A hybrid system of pedagogical pattern recommendations based on singular value decomposition and variable data attributes

► Ontologies are an effective tool for representing the pedagogical patterns. ► The proposed system enables teachers to improve their teaching skills. ► The proposed system enables teachers to solve pedagogical problems in class. ► A pilot test shows satisfactory results in the accuracy of the recom...

Full description

Saved in:
Bibliographic Details
Published inInformation processing & management Vol. 49; no. 3; pp. 607 - 625
Main Authors Cobos, Carlos, Rodriguez, Orlando, Rivera, Jarvein, Betancourt, John, Mendoza, Martha, León, Elizabeth, Herrera-Viedma, Enrique
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.05.2013
Elsevier
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ► Ontologies are an effective tool for representing the pedagogical patterns. ► The proposed system enables teachers to improve their teaching skills. ► The proposed system enables teachers to solve pedagogical problems in class. ► A pilot test shows satisfactory results in the accuracy of the recommendations. ► Prediction accuracy evaluation show better results than other nine recommenders. To carry out effective teaching/learning processes, lecturers in a variety of educational institutions frequently need support. They therefore resort to advice from more experienced lecturers, to formal training processes such as specializations, master or doctoral degrees, or to self-training. High costs in time and money are invariably involved in the processes of formal training, while self-training and advice each bring their own specific risks (e.g. of following new trends that are not fully evaluated or the risk of applying techniques that are inappropriate in specific contexts).This paper presents a system that allows lecturers to define their best teaching strategies for use in the context of a specific class. The context is defined by: the specific characteristics of the subject being treated, the specific objectives that are expected to be achieved in the classroom session, the profile of the students on the course, the dominant characteristics of the teacher, and the classroom environment for each session, among others. The system presented is the Recommendation System of Pedagogical Patterns (RSPP). To construct the RSPP, an ontology representing the pedagogical patterns and their interaction with the fundamentals of the educational process was defined. A web information system was also defined to record information on courses, students, lecturers, etc.; an option based on a unified hybrid model (for content and collaborative filtering) of recommendations for pedagogical patterns was further added to the system. RSPP features a minable view, a tabular structure that summarizes and organizes the information registered in the rest of the system as well as facilitating the task of recommendation. The data recorded in the minable view is taken to a latent space, where noise is reduced and the essence of the information contained in the structure is distilled. This process makes use of Singular Value Decomposition (SVD), commonly used by information retrieval and recommendation systems. Satisfactory results both in the accuracy of the recommendations and in the use of the general application open the door for further research and expand the role of recommender systems in educational teacher support processes.
AbstractList To carry out effective teaching/learning processes, lecturers in a variety of educational institutions frequently need support. They therefore resort to advice from more experienced lecturers, to formal training processes such as specializations, master or doctoral degrees, or to self-training. High costs in time and money are invariably involved in the processes of formal training, while self-training and advice each bring their own specific risks (e.g. of following new trends that are not fully evaluated or the risk of applying techniques that are inappropriate in specific contexts).This paper presents a system that allows lecturers to define their best teaching strategies for use in the context of a specific class. The context is defined by: the specific characteristics of the subject being treated, the specific objectives that are expected to be achieved in the classroom session, the profile of the students on the course, the dominant characteristics of the teacher, and the classroom environment for each session, among others. The system presented is the Recommendation System of Pedagogical Patterns (RSPP). To construct the RSPP, an ontology representing the pedagogical patterns and their interaction with the fundamentals of the educational process was defined. A web information system was also defined to record information on courses, students, lecturers, etc.; an option based on a unified hybrid model (for content and collaborative filtering) of recommendations for pedagogical patterns was further added to the system. RSPP features a minable view, a tabular structure that summarizes and organizes the information registered in the rest of the system as well as facilitating the task of recommendation. The data recorded in the minable view is taken to a latent space, where noise is reduced and the essence of the information contained in the structure is distilled. This process makes use of Singular Value Decomposition (SVD), commonly used by information retrieval and recommendation systems. Satisfactory results both in the accuracy of the recommendations and in the use of the general application open the door for further research and expand the role of recommender systems in educational teacher support processes.
► Ontologies are an effective tool for representing the pedagogical patterns. ► The proposed system enables teachers to improve their teaching skills. ► The proposed system enables teachers to solve pedagogical problems in class. ► A pilot test shows satisfactory results in the accuracy of the recommendations. ► Prediction accuracy evaluation show better results than other nine recommenders. To carry out effective teaching/learning processes, lecturers in a variety of educational institutions frequently need support. They therefore resort to advice from more experienced lecturers, to formal training processes such as specializations, master or doctoral degrees, or to self-training. High costs in time and money are invariably involved in the processes of formal training, while self-training and advice each bring their own specific risks (e.g. of following new trends that are not fully evaluated or the risk of applying techniques that are inappropriate in specific contexts).This paper presents a system that allows lecturers to define their best teaching strategies for use in the context of a specific class. The context is defined by: the specific characteristics of the subject being treated, the specific objectives that are expected to be achieved in the classroom session, the profile of the students on the course, the dominant characteristics of the teacher, and the classroom environment for each session, among others. The system presented is the Recommendation System of Pedagogical Patterns (RSPP). To construct the RSPP, an ontology representing the pedagogical patterns and their interaction with the fundamentals of the educational process was defined. A web information system was also defined to record information on courses, students, lecturers, etc.; an option based on a unified hybrid model (for content and collaborative filtering) of recommendations for pedagogical patterns was further added to the system. RSPP features a minable view, a tabular structure that summarizes and organizes the information registered in the rest of the system as well as facilitating the task of recommendation. The data recorded in the minable view is taken to a latent space, where noise is reduced and the essence of the information contained in the structure is distilled. This process makes use of Singular Value Decomposition (SVD), commonly used by information retrieval and recommendation systems. Satisfactory results both in the accuracy of the recommendations and in the use of the general application open the door for further research and expand the role of recommender systems in educational teacher support processes.
To carry out effective teaching/learning processes, lecturers in a variety of educational institutions frequently need support. They therefore resort to advice from more experienced lecturers, to formal training processes such as specializations, master or doctoral degrees, or to self-training. High costs in time and money are invariably involved in the processes of formal training, while self-training and advice each bring their own specific risks (e.g. of following new trends that are not fully evaluated or the risk of applying techniques that are inappropriate in specific contexts).This paper presents a system that allows lecturers to define their best teaching strategies for use in the context of a specific class. The context is defined by: the specific characteristics of the subject being treated, the specific objectives that are expected to be achieved in the classroom session, the profile of the students on the course, the dominant characteristics of the teacher, and the classroom environment for each session, among others. The system presented is the Recommendation System of Pedagogical Patterns (RSPP). To construct the RSPP, an ontology representing the pedagogical patterns and their interaction with the fundamentals of the educational process was defined. A web information system was also defined to record information on courses, students, lecturers, etc.; an option based on a unified hybrid [PUBLICATION ABSTRACT]
To carry out effective teaching/learning processes, lecturers in a variety of educational institutions frequently need support. They therefore resort to advice from more experienced lecturers, to formal training processes such as specializations, master or doctoral degrees, or to self-training. High costs in time and money are invariably involved in the processes of formal training, while self-training and advice each bring their own specific risks (e.g. of following new trends that are not fully evaluated or the risk of applying techniques that are inappropriate in specific contexts). This paper presents a system that allows lecturers to define their best teaching strategies for use in the context of a specific class. The context is defined by: the specific characteristics of the subject being treated, the specific objectives that are expected to be achieved in the classroom session, the profile of the students on the course, the dominant characteristics of the teacher, and the classroom environment for each session, among others. The system presented is the Recommendation System of Pedagogical Patterns (RSPP). To construct the RSPP, an ontology representing the pedagogical patterns and their interaction with the fundamentals of the educational process was defined. A web information system was also defined to record information on courses, students, lecturers, etc.; an option based on a unified hybrid model (for content and collaborative filtering) of recommendations for pedagogical patterns was further added to the system. RSPP features a minable view, a tabular structure that summarizes and organizes the information registered in the rest of the system as well as facilitating the task of recommendation. The data recorded in the minable view is taken to a latent space, where noise is reduced and the essence of the information contained in the structure is distilled. This process makes use of Singular Value Decomposition (SVD), commonly used by information retrieval and recommendation systems. Satisfactory results both in the accuracy of the recommendations and in the use of the general application open the door for further research and expand the role of recommender systems in educational teacher support processes. Adapted from the source document.
Author León, Elizabeth
Herrera-Viedma, Enrique
Cobos, Carlos
Rodriguez, Orlando
Betancourt, John
Rivera, Jarvein
Mendoza, Martha
Author_xml – sequence: 1
  givenname: Carlos
  surname: Cobos
  fullname: Cobos, Carlos
  email: coboscarlos@gmail.com
  organization: Information Technology Research Group (GTI), Universidad del Cauca, Sector Tulcán Office 422 FIET, Popayán, Colombia
– sequence: 2
  givenname: Orlando
  surname: Rodriguez
  fullname: Rodriguez, Orlando
  organization: Information Technology Research Group (GTI), Universidad del Cauca, Sector Tulcán Office 422 FIET, Popayán, Colombia
– sequence: 3
  givenname: Jarvein
  surname: Rivera
  fullname: Rivera, Jarvein
  organization: Information Technology Research Group (GTI), Universidad del Cauca, Sector Tulcán Office 422 FIET, Popayán, Colombia
– sequence: 4
  givenname: John
  surname: Betancourt
  fullname: Betancourt, John
  organization: Information Technology Research Group (GTI), Universidad del Cauca, Sector Tulcán Office 422 FIET, Popayán, Colombia
– sequence: 5
  givenname: Martha
  surname: Mendoza
  fullname: Mendoza, Martha
  organization: Information Technology Research Group (GTI), Universidad del Cauca, Sector Tulcán Office 422 FIET, Popayán, Colombia
– sequence: 6
  givenname: Elizabeth
  surname: León
  fullname: León, Elizabeth
  organization: Systems and Industrial Engineering Department, Engineering Faculty, Universidad Nacional de Colombia, Colombia
– sequence: 7
  givenname: Enrique
  surname: Herrera-Viedma
  fullname: Herrera-Viedma, Enrique
  organization: Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27141523$$DView record in Pascal Francis
BookMark eNqFkk9r3DAQxU1JoZu0H6A3QSn0sluN9W9NTyG0TSDQS3sWY0nearElV5ID--0rd9NLDgkMCKTfe5Jm3mVzEWJwTfMe6A4oyM_HnZ-nXUuh3dWitH3VbGCv2FYwBRfNhjIqt1wo9qa5zPlIKeUC2k1zuia_T33yluRTLm4icSCzs3iIB29wJDOW4lIgyZk4TS5YLD6GTHrMzpIYSPbhsIyYyAOOiyN25eaY_YoRDLbuJ4_9WI-wIKl2yfdLcflt83rAMbt3j-tV8-vb1583t9v7H9_vbq7vt4YLXrbYtn1vleGdpdDzgSrVAthuQGktH7jsHJOSd8BZ3w20F7bftwqpMkhBCcaumk9n3znFP4vLRU8-GzeOGFxcsgapQDAh9_RlVAjadUzWvr6MMqCUSbU-4MMT9BiXFOqfNTBgnQTZrXd_fKQw18YPCYPxWc_JT5hOulXAQbSrmzpzJsWckxu08eXfUEpCP2qgeg2EPuoaCL0GQteqgahKeKL8b_6c5stZ4-qEHrxLOhvvgnHW10QUbaN_Rv0XozrP2Q
CODEN IPMADK
CitedBy_id crossref_primary_10_1007_s10462_017_9539_5
crossref_primary_10_1016_j_future_2017_02_049
crossref_primary_10_1002_cae_22566
crossref_primary_10_2139_ssrn_4057041
crossref_primary_10_1016_j_cie_2021_107348
crossref_primary_10_1007_s13198_021_01197_6
crossref_primary_10_1186_s41239_023_00436_z
crossref_primary_10_1155_2013_691042
crossref_primary_10_1016_j_ins_2015_02_019
crossref_primary_10_2174_2666255813999201020144108
crossref_primary_10_1016_j_engappai_2018_07_007
crossref_primary_10_1016_j_ipm_2021_102842
crossref_primary_10_1007_s10462_023_10508_1
crossref_primary_10_1109_ACCESS_2024_3377120
crossref_primary_10_1186_s41239_019_0171_0
crossref_primary_10_1016_j_jss_2023_111613
crossref_primary_10_1109_ACCESS_2025_3535527
crossref_primary_10_1016_j_procs_2019_11_277
crossref_primary_10_1142_S0218126622300070
crossref_primary_10_3390_educsci14070723
crossref_primary_10_1016_j_ins_2014_07_054
crossref_primary_10_1007_s10462_018_9655_x
crossref_primary_10_1016_j_ins_2014_05_003
crossref_primary_10_1016_j_ins_2014_05_047
crossref_primary_10_1109_TLT_2015_2434824
crossref_primary_10_2139_ssrn_4197677
crossref_primary_10_1038_s41598_019_54031_2
crossref_primary_10_1016_j_dss_2015_03_008
crossref_primary_10_1007_s11423_021_10029_0
crossref_primary_10_1080_08839514_2023_2175106
crossref_primary_10_1007_s42979_024_02837_x
crossref_primary_10_1016_j_ipm_2020_102357
crossref_primary_10_1007_s00500_017_2720_6
crossref_primary_10_1016_j_compeleceng_2020_106791
crossref_primary_10_1016_j_compedu_2023_104960
Cites_doi 10.1109/MIC.2003.1167344
10.1016/j.eswa.2007.07.047
10.1016/j.compedu.2007.05.018
10.1016/j.eswa.2007.05.013
10.1137/1037127
10.1016/j.ins.2011.08.026
10.1016/S1877-0509(10)00329-7
10.1016/j.knosys.2011.07.021
10.1145/963770.963776
10.1109/ICSSSM.2007.4280214
10.1145/963770.963772
10.1016/j.physrep.2012.02.006
10.1016/j.compedu.2011.10.003
10.1016/j.patcog.2005.01.012
10.1016/j.ins.2010.02.004
10.1016/j.eswa.2011.01.048
10.1007/11768012_11
10.1137/S0895479897325578
10.1504/IJTEL.2010.033579
10.1016/j.ins.2007.07.024
10.1016/j.knosys.2009.07.007
10.1016/j.compedu.2009.05.003
10.1016/j.ins.2011.01.012
10.1017/CBO9780511809071
10.1016/j.eswa.2009.04.038
10.1504/IJLT.2007.014842
10.1016/j.ijar.2010.04.001
10.1016/j.eswa.2012.01.177
10.1016/j.ins.2010.07.024
10.1016/j.ipl.2011.02.003
10.1016/j.ins.2007.02.036
10.1016/j.ins.2009.06.004
10.1016/j.ins.2012.02.033
10.1016/j.eswa.2009.09.025
10.1109/TKDE.2005.99
10.1145/1040830.1040870
ContentType Journal Article
Copyright 2012 Elsevier Ltd
2015 INIST-CNRS
Copyright Pergamon Press Inc. May 2013
Copyright_xml – notice: 2012 Elsevier Ltd
– notice: 2015 INIST-CNRS
– notice: Copyright Pergamon Press Inc. May 2013
DBID AAYXX
CITATION
IQODW
E3H
F2A
7SC
7TA
8FD
JG9
JQ2
L7M
L~C
L~D
8BP
DOI 10.1016/j.ipm.2012.12.002
DatabaseName CrossRef
Pascal-Francis
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Computer and Information Systems Abstracts
Materials Business File
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Library & Information Sciences Abstracts (LISA) - CILIP Edition
DatabaseTitle CrossRef
Library and Information Science Abstracts (LISA)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Materials Business File
Computer and Information Systems Abstracts Professional
Library & Information Sciences Abstracts (LISA) - CILIP Edition
DatabaseTitleList Materials Research Database
Materials Research Database

Library and Information Science Abstracts (LISA)
Library & Information Sciences Abstracts (LISA) - CILIP Edition
DeliveryMethod fulltext_linktorsrc
Discipline Library & Information Science
Education
EISSN 1873-5371
EndPage 625
ExternalDocumentID 2905507971
27141523
10_1016_j_ipm_2012_12_002
S0306457312001409
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0B8
0R~
1B1
1RT
1~.
1~5
29I
4.4
41~
457
4G.
5GY
5VS
7-5
71M
77K
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
AAYOK
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABMMH
ABPPZ
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHQT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG9
LPU
LY1
M3Y
M41
MO0
MS~
MVM
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSO
SSS
SSV
SSZ
T5K
TN5
U5U
UHB
UHS
UNMZH
WUQ
XFK
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADMHG
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
IQODW
PKN
E3H
EFKBS
F2A
7SC
7TA
8FD
JG9
JQ2
L7M
L~C
L~D
8BP
ID FETCH-LOGICAL-c454t-a22bbd7c49d01b4f077211d9fa6dd4f469e36649143b9f0b5db827a07ca017533
IEDL.DBID .~1
ISSN 0306-4573
IngestDate Thu Jul 10 19:28:09 EDT 2025
Tue Aug 05 11:19:24 EDT 2025
Thu Jul 10 19:26:35 EDT 2025
Fri Jul 25 06:27:44 EDT 2025
Sun Feb 16 07:29:56 EST 2025
Thu Apr 24 23:10:02 EDT 2025
Tue Jul 01 00:44:31 EDT 2025
Fri Feb 23 02:18:39 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Cosine similarity
Pedagogical patterns
Recommender systems
Singular value decomposition
Resnick prediction formula
Filtering
Variable
Similarity
Prediction
Data
Recommendation
Hybrid system
Collaborative filtering
Value
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c454t-a22bbd7c49d01b4f077211d9fa6dd4f469e36649143b9f0b5db827a07ca017533
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1313961690
PQPubID 23500
PageCount 19
ParticipantIDs proquest_miscellaneous_1671535680
proquest_miscellaneous_1550993687
proquest_miscellaneous_1531003673
proquest_journals_1313961690
pascalfrancis_primary_27141523
crossref_citationtrail_10_1016_j_ipm_2012_12_002
crossref_primary_10_1016_j_ipm_2012_12_002
elsevier_sciencedirect_doi_10_1016_j_ipm_2012_12_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-05-01
PublicationDateYYYYMMDD 2013-05-01
PublicationDate_xml – month: 05
  year: 2013
  text: 2013-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: Oxford
PublicationTitle Information processing & management
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
– name: Elsevier Science Ltd
References Ahn, Kang, Lee (b0010) 2010; 37
Chandrashekhar, Bhasker (b0055) 2011; 12
Hernandez del Olmo, Gaudioso (b0120) 2008; 35
Serrano-Guerrero, Herrera-Viedma, Olivas, Cerezo, Romero (b0300) 2011; 181
Vozalis, Margaritis (b0320) 2007; 177
Retrieved 20.06.09.
Miller, B., Albert, I., Lam, S. K., Konstan, J., & Riedl, J. (2003). MovieLens unplugged: experiences with a recommender system on four mobile devices. Paper presented at the ACM SIGCHI conference on human factors in computing systems.
Engelbrecht (b0075) 2003; 25
(pp. 1–5).
Han, Kamber (b0105) 2006
Schwind, Buder, Cress, Hesse (b0295) 2012; 58
Farzan, R., & Brusilovsky, P. (2006). Social navigation support in a course recommender system. In
Romero, Ventura, Zafra, Bra (b0280) 2009; 53
Bergin, J., Eckstein, J., Manns, M.-L., Sharp, H., Voelter, M., Wallingford, E., et al. (2007). The Pedagogical Patterns Project.
Lu, J., Shambour, Q., Xu, Y., Lin, Q., & Zhang, G. (2012). A Web-Based Personalized Business Partner Recommendation System Using Fuzzy Semantic Techniques.
Lü, L., Medo, M., Yeung, C. H., Zhang, Y.-C., Zhang, Z.-K., & Zhou, T. (2012). Recommender systems.
Gediminas, Alexander (b0095) 2005; 17
Retrieved 15.11.07.
Shani, Gunawardana (b0305) 2011
Herlocker, Konstan, Terveen, Riedl (b0115) 2004; 22
Heift, Nicholson (b0110) 2001
Noy, N. F., & McGuinness, D. L. (2001). Ontology Development 101: A Guide to Creating Your First Ontology: Stanford Knowledge Systems Laboratory Technical Report KSL-01-05 and Stanford Medical Informatics Technical, Report SMI-2001-0880.
Lucarelli (b0175) 2004; 27
Burke (b0050) 2007; Vol. 14321
Linden, Smith (b0155) 2003; 4
Bogdanov, Haro, Fuhrmann, Xambó, Gómez, Herrera (b0040) 2012
Lisewski, B. (2006).
Petersen, K. B., & Pedersen, M. S. (2008). The matrix cookbook.
Paper presented at the third education in a changing environment conference.
.
Golub, Solna, Van Dooren (b0100) 2000; 22
Refaeilzadeh, Tang, Liu (b0270) 2009
Eckhardt (b0070) 2012; 39
Kim, Alkhaldi, El Saddik, Jo (b0140) 2011; 38
Ramsden (b0260) 2003
Hummel, Van den Berg, Berlanga, Drachsler, Jansenn, Nadolski (b0130) 2007
Porcel, Herrera-Viedma (b0240) 2010; 23
Porcel, Morales-del-Castillo, Cobo, Ruíz-Rodríguez, Herrera-Viedma (b0245) 2010; 39
Manouselis, Drachsler, Vuorikari, Hummel, Koper (b0195) 2011
Brown, McNamara (b0045) 2011; Vol. 53
Moreno, Valls, Isern, Marin, Borràs (b0215) 2012
Ahn (b0005) 2008; 178
in Press.
Michael, Susan, Gavin (b0200) 1995; 37
Deshpande, Karypis (b0065) 2004; 22
Gao, Wu, Jiang (b0085) 2011; 111
O’Donovan, J., & Smyth, B. (2005). Trust in recommender systems.
Liu, Lai, Lee (b0165) 2009; 179
Bergin, J. (2002). Concept Of Pedagogical Patterns.
Manning, C., Raghavan, P., & Schütze, H. (2008).
Jain, A. K., Nandakumar, K., & Ross, A. (2005). Score normalization in multimodal biometric systems. Pattern Recognition.
Barragáns-Martínez, Costa-Montenegro, Burguillo, Rey-López, Mikic-Fonte, Peleteiro (b0020) 2010; 180
Porcel, Moreno, Herrera-Viedma (b0250) 2009; 36
Sánchez, J. I. (2000).
Tetlon, P., Pan, J., Oberle, D., Wallace, E., Uschold, M., & Kendall, E. (2005).
Nielsen, J. (2005).
Schafer, Frankowski, Herlocker, Sen (b0290) 2007; Vol. LNCS 4321
Lee, Cho, Kim (b0150) 2010; 180
Reategui, Boff, Campbell (b0265) 2008; 51
Bobadilla, Ortega, Hernando, Bernal (b0035) 2012; 26
Morales-del-Castillo, Peis, Herrera-Viedma (b0210) 2010; 2
Wei, K., Huang, J., & Fu, S. (2007). A survey of e-commerce recommender systems. In
Huete, Fernández-Luna, de Campos, Rueda-Morales (b0125) 2012; 199
Ricci, Rokach, Shapira, Kantor (b0275) 2010
Retrieved 01.05.08.
Krzywacki, H. (2009).
Manouselis, Drachsler, Verbert, Santos (b0190) 2010; 1
Unpublished Doctoral, University of Helsinki, Faculty of Behavioural Sciences, Helsinki.
Porcel, Tejeda-Lorente, Martínez, Herrera-Viedma (b0255) 2012; 184
de Campos, Fernández-Luna, Huete, Rueda-Morales (b0060) 2010; 51
Almazro, Shahatah, Albdulkarim, Kherees, Martinez, Nzoukou (b0015) 2010
Symeonidis, Nanopoulos, Papadopoulos, Manolopoulos (b0310) 2008; 34
Gardner, H. (2005).
Linden (10.1016/j.ipm.2012.12.002_b0155) 2003; 4
10.1016/j.ipm.2012.12.002_b0285
Gediminas (10.1016/j.ipm.2012.12.002_b0095) 2005; 17
10.1016/j.ipm.2012.12.002_b0160
Barragáns-Martínez (10.1016/j.ipm.2012.12.002_b0020) 2010; 180
Bobadilla (10.1016/j.ipm.2012.12.002_b0035) 2012; 26
Hernandez del Olmo (10.1016/j.ipm.2012.12.002_b0120) 2008; 35
Refaeilzadeh (10.1016/j.ipm.2012.12.002_b0270) 2009
10.1016/j.ipm.2012.12.002_b0080
Michael (10.1016/j.ipm.2012.12.002_b0200) 1995; 37
Brown (10.1016/j.ipm.2012.12.002_b0045) 2011; Vol. 53
Manouselis (10.1016/j.ipm.2012.12.002_b0190) 2010; 1
Engelbrecht (10.1016/j.ipm.2012.12.002_b0075) 2003; 25
Porcel (10.1016/j.ipm.2012.12.002_b0255) 2012; 184
Ahn (10.1016/j.ipm.2012.12.002_b0010) 2010; 37
Heift (10.1016/j.ipm.2012.12.002_b0110) 2001
10.1016/j.ipm.2012.12.002_b0325
10.1016/j.ipm.2012.12.002_b0205
Kim (10.1016/j.ipm.2012.12.002_b0140) 2011; 38
Golub (10.1016/j.ipm.2012.12.002_b0100) 2000; 22
10.1016/j.ipm.2012.12.002_b0170
de Campos (10.1016/j.ipm.2012.12.002_b0060) 2010; 51
Gao (10.1016/j.ipm.2012.12.002_b0085) 2011; 111
10.1016/j.ipm.2012.12.002_b0090
Burke (10.1016/j.ipm.2012.12.002_b0050) 2007; Vol. 14321
Porcel (10.1016/j.ipm.2012.12.002_b0245) 2010; 39
Bogdanov (10.1016/j.ipm.2012.12.002_b0040) 2012
Huete (10.1016/j.ipm.2012.12.002_b0125) 2012; 199
Manouselis (10.1016/j.ipm.2012.12.002_b0195) 2011
Schwind (10.1016/j.ipm.2012.12.002_b0295) 2012; 58
10.1016/j.ipm.2012.12.002_b0135
Ahn (10.1016/j.ipm.2012.12.002_b0005) 2008; 178
10.1016/j.ipm.2012.12.002_b0185
10.1016/j.ipm.2012.12.002_b0220
10.1016/j.ipm.2012.12.002_b0180
Eckhardt (10.1016/j.ipm.2012.12.002_b0070) 2012; 39
Ramsden (10.1016/j.ipm.2012.12.002_b0260) 2003
Liu (10.1016/j.ipm.2012.12.002_b0165) 2009; 179
Moreno (10.1016/j.ipm.2012.12.002_b0215) 2012
Lucarelli (10.1016/j.ipm.2012.12.002_b0175) 2004; 27
Porcel (10.1016/j.ipm.2012.12.002_b0250) 2009; 36
Ricci (10.1016/j.ipm.2012.12.002_b0275) 2010
10.1016/j.ipm.2012.12.002_b0225
Serrano-Guerrero (10.1016/j.ipm.2012.12.002_b0300) 2011; 181
Han (10.1016/j.ipm.2012.12.002_b0105) 2006
Deshpande (10.1016/j.ipm.2012.12.002_b0065) 2004; 22
10.1016/j.ipm.2012.12.002_b0145
10.1016/j.ipm.2012.12.002_b0025
10.1016/j.ipm.2012.12.002_b0030
Shani (10.1016/j.ipm.2012.12.002_b0305) 2011
10.1016/j.ipm.2012.12.002_b0230
Symeonidis (10.1016/j.ipm.2012.12.002_b0310) 2008; 34
Lee (10.1016/j.ipm.2012.12.002_b0150) 2010; 180
Morales-del-Castillo (10.1016/j.ipm.2012.12.002_b0210) 2010; 2
Almazro (10.1016/j.ipm.2012.12.002_b0015) 2010
Reategui (10.1016/j.ipm.2012.12.002_b0265) 2008; 51
Herlocker (10.1016/j.ipm.2012.12.002_b0115) 2004; 22
Porcel (10.1016/j.ipm.2012.12.002_b0240) 2010; 23
Romero (10.1016/j.ipm.2012.12.002_b0280) 2009; 53
Schafer (10.1016/j.ipm.2012.12.002_b0290) 2007; Vol. LNCS 4321
10.1016/j.ipm.2012.12.002_b0315
Chandrashekhar (10.1016/j.ipm.2012.12.002_b0055) 2011; 12
Vozalis (10.1016/j.ipm.2012.12.002_b0320) 2007; 177
Hummel (10.1016/j.ipm.2012.12.002_b0130) 2007
10.1016/j.ipm.2012.12.002_b0235
References_xml – volume: 179
  start-page: 3505
  year: 2009
  end-page: 3519
  ident: b0165
  article-title: A hybrid of sequential rules and collaborative filtering for product recommendation
  publication-title: Information Sciences
– reference: , in Press.
– volume: 199
  start-page: 78
  year: 2012
  end-page: 92
  ident: b0125
  article-title: Using past-prediction accuracy in recommender systems
  publication-title: Information Sciences
– start-page: 310
  year: 2001
  end-page: 324
  ident: b0110
  article-title: Web delivery of adaptive and interactive language tutoring
  publication-title: International Journal of Artificial Intelligence in Education
– volume: 23
  start-page: 32
  year: 2010
  end-page: 39
  ident: b0240
  article-title: Dealing with incomplete information in a fuzzy linguistic recommender system to disseminate information in university digital libraries
  publication-title: Knowledge-Based Systems
– volume: 34
  start-page: 2995
  year: 2008
  end-page: 3013
  ident: b0310
  article-title: Collaborative recommender systems: Combining effectiveness and efficiency
  publication-title: Expert Systems with Applications
– year: 2010
  ident: b0275
  article-title: Recommender systems handbook
– volume: 37
  start-page: 573
  year: 1995
  end-page: 595
  ident: b0200
  article-title: Using linear algebra for intelligent information retrieval
  publication-title: SIAM Review
– volume: 39
  start-page: 11511
  year: 2012
  end-page: 11516
  ident: b0070
  article-title: Similarity of users’ (content-based) preference models for collaborative filtering in few ratings scenario
  publication-title: Expert Systems with Applications
– volume: 22
  start-page: 1
  year: 2000
  end-page: 19
  ident: b0100
  article-title: Computing the SVD of a General Matrix Product/Quotient
  publication-title: SIAM Journal on Matrix Analysis and Applications29
– volume: 58
  start-page: 787
  year: 2012
  end-page: 796
  ident: b0295
  article-title: Preference-inconsistent recommendations: An effective approach for reducing confirmation bias and stimulating divergent thinking?
  publication-title: Computers & Education
– start-page: 387
  year: 2011
  end-page: 415
  ident: b0195
  article-title: Recommender systems in technology enhanced learning
  publication-title: Recommender systems handbook
– start-page: 152
  year: 2007
  end-page: 168
  ident: b0130
  article-title: Combining social-based and information-based approaches for personalised recommendation on sequencing learning activities
  publication-title: International Journal of Learning Technology
– reference: > Retrieved 01.05.08.
– reference: (pp. 1–5).
– volume: 36
  start-page: 12520
  year: 2009
  end-page: 12528
  ident: b0250
  article-title: A multi-disciplinary recommender system to advice research resources in University Digital Libraries
  publication-title: Expert Systems with Applications
– reference: Noy, N. F., & McGuinness, D. L. (2001). Ontology Development 101: A Guide to Creating Your First Ontology: Stanford Knowledge Systems Laboratory Technical Report KSL-01-05 and Stanford Medical Informatics Technical, Report SMI-2001-0880.
– year: 2003
  ident: b0260
  article-title: Learning to teach in higher education
– volume: 22
  start-page: 5
  year: 2004
  end-page: 53
  ident: b0115
  article-title: Evaluating collaborative filtering recommender systems
  publication-title: ACM Transactions on Information Systems
– reference: Lü, L., Medo, M., Yeung, C. H., Zhang, Y.-C., Zhang, Z.-K., & Zhou, T. (2012). Recommender systems.
– year: 2012
  ident: b0040
  article-title: Semantic audio content-based music recommendation and visualization based on user preference examples
  publication-title: Information Processing & Management
– reference: . Paper presented at the third education in a changing environment conference. <
– reference: . <
– reference: Lu, J., Shambour, Q., Xu, Y., Lin, Q., & Zhang, G. (2012). A Web-Based Personalized Business Partner Recommendation System Using Fuzzy Semantic Techniques.
– volume: 35
  start-page: 790
  year: 2008
  end-page: 804
  ident: b0120
  article-title: Evaluation of recommender systems: A new approach
  publication-title: Expert Systems with Applications
– reference: Manning, C., Raghavan, P., & Schütze, H. (2008).
– volume: 39
  start-page: 899
  year: 2010
  end-page: 924
  ident: b0245
  article-title: An improved recommender system to avoid the persistent information overload in a university digital library
  publication-title: Control and Cybernetics
– volume: 184
  start-page: 1
  year: 2012
  end-page: 19
  ident: b0255
  article-title: A hybrid recommender system for the selective dissemination of research resources in a Technology Transfer Office
  publication-title: Information Sciences
– year: 2010
  ident: b0015
  article-title: A survey paper on recommender systems
  publication-title: Computing Research Repository
– volume: 111
  start-page: 440
  year: 2011
  end-page: 446
  ident: b0085
  article-title: Userrank for item-based collaborative filtering recommendation
  publication-title: Information Processing Letters
– volume: 51
  start-page: 785
  year: 2010
  end-page: 799
  ident: b0060
  article-title: Combining content-based and collaborative recommendations: A hybrid approach based on Bayesian networks
  publication-title: International Journal of Approximate Reasoning
– reference: Jain, A. K., Nandakumar, K., & Ross, A. (2005). Score normalization in multimodal biometric systems. Pattern Recognition.
– reference: Bergin, J. (2002). Concept Of Pedagogical Patterns. <
– volume: 26
  start-page: 225
  year: 2012
  end-page: 238
  ident: b0035
  article-title: A collaborative filtering approach to mitigate the new user cold start problem
  publication-title: Knowledge-Based Systems
– year: 2009
  ident: b0270
  article-title: Cross-validation
  publication-title: Encyclopedia of database systems
– volume: 38
  start-page: 8488
  year: 2011
  end-page: 8496
  ident: b0140
  article-title: Collaborative user modeling with user-generated tags for social recommender systems
  publication-title: Expert Systems with Applications
– reference: Gardner, H. (2005).
– volume: 178
  start-page: 37
  year: 2008
  end-page: 51
  ident: b0005
  article-title: A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem
  publication-title: Information Sciences
– volume: 180
  start-page: 4290
  year: 2010
  end-page: 4311
  ident: b0020
  article-title: A hybrid content-based and item-based collaborative filtering approach to recommend TV programs enhanced with singular value decomposition
  publication-title: Information Sciences
– volume: 53
  start-page: 828
  year: 2009
  end-page: 840
  ident: b0280
  article-title: Applying Web usage mining for personalizing hyperlinks in Web-based adaptive educational systems
  publication-title: Computers & Education
– volume: 37
  start-page: 3055
  year: 2010
  end-page: 3062
  ident: b0010
  article-title: Selecting a small number of products for effective user profiling in collaborative filtering
  publication-title: Expert Systems with Applications
– volume: Vol. 53
  year: 2011
  ident: b0045
  publication-title: Becoming a mathematics teacher identity and identifications
– reference: Krzywacki, H. (2009).
– reference: O’Donovan, J., & Smyth, B. (2005). Trust in recommender systems.
– reference: > Retrieved 15.11.07.
– reference: Bergin, J., Eckstein, J., Manns, M.-L., Sharp, H., Voelter, M., Wallingford, E., et al. (2007). The Pedagogical Patterns Project. <
– reference: Wei, K., Huang, J., & Fu, S. (2007). A survey of e-commerce recommender systems. In
– volume: 12
  start-page: 214
  year: 2011
  end-page: 237
  ident: b0055
  article-title: Personalized recommender system using entropy based collaborative filtering technique
  publication-title: Journal of Electronic Commerce Research
– year: 2006
  ident: b0105
  article-title: Data mining: Concepts and techniques
– volume: 1
  start-page: 2773
  year: 2010
  end-page: 2774
  ident: b0190
  article-title: Proceedings of the 1st workshop on recommender systems for technology enhanced learning (RecSysTEL 2010)
  publication-title: Procedia Computer Science
– volume: Vol. 14321
  start-page: 377
  year: 2007
  end-page: 408
  ident: b0050
  article-title: Hybrid web recommender systems
  publication-title: The adaptive web
– reference: Lisewski, B. (2006).
– reference: Miller, B., Albert, I., Lam, S. K., Konstan, J., & Riedl, J. (2003). MovieLens unplugged: experiences with a recommender system on four mobile devices. Paper presented at the ACM SIGCHI conference on human factors in computing systems.
– volume: Vol. LNCS 4321
  start-page: 291
  year: 2007
  end-page: 324
  ident: b0290
  article-title: Collaborative filtering recommender systems
  publication-title: The adaptive web
– start-page: 257
  year: 2011
  end-page: 297
  ident: b0305
  article-title: Evaluating recommendation systems recommender systems handbook
  publication-title: Recommender systems handbook
– reference: Sánchez, J. I. (2000).
– reference: > Retrieved 20.06.09.
– reference: . Unpublished Doctoral, University of Helsinki, Faculty of Behavioural Sciences, Helsinki.
– year: 2012
  ident: b0215
  article-title: SigTur/E-destination: Ontology-based personalized recommendation of tourism and leisure activities
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 177
  start-page: 3017
  year: 2007
  end-page: 3037
  ident: b0320
  article-title: Using SVD and demographic data for the enhancement of generalized Collaborative Filtering
  publication-title: Information Sciences
– reference: Farzan, R., & Brusilovsky, P. (2006). Social navigation support in a course recommender system. In
– volume: 4
  start-page: 76
  year: 2003
  end-page: 80
  ident: b0155
  article-title: Amazon.com recommendations: Item-to-item collaborative filtering
  publication-title: IEEE Internet Computing
– reference: >.
– volume: 2
  start-page: 227
  year: 2010
  end-page: 240
  ident: b0210
  article-title: A filtering and recommender system for e-scholars
  publication-title: International Journal of Technology of Enhanced Learning
– reference: Nielsen, J. (2005).
– volume: 51
  start-page: 530
  year: 2008
  end-page: 544
  ident: b0265
  article-title: Personalization in an interactive learning environment through a virtual character
  publication-title: Computers & Education
– reference: .
– volume: 25
  start-page: 38
  year: 2003
  end-page: 47
  ident: b0075
  article-title: A look at e-learning models: investigating their value for developing an e-learning strategy
  publication-title: Progressio
– volume: 180
  start-page: 2142
  year: 2010
  end-page: 2155
  ident: b0150
  article-title: Collaborative filtering with ordinal scale-based implicit ratings for mobile music recommendations
  publication-title: Information Sciences
– volume: 27
  start-page: 503
  year: 2004
  end-page: 524
  ident: b0175
  article-title: Prácticas Innovadoras en la Formación del Docente Universitario
  publication-title: Educação
– volume: 22
  start-page: 143
  year: 2004
  end-page: 177
  ident: b0065
  article-title: Item-based top-N recommendation algorithms
  publication-title: ACM Transactions on Information Systems
– volume: 181
  start-page: 1503
  year: 2011
  end-page: 1516
  ident: b0300
  article-title: A Google wave-based fuzzy recommender system to disseminate information in University Digital Libraries 2.0
  publication-title: Information Sciences
– volume: 17
  start-page: 734
  year: 2005
  end-page: 749
  ident: b0095
  article-title: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– reference: Tetlon, P., Pan, J., Oberle, D., Wallace, E., Uschold, M., & Kendall, E. (2005).
– reference: Petersen, K. B., & Pedersen, M. S. (2008). The matrix cookbook. <
– volume: 12
  start-page: 214
  issue: 3
  year: 2011
  ident: 10.1016/j.ipm.2012.12.002_b0055
  article-title: Personalized recommender system using entropy based collaborative filtering technique
  publication-title: Journal of Electronic Commerce Research
– volume: 4
  start-page: 76
  year: 2003
  ident: 10.1016/j.ipm.2012.12.002_b0155
  article-title: Amazon.com recommendations: Item-to-item collaborative filtering
  publication-title: IEEE Internet Computing
  doi: 10.1109/MIC.2003.1167344
– ident: 10.1016/j.ipm.2012.12.002_b0030
– volume: 35
  start-page: 790
  issue: 3
  year: 2008
  ident: 10.1016/j.ipm.2012.12.002_b0120
  article-title: Evaluation of recommender systems: A new approach
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2007.07.047
– volume: 51
  start-page: 530
  issue: 2
  year: 2008
  ident: 10.1016/j.ipm.2012.12.002_b0265
  article-title: Personalization in an interactive learning environment through a virtual character
  publication-title: Computers & Education
  doi: 10.1016/j.compedu.2007.05.018
– volume: 34
  start-page: 2995
  issue: 4
  year: 2008
  ident: 10.1016/j.ipm.2012.12.002_b0310
  article-title: Collaborative recommender systems: Combining effectiveness and efficiency
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2007.05.013
– ident: 10.1016/j.ipm.2012.12.002_b0285
– volume: 37
  start-page: 573
  issue: 4
  year: 1995
  ident: 10.1016/j.ipm.2012.12.002_b0200
  article-title: Using linear algebra for intelligent information retrieval
  publication-title: SIAM Review
  doi: 10.1137/1037127
– ident: 10.1016/j.ipm.2012.12.002_b0220
– volume: 184
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.ipm.2012.12.002_b0255
  article-title: A hybrid recommender system for the selective dissemination of research resources in a Technology Transfer Office
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2011.08.026
– ident: 10.1016/j.ipm.2012.12.002_b0025
– volume: 25
  start-page: 38
  issue: 2
  year: 2003
  ident: 10.1016/j.ipm.2012.12.002_b0075
  article-title: A look at e-learning models: investigating their value for developing an e-learning strategy
  publication-title: Progressio
– year: 2009
  ident: 10.1016/j.ipm.2012.12.002_b0270
  article-title: Cross-validation
– volume: 1
  start-page: 2773
  issue: 2
  year: 2010
  ident: 10.1016/j.ipm.2012.12.002_b0190
  article-title: Proceedings of the 1st workshop on recommender systems for technology enhanced learning (RecSysTEL 2010)
  publication-title: Procedia Computer Science
  doi: 10.1016/S1877-0509(10)00329-7
– volume: 26
  start-page: 225
  year: 2012
  ident: 10.1016/j.ipm.2012.12.002_b0035
  article-title: A collaborative filtering approach to mitigate the new user cold start problem
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2011.07.021
– volume: 22
  start-page: 143
  issue: 1
  year: 2004
  ident: 10.1016/j.ipm.2012.12.002_b0065
  article-title: Item-based top-N recommendation algorithms
  publication-title: ACM Transactions on Information Systems
  doi: 10.1145/963770.963776
– ident: 10.1016/j.ipm.2012.12.002_b0325
  doi: 10.1109/ICSSSM.2007.4280214
– year: 2010
  ident: 10.1016/j.ipm.2012.12.002_b0275
– volume: 22
  start-page: 5
  issue: 1
  year: 2004
  ident: 10.1016/j.ipm.2012.12.002_b0115
  article-title: Evaluating collaborative filtering recommender systems
  publication-title: ACM Transactions on Information Systems
  doi: 10.1145/963770.963772
– ident: 10.1016/j.ipm.2012.12.002_b0180
  doi: 10.1016/j.physrep.2012.02.006
– year: 2010
  ident: 10.1016/j.ipm.2012.12.002_b0015
  article-title: A survey paper on recommender systems
  publication-title: Computing Research Repository
– volume: 58
  start-page: 787
  issue: 2
  year: 2012
  ident: 10.1016/j.ipm.2012.12.002_b0295
  article-title: Preference-inconsistent recommendations: An effective approach for reducing confirmation bias and stimulating divergent thinking?
  publication-title: Computers & Education
  doi: 10.1016/j.compedu.2011.10.003
– ident: 10.1016/j.ipm.2012.12.002_b0135
  doi: 10.1016/j.patcog.2005.01.012
– ident: 10.1016/j.ipm.2012.12.002_b0315
– volume: 180
  start-page: 2142
  issue: 11
  year: 2010
  ident: 10.1016/j.ipm.2012.12.002_b0150
  article-title: Collaborative filtering with ordinal scale-based implicit ratings for mobile music recommendations
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2010.02.004
– volume: 38
  start-page: 8488
  issue: 7
  year: 2011
  ident: 10.1016/j.ipm.2012.12.002_b0140
  article-title: Collaborative user modeling with user-generated tags for social recommender systems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.01.048
– year: 2012
  ident: 10.1016/j.ipm.2012.12.002_b0040
  article-title: Semantic audio content-based music recommendation and visualization based on user preference examples
  publication-title: Information Processing & Management
– ident: 10.1016/j.ipm.2012.12.002_b0080
  doi: 10.1007/11768012_11
– volume: 22
  start-page: 1
  issue: 1
  year: 2000
  ident: 10.1016/j.ipm.2012.12.002_b0100
  article-title: Computing the SVD of a General Matrix Product/Quotient
  publication-title: SIAM Journal on Matrix Analysis and Applications29
  doi: 10.1137/S0895479897325578
– volume: 2
  start-page: 227
  issue: 3
  year: 2010
  ident: 10.1016/j.ipm.2012.12.002_b0210
  article-title: A filtering and recommender system for e-scholars
  publication-title: International Journal of Technology of Enhanced Learning
  doi: 10.1504/IJTEL.2010.033579
– ident: 10.1016/j.ipm.2012.12.002_b0225
– volume: 39
  start-page: 899
  issue: 4
  year: 2010
  ident: 10.1016/j.ipm.2012.12.002_b0245
  article-title: An improved recommender system to avoid the persistent information overload in a university digital library
  publication-title: Control and Cybernetics
– year: 2006
  ident: 10.1016/j.ipm.2012.12.002_b0105
– volume: 178
  start-page: 37
  issue: 1
  year: 2008
  ident: 10.1016/j.ipm.2012.12.002_b0005
  article-title: A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2007.07.024
– volume: Vol. 53
  year: 2011
  ident: 10.1016/j.ipm.2012.12.002_b0045
– ident: 10.1016/j.ipm.2012.12.002_b0160
– start-page: 257
  year: 2011
  ident: 10.1016/j.ipm.2012.12.002_b0305
  article-title: Evaluating recommendation systems recommender systems handbook
– volume: 23
  start-page: 32
  issue: 1
  year: 2010
  ident: 10.1016/j.ipm.2012.12.002_b0240
  article-title: Dealing with incomplete information in a fuzzy linguistic recommender system to disseminate information in university digital libraries
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2009.07.007
– volume: 53
  start-page: 828
  issue: 3
  year: 2009
  ident: 10.1016/j.ipm.2012.12.002_b0280
  article-title: Applying Web usage mining for personalizing hyperlinks in Web-based adaptive educational systems
  publication-title: Computers & Education
  doi: 10.1016/j.compedu.2009.05.003
– ident: 10.1016/j.ipm.2012.12.002_b0145
– ident: 10.1016/j.ipm.2012.12.002_b0235
– volume: 181
  start-page: 1503
  issue: 9
  year: 2011
  ident: 10.1016/j.ipm.2012.12.002_b0300
  article-title: A Google wave-based fuzzy recommender system to disseminate information in University Digital Libraries 2.0
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2011.01.012
– ident: 10.1016/j.ipm.2012.12.002_b0185
  doi: 10.1017/CBO9780511809071
– volume: 36
  start-page: 12520
  issue: 10
  year: 2009
  ident: 10.1016/j.ipm.2012.12.002_b0250
  article-title: A multi-disciplinary recommender system to advice research resources in University Digital Libraries
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.04.038
– start-page: 152
  year: 2007
  ident: 10.1016/j.ipm.2012.12.002_b0130
  article-title: Combining social-based and information-based approaches for personalised recommendation on sequencing learning activities
  publication-title: International Journal of Learning Technology
  doi: 10.1504/IJLT.2007.014842
– volume: 51
  start-page: 785
  issue: 7
  year: 2010
  ident: 10.1016/j.ipm.2012.12.002_b0060
  article-title: Combining content-based and collaborative recommendations: A hybrid approach based on Bayesian networks
  publication-title: International Journal of Approximate Reasoning
  doi: 10.1016/j.ijar.2010.04.001
– ident: 10.1016/j.ipm.2012.12.002_b0090
– ident: 10.1016/j.ipm.2012.12.002_b0205
– volume: Vol. 14321
  start-page: 377
  year: 2007
  ident: 10.1016/j.ipm.2012.12.002_b0050
  article-title: Hybrid web recommender systems
– volume: 39
  start-page: 11511
  issue: 14
  year: 2012
  ident: 10.1016/j.ipm.2012.12.002_b0070
  article-title: Similarity of users’ (content-based) preference models for collaborative filtering in few ratings scenario
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.01.177
– volume: 180
  start-page: 4290
  issue: 22
  year: 2010
  ident: 10.1016/j.ipm.2012.12.002_b0020
  article-title: A hybrid content-based and item-based collaborative filtering approach to recommend TV programs enhanced with singular value decomposition
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2010.07.024
– ident: 10.1016/j.ipm.2012.12.002_b0170
– year: 2012
  ident: 10.1016/j.ipm.2012.12.002_b0215
  article-title: SigTur/E-destination: Ontology-based personalized recommendation of tourism and leisure activities
  publication-title: Engineering Applications of Artificial Intelligence
– year: 2003
  ident: 10.1016/j.ipm.2012.12.002_b0260
– volume: 111
  start-page: 440
  issue: 9
  year: 2011
  ident: 10.1016/j.ipm.2012.12.002_b0085
  article-title: Userrank for item-based collaborative filtering recommendation
  publication-title: Information Processing Letters
  doi: 10.1016/j.ipl.2011.02.003
– volume: 177
  start-page: 3017
  issue: 15
  year: 2007
  ident: 10.1016/j.ipm.2012.12.002_b0320
  article-title: Using SVD and demographic data for the enhancement of generalized Collaborative Filtering
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2007.02.036
– volume: 179
  start-page: 3505
  issue: 20
  year: 2009
  ident: 10.1016/j.ipm.2012.12.002_b0165
  article-title: A hybrid of sequential rules and collaborative filtering for product recommendation
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2009.06.004
– volume: 199
  start-page: 78
  year: 2012
  ident: 10.1016/j.ipm.2012.12.002_b0125
  article-title: Using past-prediction accuracy in recommender systems
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2012.02.033
– volume: 37
  start-page: 3055
  issue: 4
  year: 2010
  ident: 10.1016/j.ipm.2012.12.002_b0010
  article-title: Selecting a small number of products for effective user profiling in collaborative filtering
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.09.025
– volume: 17
  start-page: 734
  issue: 6
  year: 2005
  ident: 10.1016/j.ipm.2012.12.002_b0095
  article-title: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2005.99
– volume: 27
  start-page: 503
  issue: 3
  year: 2004
  ident: 10.1016/j.ipm.2012.12.002_b0175
  article-title: Prácticas Innovadoras en la Formación del Docente Universitario
  publication-title: Educação
– start-page: 387
  year: 2011
  ident: 10.1016/j.ipm.2012.12.002_b0195
  article-title: Recommender systems in technology enhanced learning
– volume: Vol. LNCS 4321
  start-page: 291
  year: 2007
  ident: 10.1016/j.ipm.2012.12.002_b0290
  article-title: Collaborative filtering recommender systems
– ident: 10.1016/j.ipm.2012.12.002_b0230
  doi: 10.1145/1040830.1040870
– start-page: 310
  year: 2001
  ident: 10.1016/j.ipm.2012.12.002_b0110
  article-title: Web delivery of adaptive and interactive language tutoring
  publication-title: International Journal of Artificial Intelligence in Education
SSID ssj0004512
Score 2.2627265
Snippet ► Ontologies are an effective tool for representing the pedagogical patterns. ► The proposed system enables teachers to improve their teaching skills. ► The...
To carry out effective teaching/learning processes, lecturers in a variety of educational institutions frequently need support. They therefore resort to advice...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 607
SubjectTerms Classrooms
Collaborative filtering
Cosine similarity
Decomposition
Education
Exact sciences and technology
Filtering systems
Information and communication sciences
Information processing and retrieval
Information retrieval systems. Information and document management system
Information retrieval. Man machine relationship
Information science. Documentation
Information systems
Ontologies
Ontology
Pattern recognition
Pedagogical patterns
Pedagogy
Recommender systems
Research process. Evaluation
Resnick prediction formula
Risk
Sciences and techniques of general use
Singular value decomposition
Students
Studies
Teacher education
Teacher training
Teachers
Teaching
Teaching methods
Training
Title A hybrid system of pedagogical pattern recommendations based on singular value decomposition and variable data attributes
URI https://dx.doi.org/10.1016/j.ipm.2012.12.002
https://www.proquest.com/docview/1313961690
https://www.proquest.com/docview/1531003673
https://www.proquest.com/docview/1550993687
https://www.proquest.com/docview/1671535680
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQw0KrKBQkhKCC2tCsjIQ5IYe34lRxXFdW2iF6gUm-RX4FFbTZit4de-HZmHGdFRbUHpJzssZN4xuMZz4uQd14K5nzgRZCqKqSrfWGjigVoQxpIxrMq4D3klwu9uJTnV-pqj5yMsTDoVpl5_8DTE7fOLbO8mrN-uZx9RWlXKiN4mZLEYBCflAap_ONv_lfGcJ4tCbpA6NGymXy8lj0Go_My3Qjmm5UHzqYnvV3DirVDqYt_uHY6ik6fkadZhqTz4TOfk73YHZDjHIFA39McYoRLTvPefUHu5vTHHYZn0SF5M121tI_Bfh94H-1Tos2OooZ8cxNzraU1xWMuUJgJLxXQZ5VifvBIA8KNLl_UdgHagZjdNXTZjaUwXaqlFdcvyeXpp28niyLXXSi8VHJT2LJ0Lhgv68C4ky0zqCaGurU6BNmCQh2F1rIGUcvVLXMquKo0lhlvGSb-FK_Ifrfq4mtCvcNBVSuNiBLw5FSrWs6j1ioo6-WEsHHFG5-TkmNtjOtm9D772QCSGkRSAw8gaUI-bIf0Q0aOXcByRGNzj6waODF2DZveQ_n2RaXhKPGICTkaaaDJm37dcAHitEa744S83XbDdkUbjO3i6hZgFFpUhDZiFwxIcbXQldkBow1MpXTFDv_vF9-Qx2Wq7IG-m0dkf_PrNh6DfLVx07SBpuTR_Ozz4uIPM1gmZw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbp5tBCKX3STZNUhdJDwaxtvezjEho2TbKXJpCb0LPZknhNd3PIv8-MLS8NLXso-GSPZHtGGo00M98Q8tlxllvni8xzUWXc1i4zQYQMdkMShozLK4_nkOdzObvk36_E1Q45GnJhMKwy6f5ep3faOt2ZJG5O2sVi8gOtXS4UK8oOJKZ-QnYRnUqMyO705HQ2_wM0vEjOBJlhg8G52YV5LVrMRy_K7lAwHa78Y3l63poVMC321S7-UtzdanT8krxIZiSd9l_6iuyE5jU5SEkI9AtNWUbIdZqm7xtyP6XX95ihRXv8ZrqMtA3e_OzVH207rM2G4ib59jakcksriiudp9ATnitg2CpFiPBAPdINUV_UNB7uw3i2N_DIrA2F7rpyWmH1llwef7s4mmWp9ELmgIfrzJSltV45Xvu8sDzmCneKvo5Ges8j7KkDk5LXYG3ZOuZWeFuVyuTKmRyxP9k7MmqWTXhPqLPYqIpcscBBVFZEEYsiSCm8MI6PST5wXLuES47lMW70EID2S4OQNApJwwVCGpOvmyZtD8qxjZgPYtSPRpaGRWNbs8NHIt-8qFQFGj1sTPaHMaDTvF_pgoFFLdH1OCafNo9hxqIbxjRheQc0Ap0qTCq2jQYMuZrJSm2hkQq6ErLK9_7vFz-Sp7OL8zN9djI__UCelV2hDwzl3Cej9e-7cADm1toepun0AC7vKRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+system+of+pedagogical+pattern+recommendations+based+on+singular+value+decomposition+and+variable+data+attributes&rft.jtitle=Information+processing+%26+management&rft.au=Cobos%2C+Carlos&rft.au=Rodriguez%2C+Orlando&rft.au=Rivera%2C+Jarvein&rft.au=Betancourt%2C+John&rft.date=2013-05-01&rft.pub=Elsevier+Ltd&rft.issn=0306-4573&rft.eissn=1873-5371&rft.volume=49&rft.issue=3&rft.spage=607&rft.epage=625&rft_id=info:doi/10.1016%2Fj.ipm.2012.12.002&rft.externalDocID=S0306457312001409
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4573&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4573&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4573&client=summon