Triblock polyester thermoplastic elastomers with semi-aromatic polymer end blocks by ring-opening copolymerization

Thermoplastic elastomers benefit from high elasticity and straightforward (re)processability; they are widely used across a multitude of sectors. Currently, the majority derive from oil, do not degrade or undergo chemical recycling. Here a new series of ABA triblock polyesters are synthesized and sh...

Full description

Saved in:
Bibliographic Details
Published inChemical science (Cambridge) Vol. 11; no. 25; pp. 6567 - 6581
Main Authors Gregory, Georgina L, Sulley, Gregory S, Carrodeguas, Leticia Peña, Chen, Thomas T. D, Santmarti, Alba, Terrill, Nicholas J, Lee, Koon-Yang, Williams, Charlotte K
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 04.05.2020
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Thermoplastic elastomers benefit from high elasticity and straightforward (re)processability; they are widely used across a multitude of sectors. Currently, the majority derive from oil, do not degrade or undergo chemical recycling. Here a new series of ABA triblock polyesters are synthesized and show high-performances as degradable thermoplastic elastomers; their composition is poly(cyclohexene- alt -phthalate)- b -poly( -decalactone)- b -poly(cyclohexene- alt -phthalate) {PE-PDL-PE}. The synthesis is accomplished using a zinc( ii )/magnesium( ii ) catalyst, in a one-pot procedure where -decalactone ring-opening polymerization yielding dihydroxyl telechelic poly( -decalatone) (PDL, soft-block) occurs first and, then, addition of phthalic anhydride/cyclohexene oxide ring-opening copolymerization delivers semi-aromatic polyester (PE, hard-block) end-blocks. The block compositions are straightforward to control, from the initial monomer stoichiometry, and conversions are high (85-98%). Two series of polyesters are prepared: (1) TBPE-1 to TBPE-5 feature an equivalent hard-block volume fraction ( f hard = 0.4) and variable molar masses 40-100 kg mol −1 ; (2) TBPE-5 to TBPE-9 feature equivalent molar masses (∼100 kg mol −1 ) and variable hard-block volume fractions (0.12 < f hard < 0.4). Polymers are characterized using spectroscopies, size-exclusion chromatography (SEC), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). They are amorphous, with two glass transition temperatures (∼−51 °C for PDL; +138 °C for PE), and block phase separation is confirmed using small angle X-ray scattering (SAXS). Tensile mechanical performances reveal thermoplastic elastomers ( f hard < 0.4 and N > 1300) with linear stress-strain relationships, high ultimate tensile strengths ( σ b = 1-5 MPa), very high elongations at break ( b = 1000-1900%) and excellent elastic recoveries (98%). There is a wide operating temperature range (−51 to +138 °C), an operable processing temperature range (+100 to +200 °C) and excellent thermal stability ( T d,5% ∼ 300 °C). The polymers are stable in aqueous environments, at room temperature, but are hydrolyzed upon gentle heating (60 °C) and treatment with an organic acid ( para -toluene sulfonic acid) or a common lipase (Novozyme® 51032). The new block polyesters show significant potential as sustainable thermoplastic elastomers with better properties than well-known styrenic block copolymers or polylactide-derived elastomers. The straightforward synthesis allows for other commercially available and/or bio-derived lactones, epoxides and anhydrides to be developed in the future. A new series of block polyester thermoplastic elastomers are prepared by a one-pot procedure; they show properties competitive or better than conventional materials and can be fully degraded after use.
AbstractList Thermoplastic elastomers benefit from high elasticity and straightforward (re)processability; they are widely used across a multitude of sectors. Currently, the majority derive from oil, do not degrade or undergo chemical recycling. Here a new series of ABA triblock polyesters are synthesized and show high-performances as degradable thermoplastic elastomers; their composition is poly(cyclohexene-alt-phthalate)-b-poly(ε-decalactone)-b-poly(cyclohexene-alt-phthalate) {PE-PDL-PE}. The synthesis is accomplished using a zinc(ii)/magnesium(ii) catalyst, in a one-pot procedure where ε-decalactone ring-opening polymerization yielding dihydroxyl telechelic poly(ε-decalatone) (PDL, soft-block) occurs first and, then, addition of phthalic anhydride/cyclohexene oxide ring-opening copolymerization delivers semi-aromatic polyester (PE, hard-block) end-blocks. The block compositions are straightforward to control, from the initial monomer stoichiometry, and conversions are high (85-98%). Two series of polyesters are prepared: (1) TBPE-1 to TBPE-5 feature an equivalent hard-block volume fraction (f hard = 0.4) and variable molar masses 40-100 kg mol-1; (2) TBPE-5 to TBPE-9 feature equivalent molar masses (∼100 kg mol-1) and variable hard-block volume fractions (0.12 < f hard < 0.4). Polymers are characterized using spectroscopies, size-exclusion chromatography (SEC), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). They are amorphous, with two glass transition temperatures (∼-51 °C for PDL; +138 °C for PE), and block phase separation is confirmed using small angle X-ray scattering (SAXS). Tensile mechanical performances reveal thermoplastic elastomers (f hard < 0.4 and N > 1300) with linear stress-strain relationships, high ultimate tensile strengths (σ b = 1-5 MPa), very high elongations at break (ε b = 1000-1900%) and excellent elastic recoveries (98%). There is a wide operating temperature range (-51 to +138 °C), an operable processing temperature range (+100 to +200 °C) and excellent thermal stability (T d,5% ∼ 300 °C). The polymers are stable in aqueous environments, at room temperature, but are hydrolyzed upon gentle heating (60 °C) and treatment with an organic acid (para-toluene sulfonic acid) or a common lipase (Novozyme® 51032). The new block polyesters show significant potential as sustainable thermoplastic elastomers with better properties than well-known styrenic block copolymers or polylactide-derived elastomers. The straightforward synthesis allows for other commercially available and/or bio-derived lactones, epoxides and anhydrides to be developed in the future.Thermoplastic elastomers benefit from high elasticity and straightforward (re)processability; they are widely used across a multitude of sectors. Currently, the majority derive from oil, do not degrade or undergo chemical recycling. Here a new series of ABA triblock polyesters are synthesized and show high-performances as degradable thermoplastic elastomers; their composition is poly(cyclohexene-alt-phthalate)-b-poly(ε-decalactone)-b-poly(cyclohexene-alt-phthalate) {PE-PDL-PE}. The synthesis is accomplished using a zinc(ii)/magnesium(ii) catalyst, in a one-pot procedure where ε-decalactone ring-opening polymerization yielding dihydroxyl telechelic poly(ε-decalatone) (PDL, soft-block) occurs first and, then, addition of phthalic anhydride/cyclohexene oxide ring-opening copolymerization delivers semi-aromatic polyester (PE, hard-block) end-blocks. The block compositions are straightforward to control, from the initial monomer stoichiometry, and conversions are high (85-98%). Two series of polyesters are prepared: (1) TBPE-1 to TBPE-5 feature an equivalent hard-block volume fraction (f hard = 0.4) and variable molar masses 40-100 kg mol-1; (2) TBPE-5 to TBPE-9 feature equivalent molar masses (∼100 kg mol-1) and variable hard-block volume fractions (0.12 < f hard < 0.4). Polymers are characterized using spectroscopies, size-exclusion chromatography (SEC), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). They are amorphous, with two glass transition temperatures (∼-51 °C for PDL; +138 °C for PE), and block phase separation is confirmed using small angle X-ray scattering (SAXS). Tensile mechanical performances reveal thermoplastic elastomers (f hard < 0.4 and N > 1300) with linear stress-strain relationships, high ultimate tensile strengths (σ b = 1-5 MPa), very high elongations at break (ε b = 1000-1900%) and excellent elastic recoveries (98%). There is a wide operating temperature range (-51 to +138 °C), an operable processing temperature range (+100 to +200 °C) and excellent thermal stability (T d,5% ∼ 300 °C). The polymers are stable in aqueous environments, at room temperature, but are hydrolyzed upon gentle heating (60 °C) and treatment with an organic acid (para-toluene sulfonic acid) or a common lipase (Novozyme® 51032). The new block polyesters show significant potential as sustainable thermoplastic elastomers with better properties than well-known styrenic block copolymers or polylactide-derived elastomers. The straightforward synthesis allows for other commercially available and/or bio-derived lactones, epoxides and anhydrides to be developed in the future.
Thermoplastic elastomers benefit from high elasticity and straightforward (re)processability; they are widely used across a multitude of sectors. Currently, the majority derive from oil, do not degrade or undergo chemical recycling. Here a new series of ABA triblock polyesters are synthesized and show high-performances as degradable thermoplastic elastomers; their composition is poly(cyclohexene- alt -phthalate)- b -poly( -decalactone)- b -poly(cyclohexene- alt -phthalate) {PE-PDL-PE}. The synthesis is accomplished using a zinc( ii )/magnesium( ii ) catalyst, in a one-pot procedure where -decalactone ring-opening polymerization yielding dihydroxyl telechelic poly( -decalatone) (PDL, soft-block) occurs first and, then, addition of phthalic anhydride/cyclohexene oxide ring-opening copolymerization delivers semi-aromatic polyester (PE, hard-block) end-blocks. The block compositions are straightforward to control, from the initial monomer stoichiometry, and conversions are high (85-98%). Two series of polyesters are prepared: (1) TBPE-1 to TBPE-5 feature an equivalent hard-block volume fraction ( f hard = 0.4) and variable molar masses 40-100 kg mol −1 ; (2) TBPE-5 to TBPE-9 feature equivalent molar masses (∼100 kg mol −1 ) and variable hard-block volume fractions (0.12 < f hard < 0.4). Polymers are characterized using spectroscopies, size-exclusion chromatography (SEC), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). They are amorphous, with two glass transition temperatures (∼−51 °C for PDL; +138 °C for PE), and block phase separation is confirmed using small angle X-ray scattering (SAXS). Tensile mechanical performances reveal thermoplastic elastomers ( f hard < 0.4 and N > 1300) with linear stress-strain relationships, high ultimate tensile strengths ( σ b = 1-5 MPa), very high elongations at break ( b = 1000-1900%) and excellent elastic recoveries (98%). There is a wide operating temperature range (−51 to +138 °C), an operable processing temperature range (+100 to +200 °C) and excellent thermal stability ( T d,5% ∼ 300 °C). The polymers are stable in aqueous environments, at room temperature, but are hydrolyzed upon gentle heating (60 °C) and treatment with an organic acid ( para -toluene sulfonic acid) or a common lipase (Novozyme® 51032). The new block polyesters show significant potential as sustainable thermoplastic elastomers with better properties than well-known styrenic block copolymers or polylactide-derived elastomers. The straightforward synthesis allows for other commercially available and/or bio-derived lactones, epoxides and anhydrides to be developed in the future. A new series of block polyester thermoplastic elastomers are prepared by a one-pot procedure; they show properties competitive or better than conventional materials and can be fully degraded after use.
Thermoplastic elastomers benefit from high elasticity and straightforward (re)processability; they are widely used across a multitude of sectors. Currently, the majority derive from oil, do not degrade or undergo chemical recycling. Here a new series of ABA triblock polyesters are synthesized and show high-performances as degradable thermoplastic elastomers; their composition is poly(cyclohexene- -phthalate)- -poly(ε-decalactone)- -poly(cyclohexene- -phthalate) {PE-PDL-PE}. The synthesis is accomplished using a zinc(ii)/magnesium(ii) catalyst, in a one-pot procedure where ε-decalactone ring-opening polymerization yielding dihydroxyl telechelic poly(ε-decalatone) (PDL, soft-block) occurs first and, then, addition of phthalic anhydride/cyclohexene oxide ring-opening copolymerization delivers semi-aromatic polyester (PE, hard-block) end-blocks. The block compositions are straightforward to control, from the initial monomer stoichiometry, and conversions are high (85-98%). Two series of polyesters are prepared: (1) TBPE-1 to TBPE-5 feature an equivalent hard-block volume fraction ( = 0.4) and variable molar masses 40-100 kg mol ; (2) TBPE-5 to TBPE-9 feature equivalent molar masses (∼100 kg mol ) and variable hard-block volume fractions (0.12 < < 0.4). Polymers are characterized using spectroscopies, size-exclusion chromatography (SEC), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). They are amorphous, with two glass transition temperatures (∼-51 °C for PDL; +138 °C for PE), and block phase separation is confirmed using small angle X-ray scattering (SAXS). Tensile mechanical performances reveal thermoplastic elastomers ( < 0.4 and > 1300) with linear stress-strain relationships, high ultimate tensile strengths ( = 1-5 MPa), very high elongations at break ( = 1000-1900%) and excellent elastic recoveries (98%). There is a wide operating temperature range (-51 to +138 °C), an operable processing temperature range (+100 to +200 °C) and excellent thermal stability ( ∼ 300 °C). The polymers are stable in aqueous environments, at room temperature, but are hydrolyzed upon gentle heating (60 °C) and treatment with an organic acid ( -toluene sulfonic acid) or a common lipase (Novozyme® 51032). The new block polyesters show significant potential as sustainable thermoplastic elastomers with better properties than well-known styrenic block copolymers or polylactide-derived elastomers. The straightforward synthesis allows for other commercially available and/or bio-derived lactones, epoxides and anhydrides to be developed in the future.
Thermoplastic elastomers benefit from high elasticity and straightforward (re)processability; they are widely used across a multitude of sectors. Currently, the majority derive from oil, do not degrade or undergo chemical recycling. Here a new series of ABA triblock polyesters are synthesized and show high-performances as degradable thermoplastic elastomers; their composition is poly(cyclohexene- alt -phthalate)- b -poly(ε-decalactone)- b -poly(cyclohexene- alt -phthalate) {PE–PDL–PE}. The synthesis is accomplished using a zinc( ii )/magnesium( ii ) catalyst, in a one-pot procedure where ε-decalactone ring-opening polymerization yielding dihydroxyl telechelic poly(ε-decalatone) (PDL, soft-block) occurs first and, then, addition of phthalic anhydride/cyclohexene oxide ring-opening copolymerization delivers semi-aromatic polyester (PE, hard-block) end-blocks. The block compositions are straightforward to control, from the initial monomer stoichiometry, and conversions are high (85–98%). Two series of polyesters are prepared: (1) TBPE-1 to TBPE-5 feature an equivalent hard-block volume fraction ( f hard = 0.4) and variable molar masses 40–100 kg mol −1 ; (2) TBPE-5 to TBPE-9 feature equivalent molar masses (∼100 kg mol −1 ) and variable hard-block volume fractions (0.12 < f hard < 0.4). Polymers are characterized using spectroscopies, size-exclusion chromatography (SEC), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). They are amorphous, with two glass transition temperatures (∼−51 °C for PDL; +138 °C for PE), and block phase separation is confirmed using small angle X-ray scattering (SAXS). Tensile mechanical performances reveal thermoplastic elastomers ( f hard < 0.4 and N > 1300) with linear stress–strain relationships, high ultimate tensile strengths ( σ b = 1–5 MPa), very high elongations at break ( ε b = 1000–1900%) and excellent elastic recoveries (98%). There is a wide operating temperature range (−51 to +138 °C), an operable processing temperature range (+100 to +200 °C) and excellent thermal stability ( T d,5% ∼ 300 °C). The polymers are stable in aqueous environments, at room temperature, but are hydrolyzed upon gentle heating (60 °C) and treatment with an organic acid ( para -toluene sulfonic acid) or a common lipase (Novozyme® 51032). The new block polyesters show significant potential as sustainable thermoplastic elastomers with better properties than well-known styrenic block copolymers or polylactide-derived elastomers. The straightforward synthesis allows for other commercially available and/or bio-derived lactones, epoxides and anhydrides to be developed in the future.
Thermoplastic elastomers benefit from high elasticity and straightforward (re)processability; they are widely used across a multitude of sectors. Currently, the majority derive from oil, do not degrade or undergo chemical recycling. Here a new series of ABA triblock polyesters are synthesized and show high-performances as degradable thermoplastic elastomers; their composition is poly(cyclohexene-alt-phthalate)-b-poly(ϵ-decalactone)-b-poly(cyclohexene-alt-phthalate) {PE–PDL–PE}. The synthesis is accomplished using a zinc(ii)/magnesium(ii) catalyst, in a one-pot procedure where ϵ-decalactone ring-opening polymerization yielding dihydroxyl telechelic poly(ϵ-decalatone) (PDL, soft-block) occurs first and, then, addition of phthalic anhydride/cyclohexene oxide ring-opening copolymerization delivers semi-aromatic polyester (PE, hard-block) end-blocks. The block compositions are straightforward to control, from the initial monomer stoichiometry, and conversions are high (85–98%). Two series of polyesters are prepared: (1) TBPE-1 to TBPE-5 feature an equivalent hard-block volume fraction (fhard = 0.4) and variable molar masses 40–100 kg mol−1; (2) TBPE-5 to TBPE-9 feature equivalent molar masses (∼100 kg mol−1) and variable hard-block volume fractions (0.12 < fhard < 0.4). Polymers are characterized using spectroscopies, size-exclusion chromatography (SEC), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). They are amorphous, with two glass transition temperatures (∼−51 °C for PDL; +138 °C for PE), and block phase separation is confirmed using small angle X-ray scattering (SAXS). Tensile mechanical performances reveal thermoplastic elastomers (fhard < 0.4 and N > 1300) with linear stress–strain relationships, high ultimate tensile strengths (σb = 1–5 MPa), very high elongations at break (ϵb = 1000–1900%) and excellent elastic recoveries (98%). There is a wide operating temperature range (−51 to +138 °C), an operable processing temperature range (+100 to +200 °C) and excellent thermal stability (Td,5% ∼ 300 °C). The polymers are stable in aqueous environments, at room temperature, but are hydrolyzed upon gentle heating (60 °C) and treatment with an organic acid (para-toluene sulfonic acid) or a common lipase (Novozyme® 51032). The new block polyesters show significant potential as sustainable thermoplastic elastomers with better properties than well-known styrenic block copolymers or polylactide-derived elastomers. The straightforward synthesis allows for other commercially available and/or bio-derived lactones, epoxides and anhydrides to be developed in the future.
Thermoplastic elastomers benefit from high elasticity and straightforward (re)processability; they are widely used across a multitude of sectors. Currently, the majority derive from oil, do not degrade or undergo chemical recycling. Here a new series of ABA triblock polyesters are synthesized and show high-performances as degradable thermoplastic elastomers; their composition is poly(cyclohexene- alt -phthalate)- b -poly(ε-decalactone)- b -poly(cyclohexene- alt -phthalate) {PE–PDL–PE}. The synthesis is accomplished using a zinc( ii )/magnesium( ii ) catalyst, in a one-pot procedure where ε-decalactone ring-opening polymerization yielding dihydroxyl telechelic poly(ε-decalatone) (PDL, soft-block) occurs first and, then, addition of phthalic anhydride/cyclohexene oxide ring-opening copolymerization delivers semi-aromatic polyester (PE, hard-block) end-blocks. The block compositions are straightforward to control, from the initial monomer stoichiometry, and conversions are high (85–98%). Two series of polyesters are prepared: (1) TBPE-1 to TBPE-5 feature an equivalent hard-block volume fraction ( f hard = 0.4) and variable molar masses 40–100 kg mol −1 ; (2) TBPE-5 to TBPE-9 feature equivalent molar masses (∼100 kg mol −1 ) and variable hard-block volume fractions (0.12 < f hard < 0.4). Polymers are characterized using spectroscopies, size-exclusion chromatography (SEC), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). They are amorphous, with two glass transition temperatures (∼−51 °C for PDL; +138 °C for PE), and block phase separation is confirmed using small angle X-ray scattering (SAXS). Tensile mechanical performances reveal thermoplastic elastomers ( f hard < 0.4 and N > 1300) with linear stress–strain relationships, high ultimate tensile strengths ( σ b = 1–5 MPa), very high elongations at break ( ε b = 1000–1900%) and excellent elastic recoveries (98%). There is a wide operating temperature range (−51 to +138 °C), an operable processing temperature range (+100 to +200 °C) and excellent thermal stability ( T d,5% ∼ 300 °C). The polymers are stable in aqueous environments, at room temperature, but are hydrolyzed upon gentle heating (60 °C) and treatment with an organic acid ( para -toluene sulfonic acid) or a common lipase (Novozyme® 51032). The new block polyesters show significant potential as sustainable thermoplastic elastomers with better properties than well-known styrenic block copolymers or polylactide-derived elastomers. The straightforward synthesis allows for other commercially available and/or bio-derived lactones, epoxides and anhydrides to be developed in the future. A new series of block polyester thermoplastic elastomers are prepared by a one-pot procedure; they show properties competitive or better than conventional materials and can be fully degraded after use.
Author Carrodeguas, Leticia Peña
Lee, Koon-Yang
Chen, Thomas T. D
Terrill, Nicholas J
Williams, Charlotte K
Gregory, Georgina L
Sulley, Gregory S
Santmarti, Alba
AuthorAffiliation Harwell Science and Innovation Campus
Oxford Chemistry
Imperial College London
Chemistry Research Laboratory
Diamond Light Source
Department of Aeronautical Engineering
AuthorAffiliation_xml – name: Chemistry Research Laboratory
– name: Department of Aeronautical Engineering
– name: Oxford Chemistry
– name: Harwell Science and Innovation Campus
– name: Imperial College London
– name: Diamond Light Source
Author_xml – sequence: 1
  givenname: Georgina L
  surname: Gregory
  fullname: Gregory, Georgina L
– sequence: 2
  givenname: Gregory S
  surname: Sulley
  fullname: Sulley, Gregory S
– sequence: 3
  givenname: Leticia Peña
  surname: Carrodeguas
  fullname: Carrodeguas, Leticia Peña
– sequence: 4
  givenname: Thomas T. D
  surname: Chen
  fullname: Chen, Thomas T. D
– sequence: 5
  givenname: Alba
  surname: Santmarti
  fullname: Santmarti, Alba
– sequence: 6
  givenname: Nicholas J
  surname: Terrill
  fullname: Terrill, Nicholas J
– sequence: 7
  givenname: Koon-Yang
  surname: Lee
  fullname: Lee, Koon-Yang
– sequence: 8
  givenname: Charlotte K
  surname: Williams
  fullname: Williams, Charlotte K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34094122$$D View this record in MEDLINE/PubMed
BookMark eNp9kkuLFDEUhYOMOGM7G_dKxI0IpXlWVTaC9PiCAReO65BKbk1nrErKpFppf73ph60OYjY3cL5zuLk399FJiAEQekjJC0q4eulItoSImrs76IwRQatacnVyvDNyis5zviHlcE4la-6hUy6IEpSxM5Suku-GaL_gKQ4byDMkPK8gjXEaTJ69xbCtcYSU8Xc_r3CG0VcmxdFs1a2raBiCw7ucjLsNTj5cV3GCUCq28QD5H8USwwN0tzdDhvNDXaDPb99cLd9Xlx_ffVi-vqyskGKuVGtc3TouoabKtq4BxZuuhqZXnFJpFXECZK2YbDrecWFqgI63QgEz1NmeL9Crfe607kZwFsKczKCn5EeTNjoar_9Wgl_p6_hNt1QqQWgJeHYISPHrusxGjz5bGAYTIK6zZpK3RPK6zHWBnt5Cb-I6hfI8zQRVpCRyUajHf3Z0bOXXOgrwfA_YFHNO0B8RSvR23fqCfFru1n1RYHILtn7eTbi8xg__tjzaW1K2x-jfP6joT_6n68n1_Cde5cRd
CitedBy_id crossref_primary_10_1021_acscatal_1c04020
crossref_primary_10_1039_D3SC05105F
crossref_primary_10_1021_acs_macromol_4c00432
crossref_primary_10_1080_25740881_2021_2015779
crossref_primary_10_1002_adma_202402431
crossref_primary_10_1002_adma_202403641
crossref_primary_10_1039_D1PY01390D
crossref_primary_10_1002_cctc_202100434
crossref_primary_10_1002_adma_202302825
crossref_primary_10_3390_polym16192767
crossref_primary_10_1016_j_eurpolymj_2021_110966
crossref_primary_10_1002_ange_202115904
crossref_primary_10_1002_ange_202317699
crossref_primary_10_1016_j_eurpolymj_2024_112901
crossref_primary_10_1021_jacs_1c03250
crossref_primary_10_1021_acs_macromol_1c00365
crossref_primary_10_1021_acs_macromol_1c02303
crossref_primary_10_1039_D3GC01671D
crossref_primary_10_1002_pol_20230075
crossref_primary_10_1002_anie_202104495
crossref_primary_10_1002_anie_202210748
crossref_primary_10_1039_D4PY01123F
crossref_primary_10_1002_ange_202308378
crossref_primary_10_1016_j_indcrop_2021_113610
crossref_primary_10_1039_D2SC02752F
crossref_primary_10_1039_D3PY00209H
crossref_primary_10_1021_acs_chemmater_3c03115
crossref_primary_10_1002_anie_202415388
crossref_primary_10_1002_anie_202201407
crossref_primary_10_1039_D2SC02745C
crossref_primary_10_1016_j_eurpolymj_2023_112695
crossref_primary_10_1021_acsmacrolett_3c00211
crossref_primary_10_1002_ange_202006807
crossref_primary_10_1002_anie_202115904
crossref_primary_10_1016_j_scp_2021_100586
crossref_primary_10_3390_molecules26154454
crossref_primary_10_1039_D0SC05550F
crossref_primary_10_1039_D4PY00858H
crossref_primary_10_1039_D4CC01664E
crossref_primary_10_3390_polym14112301
crossref_primary_10_1021_acs_accounts_2c00197
crossref_primary_10_1002_anie_202308378
crossref_primary_10_1016_j_ccst_2025_100400
crossref_primary_10_1007_s11595_023_2720_6
crossref_primary_10_1038_s41467_024_52229_1
crossref_primary_10_1039_D0CY02164D
crossref_primary_10_1002_ange_202201407
crossref_primary_10_1002_chem_202401727
crossref_primary_10_1021_acs_macromol_3c01899
crossref_primary_10_1016_j_chemosphere_2022_133618
crossref_primary_10_1021_acs_macromol_3c01773
crossref_primary_10_1039_D1CY00238D
crossref_primary_10_1021_acs_chemrev_3c00848
crossref_primary_10_1002_pol_20230293
crossref_primary_10_1039_D0DT02639E
crossref_primary_10_1021_acs_macromol_3c01329
crossref_primary_10_1002_chem_202101140
crossref_primary_10_1039_D0GC02295K
crossref_primary_10_1002_ange_202411097
crossref_primary_10_1021_acs_macromol_2c01680
crossref_primary_10_1021_jacs_2c01225
crossref_primary_10_1080_10601325_2021_1967170
crossref_primary_10_1002_ange_202210748
crossref_primary_10_1021_acsmacrolett_1c00216
crossref_primary_10_1039_D4SC02501F
crossref_primary_10_1021_acssuschemeng_2c05552
crossref_primary_10_1002_anie_202317699
crossref_primary_10_1002_macp_202200079
crossref_primary_10_1088_1361_6463_ad9615
crossref_primary_10_1002_anie_202006807
crossref_primary_10_1002_ange_202104495
crossref_primary_10_1039_D4SC02051K
crossref_primary_10_1021_acs_macromol_0c02401
crossref_primary_10_1002_pat_5940
crossref_primary_10_1021_acs_macromol_4c00857
crossref_primary_10_1039_D2PY00101B
crossref_primary_10_1039_D4PY00404C
crossref_primary_10_1002_ange_202415388
crossref_primary_10_1039_D2PY00335J
crossref_primary_10_1039_D2SC00720G
crossref_primary_10_1002_anie_202411097
crossref_primary_10_1021_jacs_4c17703
Cites_doi 10.1021/mz500339h
10.1038/s41467-018-05269-3
10.1039/c2py20026k
10.1038/s41570-017-0046
10.1039/C4GC01353K
10.1002/anie.201407525
10.1039/C4CC10113H
10.1021/acsmacrolett.5b00472
10.1021/acs.biomac.9b00411
10.1021/ma60011a002
10.1021/bm801292v
10.1039/C5GC01694K
10.1021/bm400733e
10.1016/j.polymer.2017.02.008
10.1039/b614342n
10.1021/acs.macromol.5b02752
10.3390/polym9100494
10.1016/S0014-3057(03)00130-7
10.1016/b978-0-12-394584-6.00004-2
10.1021/acsmacrolett.5b00843
10.1002/1097-4628(20000815)77:7<1621::AID-APP24>3.0.CO;2-U
10.1021/ja307096m
10.1021/acs.macromol.8b00159
10.1021/acs.macromol.7b02299
10.1021/acs.iecr.6b02931
10.1021/acssuschemeng.5b00580
10.1021/acscatal.9b00113
10.1038/s41467-019-10481-w
10.1021/ma202782s
10.1021/ma061839n
10.1039/C6PY00700G
10.1002/anie.201801400
10.1038/nature21001
10.1021/ma301904y
10.5772/36807
10.1021/ma4011846
10.1016/0032-3861(92)90698-V
10.1016/0168-3659(87)90020-4
10.1016/j.progpolymsci.2019.04.002
10.1038/nature06669
10.1098/rsta.2017.0066
10.1002/anie.201309575
10.1002/marc.201400663
10.1021/jacs.5b12888
10.1039/C5PY00202H
10.1021/cm960146q
10.1039/C3GC41655K
10.1021/acs.macromol.7b02690
10.1021/ja206352x
10.1039/C9SC00385A
10.1021/ja203520p
10.1021/acs.macromol.8b01409
10.1021/acs.macromol.7b00293
10.1021/ma990666h
10.1039/C9GC00432G
10.1021/bm025628b
10.1021/acs.macromol.5b01293
10.1039/C4SM01220H
10.1021/ar500121d
10.1039/c2py00543c
10.1039/C5PY01606A
10.1021/acs.chemrev.7b00329
10.1021/acs.macromol.5b00225
10.1021/acs.accounts.7b00209
10.1021/sc500412a
10.1021/ma062393d
10.1039/C7GC01496A
10.1002/anie.201805766
10.1021/acs.chemrev.6b00553
10.1021/acs.biomac.9b00185
10.1021/ja804357u
10.1021/acs.macromol.8b01224
10.1021/bm990007c
10.1021/jacs.5b04541
10.1002/macp.201700254
10.1021/ma990404f
10.1021/ma2026385
10.1039/C5PY01040C
10.1021/acsmacrolett.8b00424
10.1021/jacs.7b01295
10.1016/j.cherd.2015.10.034
10.1039/C8PY01284A
10.1021/jacs.7b10173
10.1002/adfm.201970030
10.1002/anie.201810245
10.1063/1.1289889
10.1021/ma60060a008
10.1002/anie.201810083
10.1021/ma201063t
10.1016/b978-185617416-9/50004-1
10.1002/chem.201701013
10.1021/bm070313n
10.1002/polc.5070260107
10.1021/acsapm.8b00277
10.1016/j.eurpolymj.2019.01.010
10.1021/jacs.5b13070
10.1021/jacs.9b13106
10.1021/ma971349i
10.1021/ja210548e
10.1039/C4PY00748D
10.1021/acs.biomac.7b00283
10.1021/jacs.9b05570
10.1126/science.1215368
10.1021/acsapm.8b00139
10.1021/acsami.5b02326
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2020
This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2020
– notice: This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/d0sc00463d
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
CrossRef
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 6581
ExternalDocumentID PMC8159401
34094122
10_1039_D0SC00463D
d0sc00463d
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: EP/L017393/1; EP/S018603/1
GroupedDBID 0-7
0R
705
7~J
AAGNR
AAIWI
AAPBV
ABGFH
ACGFS
ACIWK
ADBBV
ADMRA
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AUDPV
AZFZN
BCNDV
BLAPV
BSQNT
C6K
CKLOX
D0L
EE0
EF-
F5P
GROUPED_DOAJ
HYE
HZ
H~N
JG
O-G
O9-
OK1
R7C
R7D
RCNCU
ROYLF
RPM
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
SMJ
0R~
53G
AAEMU
AAFWJ
AAJAE
AARTK
AAXHV
AAYXX
ABEMK
ABIQK
ABPDG
ABXOH
AEFDR
AESAV
AFLYV
AFPKN
AGEGJ
AGRSR
AHGCF
AKBGW
ANUXI
APEMP
CITATION
H13
HZ~
PGMZT
RAOCF
RNS
-JG
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c454t-98ad68d35e619c8d7e937b6e7f93115c90d4e569257b3b34a6eeb3849e2a1dcf3
ISSN 2041-6520
IngestDate Thu Aug 21 14:14:13 EDT 2025
Mon Jul 21 10:11:24 EDT 2025
Fri Jul 25 03:50:04 EDT 2025
Thu Jan 02 22:33:49 EST 2025
Thu Apr 24 22:57:06 EDT 2025
Tue Jul 01 03:46:37 EDT 2025
Sat Jan 08 04:02:10 EST 2022
Wed Nov 11 00:26:54 EST 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 25
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c454t-98ad68d35e619c8d7e937b6e7f93115c90d4e569257b3b34a6eeb3849e2a1dcf3
Notes Electronic supplementary information (ESI) available: Experimental methods, spectroscopic data and thermal-mechanical data. See DOI
10.1039/d0sc00463d
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8783-1282
0000-0002-6580-0151
0000-0003-0777-2292
0000-0002-0734-1575
0000-0002-8189-6536
0000-0002-4688-9269
0000-0002-8517-5672
0000-0001-8240-513X
OpenAccessLink http://dx.doi.org/10.1039/d0sc00463d
PMID 34094122
PQID 2419015934
PQPubID 2047492
PageCount 15
ParticipantIDs proquest_journals_2419015934
pubmed_primary_34094122
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8159401
proquest_miscellaneous_2538053603
rsc_primary_d0sc00463d
crossref_primary_10_1039_D0SC00463D
crossref_citationtrail_10_1039_D0SC00463D
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200504
PublicationDateYYYYMMDD 2020-05-04
PublicationDate_xml – month: 5
  year: 2020
  text: 20200504
  day: 4
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical science (Cambridge)
PublicationTitleAlternate Chem Sci
PublicationYear 2020
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Wang (D0SC00463D-(cit85)/*[position()=1]) 2019; 1
Wang (D0SC00463D-(cit32)/*[position()=1]) 2013; 46
Schneiderman (D0SC00463D-(cit20)/*[position()=1]) 2015; 6
Matsen (D0SC00463D-(cit90)/*[position()=1]) 2000; 113
Jing (D0SC00463D-(cit40)/*[position()=1]) 2008; 130
Jutz (D0SC00463D-(cit72)/*[position()=1]) 2011; 133
Schneiderman (D0SC00463D-(cit1)/*[position()=1]) 2017; 50
Lee (D0SC00463D-(cit28)/*[position()=1]) 2015; 3
Bates (D0SC00463D-(cit2)/*[position()=1]) 2012; 336
Buchard (D0SC00463D-(cit38)/*[position()=1]) 2014; 53
Paul (D0SC00463D-(cit68)/*[position()=1]) 2015; 48
Ghosh (D0SC00463D-(cit113)/*[position()=1]) 2000; 77
Longo (D0SC00463D-(cit42)/*[position()=1]) 2016; 116
Nejad (D0SC00463D-(cit46)/*[position()=1]) 2013; 46
Hadjichristidis (D0SC00463D-(cit95)/*[position()=1]) 2003
Brutman (D0SC00463D-(cit19)/*[position()=1]) 2016; 55
Bolton (D0SC00463D-(cit30)/*[position()=1]) 2014; 3
Nasiri (D0SC00463D-(cit35)/*[position()=1]) 2016; 7
Zhu (D0SC00463D-(cit54)/*[position()=1]) 2018; 51
Williams (D0SC00463D-(cit39)/*[position()=1]) 2007; 36
Mahmoud (D0SC00463D-(cit53)/*[position()=1]) 2014; 16
Watts (D0SC00463D-(cit24)/*[position()=1]) 2017; 18
Azuma (D0SC00463D-(cit94)/*[position()=1]) 2018; 51
Zhu (D0SC00463D-(cit16)/*[position()=1]) 2016; 540
Saini (D0SC00463D-(cit44)/*[position()=1]) 2014; 5
Paul (D0SC00463D-(cit41)/*[position()=1]) 2015; 51
Winkler (D0SC00463D-(cit52)/*[position()=1]) 2015; 17
Si (D0SC00463D-(cit50)/*[position()=1]) 2015; 6
Kember (D0SC00463D-(cit71)/*[position()=1]) 2012; 3
Wang (D0SC00463D-(cit80)/*[position()=1]) 2018; 219
Fetters (D0SC00463D-(cit14)/*[position()=1]) 1969; 2
Morton (D0SC00463D-(cit81)/*[position()=1]) 1969; 26
Drazkowski (D0SC00463D-(cit96)/*[position()=1]) 2007; 40
Sinturel (D0SC00463D-(cit11)/*[position()=1]) 2015; 4
De Hoe (D0SC00463D-(cit23)/*[position()=1]) 2018; 140
Giarola (D0SC00463D-(cit51)/*[position()=1]) 2016; 107
Yu (D0SC00463D-(cit48)/*[position()=1]) 2018; 9
Li (D0SC00463D-(cit49)/*[position()=1]) 2018; 51
Man Baek (D0SC00463D-(cit97)/*[position()=1]) 1992; 33
Abel (D0SC00463D-(cit75)/*[position()=1]) 2019; 141
Tong (D0SC00463D-(cit84)/*[position()=1]) 2000; 33
Martello (D0SC00463D-(cit29)/*[position()=1]) 2011; 44
Wanamaker (D0SC00463D-(cit103)/*[position()=1]) 2009; 10
Lee (D0SC00463D-(cit27)/*[position()=1]) 2017; 112
Zhu (D0SC00463D-(cit56)/*[position()=1]) 2015; 137
Pitt (D0SC00463D-(cit104)/*[position()=1]) 1987; 4
Stößer (D0SC00463D-(cit65)/*[position()=1]) 2018; 57
Ding (D0SC00463D-(cit91)/*[position()=1]) 2019; 113
Pantoja (D0SC00463D-(cit9)/*[position()=1]) 2019; 1
Cordier (D0SC00463D-(cit3)/*[position()=1]) 2008; 451
Stößer (D0SC00463D-(cit58)/*[position()=1]) 2018; 376
Kernbichl (D0SC00463D-(cit64)/*[position()=1]) 2017; 139
Watts (D0SC00463D-(cit25)/*[position()=1]) 2019; 20
Frick (D0SC00463D-(cit34)/*[position()=1]) 2003; 4
Li (D0SC00463D-(cit76)/*[position()=1]) 2019; 9
Woodard (D0SC00463D-(cit107)/*[position()=1]) 2018; 7
Snyder (D0SC00463D-(cit102)/*[position()=1]) 2018; 51
Feng (D0SC00463D-(cit12)/*[position()=1]) 2017; 9
Yu (D0SC00463D-(cit33)/*[position()=1]) 2015; 36
Rosato (D0SC00463D-(cit83)/*[position()=1]) 2003
Romain (D0SC00463D-(cit73)/*[position()=1]) 2017; 23
Drobny (D0SC00463D-(cit82)/*[position()=1]) 2007
Erman (D0SC00463D-(cit86)/*[position()=1]) 2013
Hillmyer (D0SC00463D-(cit22)/*[position()=1]) 2014; 47
Martello (D0SC00463D-(cit21)/*[position()=1]) 2014; 2
Darensbourg (D0SC00463D-(cit45)/*[position()=1]) 2012; 45
Shanks (D0SC00463D-(cit108)/*[position()=1]) 2012
MacDonald (D0SC00463D-(cit36)/*[position()=1]) 2016; 7
Hong (D0SC00463D-(cit98)/*[position()=1]) 2017; 19
Widin (D0SC00463D-(cit110)/*[position()=1]) 2012; 134
Stößer (D0SC00463D-(cit66)/*[position()=1]) 2019; 10
Wang (D0SC00463D-(cit17)/*[position()=1]) 2017; 50
Ji (D0SC00463D-(cit67)/*[position()=1]) 2018; 57
Jehanno (D0SC00463D-(cit100)/*[position()=1]) 2019; 10
Olsén (D0SC00463D-(cit61)/*[position()=1]) 2013; 14
Liu (D0SC00463D-(cit37)/*[position()=1]) 2007; 40
(D0SC00463D-(cit7)/*[position()=1]) 2019
DiCiccio (D0SC00463D-(cit10)/*[position()=1]) 2011; 133
Wu (D0SC00463D-(cit69)/*[position()=1]) 2016; 49
Fetters (D0SC00463D-(cit13)/*[position()=1]) 1977; 10
Sulley (D0SC00463D-(cit60)/*[position()=1]) 2019; 142
Lin (D0SC00463D-(cit47)/*[position()=1]) 2019; 21
Wang (D0SC00463D-(cit89)/*[position()=1]) 2015; 7
Hamley (D0SC00463D-(cit93)/*[position()=1]) 2004; 29
Noppalit (D0SC00463D-(cit31)/*[position()=1]) 2019; 20
Romain (D0SC00463D-(cit62)/*[position()=1]) 2014; 53
Haider (D0SC00463D-(cit101)/*[position()=1]) 2019; 58
Lyu (D0SC00463D-(cit106)/*[position()=1]) 2007; 8
Wang (D0SC00463D-(cit5)/*[position()=1]) 2019; 95
Chen (D0SC00463D-(cit63)/*[position()=1]) 2018; 51
Honeker (D0SC00463D-(cit4)/*[position()=1]) 1996; 8
Kember (D0SC00463D-(cit70)/*[position()=1]) 2012; 134
(D0SC00463D-(cit6)/*[position()=1]) 2017
Van Zee (D0SC00463D-(cit77)/*[position()=1]) 2016; 138
Zhang (D0SC00463D-(cit15)/*[position()=1]) 2018; 118
Dair (D0SC00463D-(cit112)/*[position()=1]) 1999; 32
Rahimi (D0SC00463D-(cit99)/*[position()=1]) 2017; 1
Holmberg (D0SC00463D-(cit18)/*[position()=1]) 2014; 10
Trott (D0SC00463D-(cit74)/*[position()=1]) 2019; 10
Hillmyer (D0SC00463D-(cit26)/*[position()=1]) 2014; 47
Hosseini Nejad (D0SC00463D-(cit43)/*[position()=1]) 2012; 3
Matsen (D0SC00463D-(cit88)/*[position()=1]) 2012; 45
Zhu (D0SC00463D-(cit79)/*[position()=1]) 2015; 48
Leber (D0SC00463D-(cit8)/*[position()=1]) 2019; 29
(D0SC00463D-(cit92)/*[position()=1]) 2010
Kim (D0SC00463D-(cit109)/*[position()=1]) 1998; 31
Puskas (D0SC00463D-(cit111)/*[position()=1]) 2003; 39
Kobayashi (D0SC00463D-(cit105)/*[position()=1]) 2000; 1
Romain (D0SC00463D-(cit78)/*[position()=1]) 2014; 53
Wang (D0SC00463D-(cit87)/*[position()=1]) 2016; 5
Stößer (D0SC00463D-(cit57)/*[position()=1]) 2018; 57
Hauenstein (D0SC00463D-(cit59)/*[position()=1]) 2016; 18
Romain (D0SC00463D-(cit55)/*[position()=1]) 2016; 138
References_xml – issn: 2007
  publication-title: Handbook of Thermoplastic Elastomers
  doi: Drobny
– issn: 2010
  publication-title: Thermal Analysis of Rubbers and Rubbery Materials
– issn: 2019
  publication-title: The Future of High Performance Elastomers to 2024
– issn: 2013
  end-page: p 167-192
  publication-title: The Science and Technology of Rubber
  doi: Erman Mark
– issn: 2003
  end-page: p 161-197
  publication-title: Plastics Engineered Product Design
  doi: Rosato Rosato
– issn: 2012
  publication-title: Thermoplastic Elastomers
  doi: Shanks Kong
– issn: 2003
  publication-title: Block Copolymers: synthetic strategies, physical properties and applications
  doi: Hadjichristidis Pispas Floudas
– issn: 2017
  publication-title: Thermoplastic Elastomers Market by Type (SBC, TPO, TPV, COPE, PEBA), End-use Industry (Automotive, Building & Construction, Footwear, Engineering, Medical, Wires & Cables), Region - Global Forecast to 2022
– volume: 3
  start-page: 717
  year: 2014
  ident: D0SC00463D-(cit30)/*[position()=1]
  publication-title: ACS Macro Lett.
  doi: 10.1021/mz500339h
– volume: 9
  start-page: 2880
  year: 2018
  ident: D0SC00463D-(cit48)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05269-3
– volume: 3
  start-page: 1308
  year: 2012
  ident: D0SC00463D-(cit43)/*[position()=1]
  publication-title: Polym. Chem.
  doi: 10.1039/c2py20026k
– volume: 1
  start-page: 0046
  year: 2017
  ident: D0SC00463D-(cit99)/*[position()=1]
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-017-0046
– volume: 17
  start-page: 300
  year: 2015
  ident: D0SC00463D-(cit52)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C4GC01353K
– volume: 53
  start-page: 13858
  year: 2014
  ident: D0SC00463D-(cit38)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201407525
– volume: 51
  start-page: 6459
  year: 2015
  ident: D0SC00463D-(cit41)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC10113H
– volume: 4
  start-page: 1044
  year: 2015
  ident: D0SC00463D-(cit11)/*[position()=1]
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.5b00472
– volume: 20
  start-page: 2598
  year: 2019
  ident: D0SC00463D-(cit25)/*[position()=1]
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.9b00411
– volume: 2
  start-page: 453
  year: 1969
  ident: D0SC00463D-(cit14)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma60011a002
– volume: 10
  start-page: 443
  year: 2009
  ident: D0SC00463D-(cit103)/*[position()=1]
  publication-title: Biomacromolecules
  doi: 10.1021/bm801292v
– volume: 18
  start-page: 760
  year: 2016
  ident: D0SC00463D-(cit59)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C5GC01694K
– volume: 14
  start-page: 2883
  year: 2013
  ident: D0SC00463D-(cit61)/*[position()=1]
  publication-title: Biomacromolecules
  doi: 10.1021/bm400733e
– volume: 112
  start-page: 306
  year: 2017
  ident: D0SC00463D-(cit27)/*[position()=1]
  publication-title: Polymer
  doi: 10.1016/j.polymer.2017.02.008
– volume: 36
  start-page: 1573
  year: 2007
  ident: D0SC00463D-(cit39)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b614342n
– volume: 49
  start-page: 807
  year: 2016
  ident: D0SC00463D-(cit69)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.5b02752
– volume: 9
  start-page: 494
  year: 2017
  ident: D0SC00463D-(cit12)/*[position()=1]
  publication-title: Polymers
  doi: 10.3390/polym9100494
– volume: 39
  start-page: 2041
  year: 2003
  ident: D0SC00463D-(cit111)/*[position()=1]
  publication-title: Eur. Polym. J.
  doi: 10.1016/S0014-3057(03)00130-7
– volume-title: The Science and Technology of Rubber
  year: 2013
  ident: D0SC00463D-(cit86)/*[position()=1]
  doi: 10.1016/b978-0-12-394584-6.00004-2
– volume: 5
  start-page: 220
  year: 2016
  ident: D0SC00463D-(cit87)/*[position()=1]
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.5b00843
– volume: 77
  start-page: 1621
  year: 2000
  ident: D0SC00463D-(cit113)/*[position()=1]
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/1097-4628(20000815)77:7<1621::AID-APP24>3.0.CO;2-U
– volume: 134
  start-page: 15676
  year: 2012
  ident: D0SC00463D-(cit70)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja307096m
– volume: 51
  start-page: 2247
  year: 2018
  ident: D0SC00463D-(cit49)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.8b00159
– volume: 51
  start-page: 389
  year: 2018
  ident: D0SC00463D-(cit102)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.7b02299
– volume: 55
  start-page: 11097
  year: 2016
  ident: D0SC00463D-(cit19)/*[position()=1]
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.6b02931
– volume: 3
  start-page: 2309
  year: 2015
  ident: D0SC00463D-(cit28)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.5b00580
– volume: 9
  start-page: 1915
  year: 2019
  ident: D0SC00463D-(cit76)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b00113
– volume: 10
  start-page: 2668
  year: 2019
  ident: D0SC00463D-(cit66)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10481-w
– volume-title: The Future of High Performance Elastomers to 2024
  year: 2019
  ident: D0SC00463D-(cit7)/*[position()=1]
– volume: 45
  start-page: 2161
  year: 2012
  ident: D0SC00463D-(cit88)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma202782s
– volume: 40
  start-page: 6040
  year: 2007
  ident: D0SC00463D-(cit37)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma061839n
– volume: 7
  start-page: 5233
  year: 2016
  ident: D0SC00463D-(cit35)/*[position()=1]
  publication-title: Polym. Chem.
  doi: 10.1039/C6PY00700G
– volume: 57
  start-page: 6337
  year: 2018
  ident: D0SC00463D-(cit57)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201801400
– volume: 540
  start-page: 354
  year: 2016
  ident: D0SC00463D-(cit16)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature21001
– volume: 46
  start-page: 631
  year: 2013
  ident: D0SC00463D-(cit46)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma301904y
– volume-title: Block Copolymers: synthetic strategies, physical properties and applications
  year: 2003
  ident: D0SC00463D-(cit95)/*[position()=1]
– volume-title: Thermoplastic Elastomers
  year: 2012
  ident: D0SC00463D-(cit108)/*[position()=1]
  doi: 10.5772/36807
– volume: 46
  start-page: 7202
  year: 2013
  ident: D0SC00463D-(cit32)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma4011846
– volume: 29
  start-page: 909
  year: 2004
  ident: D0SC00463D-(cit93)/*[position()=1]
  publication-title: Prog. Polym. Sci.
– volume: 33
  start-page: 4821
  year: 1992
  ident: D0SC00463D-(cit97)/*[position()=1]
  publication-title: Polymer
  doi: 10.1016/0032-3861(92)90698-V
– volume: 4
  start-page: 283
  year: 1987
  ident: D0SC00463D-(cit104)/*[position()=1]
  publication-title: J. Controlled Release
  doi: 10.1016/0168-3659(87)90020-4
– volume: 95
  start-page: 1
  year: 2019
  ident: D0SC00463D-(cit5)/*[position()=1]
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2019.04.002
– volume: 451
  start-page: 977
  year: 2008
  ident: D0SC00463D-(cit3)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature06669
– volume: 376
  start-page: 20170066
  year: 2018
  ident: D0SC00463D-(cit58)/*[position()=1]
  publication-title: Philos. Trans. R. Soc., A
  doi: 10.1098/rsta.2017.0066
– volume: 53
  start-page: 1607
  year: 2014
  ident: D0SC00463D-(cit62)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201309575
– volume: 53
  start-page: 1607
  year: 2014
  ident: D0SC00463D-(cit78)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201309575
– volume: 36
  start-page: 398
  year: 2015
  ident: D0SC00463D-(cit33)/*[position()=1]
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201400663
– volume: 138
  start-page: 2755
  year: 2016
  ident: D0SC00463D-(cit77)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b12888
– volume: 6
  start-page: 3641
  year: 2015
  ident: D0SC00463D-(cit20)/*[position()=1]
  publication-title: Polym. Chem.
  doi: 10.1039/C5PY00202H
– volume: 8
  start-page: 1702
  year: 1996
  ident: D0SC00463D-(cit4)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm960146q
– volume: 16
  start-page: 167
  year: 2014
  ident: D0SC00463D-(cit53)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C3GC41655K
– volume: 51
  start-page: 2466
  year: 2018
  ident: D0SC00463D-(cit54)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.7b02690
– volume: 133
  start-page: 17395
  year: 2011
  ident: D0SC00463D-(cit72)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja206352x
– volume: 10
  start-page: 4618
  year: 2019
  ident: D0SC00463D-(cit74)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC00385A
– volume: 133
  start-page: 10724
  year: 2011
  ident: D0SC00463D-(cit10)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja203520p
– volume: 51
  start-page: 6460
  year: 2018
  ident: D0SC00463D-(cit94)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.8b01409
– volume: 50
  start-page: 3733
  year: 2017
  ident: D0SC00463D-(cit1)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.7b00293
– volume: 32
  start-page: 8145
  year: 1999
  ident: D0SC00463D-(cit112)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma990666h
– volume: 21
  start-page: 2469
  year: 2019
  ident: D0SC00463D-(cit47)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C9GC00432G
– volume: 4
  start-page: 216
  year: 2003
  ident: D0SC00463D-(cit34)/*[position()=1]
  publication-title: Biomacromolecules
  doi: 10.1021/bm025628b
– volume: 48
  start-page: 6047
  year: 2015
  ident: D0SC00463D-(cit68)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.5b01293
– volume: 10
  start-page: 7405
  year: 2014
  ident: D0SC00463D-(cit18)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/C4SM01220H
– volume: 47
  start-page: 2390
  year: 2014
  ident: D0SC00463D-(cit26)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar500121d
– volume: 3
  start-page: 1196
  year: 2012
  ident: D0SC00463D-(cit71)/*[position()=1]
  publication-title: Polym. Chem.
  doi: 10.1039/c2py00543c
– volume-title: Handbook of Thermoplastic Elastomers
  year: 2007
  ident: D0SC00463D-(cit82)/*[position()=1]
– volume: 7
  start-page: 553
  year: 2016
  ident: D0SC00463D-(cit36)/*[position()=1]
  publication-title: Polym. Chem.
  doi: 10.1039/C5PY01606A
– volume: 118
  start-page: 839
  year: 2018
  ident: D0SC00463D-(cit15)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00329
– volume: 48
  start-page: 2407
  year: 2015
  ident: D0SC00463D-(cit79)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.5b00225
– volume: 50
  start-page: 1762
  year: 2017
  ident: D0SC00463D-(cit17)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00209
– volume: 2
  start-page: 2519
  year: 2014
  ident: D0SC00463D-(cit21)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/sc500412a
– volume: 40
  start-page: 2798
  year: 2007
  ident: D0SC00463D-(cit96)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma062393d
– volume: 19
  start-page: 3692
  year: 2017
  ident: D0SC00463D-(cit98)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C7GC01496A
– volume: 58
  start-page: 50
  year: 2019
  ident: D0SC00463D-(cit101)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201805766
– volume: 116
  start-page: 15167
  year: 2016
  ident: D0SC00463D-(cit42)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00553
– volume: 20
  start-page: 2241
  year: 2019
  ident: D0SC00463D-(cit31)/*[position()=1]
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.9b00185
– volume: 130
  start-page: 13826
  year: 2008
  ident: D0SC00463D-(cit40)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja804357u
– volume-title: Thermal Analysis of Rubbers and Rubbery Materials
  year: 2010
  ident: D0SC00463D-(cit92)/*[position()=1]
– volume: 51
  start-page: 5346
  year: 2018
  ident: D0SC00463D-(cit63)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.8b01224
– volume: 1
  start-page: 3
  year: 2000
  ident: D0SC00463D-(cit105)/*[position()=1]
  publication-title: Biomacromolecules
  doi: 10.1021/bm990007c
– volume: 137
  start-page: 12179
  year: 2015
  ident: D0SC00463D-(cit56)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b04541
– volume: 219
  start-page: 1700254
  year: 2018
  ident: D0SC00463D-(cit80)/*[position()=1]
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.201700254
– volume: 33
  start-page: 1479
  year: 2000
  ident: D0SC00463D-(cit84)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma990404f
– volume: 45
  start-page: 2242
  year: 2012
  ident: D0SC00463D-(cit45)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma2026385
– volume: 6
  start-page: 6372
  year: 2015
  ident: D0SC00463D-(cit50)/*[position()=1]
  publication-title: Polym. Chem.
  doi: 10.1039/C5PY01040C
– volume: 7
  start-page: 976
  year: 2018
  ident: D0SC00463D-(cit107)/*[position()=1]
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.8b00424
– volume-title: Thermoplastic Elastomers Market by Type (SBC, TPO, TPV, COPE, PEBA), End-use Industry (Automotive, Building & Construction, Footwear, Engineering, Medical, Wires & Cables), Region - Global Forecast to 2022
  year: 2017
  ident: D0SC00463D-(cit6)/*[position()=1]
– volume: 139
  start-page: 6787
  year: 2017
  ident: D0SC00463D-(cit64)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01295
– volume: 107
  start-page: 181
  year: 2016
  ident: D0SC00463D-(cit51)/*[position()=1]
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2015.10.034
– volume: 10
  start-page: 172
  year: 2019
  ident: D0SC00463D-(cit100)/*[position()=1]
  publication-title: Polym. Chem.
  doi: 10.1039/C8PY01284A
– volume: 140
  start-page: 963
  year: 2018
  ident: D0SC00463D-(cit23)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10173
– volume: 29
  start-page: 1802629
  year: 2019
  ident: D0SC00463D-(cit8)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201970030
– volume: 57
  start-page: 16893
  year: 2018
  ident: D0SC00463D-(cit65)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201810245
– volume: 113
  start-page: 5539
  year: 2000
  ident: D0SC00463D-(cit90)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1289889
– volume: 10
  start-page: 1200
  year: 1977
  ident: D0SC00463D-(cit13)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma60060a008
– volume: 57
  start-page: 16888
  year: 2018
  ident: D0SC00463D-(cit67)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201810083
– volume: 44
  start-page: 8537
  year: 2011
  ident: D0SC00463D-(cit29)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma201063t
– volume-title: Plastics Engineered Product Design
  year: 2003
  ident: D0SC00463D-(cit83)/*[position()=1]
  doi: 10.1016/b978-185617416-9/50004-1
– volume: 23
  start-page: 7367
  year: 2017
  ident: D0SC00463D-(cit73)/*[position()=1]
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.201701013
– volume: 8
  start-page: 2301
  year: 2007
  ident: D0SC00463D-(cit106)/*[position()=1]
  publication-title: Biomacromolecules
  doi: 10.1021/bm070313n
– volume: 26
  start-page: 99
  year: 1969
  ident: D0SC00463D-(cit81)/*[position()=1]
  publication-title: J. Polym. Sci., Polym. Symp.
  doi: 10.1002/polc.5070260107
– volume: 1
  start-page: 571
  year: 2019
  ident: D0SC00463D-(cit85)/*[position()=1]
  publication-title: ACS Appl. Polym. Mater.
  doi: 10.1021/acsapm.8b00277
– volume: 113
  start-page: 411
  year: 2019
  ident: D0SC00463D-(cit91)/*[position()=1]
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2019.01.010
– volume: 138
  start-page: 4120
  year: 2016
  ident: D0SC00463D-(cit55)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b13070
– volume: 142
  start-page: 4367
  year: 2019
  ident: D0SC00463D-(cit60)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b13106
– volume: 31
  start-page: 2569
  year: 1998
  ident: D0SC00463D-(cit109)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma971349i
– volume: 134
  start-page: 3834
  year: 2012
  ident: D0SC00463D-(cit110)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja210548e
– volume: 47
  start-page: 2390
  year: 2014
  ident: D0SC00463D-(cit22)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar500121d
– volume: 5
  start-page: 6068
  year: 2014
  ident: D0SC00463D-(cit44)/*[position()=1]
  publication-title: Polym. Chem.
  doi: 10.1039/C4PY00748D
– volume: 18
  start-page: 1845
  year: 2017
  ident: D0SC00463D-(cit24)/*[position()=1]
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.7b00283
– volume: 141
  start-page: 12760
  year: 2019
  ident: D0SC00463D-(cit75)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b05570
– volume: 336
  start-page: 434
  year: 2012
  ident: D0SC00463D-(cit2)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1215368
– volume: 1
  start-page: 414
  year: 2019
  ident: D0SC00463D-(cit9)/*[position()=1]
  publication-title: ACS Appl. Polym. Mater.
  doi: 10.1021/acsapm.8b00139
– volume: 7
  start-page: 12109
  year: 2015
  ident: D0SC00463D-(cit89)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b02326
SSID ssj0000331527
Score 2.5664291
Snippet Thermoplastic elastomers benefit from high elasticity and straightforward (re)processability; they are widely used across a multitude of sectors. Currently,...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6567
SubjectTerms Aqueous environments
Block copolymers
Chemistry
Copolymerization
Cyclohexene
Decalactone
Differential scanning calorimetry
Elastic recovery
Equivalence
Glass transition temperature
Gravimetric analysis
Lactones
Lipase
Magnesium
Operating temperature
Phase separation
Phthalates
Phthalic anhydride
Polyester resins
Polyester thermoplastic elastomers
Ring opening polymerization
Room temperature
Stoichiometry
Stress-strain relationships
Temperature
Thermal stability
X-ray scattering
Title Triblock polyester thermoplastic elastomers with semi-aromatic polymer end blocks by ring-opening copolymerization
URI https://www.ncbi.nlm.nih.gov/pubmed/34094122
https://www.proquest.com/docview/2419015934
https://www.proquest.com/docview/2538053603
https://pubmed.ncbi.nlm.nih.gov/PMC8159401
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe67gAXxNdYxpiM4IKiFMdO0uQILWhCAyHWonKKnNiBCpZWaXsYfx1_Gu_lw0nXHgaXtLIdu8n71e_5fRLyMkolS9CqKyMhHY9r4URhqpw09LOUsyxlZTmgj5-C86n3YebPer0_Ha-lzToZpL_3xpX8D1WhDeiKUbL_QFkzKTTAd6AvXIHCcL0djYt5AszoJ5ZauC5THqAcWVwtliATYyZWjZ8LVE3Xvuj6au7IYlHlacW7oM_WubLLeVYojKKiz8GiWlU4bj2oDtfsyrIm10ATGoQG4SYErKNhqMNgjAZ-nkv7YtC1RuluuIx9afpGmCFS6e-bKursAgMu59L-rNG8_9ZtnYzqEJPK28meDOzxoKvO4KUlvipAXO16nHmuE_i8MtbobluV9chs224HntzvbMIgog47DB1kLHcvs2ACc62O2eUItQRi3LLExg3gBqc0_oul5V5EcXvvATnkcFDhfXL45et09s3o-ZgQdeVg82RNllwRvW4n2JaLdg47uz67B0VToqYUhSb3yb36DEPfVIB8QHo6f0jujJrSgY9I0QCTGmDSLWDSFpgUgUm3gElrzFEAJq2ASZNr2gUmvQnMx2T6_t1kdO7UxT2c1PO9NewIUgWhEr6GI3waqqEGQTkJ9DCLMAFUGjHlaT-IgKUkIhGeDLROROhFmktXpZk4Iv18ketjQqUUOnK5zoCXwPmbSelyqbTyNZZrkJ5FXjWvNk7rzPdYgOVXvEtHi7wwY5dVvpe9o04bCsX1frCKQRZG4ToSsOBz0w1vHk1wMteLDYwB-QLYXsCERZ5UBDXLCFS1uJxbZLhFajMAM8Fv9-TzH2VG-BCW9ZhrkSMAhRmv2Cotf6-yyMn-jnipspNbPfJTcrf9u56S_rrY6Gcgj6-Ts1KPdVYD_y-ZxeXV
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Triblock+polyester+thermoplastic+elastomers+with+semi-aromatic+polymer+end+blocks+by+ring-opening+copolymerization&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Gregory%2C+Georgina+L.&rft.au=Sulley%2C+Gregory+S.&rft.au=Carrodeguas%2C+Leticia+Pe%C3%B1a&rft.au=Chen%2C+Thomas+T.+D.&rft.date=2020-05-04&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=11&rft.issue=25&rft.spage=6567&rft.epage=6581&rft_id=info:doi/10.1039%2FD0SC00463D&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D0SC00463D
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon