cation. The hydrosilylation products are found to be the final products rather than the dehydrogenative ones, which is consistent with the experimental results. The dehydrogenative silylation reaction pathways which give N- or O-silylated enamine/enol ether are reversible according to our calculations. The computational results also show that the electrophilic attack of silicon to NC/OC is the rate-determining step and the ee value can be improved significantly with more bulky model phosphine ligand based on the same calculation methods.
A detailed theoretical study on the mechanism of enanthioselective hydrosilylation of imines and ketones catalyzed by the ruthenium(ii) thiolate catalyst [Ru–S] ([L*-Ru(SDmp)]+[BAr4F]−) with a chiral monodentate phosphine ligand is carried out in this work. We elucidate all the pathways leading to the main products or by products mediated by the [Ru–S] complex in order to have deep understanding of the chemoselectivity and enantioselectivity. The DFT (Density Functional Theory) calculations show that the reaction mechanism including: (1) Si–H bond cleavage by the dual activity of Ru–S bond; (2) the generation of a sulfur-stabilized silane cation; (3) the electrophilic attack of silane cation to N=C/O=C; (4) hydrogen transfer from Ru to carbon cation. The hydrosilylation products are found to be the final products rather than the dehydrogenative ones, which is consistent with the experimental results. The dehydrogenative silylation reaction pathways which give N- or O-silylated enamine/enol ether are reversible according to our calculations. The computational results also show that the electrophilic attack of silicon to N=C/O=C is the rate-determining step and the ee value can be improved significantly with more bulky model phosphine ligand based on the same calculation methods.
Author Zhou, Miao-Miao
Chen, Guanghui
Dang, Li
AuthorAffiliation Department of Chemistry
Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province
Shantou University
AuthorAffiliation_xml – name: Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province
– name: Department of Chemistry
– name: Shantou University
Author_xml – sequence: 1
  givenname: Miao-Miao
  surname: Zhou
  fullname: Zhou, Miao-Miao
– sequence: 2
  givenname: Guanghui
  surname: Chen
  fullname: Chen, Guanghui
– sequence: 3
  givenname: Li
  surname: Dang
  fullname: Dang, Li
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35497244$$D View this record in MEDLINE/PubMed
BookMark eNp9klFrFDEQxxep2Fr74ruSIkgVt2az2d2LglCOVoVioeqTSJhNZr0t2eRMssXtt_AbG3u9WouYl0kyv_nzH2buZxvWWcyyhwXdL2gpXirhoaBNTbs72RajvM4ZrcXGjftmthPCGU2nrgpWF_eyzbLiomGcb2U_Dy3Y2LuABlXsz5EsJu1d6M1kIP1b4joy2gBx9BBREwW-dTZfYETvILqBpKcOZG_-9GJft_r1hxdkfT15lvAIZrpIhe1EvpyO-cevRLlhafAHhlcESFyg8xh7BYaEOOrpQXa3AxNw5ypuZ5-PDj_N3-XHJ2_fzw-Oc8UrHnPgKTDRlkJAwZnWCLwDgTiDpusY1anXroZZoRi07YyzqoRawIzPWMca1Zbb2ZuV7nJsB9QKbfRg5NL3A_hJOujl3xnbL-Q3dy4FrSjlLAnsXQl4933EEOXQB4XGgEU3Bsmqhpclo7RJ6JNb6JkbvU3tSVY2FU_uqEjU45uOrq2sp5UAugJUmlDw2EnVx8spJYO9kQWVv3dCzsXpweVOHKWS57dK1qr_hB-tYB_UNfdnwVJ-9395udRd-Qvx082j
CitedBy_id crossref_primary_10_1021_acs_inorgchem_0c03695
crossref_primary_10_1002_asia_202201181
crossref_primary_10_1016_j_jorganchem_2022_122483
crossref_primary_10_1021_acs_inorgchem_4c05517
crossref_primary_10_1016_j_jphotochem_2021_113553
crossref_primary_10_1016_j_rechem_2022_100511
Cites_doi 10.1002/chem.200500132
10.1021/jp066479k
10.1007/s00214-007-0310-x
10.1002/ange.200804888
10.1021/acs.chemrev.6b00517
10.1039/b106435p
10.1021/om980399o
10.1016/j.tetlet.2009.01.039
10.1002/jcc.25529
10.1021/op960009e
10.1016/j.bmcl.2007.06.054
10.1021/ja012639o
10.1021/jm200112k
10.1103/PhysRevB.37.785
10.1063/1.3382344
10.1002/anie.197705851
10.1021/jp953748q
10.1002/chem.200901594
10.1021/jo00289a014
10.1002/jcc.20495
10.1016/j.molcata.2007.03.019
10.1016/j.ijhydene.2010.01.116
10.1002/jcc.21759
10.1021/ja405925w
10.1063/1.464913
10.1038/nphoton.2017.5
10.1002/chem.201600386
10.1016/S0957-4166(97)00519-3
10.1002/anie.200353133
10.1002/cssc.201100585
10.1002/anie.200602780
10.1016/j.catcom.2010.10.005
10.1021/jacs.7b10786
10.1002/(SICI)1521-3773(20000103)39:1<44::AID-ANIE44>3.0.CO;2-L
10.1039/C8TA08677J
10.1021/ja002370t
10.1002/chem.201001164
10.1021/acs.organomet.5b00630
10.1063/1.2370993
10.1063/1.448975
10.1021/om0203173
10.1021/ja402922w
10.1021/jacs.8b13075
10.1016/0009-2614(93)89068-S
10.1021/ja00117a014
10.1021/ol0609053
10.1021/ar900196n
10.1021/acs.joc.9b00959
10.1021/jo9008657
10.1021/jp810292n
10.1021/ja513209c
10.1016/S0022-328X(02)01203-2
10.1021/cs200571v
10.1002/1521-3773(20021018)41:20<3892::AID-ANIE3892>3.0.CO;2-A
10.1016/S0040-4020(99)00437-8
10.1021/ja0290072
10.1016/j.molcata.2004.07.012
10.1021/jacs.7b09444
10.1016/0957-4166(96)00192-9
10.1021/ar0300219
10.1021/acs.accounts.7b00306
10.1021/acs.organomet.7b00899
10.1002/anie.200300599
10.1016/S0957-4166(00)80257-8
10.1039/C9TA01188A
10.1002/anie.200804993
10.1016/j.ijhydene.2017.07.206
10.1021/jo034502h
10.1016/0009-2614(93)80086-5
10.1002/anie.201003069
10.1016/j.tetlet.2005.10.076
10.1039/C7CS00602K
10.1021/acssuschemeng.8b03945
10.1021/j100377a021
10.1021/acs.organomet.7b00030
10.1021/om00087a006
10.1007/s00214-018-2270-8
10.1038/nchem.651
10.1021/om5011929
10.1002/asia.200800106
10.1021/jo702068w
10.1039/C6SC01845A
10.1021/jo00430a001
10.1021/om1009186
10.1021/jacs.6b00406
10.1002/adsc.201500288
10.1039/B309185F
10.1016/j.tetasy.2006.02.008
10.1016/S0040-4020(01)91380-8
10.1039/C9RA04135D
10.1021/ja311398j
10.1016/j.ica.2007.11.023
10.1002/ejic.200801107
10.1016/j.ccr.2009.09.033
10.1021/acs.macromol.7b01420
10.1021/om020432d
10.1021/ja909689t
10.1016/j.bmcl.2006.09.078
10.1002/anie.199401111
10.1016/S0040-4039(02)00842-0
10.1002/eem2.12048
10.1021/ja00178a021
10.1021/acs.joc.5b00895
10.1021/om034218g
10.1021/om034004z
10.1016/j.tetlet.2005.03.026
10.1016/0957-4166(96)00191-7
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2020
This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2020
– notice: This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
5PM
DOI 10.1039/c9ra10760f
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

AGRICOLA

CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 9437
ExternalDocumentID PMC9050042
35497244
10_1039_C9RA10760F
c9ra10760f
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 21573102
– fundername: ;
  grantid: Unassigned
GroupedDBID 0-7
0R
AAGNR
AAIWI
ABGFH
ACGFS
ADBBV
ADMRA
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
BCNDV
BLAPV
BSQNT
C6K
CKLOX
EBS
EE0
EF-
GROUPED_DOAJ
HZ
H~N
J3I
JG
O9-
OK1
R7C
R7E
R7G
RCNCU
ROYLF
RPMJG
RRC
RSCEA
RVUXY
SLH
SMJ
ZCN
0R~
53G
AAFWJ
AAHBH
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABIQK
ABPDG
ABXOH
AEFDR
AESAV
AFLYV
AFPKN
AGEGJ
AGRSR
AHGCF
AKBGW
ANUXI
APEMP
CITATION
H13
HZ~
M~E
PGMZT
RPM
-JG
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
5PM
ID FETCH-LOGICAL-c454t-a445429b399a142ddea4fa9ee8a7ff20d512f6a81c2abb84253a69a8482f27cb3
ISSN 2046-2069
IngestDate Thu Aug 21 18:27:24 EDT 2025
Fri Jul 11 10:31:25 EDT 2025
Mon Jun 30 02:23:20 EDT 2025
Thu Jan 02 22:54:10 EST 2025
Tue Jul 01 04:05:14 EDT 2025
Thu Apr 24 22:59:47 EDT 2025
Sat Jan 08 03:40:05 EST 2022
Wed Nov 11 00:36:16 EST 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c454t-a445429b399a142ddea4fa9ee8a7ff20d512f6a81c2abb84253a69a8482f27cb3
Notes 10.1039/c9ra10760f
ref. 23
See DOI
Electronic supplementary information (ESI) available: Details of computational methods, alternative energy profiles, tables of calculated energies and computed cartesian coordinates, full
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1475-0991
0000-0003-2666-7607
OpenAccessLink http://dx.doi.org/10.1039/c9ra10760f
PMID 35497244
PQID 2375442509
PQPubID 2047525
PageCount 7
ParticipantIDs pubmed_primary_35497244
crossref_citationtrail_10_1039_C9RA10760F
crossref_primary_10_1039_C9RA10760F
rsc_primary_c9ra10760f
proquest_miscellaneous_2574332007
proquest_journals_2375442509
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9050042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-04
PublicationDateYYYYMMDD 2020-03-04
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-04
  day: 04
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle RSC advances
PublicationTitleAlternate RSC Adv
PublicationYear 2020
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Yang (C9RA10760F-(cit17h)/*[position()=1]) 2015; 137
Xu (C9RA10760F-(cit1c)/*[position()=1]) 2007; 17
Takei (C9RA10760F-(cit12i)/*[position()=1]) 2001
Zhu (C9RA10760F-(cit3d)/*[position()=1]) 2010; 2
Pavlovic (C9RA10760F-(cit32c)/*[position()=1]) 2018; 37
Schneider (C9RA10760F-(cit9m)/*[position()=1]) 2009; 4
Newman (C9RA10760F-(cit11c)/*[position()=1]) 1996; 7
Kan (C9RA10760F-(cit12c)/*[position()=1]) 2017; 50
Otocka (C9RA10760F-(cit12b)/*[position()=1]) 2017; 117
Du (C9RA10760F-(cit8g)/*[position()=1]) 2008; 361
Sawamura (C9RA10760F-(cit9c)/*[position()=1]) 1994; 33
Lucas Bao (C9RA10760F-(cit32b)/*[position()=1]) 2017; 46
Brunel (C9RA10760F-(cit5b)/*[position()=1]) 2017; 42
Imamoto (C9RA10760F-(cit9j)/*[position()=1]) 2006; 17
Grimme (C9RA10760F-(cit30b)/*[position()=1]) 2011; 32
Riener (C9RA10760F-(cit9a)/*[position()=1]) 2012; 2
Song (C9RA10760F-(cit13e)/*[position()=1]) 2005; 46
Langer (C9RA10760F-(cit11d)/*[position()=1]) 1996; 7
Masamune (C9RA10760F-(cit2i)/*[position()=1]) 1977; 16
Dahy (C9RA10760F-(cit16a)/*[position()=1]) 2019; 40
Brunner (C9RA10760F-(cit11a)/*[position()=1]) 1984; 3
Hay (C9RA10760F-(cit25c)/*[position()=1]) 1985; 82
Xu (C9RA10760F-(cit17g)/*[position()=1]) 2018; 137
Liu (C9RA10760F-(cit17f)/*[position()=1]) 2018; 6
Pandey (C9RA10760F-(cit1b)/*[position()=1]) 2002; 43
Fernandes (C9RA10760F-(cit8b)/*[position()=1]) 2005; 46
Ohki (C9RA10760F-(cit18a)/*[position()=1]) 2008; 3
Zhao (C9RA10760F-(cit24a)/*[position()=1]) 2008; 120
Noronha (C9RA10760F-(cit8f)/*[position()=1]) 2011; 12
Petersson (C9RA10760F-(cit27)/*[position()=1]) 1988; 89
César (C9RA10760F-(cit14)/*[position()=1]) 2004; 43
Kišić (C9RA10760F-(cit12g)/*[position()=1]) 2015; 357
Zhao (C9RA10760F-(cit24c)/*[position()=1]) 2006; 125
Kromm (C9RA10760F-(cit9e)/*[position()=1]) 2002; 21
Huw (C9RA10760F-(cit13a)/*[position()=1]) 2003; 125
Ojima (C9RA10760F-(cit9b)/*[position()=1]) 1977; 42
Doherty (C9RA10760F-(cit10c)/*[position()=1]) 2002; 650
Nishibayashi (C9RA10760F-(cit13c)/*[position()=1]) 1998; 17
Liu (C9RA10760F-(cit17e)/*[position()=1]) 2019; 2
Wardrop (C9RA10760F-(cit1d)/*[position()=1]) 2006; 8
Nicolaou (C9RA10760F-(cit2e)/*[position()=1]) 2000; 39
Lundin (C9RA10760F-(cit4b)/*[position()=1]) 2009; 121
Song (C9RA10760F-(cit17a)/*[position()=1]) 2019; 141
Stahl (C9RA10760F-(cit20)/*[position()=1]) 2013; 135
Malacea (C9RA10760F-(cit10a)/*[position()=1]) 2010; 254
Evans (C9RA10760F-(cit2f)/*[position()=1]) 1995; 117
Zhao (C9RA10760F-(cit16b)/*[position()=1]) 2019; 84
Zanoni (C9RA10760F-(cit2a)/*[position()=1]) 2003; 68
Hosokawa (C9RA10760F-(cit12j)/*[position()=1]) 2010; 29
Brunel (C9RA10760F-(cit5a)/*[position()=1]) 2010; 35
Tao (C9RA10760F-(cit12h)/*[position()=1]) 2002; 41
Chen (C9RA10760F-(cit3b)/*[position()=1]) 2016; 138
Deng (C9RA10760F-(cit12d)/*[position()=1]) 2015; 80
Tanke (C9RA10760F-(cit10b)/*[position()=1]) 1990; 112
Schneider (C9RA10760F-(cit9k)/*[position()=1]) 2009; 48
Noronha (C9RA10760F-(cit8d)/*[position()=1]) 2009; 50
Fernandes (C9RA10760F-(cit8c)/*[position()=1]) 2007; 272
Liu (C9RA10760F-(cit17d)/*[position()=1]) 2019; 9
Cherney (C9RA10760F-(cit4c)/*[position()=1]) 2013; 135
Liu (C9RA10760F-(cit17c)/*[position()=1]) 2019; 7
Schneider (C9RA10760F-(cit1a)/*[position()=1]) 1992; 3
Crawford (C9RA10760F-(cit32d)/*[position()=1]) 2019
Chen (C9RA10760F-(cit3c)/*[position()=1]) 2016; 7
Schetter (C9RA10760F-(cit2g)/*[position()=1]) 2006; 45
Schneider (C9RA10760F-(cit9l)/*[position()=1]) 2010; 15
Hoyos (C9RA10760F-(cit2b)/*[position()=1]) 2010; 43
Katz (C9RA10760F-(cit1e)/*[position()=1]) 2011; 54
Becke (C9RA10760F-(cit25a)/*[position()=1]) 1993; 98
Nolin (C9RA10760F-(cit8h)/*[position()=1]) 2010; 16
Forster (C9RA10760F-(cit21)/*[position()=1]) 2017; 139
Liu (C9RA10760F-(cit17b)/*[position()=1]) 2019; 7
Grimme (C9RA10760F-(cit30a)/*[position()=1]) 2010; 132
Klei (C9RA10760F-(cit10e)/*[position()=1]) 2002; 21
Trost (C9RA10760F-(cit2c)/*[position()=1]) 1991; vol. 2
Gade (C9RA10760F-(cit11b)/*[position()=1]) 2004; 43
Parasram (C9RA10760F-(cit7b)/*[position()=1]) 2017; 50
Lefranc (C9RA10760F-(cit18b)/*[position()=1]) 2016; 22
Bahr (C9RA10760F-(cit22)/*[position()=1]) 2017; 36
Nikonov (C9RA10760F-(cit8i)/*[position()=1]) 2010; 49
Marenich (C9RA10760F-(cit29)/*[position()=1]) 2009; 113
Murai (C9RA10760F-(cit8a)/*[position()=1]) 1990; 55
Zhou (C9RA10760F-(cit15)/*[position()=1]) 2015; 34
Höllwarth (C9RA10760F-(cit26b)/*[position()=1]) 1993; 208
Pirrung (C9RA10760F-(cit7a)/*[position()=1]) 2001; 123
Zhao (C9RA10760F-(cit24b)/*[position()=1]) 2006; 110
Gonzalez (C9RA10760F-(cit28)/*[position()=1]) 1990; 94
Stahl (C9RA10760F-(cit19b)/*[position()=1]) 2013; 135
Lee (C9RA10760F-(cit25b)/*[position()=1]) 1988; 37
Teng (C9RA10760F-(cit12e)/*[position()=1]) 2017; 139
Martín (C9RA10760F-(cit10d)/*[position()=1]) 2003; 22
Wekesa (C9RA10760F-(cit12f)/*[position()=1]) 2015; 34
Stahl (C9RA10760F-(cit19a)/*[position()=1]) 2013; 135
Breuer (C9RA10760F-(cit3e)/*[position()=1]) 2004; 43
Harrington (C9RA10760F-(cit3a)/*[position()=1]) 1997; 1
Patrick (C9RA10760F-(cit13b)/*[position()=1]) 2003; 36
Duan (C9RA10760F-(cit9g)/*[position()=1]) 2003; 35
Arena (C9RA10760F-(cit9h)/*[position()=1]) 2004; 222
Field (C9RA10760F-(cit10f)/*[position()=1]) 2003; 22
Sun (C9RA10760F-(cit12a)/*[position()=1]) 2008; 73
Sutin (C9RA10760F-(cit3f)/*[position()=1]) 2007; 17
Truhlar (C9RA10760F-(cit32a)/*[position()=1]) 1996; 100
Grimme (C9RA10760F-(cit24d)/*[position()=1]) 2006; 27
Tao (C9RA10760F-(cit11e)/*[position()=1]) 2002; 41
Enders (C9RA10760F-(cit9d)/*[position()=1]) 1997; 8
Paterson (C9RA10760F-(cit2h)/*[position()=1]) 1985; 41
Cesar (C9RA10760F-(cit9i)/*[position()=1]) 2005; 11
Meinardi (C9RA10760F-(cit6)/*[position()=1]) 2017; 11
Ehlers (C9RA10760F-(cit26a)/*[position()=1]) 1993; 208
Lou (C9RA10760F-(cit4a)/*[position()=1]) 2010; 132
Mukaiyama (C9RA10760F-(cit2d)/*[position()=1]) 1999; 55
Noronha (C9RA10760F-(cit8e)/*[position()=1]) 2009; 74
Evans (C9RA10760F-(cit9f)/*[position()=1]) 2003; 125
Li (C9RA10760F-(cit13d)/*[position()=1]) 2012; 5
References_xml – issn: 2009
  publication-title: CYLview, 1.0b
  doi: Legault
– issn: 1991
  issue: vol. 2
  end-page: p 1-53
  publication-title: Comprehensive Organic Synthesis
  doi: Trost Fleming Heathcock
– issn: 2016
  doi: Frisch Trucks Schlegel Scuseria Robb Cheeseman Scalmani Barone Petersson Nakatsuji Li Caricato Marenich Bloino Janesko Gomperts Mennucci Hratchian Ortiz Izmaylov Sonnenberg Williams-Young Ding Lipparini Egidi Goings Peng Petrone Henderson Ranasinghe Zakrzewski Gao Rega Zheng Liang Hada Ehara Toyota Fukuda Hasegawa Ishida Nakajima Honda Kitao Nakai Vreven Throssell Montgomery Jr Peralta Ogliaro Bearpark Heyd Brothers Kudin Staroverov Keith Kobayashi Normand Raghavachari Rendell Burant Iyengar Tomasi Cossi Millam Klene Adamo Cammi Ochterski Martin Morokuma Farkas Foresman Fox
– volume: 11
  start-page: 2862
  year: 2005
  ident: C9RA10760F-(cit9i)/*[position()=1]
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.200500132
– volume: 110
  start-page: 13126
  year: 2006
  ident: C9RA10760F-(cit24b)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp066479k
– volume: 120
  start-page: 215
  year: 2008
  ident: C9RA10760F-(cit24a)/*[position()=1]
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-007-0310-x
– volume: 121
  start-page: 160
  year: 2009
  ident: C9RA10760F-(cit4b)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.200804888
– volume: 117
  start-page: 4147
  year: 2017
  ident: C9RA10760F-(cit12b)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00517
– start-page: 2360
  year: 2001
  ident: C9RA10760F-(cit12i)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/b106435p
– volume: 17
  start-page: 3420
  year: 1998
  ident: C9RA10760F-(cit13c)/*[position()=1]
  publication-title: Organometallics
  doi: 10.1021/om980399o
– volume: 50
  start-page: 1407
  year: 2009
  ident: C9RA10760F-(cit8d)/*[position()=1]
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2009.01.039
– volume: 40
  start-page: 62
  year: 2019
  ident: C9RA10760F-(cit16a)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.25529
– volume: 1
  start-page: 72
  year: 1997
  ident: C9RA10760F-(cit3a)/*[position()=1]
  publication-title: Org. Process Res. Dev.
  doi: 10.1021/op960009e
– volume: 17
  start-page: 4837
  year: 2007
  ident: C9RA10760F-(cit3f)/*[position()=1]
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2007.06.054
– volume: 125
  start-page: 3534
  year: 2003
  ident: C9RA10760F-(cit9f)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja012639o
– volume: 54
  start-page: 4092
  year: 2011
  ident: C9RA10760F-(cit1e)/*[position()=1]
  publication-title: J. Med. Chem.
  doi: 10.1021/jm200112k
– volume: 37
  start-page: 785
  year: 1988
  ident: C9RA10760F-(cit25b)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.37.785
– volume: 132
  start-page: 154104
  year: 2010
  ident: C9RA10760F-(cit30a)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 16
  start-page: 585
  year: 1977
  ident: C9RA10760F-(cit2i)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.197705851
– volume: 100
  start-page: 12771
  year: 1996
  ident: C9RA10760F-(cit32a)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp953748q
– volume: 15
  start-page: 11515
  year: 2010
  ident: C9RA10760F-(cit9l)/*[position()=1]
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.200901594
– volume: 55
  start-page: 449
  year: 1990
  ident: C9RA10760F-(cit8a)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00289a014
– volume: 27
  start-page: 1787
  year: 2006
  ident: C9RA10760F-(cit24d)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 272
  start-page: 60
  year: 2007
  ident: C9RA10760F-(cit8c)/*[position()=1]
  publication-title: J. Mol. Catal. A: Chem.
  doi: 10.1016/j.molcata.2007.03.019
– volume: 35
  start-page: 3401
  year: 2010
  ident: C9RA10760F-(cit5a)/*[position()=1]
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.01.116
– volume: 32
  start-page: 1456
  year: 2011
  ident: C9RA10760F-(cit30b)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21759
– volume: 135
  start-page: 10978
  year: 2013
  ident: C9RA10760F-(cit19a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja405925w
– volume: 98
  start-page: 5648
  year: 1993
  ident: C9RA10760F-(cit25a)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464913
– volume: 11
  start-page: 177
  year: 2017
  ident: C9RA10760F-(cit6)/*[position()=1]
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2017.5
– volume: 22
  start-page: 10009
  year: 2016
  ident: C9RA10760F-(cit18b)/*[position()=1]
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.201600386
– volume: 8
  start-page: 3571
  year: 1997
  ident: C9RA10760F-(cit9d)/*[position()=1]
  publication-title: Tetrahedron: Asymmetry
  doi: 10.1016/S0957-4166(97)00519-3
– volume: 43
  start-page: 1014
  year: 2004
  ident: C9RA10760F-(cit14)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200353133
– volume: 5
  start-page: 396
  year: 2012
  ident: C9RA10760F-(cit13d)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201100585
– volume: 45
  start-page: 7506
  year: 2006
  ident: C9RA10760F-(cit2g)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200602780
– volume: 12
  start-page: 337
  year: 2011
  ident: C9RA10760F-(cit8f)/*[position()=1]
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2010.10.005
– volume: 139
  start-page: 16506
  year: 2017
  ident: C9RA10760F-(cit12e)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10786
– volume: 39
  start-page: 44
  year: 2000
  ident: C9RA10760F-(cit2e)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/(SICI)1521-3773(20000103)39:1<44::AID-ANIE44>3.0.CO;2-L
– volume: 7
  start-page: 3805
  year: 2019
  ident: C9RA10760F-(cit17b)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA08677J
– volume: 123
  start-page: 3638
  year: 2001
  ident: C9RA10760F-(cit7a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja002370t
– volume: 16
  start-page: 9555
  year: 2010
  ident: C9RA10760F-(cit8h)/*[position()=1]
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.201001164
– volume: 34
  start-page: 5051
  year: 2015
  ident: C9RA10760F-(cit12f)/*[position()=1]
  publication-title: Organometallics
  doi: 10.1021/acs.organomet.5b00630
– volume: 125
  start-page: 194101
  year: 2006
  ident: C9RA10760F-(cit24c)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2370993
– volume: 43
  start-page: 1014
  year: 2004
  ident: C9RA10760F-(cit11b)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200353133
– volume: 82
  start-page: 299
  year: 1985
  ident: C9RA10760F-(cit25c)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448975
– volume: 21
  start-page: 4648
  year: 2002
  ident: C9RA10760F-(cit10e)/*[position()=1]
  publication-title: Organometallics
  doi: 10.1021/om0203173
– volume: 135
  start-page: 7442
  year: 2013
  ident: C9RA10760F-(cit4c)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja402922w
– volume: 141
  start-page: 3630
  year: 2019
  ident: C9RA10760F-(cit17a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13075
– volume: 208
  start-page: 237
  year: 1993
  ident: C9RA10760F-(cit26b)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(93)89068-S
– volume: 117
  start-page: 3448
  year: 1995
  ident: C9RA10760F-(cit2f)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00117a014
– volume: 8
  start-page: 3659
  year: 2006
  ident: C9RA10760F-(cit1d)/*[position()=1]
  publication-title: Org. Lett.
  doi: 10.1021/ol0609053
– volume: 43
  start-page: 288
  year: 2010
  ident: C9RA10760F-(cit2b)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar900196n
– volume: 84
  start-page: 8552
  year: 2019
  ident: C9RA10760F-(cit16b)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.9b00959
– volume: 74
  start-page: 6960
  year: 2009
  ident: C9RA10760F-(cit8e)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/jo9008657
– volume: 113
  start-page: 6378
  year: 2009
  ident: C9RA10760F-(cit29)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp810292n
– volume: 137
  start-page: 2757
  year: 2015
  ident: C9RA10760F-(cit17h)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja513209c
– volume: 650
  start-page: 231
  year: 2002
  ident: C9RA10760F-(cit10c)/*[position()=1]
  publication-title: Organomet. Chem.
  doi: 10.1016/S0022-328X(02)01203-2
– volume: 2
  start-page: 613
  year: 2012
  ident: C9RA10760F-(cit9a)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/cs200571v
– volume: 41
  start-page: 3892
  year: 2002
  ident: C9RA10760F-(cit12h)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/1521-3773(20021018)41:20<3892::AID-ANIE3892>3.0.CO;2-A
– start-page: 1021
  year: 2019
  ident: C9RA10760F-(cit32d)/*[position()=1]
  publication-title: Synthesis
– volume: 55
  start-page: 8609
  year: 1999
  ident: C9RA10760F-(cit2d)/*[position()=1]
  publication-title: Tetrahedron
  doi: 10.1016/S0040-4020(99)00437-8
– volume: 125
  start-page: 6462
  year: 2003
  ident: C9RA10760F-(cit13a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0290072
– volume: 222
  start-page: 47
  year: 2004
  ident: C9RA10760F-(cit9h)/*[position()=1]
  publication-title: J. Mol. Catal. A: Chem.
  doi: 10.1016/j.molcata.2004.07.012
– volume: 139
  start-page: 16334
  year: 2017
  ident: C9RA10760F-(cit21)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b09444
– volume: 7
  start-page: 1599
  year: 1996
  ident: C9RA10760F-(cit11d)/*[position()=1]
  publication-title: Tetrahedron: Asymmetry
  doi: 10.1016/0957-4166(96)00192-9
– volume: 36
  start-page: 739
  year: 2003
  ident: C9RA10760F-(cit13b)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar0300219
– volume: 89
  start-page: 2193
  year: 1988
  ident: C9RA10760F-(cit27)/*[position()=1]
  publication-title: Chem. Phys.
– volume: 50
  start-page: 2038
  year: 2017
  ident: C9RA10760F-(cit7b)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00306
– volume: 37
  start-page: 941
  year: 2018
  ident: C9RA10760F-(cit32c)/*[position()=1]
  publication-title: Organometallics
  doi: 10.1021/acs.organomet.7b00899
– volume: 43
  start-page: 788
  year: 2004
  ident: C9RA10760F-(cit3e)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200300599
– volume: 3
  start-page: 525
  year: 1992
  ident: C9RA10760F-(cit1a)/*[position()=1]
  publication-title: Tetrahedron: Asymmetry
  doi: 10.1016/S0957-4166(00)80257-8
– volume: 7
  start-page: 11944
  year: 2019
  ident: C9RA10760F-(cit17c)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA01188A
– volume: 48
  start-page: 1609
  year: 2009
  ident: C9RA10760F-(cit9k)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200804993
– volume: 42
  start-page: 23004
  year: 2017
  ident: C9RA10760F-(cit5b)/*[position()=1]
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.07.206
– volume: 68
  start-page: 6437
  year: 2003
  ident: C9RA10760F-(cit2a)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/jo034502h
– volume: 208
  start-page: 111
  year: 1993
  ident: C9RA10760F-(cit26a)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(93)80086-5
– volume: 49
  start-page: 7553
  year: 2010
  ident: C9RA10760F-(cit8i)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201003069
– volume: 46
  start-page: 8881
  year: 2005
  ident: C9RA10760F-(cit8b)/*[position()=1]
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2005.10.076
– volume: 46
  start-page: 7548
  year: 2017
  ident: C9RA10760F-(cit32b)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00602K
– volume: 6
  start-page: 15494
  year: 2018
  ident: C9RA10760F-(cit17f)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b03945
– volume: 94
  start-page: 5523
  year: 1990
  ident: C9RA10760F-(cit28)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100377a021
– volume: 36
  start-page: 935
  year: 2017
  ident: C9RA10760F-(cit22)/*[position()=1]
  publication-title: Organometallics
  doi: 10.1021/acs.organomet.7b00030
– volume: 3
  start-page: 1354
  year: 1984
  ident: C9RA10760F-(cit11a)/*[position()=1]
  publication-title: Organometallics
  doi: 10.1021/om00087a006
– volume: 41
  start-page: 3892
  year: 2002
  ident: C9RA10760F-(cit11e)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/1521-3773(20021018)41:20<3892::AID-ANIE3892>3.0.CO;2-A
– volume: 137
  start-page: 98
  year: 2018
  ident: C9RA10760F-(cit17g)/*[position()=1]
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-018-2270-8
– volume: 2
  start-page: 546
  year: 2010
  ident: C9RA10760F-(cit3d)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.651
– volume: 34
  start-page: 1479
  year: 2015
  ident: C9RA10760F-(cit15)/*[position()=1]
  publication-title: Organometallics
  doi: 10.1021/om5011929
– volume: 3
  start-page: 1625
  year: 2008
  ident: C9RA10760F-(cit18a)/*[position()=1]
  publication-title: Chem.–Asian J.
  doi: 10.1002/asia.200800106
– volume: 73
  start-page: 1143
  year: 2008
  ident: C9RA10760F-(cit12a)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/jo702068w
– volume: 7
  start-page: 6669
  year: 2016
  ident: C9RA10760F-(cit3c)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC01845A
– volume: 42
  start-page: 1671
  year: 1977
  ident: C9RA10760F-(cit9b)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00430a001
– volume: 29
  start-page: 5773
  year: 2010
  ident: C9RA10760F-(cit12j)/*[position()=1]
  publication-title: Organometallics
  doi: 10.1021/om1009186
– volume: 138
  start-page: 7212
  year: 2016
  ident: C9RA10760F-(cit3b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00406
– volume: 357
  start-page: 2540
  year: 2015
  ident: C9RA10760F-(cit12g)/*[position()=1]
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201500288
– volume: 35
  start-page: 2916
  year: 2003
  ident: C9RA10760F-(cit9g)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/B309185F
– volume: 17
  start-page: 560
  year: 2006
  ident: C9RA10760F-(cit9j)/*[position()=1]
  publication-title: Tetrahedron: Asymmetry
  doi: 10.1016/j.tetasy.2006.02.008
– volume: 41
  start-page: 3569
  year: 1985
  ident: C9RA10760F-(cit2h)/*[position()=1]
  publication-title: Tetrahedron
  doi: 10.1016/S0040-4020(01)91380-8
– volume: 9
  start-page: 27710
  year: 2019
  ident: C9RA10760F-(cit17d)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C9RA04135D
– volume: 135
  start-page: 1248
  year: 2013
  ident: C9RA10760F-(cit19b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja311398j
– volume: 135
  start-page: 10978
  year: 2013
  ident: C9RA10760F-(cit20)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja405925w
– volume: 361
  start-page: 3184
  year: 2008
  ident: C9RA10760F-(cit8g)/*[position()=1]
  publication-title: Inorg. Chim. Acta
  doi: 10.1016/j.ica.2007.11.023
– volume: 4
  start-page: 493
  year: 2009
  ident: C9RA10760F-(cit9m)/*[position()=1]
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.200801107
– volume: 254
  start-page: 729
  year: 2010
  ident: C9RA10760F-(cit10a)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2009.09.033
– volume: vol. 2
  volume-title: Comprehensive Organic Synthesis
  year: 1991
  ident: C9RA10760F-(cit2c)/*[position()=1]
– volume: 50
  start-page: 7911
  year: 2017
  ident: C9RA10760F-(cit12c)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.7b01420
– volume: 21
  start-page: 4275
  year: 2002
  ident: C9RA10760F-(cit9e)/*[position()=1]
  publication-title: Organometallics
  doi: 10.1021/om020432d
– volume: 132
  start-page: 1264
  year: 2010
  ident: C9RA10760F-(cit4a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja909689t
– volume: 17
  start-page: 101
  year: 2007
  ident: C9RA10760F-(cit1c)/*[position()=1]
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2006.09.078
– volume: 33
  start-page: 111
  year: 1994
  ident: C9RA10760F-(cit9c)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.199401111
– volume: 43
  start-page: 4425
  year: 2002
  ident: C9RA10760F-(cit1b)/*[position()=1]
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(02)00842-0
– volume: 2
  start-page: 193
  year: 2019
  ident: C9RA10760F-(cit17e)/*[position()=1]
  publication-title: Energy Environ. Mater.
  doi: 10.1002/eem2.12048
– volume: 112
  start-page: 7984
  year: 1990
  ident: C9RA10760F-(cit10b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00178a021
– volume: 80
  start-page: 7984
  year: 2015
  ident: C9RA10760F-(cit12d)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.5b00895
– volume: 22
  start-page: 5406
  year: 2003
  ident: C9RA10760F-(cit10d)/*[position()=1]
  publication-title: Organometallics
  doi: 10.1021/om034218g
– volume: 22
  start-page: 4393
  year: 2003
  ident: C9RA10760F-(cit10f)/*[position()=1]
  publication-title: Organometallics
  doi: 10.1021/om034004z
– volume: 46
  start-page: 3241
  year: 2005
  ident: C9RA10760F-(cit13e)/*[position()=1]
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2005.03.026
– volume: 7
  start-page: 1597
  year: 1996
  ident: C9RA10760F-(cit11c)/*[position()=1]
  publication-title: Tetrahedron: Asymmetry
  doi: 10.1016/0957-4166(96)00191-7
SSID ssj0000651261
Score 2.3024585
Snippet A detailed theoretical study on the mechanism of enanthioselective hydrosilylation of imines and ketones catalyzed by the ruthenium( ii ) thiolate catalyst...
A detailed theoretical study on the mechanism of enanthioselective hydrosilylation of imines and ketones catalyzed by the ruthenium(ii) thiolate catalyst...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9431
SubjectTerms Carbon
Cartesian coordinates
catalysts
Cations
Chemistry
chemoselectivity
cleavage (chemistry)
Dehydrogenation
Density functional theory
enamines
Enantiomers
enantioselectivity
enol ethers
hydrogen
Hydrogen bonds
Hydrosilylation
Imines
Ketones
Lewis acids
Ligands
phosphine
Phosphines
Reaction mechanisms
Ruthenium
Ruthenium compounds
silane
Silicon
silylation
Title Enantioselective hydrosilylation of unsaturated carbon-heteroatom bonds (C&z.dbd;N, C&z.dbd;O) catalyzed by [Ru-S] complexes: a theoretical study
URI https://www.ncbi.nlm.nih.gov/pubmed/35497244
https://www.proquest.com/docview/2375442509
https://www.proquest.com/docview/2574332007
https://pubmed.ncbi.nlm.nih.gov/PMC9050042
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF31IkFfELeCS6kWQSWq1MVer5OYt2JaVQhalLYogFC0vpFIqR2lsSB94h_4Jn6EP-APmNm1106bB-iLlXhH3sRzPDszPjtDyDPQqnAiS5gJh9iEc8ZNYbuBaYdegPs-WaCqfR42D075m67bXVj4U2Mt5ZNgJ7yYu6_kOlqFc6BX3CX7H5rVF4UT8Bn0C0fQMBz_Scd7yGIZZOeylw1SgPrTCFa9wXA61J5gnp5j7U6BnmUoxgG4egW_wekjFSaDqPusAacjmX_1Gz66kcovHWWTsYAH397B2NtvfBsPJuBj45Dk9YKlGapChpIzBau815C0Af8Isw0yNTS9UNfadF91cj318ab7WtHZ4--KlSdm9lRWVW_L4uHHfslX0FHAp36WK-q_yEw8VFwFZUwB_-nXfj6o0vHKsr0d1JMdgB5ke1XJTnx0VFql5LRKzkrRGU8tadJ2Mgj74V-rLjDa0Ft1QNfNtseLpSguv7bmLi-Wg9VZQ28sbHyjmdSF4FaNziTQHIi5W0yVtbxUzPv9O9-zXLSUi2SZQWQDpnm58-G0-1EnBsEntCGsLUvpOt6Lar4VcqO8-KwfdSU4usrxXRyXLW2k63Rym9wqYh66qwB8hyzE6V1yU9_Qe-TXZSDTS0CmWUJrQKYKyL9__KwgTCWE6XOfFgCmwZQWAKYI4G1awBcHJHxpCV-q4UsPt6l_tEU1dFH4cyeHqY6_UA3Yl1TQGlyphOt9crq_d-IfmEV_ETPkLp-YgnPs1haAjy5szmChFzwRXhy3RStJmBWBIpKmaNshE0GA76sd0fREm7dZwlph4KySpTRL44eEsoiBrxzZdujY3A4twcHNdppe1EzAKWauQbZKbfXCovg-9oAZ9iQJxPF6vtfZlUreN8hTLTtSJWfmSq2XSu8VJum8x7ChNfxOyzPIEz0MysS3gCKNsxxk3BbWLITYwCAPFEb0NCW4DNKaQY8WwGL0syPpoC-L0hewNsgq4EzLV9A1yNr8gd4oStauPd8jslLZiXWyNBnn8WMIEybBhkyvbRSP1197uxeT
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enantioselective+hydrosilylation+of+unsaturated+carbon%E2%80%93heteroatom+bonds+%28C+Created+by+potrace+1.16%2C+written+by+Peter+Selinger+2001-2019+N%2C+CO%29+catalyzed+by+%5BRu%E2%80%93S%5D+complexes%3A+a+theoretical+study&rft.jtitle=RSC+advances&rft.au=Zhou%2C+Miao-Miao&rft.au=Chen%2C+Guanghui&rft.au=Dang%2C+Li&rft.date=2020-03-04&rft.pub=The+Royal+Society+of+Chemistry&rft.eissn=2046-2069&rft.volume=10&rft.issue=16&rft.spage=9431&rft.epage=9437&rft_id=info:doi/10.1039%2Fc9ra10760f&rft_id=info%3Apmid%2F35497244&rft.externalDocID=PMC9050042
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon