Triblock polyester thermoplastic elastomers with semi-aromatic polymer end blocks by ring-opening copolymerization
Thermoplastic elastomers benefit from high elasticity and straightforward (re)processability; they are widely used across a multitude of sectors. Currently, the majority derive from oil, do not degrade or undergo chemical recycling. Here a new series of ABA triblock polyesters are synthesized and sh...
Saved in:
Published in | Chemical science (Cambridge) Vol. 11; no. 25; pp. 6567 - 6581 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
04.05.2020
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Thermoplastic elastomers benefit from high elasticity and straightforward (re)processability; they are widely used across a multitude of sectors. Currently, the majority derive from oil, do not degrade or undergo chemical recycling. Here a new series of ABA triblock polyesters are synthesized and show high-performances as degradable thermoplastic elastomers; their composition is poly(cyclohexene-
alt
-phthalate)-
b
-poly( -decalactone)-
b
-poly(cyclohexene-
alt
-phthalate) {PE-PDL-PE}. The synthesis is accomplished using a zinc(
ii
)/magnesium(
ii
) catalyst, in a one-pot procedure where -decalactone ring-opening polymerization yielding dihydroxyl telechelic poly( -decalatone) (PDL, soft-block) occurs first and, then, addition of phthalic anhydride/cyclohexene oxide ring-opening copolymerization delivers semi-aromatic polyester (PE, hard-block) end-blocks. The block compositions are straightforward to control, from the initial monomer stoichiometry, and conversions are high (85-98%). Two series of polyesters are prepared: (1) TBPE-1 to TBPE-5 feature an equivalent hard-block volume fraction (
f
hard
= 0.4) and variable molar masses 40-100 kg mol
−1
; (2) TBPE-5 to TBPE-9 feature equivalent molar masses (∼100 kg mol
−1
) and variable hard-block volume fractions (0.12 <
f
hard
< 0.4). Polymers are characterized using spectroscopies, size-exclusion chromatography (SEC), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). They are amorphous, with two glass transition temperatures (∼−51 °C for PDL; +138 °C for PE), and block phase separation is confirmed using small angle X-ray scattering (SAXS). Tensile mechanical performances reveal thermoplastic elastomers (
f
hard
< 0.4 and
N
> 1300) with linear stress-strain relationships, high ultimate tensile strengths (
σ
b
= 1-5 MPa), very high elongations at break (
b
= 1000-1900%) and excellent elastic recoveries (98%). There is a wide operating temperature range (−51 to +138 °C), an operable processing temperature range (+100 to +200 °C) and excellent thermal stability (
T
d,5%
∼ 300 °C). The polymers are stable in aqueous environments, at room temperature, but are hydrolyzed upon gentle heating (60 °C) and treatment with an organic acid (
para
-toluene sulfonic acid) or a common lipase (Novozyme® 51032). The new block polyesters show significant potential as sustainable thermoplastic elastomers with better properties than well-known styrenic block copolymers or polylactide-derived elastomers. The straightforward synthesis allows for other commercially available and/or bio-derived lactones, epoxides and anhydrides to be developed in the future.
A new series of block polyester thermoplastic elastomers are prepared by a one-pot procedure; they show properties competitive or better than conventional materials and can be fully degraded after use. |
---|---|
AbstractList | Thermoplastic elastomers benefit from high elasticity and straightforward (re)processability; they are widely used across a multitude of sectors. Currently, the majority derive from oil, do not degrade or undergo chemical recycling. Here a new series of ABA triblock polyesters are synthesized and show high-performances as degradable thermoplastic elastomers; their composition is poly(cyclohexene-alt-phthalate)-b-poly(ε-decalactone)-b-poly(cyclohexene-alt-phthalate) {PE-PDL-PE}. The synthesis is accomplished using a zinc(ii)/magnesium(ii) catalyst, in a one-pot procedure where ε-decalactone ring-opening polymerization yielding dihydroxyl telechelic poly(ε-decalatone) (PDL, soft-block) occurs first and, then, addition of phthalic anhydride/cyclohexene oxide ring-opening copolymerization delivers semi-aromatic polyester (PE, hard-block) end-blocks. The block compositions are straightforward to control, from the initial monomer stoichiometry, and conversions are high (85-98%). Two series of polyesters are prepared: (1) TBPE-1 to TBPE-5 feature an equivalent hard-block volume fraction (f hard = 0.4) and variable molar masses 40-100 kg mol-1; (2) TBPE-5 to TBPE-9 feature equivalent molar masses (∼100 kg mol-1) and variable hard-block volume fractions (0.12 < f hard < 0.4). Polymers are characterized using spectroscopies, size-exclusion chromatography (SEC), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). They are amorphous, with two glass transition temperatures (∼-51 °C for PDL; +138 °C for PE), and block phase separation is confirmed using small angle X-ray scattering (SAXS). Tensile mechanical performances reveal thermoplastic elastomers (f hard < 0.4 and N > 1300) with linear stress-strain relationships, high ultimate tensile strengths (σ b = 1-5 MPa), very high elongations at break (ε b = 1000-1900%) and excellent elastic recoveries (98%). There is a wide operating temperature range (-51 to +138 °C), an operable processing temperature range (+100 to +200 °C) and excellent thermal stability (T d,5% ∼ 300 °C). The polymers are stable in aqueous environments, at room temperature, but are hydrolyzed upon gentle heating (60 °C) and treatment with an organic acid (para-toluene sulfonic acid) or a common lipase (Novozyme® 51032). The new block polyesters show significant potential as sustainable thermoplastic elastomers with better properties than well-known styrenic block copolymers or polylactide-derived elastomers. The straightforward synthesis allows for other commercially available and/or bio-derived lactones, epoxides and anhydrides to be developed in the future.Thermoplastic elastomers benefit from high elasticity and straightforward (re)processability; they are widely used across a multitude of sectors. Currently, the majority derive from oil, do not degrade or undergo chemical recycling. Here a new series of ABA triblock polyesters are synthesized and show high-performances as degradable thermoplastic elastomers; their composition is poly(cyclohexene-alt-phthalate)-b-poly(ε-decalactone)-b-poly(cyclohexene-alt-phthalate) {PE-PDL-PE}. The synthesis is accomplished using a zinc(ii)/magnesium(ii) catalyst, in a one-pot procedure where ε-decalactone ring-opening polymerization yielding dihydroxyl telechelic poly(ε-decalatone) (PDL, soft-block) occurs first and, then, addition of phthalic anhydride/cyclohexene oxide ring-opening copolymerization delivers semi-aromatic polyester (PE, hard-block) end-blocks. The block compositions are straightforward to control, from the initial monomer stoichiometry, and conversions are high (85-98%). Two series of polyesters are prepared: (1) TBPE-1 to TBPE-5 feature an equivalent hard-block volume fraction (f hard = 0.4) and variable molar masses 40-100 kg mol-1; (2) TBPE-5 to TBPE-9 feature equivalent molar masses (∼100 kg mol-1) and variable hard-block volume fractions (0.12 < f hard < 0.4). Polymers are characterized using spectroscopies, size-exclusion chromatography (SEC), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). They are amorphous, with two glass transition temperatures (∼-51 °C for PDL; +138 °C for PE), and block phase separation is confirmed using small angle X-ray scattering (SAXS). Tensile mechanical performances reveal thermoplastic elastomers (f hard < 0.4 and N > 1300) with linear stress-strain relationships, high ultimate tensile strengths (σ b = 1-5 MPa), very high elongations at break (ε b = 1000-1900%) and excellent elastic recoveries (98%). There is a wide operating temperature range (-51 to +138 °C), an operable processing temperature range (+100 to +200 °C) and excellent thermal stability (T d,5% ∼ 300 °C). The polymers are stable in aqueous environments, at room temperature, but are hydrolyzed upon gentle heating (60 °C) and treatment with an organic acid (para-toluene sulfonic acid) or a common lipase (Novozyme® 51032). The new block polyesters show significant potential as sustainable thermoplastic elastomers with better properties than well-known styrenic block copolymers or polylactide-derived elastomers. The straightforward synthesis allows for other commercially available and/or bio-derived lactones, epoxides and anhydrides to be developed in the future. Thermoplastic elastomers benefit from high elasticity and straightforward (re)processability; they are widely used across a multitude of sectors. Currently, the majority derive from oil, do not degrade or undergo chemical recycling. Here a new series of ABA triblock polyesters are synthesized and show high-performances as degradable thermoplastic elastomers; their composition is poly(cyclohexene- alt -phthalate)- b -poly( -decalactone)- b -poly(cyclohexene- alt -phthalate) {PE-PDL-PE}. The synthesis is accomplished using a zinc( ii )/magnesium( ii ) catalyst, in a one-pot procedure where -decalactone ring-opening polymerization yielding dihydroxyl telechelic poly( -decalatone) (PDL, soft-block) occurs first and, then, addition of phthalic anhydride/cyclohexene oxide ring-opening copolymerization delivers semi-aromatic polyester (PE, hard-block) end-blocks. The block compositions are straightforward to control, from the initial monomer stoichiometry, and conversions are high (85-98%). Two series of polyesters are prepared: (1) TBPE-1 to TBPE-5 feature an equivalent hard-block volume fraction ( f hard = 0.4) and variable molar masses 40-100 kg mol −1 ; (2) TBPE-5 to TBPE-9 feature equivalent molar masses (∼100 kg mol −1 ) and variable hard-block volume fractions (0.12 < f hard < 0.4). Polymers are characterized using spectroscopies, size-exclusion chromatography (SEC), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). They are amorphous, with two glass transition temperatures (∼−51 °C for PDL; +138 °C for PE), and block phase separation is confirmed using small angle X-ray scattering (SAXS). Tensile mechanical performances reveal thermoplastic elastomers ( f hard < 0.4 and N > 1300) with linear stress-strain relationships, high ultimate tensile strengths ( σ b = 1-5 MPa), very high elongations at break ( b = 1000-1900%) and excellent elastic recoveries (98%). There is a wide operating temperature range (−51 to +138 °C), an operable processing temperature range (+100 to +200 °C) and excellent thermal stability ( T d,5% ∼ 300 °C). The polymers are stable in aqueous environments, at room temperature, but are hydrolyzed upon gentle heating (60 °C) and treatment with an organic acid ( para -toluene sulfonic acid) or a common lipase (Novozyme® 51032). The new block polyesters show significant potential as sustainable thermoplastic elastomers with better properties than well-known styrenic block copolymers or polylactide-derived elastomers. The straightforward synthesis allows for other commercially available and/or bio-derived lactones, epoxides and anhydrides to be developed in the future. A new series of block polyester thermoplastic elastomers are prepared by a one-pot procedure; they show properties competitive or better than conventional materials and can be fully degraded after use. Thermoplastic elastomers benefit from high elasticity and straightforward (re)processability; they are widely used across a multitude of sectors. Currently, the majority derive from oil, do not degrade or undergo chemical recycling. Here a new series of ABA triblock polyesters are synthesized and show high-performances as degradable thermoplastic elastomers; their composition is poly(cyclohexene- -phthalate)- -poly(ε-decalactone)- -poly(cyclohexene- -phthalate) {PE-PDL-PE}. The synthesis is accomplished using a zinc(ii)/magnesium(ii) catalyst, in a one-pot procedure where ε-decalactone ring-opening polymerization yielding dihydroxyl telechelic poly(ε-decalatone) (PDL, soft-block) occurs first and, then, addition of phthalic anhydride/cyclohexene oxide ring-opening copolymerization delivers semi-aromatic polyester (PE, hard-block) end-blocks. The block compositions are straightforward to control, from the initial monomer stoichiometry, and conversions are high (85-98%). Two series of polyesters are prepared: (1) TBPE-1 to TBPE-5 feature an equivalent hard-block volume fraction ( = 0.4) and variable molar masses 40-100 kg mol ; (2) TBPE-5 to TBPE-9 feature equivalent molar masses (∼100 kg mol ) and variable hard-block volume fractions (0.12 < < 0.4). Polymers are characterized using spectroscopies, size-exclusion chromatography (SEC), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). They are amorphous, with two glass transition temperatures (∼-51 °C for PDL; +138 °C for PE), and block phase separation is confirmed using small angle X-ray scattering (SAXS). Tensile mechanical performances reveal thermoplastic elastomers ( < 0.4 and > 1300) with linear stress-strain relationships, high ultimate tensile strengths ( = 1-5 MPa), very high elongations at break ( = 1000-1900%) and excellent elastic recoveries (98%). There is a wide operating temperature range (-51 to +138 °C), an operable processing temperature range (+100 to +200 °C) and excellent thermal stability ( ∼ 300 °C). The polymers are stable in aqueous environments, at room temperature, but are hydrolyzed upon gentle heating (60 °C) and treatment with an organic acid ( -toluene sulfonic acid) or a common lipase (Novozyme® 51032). The new block polyesters show significant potential as sustainable thermoplastic elastomers with better properties than well-known styrenic block copolymers or polylactide-derived elastomers. The straightforward synthesis allows for other commercially available and/or bio-derived lactones, epoxides and anhydrides to be developed in the future. Thermoplastic elastomers benefit from high elasticity and straightforward (re)processability; they are widely used across a multitude of sectors. Currently, the majority derive from oil, do not degrade or undergo chemical recycling. Here a new series of ABA triblock polyesters are synthesized and show high-performances as degradable thermoplastic elastomers; their composition is poly(cyclohexene- alt -phthalate)- b -poly(ε-decalactone)- b -poly(cyclohexene- alt -phthalate) {PE–PDL–PE}. The synthesis is accomplished using a zinc( ii )/magnesium( ii ) catalyst, in a one-pot procedure where ε-decalactone ring-opening polymerization yielding dihydroxyl telechelic poly(ε-decalatone) (PDL, soft-block) occurs first and, then, addition of phthalic anhydride/cyclohexene oxide ring-opening copolymerization delivers semi-aromatic polyester (PE, hard-block) end-blocks. The block compositions are straightforward to control, from the initial monomer stoichiometry, and conversions are high (85–98%). Two series of polyesters are prepared: (1) TBPE-1 to TBPE-5 feature an equivalent hard-block volume fraction ( f hard = 0.4) and variable molar masses 40–100 kg mol −1 ; (2) TBPE-5 to TBPE-9 feature equivalent molar masses (∼100 kg mol −1 ) and variable hard-block volume fractions (0.12 < f hard < 0.4). Polymers are characterized using spectroscopies, size-exclusion chromatography (SEC), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). They are amorphous, with two glass transition temperatures (∼−51 °C for PDL; +138 °C for PE), and block phase separation is confirmed using small angle X-ray scattering (SAXS). Tensile mechanical performances reveal thermoplastic elastomers ( f hard < 0.4 and N > 1300) with linear stress–strain relationships, high ultimate tensile strengths ( σ b = 1–5 MPa), very high elongations at break ( ε b = 1000–1900%) and excellent elastic recoveries (98%). There is a wide operating temperature range (−51 to +138 °C), an operable processing temperature range (+100 to +200 °C) and excellent thermal stability ( T d,5% ∼ 300 °C). The polymers are stable in aqueous environments, at room temperature, but are hydrolyzed upon gentle heating (60 °C) and treatment with an organic acid ( para -toluene sulfonic acid) or a common lipase (Novozyme® 51032). The new block polyesters show significant potential as sustainable thermoplastic elastomers with better properties than well-known styrenic block copolymers or polylactide-derived elastomers. The straightforward synthesis allows for other commercially available and/or bio-derived lactones, epoxides and anhydrides to be developed in the future. Thermoplastic elastomers benefit from high elasticity and straightforward (re)processability; they are widely used across a multitude of sectors. Currently, the majority derive from oil, do not degrade or undergo chemical recycling. Here a new series of ABA triblock polyesters are synthesized and show high-performances as degradable thermoplastic elastomers; their composition is poly(cyclohexene-alt-phthalate)-b-poly(ϵ-decalactone)-b-poly(cyclohexene-alt-phthalate) {PE–PDL–PE}. The synthesis is accomplished using a zinc(ii)/magnesium(ii) catalyst, in a one-pot procedure where ϵ-decalactone ring-opening polymerization yielding dihydroxyl telechelic poly(ϵ-decalatone) (PDL, soft-block) occurs first and, then, addition of phthalic anhydride/cyclohexene oxide ring-opening copolymerization delivers semi-aromatic polyester (PE, hard-block) end-blocks. The block compositions are straightforward to control, from the initial monomer stoichiometry, and conversions are high (85–98%). Two series of polyesters are prepared: (1) TBPE-1 to TBPE-5 feature an equivalent hard-block volume fraction (fhard = 0.4) and variable molar masses 40–100 kg mol−1; (2) TBPE-5 to TBPE-9 feature equivalent molar masses (∼100 kg mol−1) and variable hard-block volume fractions (0.12 < fhard < 0.4). Polymers are characterized using spectroscopies, size-exclusion chromatography (SEC), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). They are amorphous, with two glass transition temperatures (∼−51 °C for PDL; +138 °C for PE), and block phase separation is confirmed using small angle X-ray scattering (SAXS). Tensile mechanical performances reveal thermoplastic elastomers (fhard < 0.4 and N > 1300) with linear stress–strain relationships, high ultimate tensile strengths (σb = 1–5 MPa), very high elongations at break (ϵb = 1000–1900%) and excellent elastic recoveries (98%). There is a wide operating temperature range (−51 to +138 °C), an operable processing temperature range (+100 to +200 °C) and excellent thermal stability (Td,5% ∼ 300 °C). The polymers are stable in aqueous environments, at room temperature, but are hydrolyzed upon gentle heating (60 °C) and treatment with an organic acid (para-toluene sulfonic acid) or a common lipase (Novozyme® 51032). The new block polyesters show significant potential as sustainable thermoplastic elastomers with better properties than well-known styrenic block copolymers or polylactide-derived elastomers. The straightforward synthesis allows for other commercially available and/or bio-derived lactones, epoxides and anhydrides to be developed in the future. Thermoplastic elastomers benefit from high elasticity and straightforward (re)processability; they are widely used across a multitude of sectors. Currently, the majority derive from oil, do not degrade or undergo chemical recycling. Here a new series of ABA triblock polyesters are synthesized and show high-performances as degradable thermoplastic elastomers; their composition is poly(cyclohexene- alt -phthalate)- b -poly(ε-decalactone)- b -poly(cyclohexene- alt -phthalate) {PE–PDL–PE}. The synthesis is accomplished using a zinc( ii )/magnesium( ii ) catalyst, in a one-pot procedure where ε-decalactone ring-opening polymerization yielding dihydroxyl telechelic poly(ε-decalatone) (PDL, soft-block) occurs first and, then, addition of phthalic anhydride/cyclohexene oxide ring-opening copolymerization delivers semi-aromatic polyester (PE, hard-block) end-blocks. The block compositions are straightforward to control, from the initial monomer stoichiometry, and conversions are high (85–98%). Two series of polyesters are prepared: (1) TBPE-1 to TBPE-5 feature an equivalent hard-block volume fraction ( f hard = 0.4) and variable molar masses 40–100 kg mol −1 ; (2) TBPE-5 to TBPE-9 feature equivalent molar masses (∼100 kg mol −1 ) and variable hard-block volume fractions (0.12 < f hard < 0.4). Polymers are characterized using spectroscopies, size-exclusion chromatography (SEC), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). They are amorphous, with two glass transition temperatures (∼−51 °C for PDL; +138 °C for PE), and block phase separation is confirmed using small angle X-ray scattering (SAXS). Tensile mechanical performances reveal thermoplastic elastomers ( f hard < 0.4 and N > 1300) with linear stress–strain relationships, high ultimate tensile strengths ( σ b = 1–5 MPa), very high elongations at break ( ε b = 1000–1900%) and excellent elastic recoveries (98%). There is a wide operating temperature range (−51 to +138 °C), an operable processing temperature range (+100 to +200 °C) and excellent thermal stability ( T d,5% ∼ 300 °C). The polymers are stable in aqueous environments, at room temperature, but are hydrolyzed upon gentle heating (60 °C) and treatment with an organic acid ( para -toluene sulfonic acid) or a common lipase (Novozyme® 51032). The new block polyesters show significant potential as sustainable thermoplastic elastomers with better properties than well-known styrenic block copolymers or polylactide-derived elastomers. The straightforward synthesis allows for other commercially available and/or bio-derived lactones, epoxides and anhydrides to be developed in the future. A new series of block polyester thermoplastic elastomers are prepared by a one-pot procedure; they show properties competitive or better than conventional materials and can be fully degraded after use. |
Author | Carrodeguas, Leticia Peña Lee, Koon-Yang Chen, Thomas T. D Terrill, Nicholas J Williams, Charlotte K Gregory, Georgina L Sulley, Gregory S Santmarti, Alba |
AuthorAffiliation | Harwell Science and Innovation Campus Oxford Chemistry Imperial College London Chemistry Research Laboratory Diamond Light Source Department of Aeronautical Engineering |
AuthorAffiliation_xml | – name: Chemistry Research Laboratory – name: Department of Aeronautical Engineering – name: Oxford Chemistry – name: Harwell Science and Innovation Campus – name: Imperial College London – name: Diamond Light Source |
Author_xml | – sequence: 1 givenname: Georgina L surname: Gregory fullname: Gregory, Georgina L – sequence: 2 givenname: Gregory S surname: Sulley fullname: Sulley, Gregory S – sequence: 3 givenname: Leticia Peña surname: Carrodeguas fullname: Carrodeguas, Leticia Peña – sequence: 4 givenname: Thomas T. D surname: Chen fullname: Chen, Thomas T. D – sequence: 5 givenname: Alba surname: Santmarti fullname: Santmarti, Alba – sequence: 6 givenname: Nicholas J surname: Terrill fullname: Terrill, Nicholas J – sequence: 7 givenname: Koon-Yang surname: Lee fullname: Lee, Koon-Yang – sequence: 8 givenname: Charlotte K surname: Williams fullname: Williams, Charlotte K |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34094122$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kkuLFDEUhYOMOGM7G_dKxI0IpXlWVTaC9PiCAReO65BKbk1nrErKpFppf73ph60OYjY3cL5zuLk399FJiAEQekjJC0q4eulItoSImrs76IwRQatacnVyvDNyis5zviHlcE4la-6hUy6IEpSxM5Suku-GaL_gKQ4byDMkPK8gjXEaTJ69xbCtcYSU8Xc_r3CG0VcmxdFs1a2raBiCw7ucjLsNTj5cV3GCUCq28QD5H8USwwN0tzdDhvNDXaDPb99cLd9Xlx_ffVi-vqyskGKuVGtc3TouoabKtq4BxZuuhqZXnFJpFXECZK2YbDrecWFqgI63QgEz1NmeL9Crfe607kZwFsKczKCn5EeTNjoar_9Wgl_p6_hNt1QqQWgJeHYISPHrusxGjz5bGAYTIK6zZpK3RPK6zHWBnt5Cb-I6hfI8zQRVpCRyUajHf3Z0bOXXOgrwfA_YFHNO0B8RSvR23fqCfFru1n1RYHILtn7eTbi8xg__tjzaW1K2x-jfP6joT_6n68n1_Cde5cRd |
CitedBy_id | crossref_primary_10_1021_acscatal_1c04020 crossref_primary_10_1039_D3SC05105F crossref_primary_10_1021_acs_macromol_4c00432 crossref_primary_10_1080_25740881_2021_2015779 crossref_primary_10_1002_adma_202402431 crossref_primary_10_1002_adma_202403641 crossref_primary_10_1039_D1PY01390D crossref_primary_10_1002_cctc_202100434 crossref_primary_10_1002_adma_202302825 crossref_primary_10_3390_polym16192767 crossref_primary_10_1016_j_eurpolymj_2021_110966 crossref_primary_10_1002_ange_202115904 crossref_primary_10_1002_ange_202317699 crossref_primary_10_1016_j_eurpolymj_2024_112901 crossref_primary_10_1021_jacs_1c03250 crossref_primary_10_1021_acs_macromol_1c00365 crossref_primary_10_1021_acs_macromol_1c02303 crossref_primary_10_1039_D3GC01671D crossref_primary_10_1002_pol_20230075 crossref_primary_10_1002_anie_202104495 crossref_primary_10_1002_anie_202210748 crossref_primary_10_1039_D4PY01123F crossref_primary_10_1002_ange_202308378 crossref_primary_10_1016_j_indcrop_2021_113610 crossref_primary_10_1039_D2SC02752F crossref_primary_10_1039_D3PY00209H crossref_primary_10_1021_acs_chemmater_3c03115 crossref_primary_10_1002_anie_202415388 crossref_primary_10_1002_anie_202201407 crossref_primary_10_1039_D2SC02745C crossref_primary_10_1016_j_eurpolymj_2023_112695 crossref_primary_10_1021_acsmacrolett_3c00211 crossref_primary_10_1002_ange_202006807 crossref_primary_10_1002_anie_202115904 crossref_primary_10_1016_j_scp_2021_100586 crossref_primary_10_3390_molecules26154454 crossref_primary_10_1039_D0SC05550F crossref_primary_10_1039_D4PY00858H crossref_primary_10_1039_D4CC01664E crossref_primary_10_3390_polym14112301 crossref_primary_10_1021_acs_accounts_2c00197 crossref_primary_10_1002_anie_202308378 crossref_primary_10_1016_j_ccst_2025_100400 crossref_primary_10_1007_s11595_023_2720_6 crossref_primary_10_1038_s41467_024_52229_1 crossref_primary_10_1039_D0CY02164D crossref_primary_10_1002_ange_202201407 crossref_primary_10_1002_chem_202401727 crossref_primary_10_1021_acs_macromol_3c01899 crossref_primary_10_1016_j_chemosphere_2022_133618 crossref_primary_10_1021_acs_macromol_3c01773 crossref_primary_10_1039_D1CY00238D crossref_primary_10_1021_acs_chemrev_3c00848 crossref_primary_10_1002_pol_20230293 crossref_primary_10_1039_D0DT02639E crossref_primary_10_1021_acs_macromol_3c01329 crossref_primary_10_1002_chem_202101140 crossref_primary_10_1039_D0GC02295K crossref_primary_10_1002_ange_202411097 crossref_primary_10_1021_acs_macromol_2c01680 crossref_primary_10_1021_jacs_2c01225 crossref_primary_10_1080_10601325_2021_1967170 crossref_primary_10_1002_ange_202210748 crossref_primary_10_1021_acsmacrolett_1c00216 crossref_primary_10_1039_D4SC02501F crossref_primary_10_1021_acssuschemeng_2c05552 crossref_primary_10_1002_anie_202317699 crossref_primary_10_1002_macp_202200079 crossref_primary_10_1088_1361_6463_ad9615 crossref_primary_10_1002_anie_202006807 crossref_primary_10_1002_ange_202104495 crossref_primary_10_1039_D4SC02051K crossref_primary_10_1021_acs_macromol_0c02401 crossref_primary_10_1002_pat_5940 crossref_primary_10_1021_acs_macromol_4c00857 crossref_primary_10_1039_D2PY00101B crossref_primary_10_1039_D4PY00404C crossref_primary_10_1002_ange_202415388 crossref_primary_10_1039_D2PY00335J crossref_primary_10_1039_D2SC00720G crossref_primary_10_1002_anie_202411097 crossref_primary_10_1021_jacs_4c17703 |
Cites_doi | 10.1021/mz500339h 10.1038/s41467-018-05269-3 10.1039/c2py20026k 10.1038/s41570-017-0046 10.1039/C4GC01353K 10.1002/anie.201407525 10.1039/C4CC10113H 10.1021/acsmacrolett.5b00472 10.1021/acs.biomac.9b00411 10.1021/ma60011a002 10.1021/bm801292v 10.1039/C5GC01694K 10.1021/bm400733e 10.1016/j.polymer.2017.02.008 10.1039/b614342n 10.1021/acs.macromol.5b02752 10.3390/polym9100494 10.1016/S0014-3057(03)00130-7 10.1016/b978-0-12-394584-6.00004-2 10.1021/acsmacrolett.5b00843 10.1002/1097-4628(20000815)77:7<1621::AID-APP24>3.0.CO;2-U 10.1021/ja307096m 10.1021/acs.macromol.8b00159 10.1021/acs.macromol.7b02299 10.1021/acs.iecr.6b02931 10.1021/acssuschemeng.5b00580 10.1021/acscatal.9b00113 10.1038/s41467-019-10481-w 10.1021/ma202782s 10.1021/ma061839n 10.1039/C6PY00700G 10.1002/anie.201801400 10.1038/nature21001 10.1021/ma301904y 10.5772/36807 10.1021/ma4011846 10.1016/0032-3861(92)90698-V 10.1016/0168-3659(87)90020-4 10.1016/j.progpolymsci.2019.04.002 10.1038/nature06669 10.1098/rsta.2017.0066 10.1002/anie.201309575 10.1002/marc.201400663 10.1021/jacs.5b12888 10.1039/C5PY00202H 10.1021/cm960146q 10.1039/C3GC41655K 10.1021/acs.macromol.7b02690 10.1021/ja206352x 10.1039/C9SC00385A 10.1021/ja203520p 10.1021/acs.macromol.8b01409 10.1021/acs.macromol.7b00293 10.1021/ma990666h 10.1039/C9GC00432G 10.1021/bm025628b 10.1021/acs.macromol.5b01293 10.1039/C4SM01220H 10.1021/ar500121d 10.1039/c2py00543c 10.1039/C5PY01606A 10.1021/acs.chemrev.7b00329 10.1021/acs.macromol.5b00225 10.1021/acs.accounts.7b00209 10.1021/sc500412a 10.1021/ma062393d 10.1039/C7GC01496A 10.1002/anie.201805766 10.1021/acs.chemrev.6b00553 10.1021/acs.biomac.9b00185 10.1021/ja804357u 10.1021/acs.macromol.8b01224 10.1021/bm990007c 10.1021/jacs.5b04541 10.1002/macp.201700254 10.1021/ma990404f 10.1021/ma2026385 10.1039/C5PY01040C 10.1021/acsmacrolett.8b00424 10.1021/jacs.7b01295 10.1016/j.cherd.2015.10.034 10.1039/C8PY01284A 10.1021/jacs.7b10173 10.1002/adfm.201970030 10.1002/anie.201810245 10.1063/1.1289889 10.1021/ma60060a008 10.1002/anie.201810083 10.1021/ma201063t 10.1016/b978-185617416-9/50004-1 10.1002/chem.201701013 10.1021/bm070313n 10.1002/polc.5070260107 10.1021/acsapm.8b00277 10.1016/j.eurpolymj.2019.01.010 10.1021/jacs.5b13070 10.1021/jacs.9b13106 10.1021/ma971349i 10.1021/ja210548e 10.1039/C4PY00748D 10.1021/acs.biomac.7b00283 10.1021/jacs.9b05570 10.1126/science.1215368 10.1021/acsapm.8b00139 10.1021/acsami.5b02326 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2020 This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2020 – notice: This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1039/d0sc00463d |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2041-6539 |
EndPage | 6581 |
ExternalDocumentID | PMC8159401 34094122 10_1039_D0SC00463D d0sc00463d |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: EP/L017393/1; EP/S018603/1 |
GroupedDBID | 0-7 0R 705 7~J AAGNR AAIWI AAPBV ABGFH ACGFS ACIWK ADBBV ADMRA AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS AOIJS AUDPV AZFZN BCNDV BLAPV BSQNT C6K CKLOX D0L EE0 EF- F5P GROUPED_DOAJ HYE HZ H~N JG O-G O9- OK1 R7C R7D RCNCU ROYLF RPM RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH SMJ 0R~ 53G AAEMU AAFWJ AAJAE AARTK AAXHV AAYXX ABEMK ABIQK ABPDG ABXOH AEFDR AESAV AFLYV AFPKN AGEGJ AGRSR AHGCF AKBGW ANUXI APEMP CITATION H13 HZ~ PGMZT RAOCF RNS -JG NPM 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c454t-98ad68d35e619c8d7e937b6e7f93115c90d4e569257b3b34a6eeb3849e2a1dcf3 |
ISSN | 2041-6520 |
IngestDate | Thu Aug 21 14:14:13 EDT 2025 Mon Jul 21 10:11:24 EDT 2025 Fri Jul 25 03:50:04 EDT 2025 Thu Jan 02 22:33:49 EST 2025 Thu Apr 24 22:57:06 EDT 2025 Tue Jul 01 03:46:37 EDT 2025 Sat Jan 08 04:02:10 EST 2022 Wed Nov 11 00:26:54 EST 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c454t-98ad68d35e619c8d7e937b6e7f93115c90d4e569257b3b34a6eeb3849e2a1dcf3 |
Notes | Electronic supplementary information (ESI) available: Experimental methods, spectroscopic data and thermal-mechanical data. See DOI 10.1039/d0sc00463d ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8783-1282 0000-0002-6580-0151 0000-0003-0777-2292 0000-0002-0734-1575 0000-0002-8189-6536 0000-0002-4688-9269 0000-0002-8517-5672 0000-0001-8240-513X |
OpenAccessLink | http://dx.doi.org/10.1039/d0sc00463d |
PMID | 34094122 |
PQID | 2419015934 |
PQPubID | 2047492 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2419015934 pubmed_primary_34094122 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8159401 proquest_miscellaneous_2538053603 rsc_primary_d0sc00463d crossref_primary_10_1039_D0SC00463D crossref_citationtrail_10_1039_D0SC00463D |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200504 |
PublicationDateYYYYMMDD | 2020-05-04 |
PublicationDate_xml | – month: 5 year: 2020 text: 20200504 day: 4 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical science (Cambridge) |
PublicationTitleAlternate | Chem Sci |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Wang (D0SC00463D-(cit85)/*[position()=1]) 2019; 1 Wang (D0SC00463D-(cit32)/*[position()=1]) 2013; 46 Schneiderman (D0SC00463D-(cit20)/*[position()=1]) 2015; 6 Matsen (D0SC00463D-(cit90)/*[position()=1]) 2000; 113 Jing (D0SC00463D-(cit40)/*[position()=1]) 2008; 130 Jutz (D0SC00463D-(cit72)/*[position()=1]) 2011; 133 Schneiderman (D0SC00463D-(cit1)/*[position()=1]) 2017; 50 Lee (D0SC00463D-(cit28)/*[position()=1]) 2015; 3 Bates (D0SC00463D-(cit2)/*[position()=1]) 2012; 336 Buchard (D0SC00463D-(cit38)/*[position()=1]) 2014; 53 Paul (D0SC00463D-(cit68)/*[position()=1]) 2015; 48 Ghosh (D0SC00463D-(cit113)/*[position()=1]) 2000; 77 Longo (D0SC00463D-(cit42)/*[position()=1]) 2016; 116 Nejad (D0SC00463D-(cit46)/*[position()=1]) 2013; 46 Hadjichristidis (D0SC00463D-(cit95)/*[position()=1]) 2003 Brutman (D0SC00463D-(cit19)/*[position()=1]) 2016; 55 Bolton (D0SC00463D-(cit30)/*[position()=1]) 2014; 3 Nasiri (D0SC00463D-(cit35)/*[position()=1]) 2016; 7 Zhu (D0SC00463D-(cit54)/*[position()=1]) 2018; 51 Williams (D0SC00463D-(cit39)/*[position()=1]) 2007; 36 Mahmoud (D0SC00463D-(cit53)/*[position()=1]) 2014; 16 Watts (D0SC00463D-(cit24)/*[position()=1]) 2017; 18 Azuma (D0SC00463D-(cit94)/*[position()=1]) 2018; 51 Zhu (D0SC00463D-(cit16)/*[position()=1]) 2016; 540 Saini (D0SC00463D-(cit44)/*[position()=1]) 2014; 5 Paul (D0SC00463D-(cit41)/*[position()=1]) 2015; 51 Winkler (D0SC00463D-(cit52)/*[position()=1]) 2015; 17 Si (D0SC00463D-(cit50)/*[position()=1]) 2015; 6 Kember (D0SC00463D-(cit71)/*[position()=1]) 2012; 3 Wang (D0SC00463D-(cit80)/*[position()=1]) 2018; 219 Fetters (D0SC00463D-(cit14)/*[position()=1]) 1969; 2 Morton (D0SC00463D-(cit81)/*[position()=1]) 1969; 26 Drazkowski (D0SC00463D-(cit96)/*[position()=1]) 2007; 40 Sinturel (D0SC00463D-(cit11)/*[position()=1]) 2015; 4 De Hoe (D0SC00463D-(cit23)/*[position()=1]) 2018; 140 Giarola (D0SC00463D-(cit51)/*[position()=1]) 2016; 107 Yu (D0SC00463D-(cit48)/*[position()=1]) 2018; 9 Li (D0SC00463D-(cit49)/*[position()=1]) 2018; 51 Man Baek (D0SC00463D-(cit97)/*[position()=1]) 1992; 33 Abel (D0SC00463D-(cit75)/*[position()=1]) 2019; 141 Tong (D0SC00463D-(cit84)/*[position()=1]) 2000; 33 Martello (D0SC00463D-(cit29)/*[position()=1]) 2011; 44 Wanamaker (D0SC00463D-(cit103)/*[position()=1]) 2009; 10 Lee (D0SC00463D-(cit27)/*[position()=1]) 2017; 112 Zhu (D0SC00463D-(cit56)/*[position()=1]) 2015; 137 Pitt (D0SC00463D-(cit104)/*[position()=1]) 1987; 4 Stößer (D0SC00463D-(cit65)/*[position()=1]) 2018; 57 Ding (D0SC00463D-(cit91)/*[position()=1]) 2019; 113 Pantoja (D0SC00463D-(cit9)/*[position()=1]) 2019; 1 Cordier (D0SC00463D-(cit3)/*[position()=1]) 2008; 451 Stößer (D0SC00463D-(cit58)/*[position()=1]) 2018; 376 Kernbichl (D0SC00463D-(cit64)/*[position()=1]) 2017; 139 Watts (D0SC00463D-(cit25)/*[position()=1]) 2019; 20 Frick (D0SC00463D-(cit34)/*[position()=1]) 2003; 4 Li (D0SC00463D-(cit76)/*[position()=1]) 2019; 9 Woodard (D0SC00463D-(cit107)/*[position()=1]) 2018; 7 Snyder (D0SC00463D-(cit102)/*[position()=1]) 2018; 51 Feng (D0SC00463D-(cit12)/*[position()=1]) 2017; 9 Yu (D0SC00463D-(cit33)/*[position()=1]) 2015; 36 Rosato (D0SC00463D-(cit83)/*[position()=1]) 2003 Romain (D0SC00463D-(cit73)/*[position()=1]) 2017; 23 Drobny (D0SC00463D-(cit82)/*[position()=1]) 2007 Erman (D0SC00463D-(cit86)/*[position()=1]) 2013 Hillmyer (D0SC00463D-(cit22)/*[position()=1]) 2014; 47 Martello (D0SC00463D-(cit21)/*[position()=1]) 2014; 2 Darensbourg (D0SC00463D-(cit45)/*[position()=1]) 2012; 45 Shanks (D0SC00463D-(cit108)/*[position()=1]) 2012 MacDonald (D0SC00463D-(cit36)/*[position()=1]) 2016; 7 Hong (D0SC00463D-(cit98)/*[position()=1]) 2017; 19 Widin (D0SC00463D-(cit110)/*[position()=1]) 2012; 134 Stößer (D0SC00463D-(cit66)/*[position()=1]) 2019; 10 Wang (D0SC00463D-(cit17)/*[position()=1]) 2017; 50 Ji (D0SC00463D-(cit67)/*[position()=1]) 2018; 57 Jehanno (D0SC00463D-(cit100)/*[position()=1]) 2019; 10 Olsén (D0SC00463D-(cit61)/*[position()=1]) 2013; 14 Liu (D0SC00463D-(cit37)/*[position()=1]) 2007; 40 (D0SC00463D-(cit7)/*[position()=1]) 2019 DiCiccio (D0SC00463D-(cit10)/*[position()=1]) 2011; 133 Wu (D0SC00463D-(cit69)/*[position()=1]) 2016; 49 Fetters (D0SC00463D-(cit13)/*[position()=1]) 1977; 10 Sulley (D0SC00463D-(cit60)/*[position()=1]) 2019; 142 Lin (D0SC00463D-(cit47)/*[position()=1]) 2019; 21 Wang (D0SC00463D-(cit89)/*[position()=1]) 2015; 7 Hamley (D0SC00463D-(cit93)/*[position()=1]) 2004; 29 Noppalit (D0SC00463D-(cit31)/*[position()=1]) 2019; 20 Romain (D0SC00463D-(cit62)/*[position()=1]) 2014; 53 Haider (D0SC00463D-(cit101)/*[position()=1]) 2019; 58 Lyu (D0SC00463D-(cit106)/*[position()=1]) 2007; 8 Wang (D0SC00463D-(cit5)/*[position()=1]) 2019; 95 Chen (D0SC00463D-(cit63)/*[position()=1]) 2018; 51 Honeker (D0SC00463D-(cit4)/*[position()=1]) 1996; 8 Kember (D0SC00463D-(cit70)/*[position()=1]) 2012; 134 (D0SC00463D-(cit6)/*[position()=1]) 2017 Van Zee (D0SC00463D-(cit77)/*[position()=1]) 2016; 138 Zhang (D0SC00463D-(cit15)/*[position()=1]) 2018; 118 Dair (D0SC00463D-(cit112)/*[position()=1]) 1999; 32 Rahimi (D0SC00463D-(cit99)/*[position()=1]) 2017; 1 Holmberg (D0SC00463D-(cit18)/*[position()=1]) 2014; 10 Trott (D0SC00463D-(cit74)/*[position()=1]) 2019; 10 Hillmyer (D0SC00463D-(cit26)/*[position()=1]) 2014; 47 Hosseini Nejad (D0SC00463D-(cit43)/*[position()=1]) 2012; 3 Matsen (D0SC00463D-(cit88)/*[position()=1]) 2012; 45 Zhu (D0SC00463D-(cit79)/*[position()=1]) 2015; 48 Leber (D0SC00463D-(cit8)/*[position()=1]) 2019; 29 (D0SC00463D-(cit92)/*[position()=1]) 2010 Kim (D0SC00463D-(cit109)/*[position()=1]) 1998; 31 Puskas (D0SC00463D-(cit111)/*[position()=1]) 2003; 39 Kobayashi (D0SC00463D-(cit105)/*[position()=1]) 2000; 1 Romain (D0SC00463D-(cit78)/*[position()=1]) 2014; 53 Wang (D0SC00463D-(cit87)/*[position()=1]) 2016; 5 Stößer (D0SC00463D-(cit57)/*[position()=1]) 2018; 57 Hauenstein (D0SC00463D-(cit59)/*[position()=1]) 2016; 18 Romain (D0SC00463D-(cit55)/*[position()=1]) 2016; 138 |
References_xml | – issn: 2007 publication-title: Handbook of Thermoplastic Elastomers doi: Drobny – issn: 2010 publication-title: Thermal Analysis of Rubbers and Rubbery Materials – issn: 2019 publication-title: The Future of High Performance Elastomers to 2024 – issn: 2013 end-page: p 167-192 publication-title: The Science and Technology of Rubber doi: Erman Mark – issn: 2003 end-page: p 161-197 publication-title: Plastics Engineered Product Design doi: Rosato Rosato – issn: 2012 publication-title: Thermoplastic Elastomers doi: Shanks Kong – issn: 2003 publication-title: Block Copolymers: synthetic strategies, physical properties and applications doi: Hadjichristidis Pispas Floudas – issn: 2017 publication-title: Thermoplastic Elastomers Market by Type (SBC, TPO, TPV, COPE, PEBA), End-use Industry (Automotive, Building & Construction, Footwear, Engineering, Medical, Wires & Cables), Region - Global Forecast to 2022 – volume: 3 start-page: 717 year: 2014 ident: D0SC00463D-(cit30)/*[position()=1] publication-title: ACS Macro Lett. doi: 10.1021/mz500339h – volume: 9 start-page: 2880 year: 2018 ident: D0SC00463D-(cit48)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-05269-3 – volume: 3 start-page: 1308 year: 2012 ident: D0SC00463D-(cit43)/*[position()=1] publication-title: Polym. Chem. doi: 10.1039/c2py20026k – volume: 1 start-page: 0046 year: 2017 ident: D0SC00463D-(cit99)/*[position()=1] publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-017-0046 – volume: 17 start-page: 300 year: 2015 ident: D0SC00463D-(cit52)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C4GC01353K – volume: 53 start-page: 13858 year: 2014 ident: D0SC00463D-(cit38)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201407525 – volume: 51 start-page: 6459 year: 2015 ident: D0SC00463D-(cit41)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C4CC10113H – volume: 4 start-page: 1044 year: 2015 ident: D0SC00463D-(cit11)/*[position()=1] publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.5b00472 – volume: 20 start-page: 2598 year: 2019 ident: D0SC00463D-(cit25)/*[position()=1] publication-title: Biomacromolecules doi: 10.1021/acs.biomac.9b00411 – volume: 2 start-page: 453 year: 1969 ident: D0SC00463D-(cit14)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma60011a002 – volume: 10 start-page: 443 year: 2009 ident: D0SC00463D-(cit103)/*[position()=1] publication-title: Biomacromolecules doi: 10.1021/bm801292v – volume: 18 start-page: 760 year: 2016 ident: D0SC00463D-(cit59)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C5GC01694K – volume: 14 start-page: 2883 year: 2013 ident: D0SC00463D-(cit61)/*[position()=1] publication-title: Biomacromolecules doi: 10.1021/bm400733e – volume: 112 start-page: 306 year: 2017 ident: D0SC00463D-(cit27)/*[position()=1] publication-title: Polymer doi: 10.1016/j.polymer.2017.02.008 – volume: 36 start-page: 1573 year: 2007 ident: D0SC00463D-(cit39)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/b614342n – volume: 49 start-page: 807 year: 2016 ident: D0SC00463D-(cit69)/*[position()=1] publication-title: Macromolecules doi: 10.1021/acs.macromol.5b02752 – volume: 9 start-page: 494 year: 2017 ident: D0SC00463D-(cit12)/*[position()=1] publication-title: Polymers doi: 10.3390/polym9100494 – volume: 39 start-page: 2041 year: 2003 ident: D0SC00463D-(cit111)/*[position()=1] publication-title: Eur. Polym. J. doi: 10.1016/S0014-3057(03)00130-7 – volume-title: The Science and Technology of Rubber year: 2013 ident: D0SC00463D-(cit86)/*[position()=1] doi: 10.1016/b978-0-12-394584-6.00004-2 – volume: 5 start-page: 220 year: 2016 ident: D0SC00463D-(cit87)/*[position()=1] publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.5b00843 – volume: 77 start-page: 1621 year: 2000 ident: D0SC00463D-(cit113)/*[position()=1] publication-title: J. Appl. Polym. Sci. doi: 10.1002/1097-4628(20000815)77:7<1621::AID-APP24>3.0.CO;2-U – volume: 134 start-page: 15676 year: 2012 ident: D0SC00463D-(cit70)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja307096m – volume: 51 start-page: 2247 year: 2018 ident: D0SC00463D-(cit49)/*[position()=1] publication-title: Macromolecules doi: 10.1021/acs.macromol.8b00159 – volume: 51 start-page: 389 year: 2018 ident: D0SC00463D-(cit102)/*[position()=1] publication-title: Macromolecules doi: 10.1021/acs.macromol.7b02299 – volume: 55 start-page: 11097 year: 2016 ident: D0SC00463D-(cit19)/*[position()=1] publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.6b02931 – volume: 3 start-page: 2309 year: 2015 ident: D0SC00463D-(cit28)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.5b00580 – volume: 9 start-page: 1915 year: 2019 ident: D0SC00463D-(cit76)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.9b00113 – volume: 10 start-page: 2668 year: 2019 ident: D0SC00463D-(cit66)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-10481-w – volume-title: The Future of High Performance Elastomers to 2024 year: 2019 ident: D0SC00463D-(cit7)/*[position()=1] – volume: 45 start-page: 2161 year: 2012 ident: D0SC00463D-(cit88)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma202782s – volume: 40 start-page: 6040 year: 2007 ident: D0SC00463D-(cit37)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma061839n – volume: 7 start-page: 5233 year: 2016 ident: D0SC00463D-(cit35)/*[position()=1] publication-title: Polym. Chem. doi: 10.1039/C6PY00700G – volume: 57 start-page: 6337 year: 2018 ident: D0SC00463D-(cit57)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201801400 – volume: 540 start-page: 354 year: 2016 ident: D0SC00463D-(cit16)/*[position()=1] publication-title: Nature doi: 10.1038/nature21001 – volume: 46 start-page: 631 year: 2013 ident: D0SC00463D-(cit46)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma301904y – volume-title: Block Copolymers: synthetic strategies, physical properties and applications year: 2003 ident: D0SC00463D-(cit95)/*[position()=1] – volume-title: Thermoplastic Elastomers year: 2012 ident: D0SC00463D-(cit108)/*[position()=1] doi: 10.5772/36807 – volume: 46 start-page: 7202 year: 2013 ident: D0SC00463D-(cit32)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma4011846 – volume: 29 start-page: 909 year: 2004 ident: D0SC00463D-(cit93)/*[position()=1] publication-title: Prog. Polym. Sci. – volume: 33 start-page: 4821 year: 1992 ident: D0SC00463D-(cit97)/*[position()=1] publication-title: Polymer doi: 10.1016/0032-3861(92)90698-V – volume: 4 start-page: 283 year: 1987 ident: D0SC00463D-(cit104)/*[position()=1] publication-title: J. Controlled Release doi: 10.1016/0168-3659(87)90020-4 – volume: 95 start-page: 1 year: 2019 ident: D0SC00463D-(cit5)/*[position()=1] publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2019.04.002 – volume: 451 start-page: 977 year: 2008 ident: D0SC00463D-(cit3)/*[position()=1] publication-title: Nature doi: 10.1038/nature06669 – volume: 376 start-page: 20170066 year: 2018 ident: D0SC00463D-(cit58)/*[position()=1] publication-title: Philos. Trans. R. Soc., A doi: 10.1098/rsta.2017.0066 – volume: 53 start-page: 1607 year: 2014 ident: D0SC00463D-(cit62)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201309575 – volume: 53 start-page: 1607 year: 2014 ident: D0SC00463D-(cit78)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201309575 – volume: 36 start-page: 398 year: 2015 ident: D0SC00463D-(cit33)/*[position()=1] publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201400663 – volume: 138 start-page: 2755 year: 2016 ident: D0SC00463D-(cit77)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b12888 – volume: 6 start-page: 3641 year: 2015 ident: D0SC00463D-(cit20)/*[position()=1] publication-title: Polym. Chem. doi: 10.1039/C5PY00202H – volume: 8 start-page: 1702 year: 1996 ident: D0SC00463D-(cit4)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm960146q – volume: 16 start-page: 167 year: 2014 ident: D0SC00463D-(cit53)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C3GC41655K – volume: 51 start-page: 2466 year: 2018 ident: D0SC00463D-(cit54)/*[position()=1] publication-title: Macromolecules doi: 10.1021/acs.macromol.7b02690 – volume: 133 start-page: 17395 year: 2011 ident: D0SC00463D-(cit72)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja206352x – volume: 10 start-page: 4618 year: 2019 ident: D0SC00463D-(cit74)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C9SC00385A – volume: 133 start-page: 10724 year: 2011 ident: D0SC00463D-(cit10)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja203520p – volume: 51 start-page: 6460 year: 2018 ident: D0SC00463D-(cit94)/*[position()=1] publication-title: Macromolecules doi: 10.1021/acs.macromol.8b01409 – volume: 50 start-page: 3733 year: 2017 ident: D0SC00463D-(cit1)/*[position()=1] publication-title: Macromolecules doi: 10.1021/acs.macromol.7b00293 – volume: 32 start-page: 8145 year: 1999 ident: D0SC00463D-(cit112)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma990666h – volume: 21 start-page: 2469 year: 2019 ident: D0SC00463D-(cit47)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C9GC00432G – volume: 4 start-page: 216 year: 2003 ident: D0SC00463D-(cit34)/*[position()=1] publication-title: Biomacromolecules doi: 10.1021/bm025628b – volume: 48 start-page: 6047 year: 2015 ident: D0SC00463D-(cit68)/*[position()=1] publication-title: Macromolecules doi: 10.1021/acs.macromol.5b01293 – volume: 10 start-page: 7405 year: 2014 ident: D0SC00463D-(cit18)/*[position()=1] publication-title: Soft Matter doi: 10.1039/C4SM01220H – volume: 47 start-page: 2390 year: 2014 ident: D0SC00463D-(cit26)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar500121d – volume: 3 start-page: 1196 year: 2012 ident: D0SC00463D-(cit71)/*[position()=1] publication-title: Polym. Chem. doi: 10.1039/c2py00543c – volume-title: Handbook of Thermoplastic Elastomers year: 2007 ident: D0SC00463D-(cit82)/*[position()=1] – volume: 7 start-page: 553 year: 2016 ident: D0SC00463D-(cit36)/*[position()=1] publication-title: Polym. Chem. doi: 10.1039/C5PY01606A – volume: 118 start-page: 839 year: 2018 ident: D0SC00463D-(cit15)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00329 – volume: 48 start-page: 2407 year: 2015 ident: D0SC00463D-(cit79)/*[position()=1] publication-title: Macromolecules doi: 10.1021/acs.macromol.5b00225 – volume: 50 start-page: 1762 year: 2017 ident: D0SC00463D-(cit17)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00209 – volume: 2 start-page: 2519 year: 2014 ident: D0SC00463D-(cit21)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/sc500412a – volume: 40 start-page: 2798 year: 2007 ident: D0SC00463D-(cit96)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma062393d – volume: 19 start-page: 3692 year: 2017 ident: D0SC00463D-(cit98)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C7GC01496A – volume: 58 start-page: 50 year: 2019 ident: D0SC00463D-(cit101)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201805766 – volume: 116 start-page: 15167 year: 2016 ident: D0SC00463D-(cit42)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00553 – volume: 20 start-page: 2241 year: 2019 ident: D0SC00463D-(cit31)/*[position()=1] publication-title: Biomacromolecules doi: 10.1021/acs.biomac.9b00185 – volume: 130 start-page: 13826 year: 2008 ident: D0SC00463D-(cit40)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja804357u – volume-title: Thermal Analysis of Rubbers and Rubbery Materials year: 2010 ident: D0SC00463D-(cit92)/*[position()=1] – volume: 51 start-page: 5346 year: 2018 ident: D0SC00463D-(cit63)/*[position()=1] publication-title: Macromolecules doi: 10.1021/acs.macromol.8b01224 – volume: 1 start-page: 3 year: 2000 ident: D0SC00463D-(cit105)/*[position()=1] publication-title: Biomacromolecules doi: 10.1021/bm990007c – volume: 137 start-page: 12179 year: 2015 ident: D0SC00463D-(cit56)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b04541 – volume: 219 start-page: 1700254 year: 2018 ident: D0SC00463D-(cit80)/*[position()=1] publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.201700254 – volume: 33 start-page: 1479 year: 2000 ident: D0SC00463D-(cit84)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma990404f – volume: 45 start-page: 2242 year: 2012 ident: D0SC00463D-(cit45)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma2026385 – volume: 6 start-page: 6372 year: 2015 ident: D0SC00463D-(cit50)/*[position()=1] publication-title: Polym. Chem. doi: 10.1039/C5PY01040C – volume: 7 start-page: 976 year: 2018 ident: D0SC00463D-(cit107)/*[position()=1] publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.8b00424 – volume-title: Thermoplastic Elastomers Market by Type (SBC, TPO, TPV, COPE, PEBA), End-use Industry (Automotive, Building & Construction, Footwear, Engineering, Medical, Wires & Cables), Region - Global Forecast to 2022 year: 2017 ident: D0SC00463D-(cit6)/*[position()=1] – volume: 139 start-page: 6787 year: 2017 ident: D0SC00463D-(cit64)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01295 – volume: 107 start-page: 181 year: 2016 ident: D0SC00463D-(cit51)/*[position()=1] publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2015.10.034 – volume: 10 start-page: 172 year: 2019 ident: D0SC00463D-(cit100)/*[position()=1] publication-title: Polym. Chem. doi: 10.1039/C8PY01284A – volume: 140 start-page: 963 year: 2018 ident: D0SC00463D-(cit23)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10173 – volume: 29 start-page: 1802629 year: 2019 ident: D0SC00463D-(cit8)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201970030 – volume: 57 start-page: 16893 year: 2018 ident: D0SC00463D-(cit65)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201810245 – volume: 113 start-page: 5539 year: 2000 ident: D0SC00463D-(cit90)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1289889 – volume: 10 start-page: 1200 year: 1977 ident: D0SC00463D-(cit13)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma60060a008 – volume: 57 start-page: 16888 year: 2018 ident: D0SC00463D-(cit67)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201810083 – volume: 44 start-page: 8537 year: 2011 ident: D0SC00463D-(cit29)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma201063t – volume-title: Plastics Engineered Product Design year: 2003 ident: D0SC00463D-(cit83)/*[position()=1] doi: 10.1016/b978-185617416-9/50004-1 – volume: 23 start-page: 7367 year: 2017 ident: D0SC00463D-(cit73)/*[position()=1] publication-title: Chem.–Eur. J. doi: 10.1002/chem.201701013 – volume: 8 start-page: 2301 year: 2007 ident: D0SC00463D-(cit106)/*[position()=1] publication-title: Biomacromolecules doi: 10.1021/bm070313n – volume: 26 start-page: 99 year: 1969 ident: D0SC00463D-(cit81)/*[position()=1] publication-title: J. Polym. Sci., Polym. Symp. doi: 10.1002/polc.5070260107 – volume: 1 start-page: 571 year: 2019 ident: D0SC00463D-(cit85)/*[position()=1] publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.8b00277 – volume: 113 start-page: 411 year: 2019 ident: D0SC00463D-(cit91)/*[position()=1] publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2019.01.010 – volume: 138 start-page: 4120 year: 2016 ident: D0SC00463D-(cit55)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b13070 – volume: 142 start-page: 4367 year: 2019 ident: D0SC00463D-(cit60)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b13106 – volume: 31 start-page: 2569 year: 1998 ident: D0SC00463D-(cit109)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma971349i – volume: 134 start-page: 3834 year: 2012 ident: D0SC00463D-(cit110)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja210548e – volume: 47 start-page: 2390 year: 2014 ident: D0SC00463D-(cit22)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar500121d – volume: 5 start-page: 6068 year: 2014 ident: D0SC00463D-(cit44)/*[position()=1] publication-title: Polym. Chem. doi: 10.1039/C4PY00748D – volume: 18 start-page: 1845 year: 2017 ident: D0SC00463D-(cit24)/*[position()=1] publication-title: Biomacromolecules doi: 10.1021/acs.biomac.7b00283 – volume: 141 start-page: 12760 year: 2019 ident: D0SC00463D-(cit75)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b05570 – volume: 336 start-page: 434 year: 2012 ident: D0SC00463D-(cit2)/*[position()=1] publication-title: Science doi: 10.1126/science.1215368 – volume: 1 start-page: 414 year: 2019 ident: D0SC00463D-(cit9)/*[position()=1] publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.8b00139 – volume: 7 start-page: 12109 year: 2015 ident: D0SC00463D-(cit89)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b02326 |
SSID | ssj0000331527 |
Score | 2.5664291 |
Snippet | Thermoplastic elastomers benefit from high elasticity and straightforward (re)processability; they are widely used across a multitude of sectors. Currently,... |
SourceID | pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6567 |
SubjectTerms | Aqueous environments Block copolymers Chemistry Copolymerization Cyclohexene Decalactone Differential scanning calorimetry Elastic recovery Equivalence Glass transition temperature Gravimetric analysis Lactones Lipase Magnesium Operating temperature Phase separation Phthalates Phthalic anhydride Polyester resins Polyester thermoplastic elastomers Ring opening polymerization Room temperature Stoichiometry Stress-strain relationships Temperature Thermal stability X-ray scattering |
Title | Triblock polyester thermoplastic elastomers with semi-aromatic polymer end blocks by ring-opening copolymerization |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34094122 https://www.proquest.com/docview/2419015934 https://www.proquest.com/docview/2538053603 https://pubmed.ncbi.nlm.nih.gov/PMC8159401 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe67gAXxNdYxpiM4IKiFMdO0uQILWhCAyHWonKKnNiBCpZWaXsYfx1_Gu_lw0nXHgaXtLIdu8n71e_5fRLyMkolS9CqKyMhHY9r4URhqpw09LOUsyxlZTmgj5-C86n3YebPer0_Ha-lzToZpL_3xpX8D1WhDeiKUbL_QFkzKTTAd6AvXIHCcL0djYt5AszoJ5ZauC5THqAcWVwtliATYyZWjZ8LVE3Xvuj6au7IYlHlacW7oM_WubLLeVYojKKiz8GiWlU4bj2oDtfsyrIm10ATGoQG4SYErKNhqMNgjAZ-nkv7YtC1RuluuIx9afpGmCFS6e-bKursAgMu59L-rNG8_9ZtnYzqEJPK28meDOzxoKvO4KUlvipAXO16nHmuE_i8MtbobluV9chs224HntzvbMIgog47DB1kLHcvs2ACc62O2eUItQRi3LLExg3gBqc0_oul5V5EcXvvATnkcFDhfXL45et09s3o-ZgQdeVg82RNllwRvW4n2JaLdg47uz67B0VToqYUhSb3yb36DEPfVIB8QHo6f0jujJrSgY9I0QCTGmDSLWDSFpgUgUm3gElrzFEAJq2ASZNr2gUmvQnMx2T6_t1kdO7UxT2c1PO9NewIUgWhEr6GI3waqqEGQTkJ9DCLMAFUGjHlaT-IgKUkIhGeDLROROhFmktXpZk4Iv18ketjQqUUOnK5zoCXwPmbSelyqbTyNZZrkJ5FXjWvNk7rzPdYgOVXvEtHi7wwY5dVvpe9o04bCsX1frCKQRZG4ToSsOBz0w1vHk1wMteLDYwB-QLYXsCERZ5UBDXLCFS1uJxbZLhFajMAM8Fv9-TzH2VG-BCW9ZhrkSMAhRmv2Cotf6-yyMn-jnipspNbPfJTcrf9u56S_rrY6Gcgj6-Ts1KPdVYD_y-ZxeXV |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Triblock+polyester+thermoplastic+elastomers+with+semi-aromatic+polymer+end+blocks+by+ring-opening+copolymerization&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Gregory%2C+Georgina+L.&rft.au=Sulley%2C+Gregory+S.&rft.au=Carrodeguas%2C+Leticia+Pe%C3%B1a&rft.au=Chen%2C+Thomas+T.+D.&rft.date=2020-05-04&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=11&rft.issue=25&rft.spage=6567&rft.epage=6581&rft_id=info:doi/10.1039%2FD0SC00463D&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D0SC00463D |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |