A hybrid system of pedagogical pattern recommendations based on singular value decomposition and variable data attributes
► Ontologies are an effective tool for representing the pedagogical patterns. ► The proposed system enables teachers to improve their teaching skills. ► The proposed system enables teachers to solve pedagogical problems in class. ► A pilot test shows satisfactory results in the accuracy of the recom...
Saved in:
Published in | Information processing & management Vol. 49; no. 3; pp. 607 - 625 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.05.2013
Elsevier Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ► Ontologies are an effective tool for representing the pedagogical patterns. ► The proposed system enables teachers to improve their teaching skills. ► The proposed system enables teachers to solve pedagogical problems in class. ► A pilot test shows satisfactory results in the accuracy of the recommendations. ► Prediction accuracy evaluation show better results than other nine recommenders.
To carry out effective teaching/learning processes, lecturers in a variety of educational institutions frequently need support. They therefore resort to advice from more experienced lecturers, to formal training processes such as specializations, master or doctoral degrees, or to self-training. High costs in time and money are invariably involved in the processes of formal training, while self-training and advice each bring their own specific risks (e.g. of following new trends that are not fully evaluated or the risk of applying techniques that are inappropriate in specific contexts).This paper presents a system that allows lecturers to define their best teaching strategies for use in the context of a specific class. The context is defined by: the specific characteristics of the subject being treated, the specific objectives that are expected to be achieved in the classroom session, the profile of the students on the course, the dominant characteristics of the teacher, and the classroom environment for each session, among others. The system presented is the Recommendation System of Pedagogical Patterns (RSPP). To construct the RSPP, an ontology representing the pedagogical patterns and their interaction with the fundamentals of the educational process was defined. A web information system was also defined to record information on courses, students, lecturers, etc.; an option based on a unified hybrid model (for content and collaborative filtering) of recommendations for pedagogical patterns was further added to the system. RSPP features a minable view, a tabular structure that summarizes and organizes the information registered in the rest of the system as well as facilitating the task of recommendation. The data recorded in the minable view is taken to a latent space, where noise is reduced and the essence of the information contained in the structure is distilled. This process makes use of Singular Value Decomposition (SVD), commonly used by information retrieval and recommendation systems. Satisfactory results both in the accuracy of the recommendations and in the use of the general application open the door for further research and expand the role of recommender systems in educational teacher support processes. |
---|---|
AbstractList | To carry out effective teaching/learning processes, lecturers in a variety of educational institutions frequently need support. They therefore resort to advice from more experienced lecturers, to formal training processes such as specializations, master or doctoral degrees, or to self-training. High costs in time and money are invariably involved in the processes of formal training, while self-training and advice each bring their own specific risks (e.g. of following new trends that are not fully evaluated or the risk of applying techniques that are inappropriate in specific contexts).This paper presents a system that allows lecturers to define their best teaching strategies for use in the context of a specific class. The context is defined by: the specific characteristics of the subject being treated, the specific objectives that are expected to be achieved in the classroom session, the profile of the students on the course, the dominant characteristics of the teacher, and the classroom environment for each session, among others. The system presented is the Recommendation System of Pedagogical Patterns (RSPP). To construct the RSPP, an ontology representing the pedagogical patterns and their interaction with the fundamentals of the educational process was defined. A web information system was also defined to record information on courses, students, lecturers, etc.; an option based on a unified hybrid model (for content and collaborative filtering) of recommendations for pedagogical patterns was further added to the system. RSPP features a minable view, a tabular structure that summarizes and organizes the information registered in the rest of the system as well as facilitating the task of recommendation. The data recorded in the minable view is taken to a latent space, where noise is reduced and the essence of the information contained in the structure is distilled. This process makes use of Singular Value Decomposition (SVD), commonly used by information retrieval and recommendation systems. Satisfactory results both in the accuracy of the recommendations and in the use of the general application open the door for further research and expand the role of recommender systems in educational teacher support processes. ► Ontologies are an effective tool for representing the pedagogical patterns. ► The proposed system enables teachers to improve their teaching skills. ► The proposed system enables teachers to solve pedagogical problems in class. ► A pilot test shows satisfactory results in the accuracy of the recommendations. ► Prediction accuracy evaluation show better results than other nine recommenders. To carry out effective teaching/learning processes, lecturers in a variety of educational institutions frequently need support. They therefore resort to advice from more experienced lecturers, to formal training processes such as specializations, master or doctoral degrees, or to self-training. High costs in time and money are invariably involved in the processes of formal training, while self-training and advice each bring their own specific risks (e.g. of following new trends that are not fully evaluated or the risk of applying techniques that are inappropriate in specific contexts).This paper presents a system that allows lecturers to define their best teaching strategies for use in the context of a specific class. The context is defined by: the specific characteristics of the subject being treated, the specific objectives that are expected to be achieved in the classroom session, the profile of the students on the course, the dominant characteristics of the teacher, and the classroom environment for each session, among others. The system presented is the Recommendation System of Pedagogical Patterns (RSPP). To construct the RSPP, an ontology representing the pedagogical patterns and their interaction with the fundamentals of the educational process was defined. A web information system was also defined to record information on courses, students, lecturers, etc.; an option based on a unified hybrid model (for content and collaborative filtering) of recommendations for pedagogical patterns was further added to the system. RSPP features a minable view, a tabular structure that summarizes and organizes the information registered in the rest of the system as well as facilitating the task of recommendation. The data recorded in the minable view is taken to a latent space, where noise is reduced and the essence of the information contained in the structure is distilled. This process makes use of Singular Value Decomposition (SVD), commonly used by information retrieval and recommendation systems. Satisfactory results both in the accuracy of the recommendations and in the use of the general application open the door for further research and expand the role of recommender systems in educational teacher support processes. To carry out effective teaching/learning processes, lecturers in a variety of educational institutions frequently need support. They therefore resort to advice from more experienced lecturers, to formal training processes such as specializations, master or doctoral degrees, or to self-training. High costs in time and money are invariably involved in the processes of formal training, while self-training and advice each bring their own specific risks (e.g. of following new trends that are not fully evaluated or the risk of applying techniques that are inappropriate in specific contexts).This paper presents a system that allows lecturers to define their best teaching strategies for use in the context of a specific class. The context is defined by: the specific characteristics of the subject being treated, the specific objectives that are expected to be achieved in the classroom session, the profile of the students on the course, the dominant characteristics of the teacher, and the classroom environment for each session, among others. The system presented is the Recommendation System of Pedagogical Patterns (RSPP). To construct the RSPP, an ontology representing the pedagogical patterns and their interaction with the fundamentals of the educational process was defined. A web information system was also defined to record information on courses, students, lecturers, etc.; an option based on a unified hybrid [PUBLICATION ABSTRACT] To carry out effective teaching/learning processes, lecturers in a variety of educational institutions frequently need support. They therefore resort to advice from more experienced lecturers, to formal training processes such as specializations, master or doctoral degrees, or to self-training. High costs in time and money are invariably involved in the processes of formal training, while self-training and advice each bring their own specific risks (e.g. of following new trends that are not fully evaluated or the risk of applying techniques that are inappropriate in specific contexts). This paper presents a system that allows lecturers to define their best teaching strategies for use in the context of a specific class. The context is defined by: the specific characteristics of the subject being treated, the specific objectives that are expected to be achieved in the classroom session, the profile of the students on the course, the dominant characteristics of the teacher, and the classroom environment for each session, among others. The system presented is the Recommendation System of Pedagogical Patterns (RSPP). To construct the RSPP, an ontology representing the pedagogical patterns and their interaction with the fundamentals of the educational process was defined. A web information system was also defined to record information on courses, students, lecturers, etc.; an option based on a unified hybrid model (for content and collaborative filtering) of recommendations for pedagogical patterns was further added to the system. RSPP features a minable view, a tabular structure that summarizes and organizes the information registered in the rest of the system as well as facilitating the task of recommendation. The data recorded in the minable view is taken to a latent space, where noise is reduced and the essence of the information contained in the structure is distilled. This process makes use of Singular Value Decomposition (SVD), commonly used by information retrieval and recommendation systems. Satisfactory results both in the accuracy of the recommendations and in the use of the general application open the door for further research and expand the role of recommender systems in educational teacher support processes. Adapted from the source document. |
Author | León, Elizabeth Herrera-Viedma, Enrique Cobos, Carlos Rodriguez, Orlando Betancourt, John Rivera, Jarvein Mendoza, Martha |
Author_xml | – sequence: 1 givenname: Carlos surname: Cobos fullname: Cobos, Carlos email: coboscarlos@gmail.com organization: Information Technology Research Group (GTI), Universidad del Cauca, Sector Tulcán Office 422 FIET, Popayán, Colombia – sequence: 2 givenname: Orlando surname: Rodriguez fullname: Rodriguez, Orlando organization: Information Technology Research Group (GTI), Universidad del Cauca, Sector Tulcán Office 422 FIET, Popayán, Colombia – sequence: 3 givenname: Jarvein surname: Rivera fullname: Rivera, Jarvein organization: Information Technology Research Group (GTI), Universidad del Cauca, Sector Tulcán Office 422 FIET, Popayán, Colombia – sequence: 4 givenname: John surname: Betancourt fullname: Betancourt, John organization: Information Technology Research Group (GTI), Universidad del Cauca, Sector Tulcán Office 422 FIET, Popayán, Colombia – sequence: 5 givenname: Martha surname: Mendoza fullname: Mendoza, Martha organization: Information Technology Research Group (GTI), Universidad del Cauca, Sector Tulcán Office 422 FIET, Popayán, Colombia – sequence: 6 givenname: Elizabeth surname: León fullname: León, Elizabeth organization: Systems and Industrial Engineering Department, Engineering Faculty, Universidad Nacional de Colombia, Colombia – sequence: 7 givenname: Enrique surname: Herrera-Viedma fullname: Herrera-Viedma, Enrique organization: Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27141523$$DView record in Pascal Francis |
BookMark | eNqFkk9r3DAQxU1JoZu0H6A3QSn0sluN9W9NTyG0TSDQS3sWY0nearElV5ID--0rd9NLDgkMCKTfe5Jm3mVzEWJwTfMe6A4oyM_HnZ-nXUuh3dWitH3VbGCv2FYwBRfNhjIqt1wo9qa5zPlIKeUC2k1zuia_T33yluRTLm4icSCzs3iIB29wJDOW4lIgyZk4TS5YLD6GTHrMzpIYSPbhsIyYyAOOiyN25eaY_YoRDLbuJ4_9WI-wIKl2yfdLcflt83rAMbt3j-tV8-vb1583t9v7H9_vbq7vt4YLXrbYtn1vleGdpdDzgSrVAthuQGktH7jsHJOSd8BZ3w20F7bftwqpMkhBCcaumk9n3znFP4vLRU8-GzeOGFxcsgapQDAh9_RlVAjadUzWvr6MMqCUSbU-4MMT9BiXFOqfNTBgnQTZrXd_fKQw18YPCYPxWc_JT5hOulXAQbSrmzpzJsWckxu08eXfUEpCP2qgeg2EPuoaCL0GQteqgahKeKL8b_6c5stZ4-qEHrxLOhvvgnHW10QUbaN_Rv0XozrP2Q |
CODEN | IPMADK |
CitedBy_id | crossref_primary_10_1007_s10462_017_9539_5 crossref_primary_10_1016_j_future_2017_02_049 crossref_primary_10_1002_cae_22566 crossref_primary_10_2139_ssrn_4057041 crossref_primary_10_1016_j_cie_2021_107348 crossref_primary_10_1007_s13198_021_01197_6 crossref_primary_10_1186_s41239_023_00436_z crossref_primary_10_1155_2013_691042 crossref_primary_10_1016_j_ins_2015_02_019 crossref_primary_10_2174_2666255813999201020144108 crossref_primary_10_1016_j_engappai_2018_07_007 crossref_primary_10_1016_j_ipm_2021_102842 crossref_primary_10_1007_s10462_023_10508_1 crossref_primary_10_1109_ACCESS_2024_3377120 crossref_primary_10_1186_s41239_019_0171_0 crossref_primary_10_1016_j_jss_2023_111613 crossref_primary_10_1109_ACCESS_2025_3535527 crossref_primary_10_1016_j_procs_2019_11_277 crossref_primary_10_1142_S0218126622300070 crossref_primary_10_3390_educsci14070723 crossref_primary_10_1016_j_ins_2014_07_054 crossref_primary_10_1007_s10462_018_9655_x crossref_primary_10_1016_j_ins_2014_05_003 crossref_primary_10_1016_j_ins_2014_05_047 crossref_primary_10_1109_TLT_2015_2434824 crossref_primary_10_2139_ssrn_4197677 crossref_primary_10_1038_s41598_019_54031_2 crossref_primary_10_1016_j_dss_2015_03_008 crossref_primary_10_1007_s11423_021_10029_0 crossref_primary_10_1080_08839514_2023_2175106 crossref_primary_10_1007_s42979_024_02837_x crossref_primary_10_1016_j_ipm_2020_102357 crossref_primary_10_1007_s00500_017_2720_6 crossref_primary_10_1016_j_compeleceng_2020_106791 crossref_primary_10_1016_j_compedu_2023_104960 |
Cites_doi | 10.1109/MIC.2003.1167344 10.1016/j.eswa.2007.07.047 10.1016/j.compedu.2007.05.018 10.1016/j.eswa.2007.05.013 10.1137/1037127 10.1016/j.ins.2011.08.026 10.1016/S1877-0509(10)00329-7 10.1016/j.knosys.2011.07.021 10.1145/963770.963776 10.1109/ICSSSM.2007.4280214 10.1145/963770.963772 10.1016/j.physrep.2012.02.006 10.1016/j.compedu.2011.10.003 10.1016/j.patcog.2005.01.012 10.1016/j.ins.2010.02.004 10.1016/j.eswa.2011.01.048 10.1007/11768012_11 10.1137/S0895479897325578 10.1504/IJTEL.2010.033579 10.1016/j.ins.2007.07.024 10.1016/j.knosys.2009.07.007 10.1016/j.compedu.2009.05.003 10.1016/j.ins.2011.01.012 10.1017/CBO9780511809071 10.1016/j.eswa.2009.04.038 10.1504/IJLT.2007.014842 10.1016/j.ijar.2010.04.001 10.1016/j.eswa.2012.01.177 10.1016/j.ins.2010.07.024 10.1016/j.ipl.2011.02.003 10.1016/j.ins.2007.02.036 10.1016/j.ins.2009.06.004 10.1016/j.ins.2012.02.033 10.1016/j.eswa.2009.09.025 10.1109/TKDE.2005.99 10.1145/1040830.1040870 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Ltd 2015 INIST-CNRS Copyright Pergamon Press Inc. May 2013 |
Copyright_xml | – notice: 2012 Elsevier Ltd – notice: 2015 INIST-CNRS – notice: Copyright Pergamon Press Inc. May 2013 |
DBID | AAYXX CITATION IQODW E3H F2A 7SC 7TA 8FD JG9 JQ2 L7M L~C L~D 8BP |
DOI | 10.1016/j.ipm.2012.12.002 |
DatabaseName | CrossRef Pascal-Francis Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) Computer and Information Systems Abstracts Materials Business File Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Library & Information Sciences Abstracts (LISA) - CILIP Edition |
DatabaseTitle | CrossRef Library and Information Science Abstracts (LISA) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Materials Business File Computer and Information Systems Abstracts Professional Library & Information Sciences Abstracts (LISA) - CILIP Edition |
DatabaseTitleList | Materials Research Database Materials Research Database Library and Information Science Abstracts (LISA) Library & Information Sciences Abstracts (LISA) - CILIP Edition |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Library & Information Science Education |
EISSN | 1873-5371 |
EndPage | 625 |
ExternalDocumentID | 2905507971 27141523 10_1016_j_ipm_2012_12_002 S0306457312001409 |
Genre | Feature |
GroupedDBID | --K --M -~X .DC .~1 0B8 0R~ 1B1 1RT 1~. 1~5 29I 4.4 41~ 457 4G. 5GY 5VS 7-5 71M 77K 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN AAYOK ABBOA ABFNM ABFRF ABJNI ABMAC ABMMH ABPPZ ABXDB ABYKQ ACDAQ ACGFS ACHQT ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMY HVGLF HZ~ H~9 IHE J1W KOM LG9 LPU LY1 M3Y M41 MO0 MS~ MVM N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSO SSS SSV SSZ T5K TN5 U5U UHB UHS UNMZH WUQ XFK ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADMHG ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW PKN E3H EFKBS F2A 7SC 7TA 8FD JG9 JQ2 L7M L~C L~D 8BP |
ID | FETCH-LOGICAL-c454t-a22bbd7c49d01b4f077211d9fa6dd4f469e36649143b9f0b5db827a07ca017533 |
IEDL.DBID | .~1 |
ISSN | 0306-4573 |
IngestDate | Thu Jul 10 19:28:09 EDT 2025 Tue Aug 05 11:19:24 EDT 2025 Thu Jul 10 19:26:35 EDT 2025 Fri Jul 25 06:27:44 EDT 2025 Sun Feb 16 07:29:56 EST 2025 Thu Apr 24 23:10:02 EDT 2025 Tue Jul 01 00:44:31 EDT 2025 Fri Feb 23 02:18:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Cosine similarity Pedagogical patterns Recommender systems Singular value decomposition Resnick prediction formula Filtering Variable Similarity Prediction Data Recommendation Hybrid system Collaborative filtering Value |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c454t-a22bbd7c49d01b4f077211d9fa6dd4f469e36649143b9f0b5db827a07ca017533 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 1313961690 |
PQPubID | 23500 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_1671535680 proquest_miscellaneous_1550993687 proquest_miscellaneous_1531003673 proquest_journals_1313961690 pascalfrancis_primary_27141523 crossref_citationtrail_10_1016_j_ipm_2012_12_002 crossref_primary_10_1016_j_ipm_2012_12_002 elsevier_sciencedirect_doi_10_1016_j_ipm_2012_12_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-05-01 |
PublicationDateYYYYMMDD | 2013-05-01 |
PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: Oxford |
PublicationTitle | Information processing & management |
PublicationYear | 2013 |
Publisher | Elsevier Ltd Elsevier Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier – name: Elsevier Science Ltd |
References | Ahn, Kang, Lee (b0010) 2010; 37 Chandrashekhar, Bhasker (b0055) 2011; 12 Hernandez del Olmo, Gaudioso (b0120) 2008; 35 Serrano-Guerrero, Herrera-Viedma, Olivas, Cerezo, Romero (b0300) 2011; 181 Vozalis, Margaritis (b0320) 2007; 177 Retrieved 20.06.09. Miller, B., Albert, I., Lam, S. K., Konstan, J., & Riedl, J. (2003). MovieLens unplugged: experiences with a recommender system on four mobile devices. Paper presented at the ACM SIGCHI conference on human factors in computing systems. Engelbrecht (b0075) 2003; 25 (pp. 1–5). Han, Kamber (b0105) 2006 Schwind, Buder, Cress, Hesse (b0295) 2012; 58 Farzan, R., & Brusilovsky, P. (2006). Social navigation support in a course recommender system. In Romero, Ventura, Zafra, Bra (b0280) 2009; 53 Bergin, J., Eckstein, J., Manns, M.-L., Sharp, H., Voelter, M., Wallingford, E., et al. (2007). The Pedagogical Patterns Project. Lu, J., Shambour, Q., Xu, Y., Lin, Q., & Zhang, G. (2012). A Web-Based Personalized Business Partner Recommendation System Using Fuzzy Semantic Techniques. Lü, L., Medo, M., Yeung, C. H., Zhang, Y.-C., Zhang, Z.-K., & Zhou, T. (2012). Recommender systems. Gediminas, Alexander (b0095) 2005; 17 Retrieved 15.11.07. Shani, Gunawardana (b0305) 2011 Herlocker, Konstan, Terveen, Riedl (b0115) 2004; 22 Heift, Nicholson (b0110) 2001 Noy, N. F., & McGuinness, D. L. (2001). Ontology Development 101: A Guide to Creating Your First Ontology: Stanford Knowledge Systems Laboratory Technical Report KSL-01-05 and Stanford Medical Informatics Technical, Report SMI-2001-0880. Lucarelli (b0175) 2004; 27 Burke (b0050) 2007; Vol. 14321 Linden, Smith (b0155) 2003; 4 Bogdanov, Haro, Fuhrmann, Xambó, Gómez, Herrera (b0040) 2012 Lisewski, B. (2006). Petersen, K. B., & Pedersen, M. S. (2008). The matrix cookbook. Paper presented at the third education in a changing environment conference. . Golub, Solna, Van Dooren (b0100) 2000; 22 Refaeilzadeh, Tang, Liu (b0270) 2009 Eckhardt (b0070) 2012; 39 Kim, Alkhaldi, El Saddik, Jo (b0140) 2011; 38 Ramsden (b0260) 2003 Hummel, Van den Berg, Berlanga, Drachsler, Jansenn, Nadolski (b0130) 2007 Porcel, Herrera-Viedma (b0240) 2010; 23 Porcel, Morales-del-Castillo, Cobo, Ruíz-Rodríguez, Herrera-Viedma (b0245) 2010; 39 Manouselis, Drachsler, Vuorikari, Hummel, Koper (b0195) 2011 Brown, McNamara (b0045) 2011; Vol. 53 Moreno, Valls, Isern, Marin, Borràs (b0215) 2012 Ahn (b0005) 2008; 178 in Press. Michael, Susan, Gavin (b0200) 1995; 37 Deshpande, Karypis (b0065) 2004; 22 Gao, Wu, Jiang (b0085) 2011; 111 O’Donovan, J., & Smyth, B. (2005). Trust in recommender systems. Liu, Lai, Lee (b0165) 2009; 179 Bergin, J. (2002). Concept Of Pedagogical Patterns. Manning, C., Raghavan, P., & Schütze, H. (2008). Jain, A. K., Nandakumar, K., & Ross, A. (2005). Score normalization in multimodal biometric systems. Pattern Recognition. Barragáns-Martínez, Costa-Montenegro, Burguillo, Rey-López, Mikic-Fonte, Peleteiro (b0020) 2010; 180 Porcel, Moreno, Herrera-Viedma (b0250) 2009; 36 Sánchez, J. I. (2000). Tetlon, P., Pan, J., Oberle, D., Wallace, E., Uschold, M., & Kendall, E. (2005). Nielsen, J. (2005). Schafer, Frankowski, Herlocker, Sen (b0290) 2007; Vol. LNCS 4321 Lee, Cho, Kim (b0150) 2010; 180 Reategui, Boff, Campbell (b0265) 2008; 51 Bobadilla, Ortega, Hernando, Bernal (b0035) 2012; 26 Morales-del-Castillo, Peis, Herrera-Viedma (b0210) 2010; 2 Wei, K., Huang, J., & Fu, S. (2007). A survey of e-commerce recommender systems. In Huete, Fernández-Luna, de Campos, Rueda-Morales (b0125) 2012; 199 Ricci, Rokach, Shapira, Kantor (b0275) 2010 Retrieved 01.05.08. Krzywacki, H. (2009). Manouselis, Drachsler, Verbert, Santos (b0190) 2010; 1 Unpublished Doctoral, University of Helsinki, Faculty of Behavioural Sciences, Helsinki. Porcel, Tejeda-Lorente, Martínez, Herrera-Viedma (b0255) 2012; 184 de Campos, Fernández-Luna, Huete, Rueda-Morales (b0060) 2010; 51 Almazro, Shahatah, Albdulkarim, Kherees, Martinez, Nzoukou (b0015) 2010 Symeonidis, Nanopoulos, Papadopoulos, Manolopoulos (b0310) 2008; 34 Gardner, H. (2005). Linden (10.1016/j.ipm.2012.12.002_b0155) 2003; 4 10.1016/j.ipm.2012.12.002_b0285 Gediminas (10.1016/j.ipm.2012.12.002_b0095) 2005; 17 10.1016/j.ipm.2012.12.002_b0160 Barragáns-Martínez (10.1016/j.ipm.2012.12.002_b0020) 2010; 180 Bobadilla (10.1016/j.ipm.2012.12.002_b0035) 2012; 26 Hernandez del Olmo (10.1016/j.ipm.2012.12.002_b0120) 2008; 35 Refaeilzadeh (10.1016/j.ipm.2012.12.002_b0270) 2009 10.1016/j.ipm.2012.12.002_b0080 Michael (10.1016/j.ipm.2012.12.002_b0200) 1995; 37 Brown (10.1016/j.ipm.2012.12.002_b0045) 2011; Vol. 53 Manouselis (10.1016/j.ipm.2012.12.002_b0190) 2010; 1 Engelbrecht (10.1016/j.ipm.2012.12.002_b0075) 2003; 25 Porcel (10.1016/j.ipm.2012.12.002_b0255) 2012; 184 Ahn (10.1016/j.ipm.2012.12.002_b0010) 2010; 37 Heift (10.1016/j.ipm.2012.12.002_b0110) 2001 10.1016/j.ipm.2012.12.002_b0325 10.1016/j.ipm.2012.12.002_b0205 Kim (10.1016/j.ipm.2012.12.002_b0140) 2011; 38 Golub (10.1016/j.ipm.2012.12.002_b0100) 2000; 22 10.1016/j.ipm.2012.12.002_b0170 de Campos (10.1016/j.ipm.2012.12.002_b0060) 2010; 51 Gao (10.1016/j.ipm.2012.12.002_b0085) 2011; 111 10.1016/j.ipm.2012.12.002_b0090 Burke (10.1016/j.ipm.2012.12.002_b0050) 2007; Vol. 14321 Porcel (10.1016/j.ipm.2012.12.002_b0245) 2010; 39 Bogdanov (10.1016/j.ipm.2012.12.002_b0040) 2012 Huete (10.1016/j.ipm.2012.12.002_b0125) 2012; 199 Manouselis (10.1016/j.ipm.2012.12.002_b0195) 2011 Schwind (10.1016/j.ipm.2012.12.002_b0295) 2012; 58 10.1016/j.ipm.2012.12.002_b0135 Ahn (10.1016/j.ipm.2012.12.002_b0005) 2008; 178 10.1016/j.ipm.2012.12.002_b0185 10.1016/j.ipm.2012.12.002_b0220 10.1016/j.ipm.2012.12.002_b0180 Eckhardt (10.1016/j.ipm.2012.12.002_b0070) 2012; 39 Ramsden (10.1016/j.ipm.2012.12.002_b0260) 2003 Liu (10.1016/j.ipm.2012.12.002_b0165) 2009; 179 Moreno (10.1016/j.ipm.2012.12.002_b0215) 2012 Lucarelli (10.1016/j.ipm.2012.12.002_b0175) 2004; 27 Porcel (10.1016/j.ipm.2012.12.002_b0250) 2009; 36 Ricci (10.1016/j.ipm.2012.12.002_b0275) 2010 10.1016/j.ipm.2012.12.002_b0225 Serrano-Guerrero (10.1016/j.ipm.2012.12.002_b0300) 2011; 181 Han (10.1016/j.ipm.2012.12.002_b0105) 2006 Deshpande (10.1016/j.ipm.2012.12.002_b0065) 2004; 22 10.1016/j.ipm.2012.12.002_b0145 10.1016/j.ipm.2012.12.002_b0025 10.1016/j.ipm.2012.12.002_b0030 Shani (10.1016/j.ipm.2012.12.002_b0305) 2011 10.1016/j.ipm.2012.12.002_b0230 Symeonidis (10.1016/j.ipm.2012.12.002_b0310) 2008; 34 Lee (10.1016/j.ipm.2012.12.002_b0150) 2010; 180 Morales-del-Castillo (10.1016/j.ipm.2012.12.002_b0210) 2010; 2 Almazro (10.1016/j.ipm.2012.12.002_b0015) 2010 Reategui (10.1016/j.ipm.2012.12.002_b0265) 2008; 51 Herlocker (10.1016/j.ipm.2012.12.002_b0115) 2004; 22 Porcel (10.1016/j.ipm.2012.12.002_b0240) 2010; 23 Romero (10.1016/j.ipm.2012.12.002_b0280) 2009; 53 Schafer (10.1016/j.ipm.2012.12.002_b0290) 2007; Vol. LNCS 4321 10.1016/j.ipm.2012.12.002_b0315 Chandrashekhar (10.1016/j.ipm.2012.12.002_b0055) 2011; 12 Vozalis (10.1016/j.ipm.2012.12.002_b0320) 2007; 177 Hummel (10.1016/j.ipm.2012.12.002_b0130) 2007 10.1016/j.ipm.2012.12.002_b0235 |
References_xml | – volume: 179 start-page: 3505 year: 2009 end-page: 3519 ident: b0165 article-title: A hybrid of sequential rules and collaborative filtering for product recommendation publication-title: Information Sciences – reference: , in Press. – volume: 199 start-page: 78 year: 2012 end-page: 92 ident: b0125 article-title: Using past-prediction accuracy in recommender systems publication-title: Information Sciences – start-page: 310 year: 2001 end-page: 324 ident: b0110 article-title: Web delivery of adaptive and interactive language tutoring publication-title: International Journal of Artificial Intelligence in Education – volume: 23 start-page: 32 year: 2010 end-page: 39 ident: b0240 article-title: Dealing with incomplete information in a fuzzy linguistic recommender system to disseminate information in university digital libraries publication-title: Knowledge-Based Systems – volume: 34 start-page: 2995 year: 2008 end-page: 3013 ident: b0310 article-title: Collaborative recommender systems: Combining effectiveness and efficiency publication-title: Expert Systems with Applications – year: 2010 ident: b0275 article-title: Recommender systems handbook – volume: 37 start-page: 573 year: 1995 end-page: 595 ident: b0200 article-title: Using linear algebra for intelligent information retrieval publication-title: SIAM Review – volume: 39 start-page: 11511 year: 2012 end-page: 11516 ident: b0070 article-title: Similarity of users’ (content-based) preference models for collaborative filtering in few ratings scenario publication-title: Expert Systems with Applications – volume: 22 start-page: 1 year: 2000 end-page: 19 ident: b0100 article-title: Computing the SVD of a General Matrix Product/Quotient publication-title: SIAM Journal on Matrix Analysis and Applications29 – volume: 58 start-page: 787 year: 2012 end-page: 796 ident: b0295 article-title: Preference-inconsistent recommendations: An effective approach for reducing confirmation bias and stimulating divergent thinking? publication-title: Computers & Education – start-page: 387 year: 2011 end-page: 415 ident: b0195 article-title: Recommender systems in technology enhanced learning publication-title: Recommender systems handbook – start-page: 152 year: 2007 end-page: 168 ident: b0130 article-title: Combining social-based and information-based approaches for personalised recommendation on sequencing learning activities publication-title: International Journal of Learning Technology – reference: > Retrieved 01.05.08. – reference: (pp. 1–5). – volume: 36 start-page: 12520 year: 2009 end-page: 12528 ident: b0250 article-title: A multi-disciplinary recommender system to advice research resources in University Digital Libraries publication-title: Expert Systems with Applications – reference: Noy, N. F., & McGuinness, D. L. (2001). Ontology Development 101: A Guide to Creating Your First Ontology: Stanford Knowledge Systems Laboratory Technical Report KSL-01-05 and Stanford Medical Informatics Technical, Report SMI-2001-0880. – year: 2003 ident: b0260 article-title: Learning to teach in higher education – volume: 22 start-page: 5 year: 2004 end-page: 53 ident: b0115 article-title: Evaluating collaborative filtering recommender systems publication-title: ACM Transactions on Information Systems – reference: Lü, L., Medo, M., Yeung, C. H., Zhang, Y.-C., Zhang, Z.-K., & Zhou, T. (2012). Recommender systems. – year: 2012 ident: b0040 article-title: Semantic audio content-based music recommendation and visualization based on user preference examples publication-title: Information Processing & Management – reference: . Paper presented at the third education in a changing environment conference. < – reference: . < – reference: Lu, J., Shambour, Q., Xu, Y., Lin, Q., & Zhang, G. (2012). A Web-Based Personalized Business Partner Recommendation System Using Fuzzy Semantic Techniques. – volume: 35 start-page: 790 year: 2008 end-page: 804 ident: b0120 article-title: Evaluation of recommender systems: A new approach publication-title: Expert Systems with Applications – reference: Manning, C., Raghavan, P., & Schütze, H. (2008). – volume: 39 start-page: 899 year: 2010 end-page: 924 ident: b0245 article-title: An improved recommender system to avoid the persistent information overload in a university digital library publication-title: Control and Cybernetics – volume: 184 start-page: 1 year: 2012 end-page: 19 ident: b0255 article-title: A hybrid recommender system for the selective dissemination of research resources in a Technology Transfer Office publication-title: Information Sciences – year: 2010 ident: b0015 article-title: A survey paper on recommender systems publication-title: Computing Research Repository – volume: 111 start-page: 440 year: 2011 end-page: 446 ident: b0085 article-title: Userrank for item-based collaborative filtering recommendation publication-title: Information Processing Letters – volume: 51 start-page: 785 year: 2010 end-page: 799 ident: b0060 article-title: Combining content-based and collaborative recommendations: A hybrid approach based on Bayesian networks publication-title: International Journal of Approximate Reasoning – reference: Jain, A. K., Nandakumar, K., & Ross, A. (2005). Score normalization in multimodal biometric systems. Pattern Recognition. – reference: Bergin, J. (2002). Concept Of Pedagogical Patterns. < – volume: 26 start-page: 225 year: 2012 end-page: 238 ident: b0035 article-title: A collaborative filtering approach to mitigate the new user cold start problem publication-title: Knowledge-Based Systems – year: 2009 ident: b0270 article-title: Cross-validation publication-title: Encyclopedia of database systems – volume: 38 start-page: 8488 year: 2011 end-page: 8496 ident: b0140 article-title: Collaborative user modeling with user-generated tags for social recommender systems publication-title: Expert Systems with Applications – reference: Gardner, H. (2005). – volume: 178 start-page: 37 year: 2008 end-page: 51 ident: b0005 article-title: A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem publication-title: Information Sciences – volume: 180 start-page: 4290 year: 2010 end-page: 4311 ident: b0020 article-title: A hybrid content-based and item-based collaborative filtering approach to recommend TV programs enhanced with singular value decomposition publication-title: Information Sciences – volume: 53 start-page: 828 year: 2009 end-page: 840 ident: b0280 article-title: Applying Web usage mining for personalizing hyperlinks in Web-based adaptive educational systems publication-title: Computers & Education – volume: 37 start-page: 3055 year: 2010 end-page: 3062 ident: b0010 article-title: Selecting a small number of products for effective user profiling in collaborative filtering publication-title: Expert Systems with Applications – volume: Vol. 53 year: 2011 ident: b0045 publication-title: Becoming a mathematics teacher identity and identifications – reference: Krzywacki, H. (2009). – reference: O’Donovan, J., & Smyth, B. (2005). Trust in recommender systems. – reference: > Retrieved 15.11.07. – reference: Bergin, J., Eckstein, J., Manns, M.-L., Sharp, H., Voelter, M., Wallingford, E., et al. (2007). The Pedagogical Patterns Project. < – reference: Wei, K., Huang, J., & Fu, S. (2007). A survey of e-commerce recommender systems. In – volume: 12 start-page: 214 year: 2011 end-page: 237 ident: b0055 article-title: Personalized recommender system using entropy based collaborative filtering technique publication-title: Journal of Electronic Commerce Research – year: 2006 ident: b0105 article-title: Data mining: Concepts and techniques – volume: 1 start-page: 2773 year: 2010 end-page: 2774 ident: b0190 article-title: Proceedings of the 1st workshop on recommender systems for technology enhanced learning (RecSysTEL 2010) publication-title: Procedia Computer Science – volume: Vol. 14321 start-page: 377 year: 2007 end-page: 408 ident: b0050 article-title: Hybrid web recommender systems publication-title: The adaptive web – reference: Lisewski, B. (2006). – reference: Miller, B., Albert, I., Lam, S. K., Konstan, J., & Riedl, J. (2003). MovieLens unplugged: experiences with a recommender system on four mobile devices. Paper presented at the ACM SIGCHI conference on human factors in computing systems. – volume: Vol. LNCS 4321 start-page: 291 year: 2007 end-page: 324 ident: b0290 article-title: Collaborative filtering recommender systems publication-title: The adaptive web – start-page: 257 year: 2011 end-page: 297 ident: b0305 article-title: Evaluating recommendation systems recommender systems handbook publication-title: Recommender systems handbook – reference: Sánchez, J. I. (2000). – reference: > Retrieved 20.06.09. – reference: . Unpublished Doctoral, University of Helsinki, Faculty of Behavioural Sciences, Helsinki. – year: 2012 ident: b0215 article-title: SigTur/E-destination: Ontology-based personalized recommendation of tourism and leisure activities publication-title: Engineering Applications of Artificial Intelligence – volume: 177 start-page: 3017 year: 2007 end-page: 3037 ident: b0320 article-title: Using SVD and demographic data for the enhancement of generalized Collaborative Filtering publication-title: Information Sciences – reference: Farzan, R., & Brusilovsky, P. (2006). Social navigation support in a course recommender system. In – volume: 4 start-page: 76 year: 2003 end-page: 80 ident: b0155 article-title: Amazon.com recommendations: Item-to-item collaborative filtering publication-title: IEEE Internet Computing – reference: >. – volume: 2 start-page: 227 year: 2010 end-page: 240 ident: b0210 article-title: A filtering and recommender system for e-scholars publication-title: International Journal of Technology of Enhanced Learning – reference: Nielsen, J. (2005). – volume: 51 start-page: 530 year: 2008 end-page: 544 ident: b0265 article-title: Personalization in an interactive learning environment through a virtual character publication-title: Computers & Education – reference: . – volume: 25 start-page: 38 year: 2003 end-page: 47 ident: b0075 article-title: A look at e-learning models: investigating their value for developing an e-learning strategy publication-title: Progressio – volume: 180 start-page: 2142 year: 2010 end-page: 2155 ident: b0150 article-title: Collaborative filtering with ordinal scale-based implicit ratings for mobile music recommendations publication-title: Information Sciences – volume: 27 start-page: 503 year: 2004 end-page: 524 ident: b0175 article-title: Prácticas Innovadoras en la Formación del Docente Universitario publication-title: Educação – volume: 22 start-page: 143 year: 2004 end-page: 177 ident: b0065 article-title: Item-based top-N recommendation algorithms publication-title: ACM Transactions on Information Systems – volume: 181 start-page: 1503 year: 2011 end-page: 1516 ident: b0300 article-title: A Google wave-based fuzzy recommender system to disseminate information in University Digital Libraries 2.0 publication-title: Information Sciences – volume: 17 start-page: 734 year: 2005 end-page: 749 ident: b0095 article-title: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions publication-title: IEEE Transactions on Knowledge and Data Engineering – reference: Tetlon, P., Pan, J., Oberle, D., Wallace, E., Uschold, M., & Kendall, E. (2005). – reference: Petersen, K. B., & Pedersen, M. S. (2008). The matrix cookbook. < – volume: 12 start-page: 214 issue: 3 year: 2011 ident: 10.1016/j.ipm.2012.12.002_b0055 article-title: Personalized recommender system using entropy based collaborative filtering technique publication-title: Journal of Electronic Commerce Research – volume: 4 start-page: 76 year: 2003 ident: 10.1016/j.ipm.2012.12.002_b0155 article-title: Amazon.com recommendations: Item-to-item collaborative filtering publication-title: IEEE Internet Computing doi: 10.1109/MIC.2003.1167344 – ident: 10.1016/j.ipm.2012.12.002_b0030 – volume: 35 start-page: 790 issue: 3 year: 2008 ident: 10.1016/j.ipm.2012.12.002_b0120 article-title: Evaluation of recommender systems: A new approach publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2007.07.047 – volume: 51 start-page: 530 issue: 2 year: 2008 ident: 10.1016/j.ipm.2012.12.002_b0265 article-title: Personalization in an interactive learning environment through a virtual character publication-title: Computers & Education doi: 10.1016/j.compedu.2007.05.018 – volume: 34 start-page: 2995 issue: 4 year: 2008 ident: 10.1016/j.ipm.2012.12.002_b0310 article-title: Collaborative recommender systems: Combining effectiveness and efficiency publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2007.05.013 – ident: 10.1016/j.ipm.2012.12.002_b0285 – volume: 37 start-page: 573 issue: 4 year: 1995 ident: 10.1016/j.ipm.2012.12.002_b0200 article-title: Using linear algebra for intelligent information retrieval publication-title: SIAM Review doi: 10.1137/1037127 – ident: 10.1016/j.ipm.2012.12.002_b0220 – volume: 184 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.ipm.2012.12.002_b0255 article-title: A hybrid recommender system for the selective dissemination of research resources in a Technology Transfer Office publication-title: Information Sciences doi: 10.1016/j.ins.2011.08.026 – ident: 10.1016/j.ipm.2012.12.002_b0025 – volume: 25 start-page: 38 issue: 2 year: 2003 ident: 10.1016/j.ipm.2012.12.002_b0075 article-title: A look at e-learning models: investigating their value for developing an e-learning strategy publication-title: Progressio – year: 2009 ident: 10.1016/j.ipm.2012.12.002_b0270 article-title: Cross-validation – volume: 1 start-page: 2773 issue: 2 year: 2010 ident: 10.1016/j.ipm.2012.12.002_b0190 article-title: Proceedings of the 1st workshop on recommender systems for technology enhanced learning (RecSysTEL 2010) publication-title: Procedia Computer Science doi: 10.1016/S1877-0509(10)00329-7 – volume: 26 start-page: 225 year: 2012 ident: 10.1016/j.ipm.2012.12.002_b0035 article-title: A collaborative filtering approach to mitigate the new user cold start problem publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2011.07.021 – volume: 22 start-page: 143 issue: 1 year: 2004 ident: 10.1016/j.ipm.2012.12.002_b0065 article-title: Item-based top-N recommendation algorithms publication-title: ACM Transactions on Information Systems doi: 10.1145/963770.963776 – ident: 10.1016/j.ipm.2012.12.002_b0325 doi: 10.1109/ICSSSM.2007.4280214 – year: 2010 ident: 10.1016/j.ipm.2012.12.002_b0275 – volume: 22 start-page: 5 issue: 1 year: 2004 ident: 10.1016/j.ipm.2012.12.002_b0115 article-title: Evaluating collaborative filtering recommender systems publication-title: ACM Transactions on Information Systems doi: 10.1145/963770.963772 – ident: 10.1016/j.ipm.2012.12.002_b0180 doi: 10.1016/j.physrep.2012.02.006 – year: 2010 ident: 10.1016/j.ipm.2012.12.002_b0015 article-title: A survey paper on recommender systems publication-title: Computing Research Repository – volume: 58 start-page: 787 issue: 2 year: 2012 ident: 10.1016/j.ipm.2012.12.002_b0295 article-title: Preference-inconsistent recommendations: An effective approach for reducing confirmation bias and stimulating divergent thinking? publication-title: Computers & Education doi: 10.1016/j.compedu.2011.10.003 – ident: 10.1016/j.ipm.2012.12.002_b0135 doi: 10.1016/j.patcog.2005.01.012 – ident: 10.1016/j.ipm.2012.12.002_b0315 – volume: 180 start-page: 2142 issue: 11 year: 2010 ident: 10.1016/j.ipm.2012.12.002_b0150 article-title: Collaborative filtering with ordinal scale-based implicit ratings for mobile music recommendations publication-title: Information Sciences doi: 10.1016/j.ins.2010.02.004 – volume: 38 start-page: 8488 issue: 7 year: 2011 ident: 10.1016/j.ipm.2012.12.002_b0140 article-title: Collaborative user modeling with user-generated tags for social recommender systems publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.01.048 – year: 2012 ident: 10.1016/j.ipm.2012.12.002_b0040 article-title: Semantic audio content-based music recommendation and visualization based on user preference examples publication-title: Information Processing & Management – ident: 10.1016/j.ipm.2012.12.002_b0080 doi: 10.1007/11768012_11 – volume: 22 start-page: 1 issue: 1 year: 2000 ident: 10.1016/j.ipm.2012.12.002_b0100 article-title: Computing the SVD of a General Matrix Product/Quotient publication-title: SIAM Journal on Matrix Analysis and Applications29 doi: 10.1137/S0895479897325578 – volume: 2 start-page: 227 issue: 3 year: 2010 ident: 10.1016/j.ipm.2012.12.002_b0210 article-title: A filtering and recommender system for e-scholars publication-title: International Journal of Technology of Enhanced Learning doi: 10.1504/IJTEL.2010.033579 – ident: 10.1016/j.ipm.2012.12.002_b0225 – volume: 39 start-page: 899 issue: 4 year: 2010 ident: 10.1016/j.ipm.2012.12.002_b0245 article-title: An improved recommender system to avoid the persistent information overload in a university digital library publication-title: Control and Cybernetics – year: 2006 ident: 10.1016/j.ipm.2012.12.002_b0105 – volume: 178 start-page: 37 issue: 1 year: 2008 ident: 10.1016/j.ipm.2012.12.002_b0005 article-title: A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem publication-title: Information Sciences doi: 10.1016/j.ins.2007.07.024 – volume: Vol. 53 year: 2011 ident: 10.1016/j.ipm.2012.12.002_b0045 – ident: 10.1016/j.ipm.2012.12.002_b0160 – start-page: 257 year: 2011 ident: 10.1016/j.ipm.2012.12.002_b0305 article-title: Evaluating recommendation systems recommender systems handbook – volume: 23 start-page: 32 issue: 1 year: 2010 ident: 10.1016/j.ipm.2012.12.002_b0240 article-title: Dealing with incomplete information in a fuzzy linguistic recommender system to disseminate information in university digital libraries publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2009.07.007 – volume: 53 start-page: 828 issue: 3 year: 2009 ident: 10.1016/j.ipm.2012.12.002_b0280 article-title: Applying Web usage mining for personalizing hyperlinks in Web-based adaptive educational systems publication-title: Computers & Education doi: 10.1016/j.compedu.2009.05.003 – ident: 10.1016/j.ipm.2012.12.002_b0145 – ident: 10.1016/j.ipm.2012.12.002_b0235 – volume: 181 start-page: 1503 issue: 9 year: 2011 ident: 10.1016/j.ipm.2012.12.002_b0300 article-title: A Google wave-based fuzzy recommender system to disseminate information in University Digital Libraries 2.0 publication-title: Information Sciences doi: 10.1016/j.ins.2011.01.012 – ident: 10.1016/j.ipm.2012.12.002_b0185 doi: 10.1017/CBO9780511809071 – volume: 36 start-page: 12520 issue: 10 year: 2009 ident: 10.1016/j.ipm.2012.12.002_b0250 article-title: A multi-disciplinary recommender system to advice research resources in University Digital Libraries publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2009.04.038 – start-page: 152 year: 2007 ident: 10.1016/j.ipm.2012.12.002_b0130 article-title: Combining social-based and information-based approaches for personalised recommendation on sequencing learning activities publication-title: International Journal of Learning Technology doi: 10.1504/IJLT.2007.014842 – volume: 51 start-page: 785 issue: 7 year: 2010 ident: 10.1016/j.ipm.2012.12.002_b0060 article-title: Combining content-based and collaborative recommendations: A hybrid approach based on Bayesian networks publication-title: International Journal of Approximate Reasoning doi: 10.1016/j.ijar.2010.04.001 – ident: 10.1016/j.ipm.2012.12.002_b0090 – ident: 10.1016/j.ipm.2012.12.002_b0205 – volume: Vol. 14321 start-page: 377 year: 2007 ident: 10.1016/j.ipm.2012.12.002_b0050 article-title: Hybrid web recommender systems – volume: 39 start-page: 11511 issue: 14 year: 2012 ident: 10.1016/j.ipm.2012.12.002_b0070 article-title: Similarity of users’ (content-based) preference models for collaborative filtering in few ratings scenario publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.01.177 – volume: 180 start-page: 4290 issue: 22 year: 2010 ident: 10.1016/j.ipm.2012.12.002_b0020 article-title: A hybrid content-based and item-based collaborative filtering approach to recommend TV programs enhanced with singular value decomposition publication-title: Information Sciences doi: 10.1016/j.ins.2010.07.024 – ident: 10.1016/j.ipm.2012.12.002_b0170 – year: 2012 ident: 10.1016/j.ipm.2012.12.002_b0215 article-title: SigTur/E-destination: Ontology-based personalized recommendation of tourism and leisure activities publication-title: Engineering Applications of Artificial Intelligence – year: 2003 ident: 10.1016/j.ipm.2012.12.002_b0260 – volume: 111 start-page: 440 issue: 9 year: 2011 ident: 10.1016/j.ipm.2012.12.002_b0085 article-title: Userrank for item-based collaborative filtering recommendation publication-title: Information Processing Letters doi: 10.1016/j.ipl.2011.02.003 – volume: 177 start-page: 3017 issue: 15 year: 2007 ident: 10.1016/j.ipm.2012.12.002_b0320 article-title: Using SVD and demographic data for the enhancement of generalized Collaborative Filtering publication-title: Information Sciences doi: 10.1016/j.ins.2007.02.036 – volume: 179 start-page: 3505 issue: 20 year: 2009 ident: 10.1016/j.ipm.2012.12.002_b0165 article-title: A hybrid of sequential rules and collaborative filtering for product recommendation publication-title: Information Sciences doi: 10.1016/j.ins.2009.06.004 – volume: 199 start-page: 78 year: 2012 ident: 10.1016/j.ipm.2012.12.002_b0125 article-title: Using past-prediction accuracy in recommender systems publication-title: Information Sciences doi: 10.1016/j.ins.2012.02.033 – volume: 37 start-page: 3055 issue: 4 year: 2010 ident: 10.1016/j.ipm.2012.12.002_b0010 article-title: Selecting a small number of products for effective user profiling in collaborative filtering publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2009.09.025 – volume: 17 start-page: 734 issue: 6 year: 2005 ident: 10.1016/j.ipm.2012.12.002_b0095 article-title: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2005.99 – volume: 27 start-page: 503 issue: 3 year: 2004 ident: 10.1016/j.ipm.2012.12.002_b0175 article-title: Prácticas Innovadoras en la Formación del Docente Universitario publication-title: Educação – start-page: 387 year: 2011 ident: 10.1016/j.ipm.2012.12.002_b0195 article-title: Recommender systems in technology enhanced learning – volume: Vol. LNCS 4321 start-page: 291 year: 2007 ident: 10.1016/j.ipm.2012.12.002_b0290 article-title: Collaborative filtering recommender systems – ident: 10.1016/j.ipm.2012.12.002_b0230 doi: 10.1145/1040830.1040870 – start-page: 310 year: 2001 ident: 10.1016/j.ipm.2012.12.002_b0110 article-title: Web delivery of adaptive and interactive language tutoring publication-title: International Journal of Artificial Intelligence in Education |
SSID | ssj0004512 |
Score | 2.2627265 |
Snippet | ► Ontologies are an effective tool for representing the pedagogical patterns. ► The proposed system enables teachers to improve their teaching skills. ► The... To carry out effective teaching/learning processes, lecturers in a variety of educational institutions frequently need support. They therefore resort to advice... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 607 |
SubjectTerms | Classrooms Collaborative filtering Cosine similarity Decomposition Education Exact sciences and technology Filtering systems Information and communication sciences Information processing and retrieval Information retrieval systems. Information and document management system Information retrieval. Man machine relationship Information science. Documentation Information systems Ontologies Ontology Pattern recognition Pedagogical patterns Pedagogy Recommender systems Research process. Evaluation Resnick prediction formula Risk Sciences and techniques of general use Singular value decomposition Students Studies Teacher education Teacher training Teachers Teaching Teaching methods Training |
Title | A hybrid system of pedagogical pattern recommendations based on singular value decomposition and variable data attributes |
URI | https://dx.doi.org/10.1016/j.ipm.2012.12.002 https://www.proquest.com/docview/1313961690 https://www.proquest.com/docview/1531003673 https://www.proquest.com/docview/1550993687 https://www.proquest.com/docview/1671535680 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQw0KrKBQkhKCC2tCsjIQ5IYe34lRxXFdW2iF6gUm-RX4FFbTZit4de-HZmHGdFRbUHpJzssZN4xuMZz4uQd14K5nzgRZCqKqSrfWGjigVoQxpIxrMq4D3klwu9uJTnV-pqj5yMsTDoVpl5_8DTE7fOLbO8mrN-uZx9RWlXKiN4mZLEYBCflAap_ONv_lfGcJ4tCbpA6NGymXy8lj0Go_My3Qjmm5UHzqYnvV3DirVDqYt_uHY6ik6fkadZhqTz4TOfk73YHZDjHIFA39McYoRLTvPefUHu5vTHHYZn0SF5M121tI_Bfh94H-1Tos2OooZ8cxNzraU1xWMuUJgJLxXQZ5VifvBIA8KNLl_UdgHagZjdNXTZjaUwXaqlFdcvyeXpp28niyLXXSi8VHJT2LJ0Lhgv68C4ky0zqCaGurU6BNmCQh2F1rIGUcvVLXMquKo0lhlvGSb-FK_Ifrfq4mtCvcNBVSuNiBLw5FSrWs6j1ioo6-WEsHHFG5-TkmNtjOtm9D772QCSGkRSAw8gaUI-bIf0Q0aOXcByRGNzj6waODF2DZveQ_n2RaXhKPGICTkaaaDJm37dcAHitEa744S83XbDdkUbjO3i6hZgFFpUhDZiFwxIcbXQldkBow1MpXTFDv_vF9-Qx2Wq7IG-m0dkf_PrNh6DfLVx07SBpuTR_Ozz4uIPM1gmZw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbp5tBCKX3STZNUhdJDwaxtvezjEho2TbKXJpCb0LPZknhNd3PIv8-MLS8NLXso-GSPZHtGGo00M98Q8tlxllvni8xzUWXc1i4zQYQMdkMShozLK4_nkOdzObvk36_E1Q45GnJhMKwy6f5ep3faOt2ZJG5O2sVi8gOtXS4UK8oOJKZ-QnYRnUqMyO705HQ2_wM0vEjOBJlhg8G52YV5LVrMRy_K7lAwHa78Y3l63poVMC321S7-UtzdanT8krxIZiSd9l_6iuyE5jU5SEkI9AtNWUbIdZqm7xtyP6XX95ihRXv8ZrqMtA3e_OzVH207rM2G4ib59jakcksriiudp9ATnitg2CpFiPBAPdINUV_UNB7uw3i2N_DIrA2F7rpyWmH1llwef7s4mmWp9ELmgIfrzJSltV45Xvu8sDzmCneKvo5Ges8j7KkDk5LXYG3ZOuZWeFuVyuTKmRyxP9k7MmqWTXhPqLPYqIpcscBBVFZEEYsiSCm8MI6PST5wXLuES47lMW70EID2S4OQNApJwwVCGpOvmyZtD8qxjZgPYtSPRpaGRWNbs8NHIt-8qFQFGj1sTPaHMaDTvF_pgoFFLdH1OCafNo9hxqIbxjRheQc0Ap0qTCq2jQYMuZrJSm2hkQq6ErLK9_7vFz-Sp7OL8zN9djI__UCelV2hDwzl3Cej9e-7cADm1toepun0AC7vKRg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+system+of+pedagogical+pattern+recommendations+based+on+singular+value+decomposition+and+variable+data+attributes&rft.jtitle=Information+processing+%26+management&rft.au=Cobos%2C+Carlos&rft.au=Rodriguez%2C+Orlando&rft.au=Rivera%2C+Jarvein&rft.au=Betancourt%2C+John&rft.date=2013-05-01&rft.pub=Elsevier+Ltd&rft.issn=0306-4573&rft.eissn=1873-5371&rft.volume=49&rft.issue=3&rft.spage=607&rft.epage=625&rft_id=info:doi/10.1016%2Fj.ipm.2012.12.002&rft.externalDocID=S0306457312001409 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4573&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4573&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4573&client=summon |