A peripheral governor regulates muscle contraction
Active skeletal muscles are capable of keeping the global [adenosine triphosphate (ATP)] reasonably constant during exercise, whether it is mild exercise, activating a few motor units, or all-out exercise using a substantial mass of muscle. This could only be accomplished if there were regulatory pr...
Saved in:
Published in | Applied physiology, nutrition, and metabolism Vol. 36; no. 1; pp. 1 - 11 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Ottawa
Presses scientifiques du CNRC
01.02.2011
NRC Research Press Canadian Science Publishing NRC Research Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Active skeletal muscles are capable of keeping the global [adenosine triphosphate (ATP)] reasonably constant during exercise, whether it is mild exercise, activating a few motor units, or all-out exercise using a substantial mass of muscle. This could only be accomplished if there were regulatory processes in place not only to replenish ATP as quickly as possible, but also to modulate the rate of ATP use when that rate threatens to exceed the rate of ATP replenishment, a situation that could lead to metabolic catastrophe. This paper proposes that there is a regulatory process or "peripheral governor" that can modulate activation of muscle to avoid metabolic catastrophe. A peripheral governor, working at the cellular level, should be able to reduce the cellular rate of ATP hydrolysis associated with muscle contraction by attenuating activation. This would necessarily cause something we call peripheral fatigue (i.e., reduced contractile response to a given stimulation). There is no doubt that peripheral fatigue occurs. It has been demonstrated in isolated muscles, in muscles in situ with no central nervous system input, and in intact human subjects performing voluntary exercise with small muscle groups or doing whole-body exercise. The regulation of muscle activation is achieved in at least 3 ways (decreasing membrane excitability, inhibiting Ca
2+
release through ryanodine receptors, and decreasing the availability of Ca
2+
in the sarcoplasmic reticulum), making this a highly redundant control system. The peripheral governor attenuates cellular activation to reduce the metabolic demand, thereby preserving ATP and the integrity of the cell. |
---|---|
AbstractList | Active skeletal muscles are capable of keeping the global [adenosine triphosphate (ATP)] reasonably constant during exercise, whether it is mild exercise, activating a few motor units, or all-out exercise using a substantial mass of muscle. This could only be accomplished if there were regulatory processes in place not only to replenish ATP as quickly as possible, but also to modulate the rate of ATP use when that rate threatens to exceed the rate of ATP replenishment, a situation that could lead to metabolic catastrophe. This paper proposes that there is a regulatory process or "peripheral governor" that can modulate activation of muscle to avoid metabolic catastrophe. A peripheral governor, working at the cellular level, should be able to reduce the cellular rate of ATP hydrolysis associated with muscle contraction by attenuating activation. This would necessarily cause something we call peripheral fatigue (i.e., reduced contractile response to a given stimulation). There is no doubt that peripheral fatigue occurs. It has been demonstrated in isolated muscles, in muscles in situ with no central nervous system input, and in intact human subjects performing voluntary exercise with small muscle groups or doing whole-body exercise. The regulation of muscle activation is achieved in at least 3 ways (decreasing membrane excitability, inhibiting Ca
2+
release through ryanodine receptors, and decreasing the availability of Ca
2+
in the sarcoplasmic reticulum), making this a highly redundant control system. The peripheral governor attenuates cellular activation to reduce the metabolic demand, thereby preserving ATP and the integrity of the cell. Active skeletal muscles are capable of keeping the global [adenosine triphosphate (ATP)] reasonably constant during exercise, whether it is mild exercise, activating a few motor units, or all-out exercise using a substantial mass of muscle. This could only be accomplished if there were regulatory processes in place not only to replenish ATP as quickly as possible, but also to modulate the rate of ATP use when that rate threatens to exceed the rate of ATP replenishment, a situation that could lead to metabolic catastrophe. This paper proposes that there is a regulatory process or "peripheral governor" that can modulate activation of muscle to avoid metabolic catastrophe. A peripheral governor, working at the cellular level, should be able to reduce the cellular rate of ATP hydrolysis associated with muscle contraction by attenuating activation. This would necessarily cause something we call peripheral fatigue (i.e., reduced contractile response to a given stimulation). There is no doubt that peripheral fatigue occurs. It has been demonstrated in isolated muscles, in muscles in situ with no central nervous system input, and in intact human subjects performing voluntary exercise with small muscle groups or doing whole-body exercise. The regulation of muscle activation is achieved in at least 3 ways (decreasing membrane excitability, inhibiting Ca2+ release through ryanodine receptors, and decreasing the availability of Ca2+ in the sarcoplasmic reticulum), making this a highly redundant control system. The peripheral governor attenuates cellular activation to reduce the metabolic demand, thereby preserving ATP and the integrity of the cell. Active skeletal muscles are capable of keeping the global [adenosine triphosphate (ATP)] reasonably constant during exercise, whether it is mild exercise, activating a few motor units, or all-out exercise using a substantial mass of muscle. This could only be accomplished if there were regulatory processes in place not only to replenish ATP as quickly as possible, but also to modulate the rate of ATP use when that rate threatens to exceed the rate of ATP replenishment, a situation that could lead to metabolic catastrophe. This paper proposes that there is a regulatory process or "peripheral governor" that can modulate activation of muscle to avoid metabolic catastrophe. A peripheral governor, working at the cellular level, should be able to reduce the cellular rate of ATP hydrolysis associated with muscle contraction by attenuating activation. This would necessarily cause something we call peripheral fatigue (i.e., reduced contractile response to a given stimulation). There is no doubt that peripheral fatigue occurs. It has been demonstrated in isolated muscles, in muscles in situ with no central nervous system input, and in intact human subjects performing voluntary exercise with small muscle groups or doing whole-body exercise. The regulation of muscle activation is achieved in at least 3 ways (decreasing membrane excitability, inhibiting [Ca.sup.2+] release through ryanodine receptors, and decreasing the availability of [Ca.sup.2+] in the sarcoplasmic reticulum), making this a highly redundant control system. The peripheral governor attenuates cellular activation to reduce the metabolic demand, thereby preserving ATP and the integrity of the cell. Active skeletal muscles are capable of keeping the global [adenosine triphosphate (ATP)] reasonably constant during exercise, whether it is mild exercise, activating a few motor units, or all-out exercise using a substantial mass of muscle. This could only be accomplished if there were regulatory processes in place not only to replenish ATP as quickly as possible, but also to modulate the rate of ATP use when that rate threatens to exceed the rate of ATP replenishment, a situation that could lead to metabolic catastrophe. This paper proposes that there is a regulatory process or "peripheral governor" that can modulate activation of muscle to avoid metabolic catastrophe. A peripheral governor, working at the cellular level, should be able to reduce the cellular rate of ATP hydrolysis associated with muscle contraction by attenuating activation. This would necessarily cause something we call peripheral fatigue (i.e., reduced contractile response to a given stimulation). There is no doubt that peripheral fatigue occurs. It has been demonstrated in isolated muscles, in muscles in situ with no central nervous system input, and in intact human subjects performing voluntary exercise with small muscle groups or doing whole-body exercise. The regulation of muscle activation is achieved in at least 3 ways (decreasing membrane excitability, inhibiting [Ca.sup.2+] release through ryanodine receptors, and decreasing the availability of [Ca.sup.2+] in the sarcoplasmic reticulum), making this a highly redundant control system. The peripheral governor attenuates cellular activation to reduce the metabolic demand, thereby preserving ATP and the integrity of the cell. Key words: fatigue, exhaustion, performance, pacing, contractile response. Les muscles squelettiques actifs peuvent garder constante la concentration globale d'[ATP] ([adenosine triphosphate]) au cours d'un exercice physique d'intensite legere en sollicitant quelques unites motrices ou au cours d'un exercice d'intensite maximale en activant une importante quantite de masse musculaire. Ce pheenomene n'est possible qu'en presence d'un meecanisme de regulation concu pour refaire le plus rapidement les stocks d'ATP et pour moduler le taux d'utilisation de l'ATP quand la demande surpasse la resynthese, laquelle situation pourrait entrainer une defaillance metabolique. Cet article propose la presence d'un processus regulateur ou d'un << pilote en peripheerie >> ayant le pouvoir de moduler l'activation du muscle de facjon a eeviter la defaillance metabolique. Ce pilote oeuvrant en peeripherie au niveau cellulaire doit etre capable de ralentir le taux d'hydrolyse de l'ATP en diminuant le degree d'activation des fibres musculaires. Cette capacite serait a la base de ce qui est nomme fatigue peripherique, soit une moindre reponse a une meme stimulation. La fatigue peripherique se manifeste de toute evidence. On l'a demontre chez des muscles isoles, des muscles in situ, sans aucune stimulation du systeme nerveux central et chez des sujets humains intacts s'adonnant a des exercices volontaires par l'activation de petits groupes musculaires et par sollicitation de l'organisme en entier. L'activation des muscles s'effectue au moins de trois facons : en diminuant l'excitabilite membranaire, en inhibant la liberation du [Ca.sup.2+] du reticulum sarcoplasmique par l'action des recepteurs de la ryanodine, en diminuant la disponibilite du [Ca.sup.2+] dans le reticulum sarcoplasmique, ce qui en fait un systeme de controle hautement redondant. Le pilote peripherique atteenue l'activation musculaire afin de diminuer le besoin du metabolisme, preservant ainsi les stocks d'ATP et l'integrite de la cellule. Mots-cles: fatigue, eepuisement, performance, gradation, reponse contractile. [Traduit par la Redaction] |
Abstract_FL | Les muscles squelettiques actifs peuvent garder constante la concentration globale d'[ATP] ([adenosine triphosphate]) au cours d'un exercice physique d'intensité légère en sollicitant quelques unités motrices ou au cours d'un exercice d'intensité maximale en activant une importante quantité de masse musculaire. Ce phénomène n'est possible qu'en présence d'un mécanisme de régulation conçu pour refaire le plus rapidement les stocks d'ATP et pour moduler le taux d'utilisation de l'ATP quand la demande surpasse la resynthèse, laquelle situation pourrait entraîner une défaillance métabolique. Cet article propose la présence d'un processus régulateur ou d'un « pilote en périphérie » ayant le pouvoir de moduler l'activation du muscle de façon á éviter la défaillance métabolique. Ce pilote œuvrant en périphérie au niveau cellulaire doit être capable de ralentir le taux d'hydrolyse de l'ATP en diminuant le degré d'activation des fibres musculaires. Cette capacité serait á la base de ce qui est nommé fatigue périphérique, soit une moindre réponse á une même stimulation. La fatigue périphérique se manifeste de toute évidence. On l'a démontré chez des muscles isolés, des muscles in situ, sans aucune stimulation du système nerveux central et chez des sujets humains intacts s'adonnant á des exercices volontaires par l'activation de petits groupes musculaires et par sollicitation de l'organisme en entier. L'activation des muscles s'effectue au moins de trois façons : en diminuant l'excitabilité membranaire, en inhibant la libération du Ca
2+
du réticulum sarcoplasmique par l'action des récepteurs de la ryanodine, en diminuant la disponibilité du Ca
2+
dans le réticulum sarcoplasmique, ce qui en fait un système de contrôle hautement redondant. Le pilote périphérique atténue l'activation musculaire afin de diminuer le besoin du métabolisme, préservant ainsi les stocks d'ATP et l'intégrité de la cellule. |
Audience | Academic |
Author | MacIntosh, Brian R Shahi, M. Reza S |
Author_xml | – sequence: 1 givenname: Brian R surname: MacIntosh fullname: MacIntosh, Brian R email: brian@kin.ucalgary.ca organization: Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada – sequence: 2 givenname: M. Reza S surname: Shahi fullname: Shahi, M. Reza S email: rsadeghin@yazduni.ac.ir organization: Department of Physical Education, University of Yazd, Yazd, Iran |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23969597$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21326373$$D View this record in MEDLINE/PubMed |
BookMark | eNp10V9rFDEQAPAgFVtr8RvIoqggbM2fzWbzeJTWCgVf-h6y2cltJJusya7gtzfHnWdblDwkhN9MZjIv0UmIARB6TfAlIUx-viW4xoI9Q2dEEF5zRvHJ8UzoKbrI2fUY4452naAv0CkljLZMsDNEN9UMyc0jJO2rbfwJKcRUJdiuXi-Qq2nNxkNlYliSNouL4RV6brXPcHHYz9H9zfX91W199-3L16vNXW0a3iy1xJqxlrZWMtJY3g6c9f1AtBAM045o2nPW9VZaazUuG6dYNNQ02nINomPn6OM-7ZzijxXyoiaXDXivA8Q1q45TiWVDeJFvn8jvcU2h1FZQI6hsJS7o3R5ttQflgo27fnYp1YZyTFjDiCjq8h-qrAEmV_4ArCv3jwI-PAgYQftlzNGvu4_Kj-GhHZNizgmsmpObdPqlCFa7MaoyRlXGWOSbQztrP8FwdH-GVsD7A9DZaG-TDsblv46Vhrl8UFtIJkEGncx4VOP-NTUPtsBP_4dPy_sNX6-8eA |
CitedBy_id | crossref_primary_10_1017_S0007114515002512 crossref_primary_10_1007_s00421_012_2419_4 crossref_primary_10_1007_s00726_012_1419_3 crossref_primary_10_1136_bjsports_2012_091658 crossref_primary_10_1139_h2012_016 crossref_primary_10_1519_JSC_0000000000004794 crossref_primary_10_1136_bjsports_2012_091333 crossref_primary_10_1371_journal_pone_0254888 crossref_primary_10_1152_ajpregu_00286_2020 crossref_primary_10_1371_journal_pone_0150679 crossref_primary_10_1139_apnm_2018_0858 crossref_primary_10_1139_h11_084 crossref_primary_10_1007_s00421_013_2673_0 crossref_primary_10_1139_h11_081 crossref_primary_10_1113_jphysiol_2012_245316 crossref_primary_10_1123_ijspp_2017_0220 crossref_primary_10_1113_JP273218 crossref_primary_10_1152_japplphysiol_01066_2014 crossref_primary_10_3389_fnhum_2014_00967 crossref_primary_10_3389_fphys_2020_00399 crossref_primary_10_1080_00140139_2023_2183850 crossref_primary_10_1139_apnm_2019_0406 crossref_primary_10_1242_jcs_093674 crossref_primary_10_1519_JSC_0000000000000378 crossref_primary_10_3390_nu14040862 crossref_primary_10_1007_s40279_014_0163_0 crossref_primary_10_1113_jphysiol_2014_277095 crossref_primary_10_1007_s00421_011_2043_8 crossref_primary_10_1080_24725838_2017_1373714 |
Cites_doi | 10.1113/jphysiol.1991.sp018483 10.1242/jeb.204.18.3225 10.1152/jappl.1995.78.5.1665 10.1152/jappl.1999.87.2.471 10.1007/s00421-010-1418-6 10.1097/00001665-200309000-00039 10.1111/j.1469-7793.2001.t01-1-00657.x 10.1152/japplphysiol.00908.2007 10.1139/H09-085 10.1038/274861a0 10.1007/s00421-010-1538-z 10.1034/j.1600-0838.2000.010003123.x 10.1139/h02-003 10.5040/9781492596912 10.1249/01.mss.0000228956.75344.91 10.1152/ajpcell.1997.273.2.C598 10.1074/jbc.272.3.1628 10.1152/jappl.1978.45.5.751 10.1113/expphysiol.1990.sp003468 10.1152/jappl.1986.61.2.421 10.1139/cjpp-79-12-996 10.1002/mus.880100807 10.1113/jphysiol.1990.sp017935 10.1002/mus.880170907 10.1016/j.bbrc.2004.08.033 10.1113/jphysiol.2007.130955 10.1152/japplphysiol.00537.2003 10.1085/jgp.200409173 10.1016/0014-4886(79)90279-6 10.1085/jgp.200409092 10.1139/h02-017 10.1007/s004210000340 10.1016/S1050-6411(98)00043-1 10.1152/ajpcell.00278.2003 10.1074/jbc.272.51.32463 10.1113/jphysiol.1992.sp018939 10.2165/00007256-199213020-00007 10.1007/s00424-007-0273-8 10.1113/jphysiol.1989.sp017730 10.1073/pnas.75.3.1329 10.1113/jphysiol.2002.019216 10.1113/jphysiol.1995.sp020504 10.1152/physrev.2000.80.4.1411 10.1136/bjsm.2003.010330 10.1113/jphysiol.2007.139477 10.1097/00005768-200004000-00017 10.1007/s10974-007-9116-7 10.1007/BF00584355 10.1113/jphysiol.1997.sp021885 10.1249/00005768-199102000-00016 10.1007/BF00421715 10.1080/00140136508930810 10.1007/s00424-001-0756-y 10.1023/A:1013696124358 10.1172/JCI113434 10.1007/BF00421716 10.1016/j.pbiomolbio.2003.11.014 10.1023/A:1013644107519 10.1038/316736a0 10.1152/japplphysiol.00230.2003 10.1080/00140138108924856 10.1007/s00421-010-1610-8 10.1146/annurev.ph.56.030194.002413 10.1146/annurev.ph.49.030187.003325 10.1152/physrev.00015.2007 10.1111/j.1748-1716.1990.tb08947.x 10.1111/j.1440-1681.2006.04441.x 10.1152/physrev.2001.81.4.1725 10.1113/jphysiol.2001.012775 10.1113/expphysiol.2005.032789 10.2174/1566524023362429 10.2170/jjphysiol.48.421 10.1085/jgp.200910290 10.1139/h93-020 10.1152/jappl.1995.78.3.765 10.1055/s-2007-971894 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS COPYRIGHT 2011 NRC Research Press Copyright Human Kinetics Feb 2011 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: COPYRIGHT 2011 NRC Research Press – notice: Copyright Human Kinetics Feb 2011 |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TS 7X8 |
DOI | 10.1139/H10-073 |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Physical Education Index MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Physical Education Index MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Diet & Clinical Nutrition Recreation & Sports |
EISSN | 1715-5320 |
EndPage | 11 |
ExternalDocumentID | 2281515941 A250134317 10_1139_H10_073 21326373 23969597 h10-073 |
Genre | Journal Article Review |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | 0R 186 23M 2QV 4.4 53G 5GY 5RP AAIKC AAWTL ABDBF ABFLS ABFSI ABPTK ACGFS ADHUB AENEX ALMA_UNASSIGNED_HOLDINGS C1A CAG COF CS3 D8U DL DXH E.L EAD EAP EAS EBD EBS EJD EMK ESX F5P HZ H~9 IAO IEA IFM IHR IHW INH INR ITC NRXXU O9- OHT PQEST PQQKQ PV9 RIG RRP RZL TUS UKR UPT X XFK -~X 00T 0R~ 36B AAFWJ AAMNW ABTAH ACGFO DATHI HZ~ IPNFZ IQODW VQG ZY4 AAHBH ABJNI CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TS 7X8 |
ID | FETCH-LOGICAL-c454t-90a33626f9314f56d53bbd1a7730281a2b538bf9fffa0f9f520742c4af5ae783 |
ISSN | 1715-5312 |
IngestDate | Fri Aug 16 05:39:00 EDT 2024 Thu Oct 10 17:07:21 EDT 2024 Wed Jul 24 18:21:53 EDT 2024 Tue Nov 12 23:47:08 EST 2024 Tue Aug 20 22:15:25 EDT 2024 Fri Aug 23 03:36:40 EDT 2024 Sat Sep 28 07:51:13 EDT 2024 Sun Oct 22 16:05:55 EDT 2023 Thu May 23 14:20:28 EDT 2019 Wed Nov 11 00:32:57 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Human Fatigue Performance Muscle contraction |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c454t-90a33626f9314f56d53bbd1a7730281a2b538bf9fffa0f9f520742c4af5ae783 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
PMID | 21326373 |
PQID | 854729690 |
PQPubID | 28783 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_852909415 crossref_primary_10_1139_H10_073 gale_infotracacademiconefile_A250134317 nrcresearch_primary_10_1139_H10_073 pascalfrancis_primary_23969597 pubmed_primary_21326373 gale_healthsolutions_A250134317 proquest_journals_854729690 gale_infotracmisc_A250134317 |
PublicationCentury | 2000 |
PublicationDate | 2011-02-00 |
PublicationDateYYYYMMDD | 2011-02-01 |
PublicationDate_xml | – month: 02 year: 2011 text: 2011-02-00 |
PublicationDecade | 2010 |
PublicationPlace | Ottawa |
PublicationPlace_xml | – name: Ottawa – name: Canada |
PublicationTitle | Applied physiology, nutrition, and metabolism |
PublicationTitleAlternate | Physiologie appliquée, nutrition et métabolisme |
PublicationYear | 2011 |
Publisher | Presses scientifiques du CNRC NRC Research Press Canadian Science Publishing NRC Research Press |
Publisher_xml | – name: Presses scientifiques du CNRC – name: NRC Research Press – name: Canadian Science Publishing NRC Research Press |
References | 21972927 - Appl Physiol Nutr Metab. 2011 Oct;36(5):773-4; discussion 775-6 rg39/ref39 rg75/ref75 Bigland-Ritchie B. (rg15/ref15) 1986; 128 rg21/ref21 rg57/ref57 Sejersted O.M. (rg76/ref76) 2000; 80 rg82/ref82 rg72/ref72 Cairns S.P. (rg18/ref18) 1997; 273 Carnevale T.J. (rg19/ref19) 1991; 23 rg53/ref53 rg24/ref24 rg61/ref61 rg10/ref10 rg4/ref4 rg50/ref50 rg64/ref64 rg78/ref78 Favero T.G. (rg29/ref29) 1999; 87 Favero T.G. (rg30/ref30) 1995; 78 rg13/ref13 Allen D.G. (rg7/ref7) 1989; 415 Allen D.G. (rg5/ref5) 1997; 498 Gladden L.B. (rg33/ref33) 1978; 45 Gong B. (rg35/ref35) 2003; 285 rg42/ref42 rg56/ref56 Zucchi R. (rg83/ref83) 1997; 49 rg26/ref26 rg63/ref63 rg8/ref8 rg2/ref2 rg45/ref45 rg71/ref71 rg20/ref20 rg60/ref60 rg34/ref34 Bigland-Ritchie B. (rg16/ref16) 1986; 61 rg1/ref1 rg48/ref48 Noakes T.D. (rg68/ref68) 2001; 204 rg41/ref41 rg77/ref77 rg59/ref59 rg12/ref12 rg52/ref52 rg66/ref66 rg81/ref81 rg73/ref73 rg55/ref55 Davies N.W. (rg23/ref23) 1992; 445 rg70/ref70 rg27/ref27 rg38/ref38 rg44/ref44 rg47/ref47 rg51/ref51 rg65/ref65 rg6/ref6 rg11/ref11 rg3/ref3 rg36/ref36 rg62/ref62 Renaud J.-M. (rg74/ref74) 2002; 27 atypb1/ref555 Fryer M.W. (rg31/ref31) 1995; 482 rg17/ref17 Lamb G.D. (rg46/ref46) 1991; 434 MacIntosh B.R. (rg54/ref54) 2002; 27 Awan M.Z. (rg9/ref9) 1972; 1 rg43/ref43 Lindinger M.I. (rg49/ref49) 1995; 78 Medbø J.I. (rg58/ref58) 1990; 421 rg79/ref79 Gandevia S.C. (rg32/ref32) 2001; 81 Darques J.L. (rg22/ref22) 2003; 95 Grange R.W. (rg37/ref37) 1993; 18 rg80/ref80 rg14/ref14 rg28/ref28 de Haan A. (rg25/ref25) 1990; 75 rg40/ref40 |
References_xml | – volume: 434 start-page: 507 issue: 1 year: 1991 ident: rg46/ref46 publication-title: J. Physiol. doi: 10.1113/jphysiol.1991.sp018483 contributor: fullname: Lamb G.D. – volume: 204 start-page: 3225 issue: 18 year: 2001 ident: rg68/ref68 publication-title: J. Exp. Biol. doi: 10.1242/jeb.204.18.3225 contributor: fullname: Noakes T.D. – volume: 78 start-page: 1665 issue: 5 year: 1995 ident: rg30/ref30 publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1995.78.5.1665 contributor: fullname: Favero T.G. – volume: 87 start-page: 471 issue: 2 year: 1999 ident: rg29/ref29 publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1999.87.2.471 contributor: fullname: Favero T.G. – ident: rg57/ref57 doi: 10.1007/s00421-010-1418-6 – ident: rg38/ref38 doi: 10.1097/00001665-200309000-00039 – ident: rg1/ref1 doi: 10.1111/j.1469-7793.2001.t01-1-00657.x – ident: rg3/ref3 doi: 10.1152/japplphysiol.00908.2007 – ident: rg20/ref20 doi: 10.1139/H09-085 – ident: rg24/ref24 doi: 10.1038/274861a0 – ident: rg2/ref2 doi: 10.1007/s00421-010-1538-z – ident: rg66/ref66 doi: 10.1034/j.1600-0838.2000.010003123.x – volume: 27 start-page: 42 issue: 1 year: 2002 ident: rg54/ref54 publication-title: Can. J. Appl. Physiol. doi: 10.1139/h02-003 contributor: fullname: MacIntosh B.R. – ident: rg55/ref55 doi: 10.5040/9781492596912 – ident: rg40/ref40 doi: 10.1249/01.mss.0000228956.75344.91 – volume: 273 start-page: C598 issue: 2 year: 1997 ident: rg18/ref18 publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.1997.273.2.C598 contributor: fullname: Cairns S.P. – ident: rg60/ref60 doi: 10.1074/jbc.272.3.1628 – volume: 45 start-page: 751 issue: 5 year: 1978 ident: rg33/ref33 publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1978.45.5.751 contributor: fullname: Gladden L.B. – volume: 75 start-page: 851 issue: 6 year: 1990 ident: rg25/ref25 publication-title: Exp. Physiol. doi: 10.1113/expphysiol.1990.sp003468 contributor: fullname: de Haan A. – volume: 49 start-page: 1 issue: 1 year: 1997 ident: rg83/ref83 publication-title: Pharmacol. Rev. contributor: fullname: Zucchi R. – volume: 61 start-page: 421 issue: 2 year: 1986 ident: rg16/ref16 publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1986.61.2.421 contributor: fullname: Bigland-Ritchie B. – ident: rg50/ref50 doi: 10.1139/cjpp-79-12-996 – ident: rg53/ref53 doi: 10.1002/mus.880100807 – volume: 421 start-page: 105 issue: 1 year: 1990 ident: rg58/ref58 publication-title: J. Physiol. doi: 10.1113/jphysiol.1990.sp017935 contributor: fullname: Medbø J.I. – ident: rg10/ref10 doi: 10.1002/mus.880170907 – ident: rg13/ref13 doi: 10.1016/j.bbrc.2004.08.033 – ident: rg21/ref21 doi: 10.1113/jphysiol.2007.130955 – ident: rg34/ref34 doi: 10.1152/japplphysiol.00537.2003 – ident: rg71/ref71 doi: 10.1085/jgp.200409173 – volume: 1 start-page: 97 issue: 2 year: 1972 ident: rg9/ref9 publication-title: J. Mech. Cell Motility contributor: fullname: Awan M.Z. – ident: rg43/ref43 doi: 10.1016/0014-4886(79)90279-6 – ident: rg48/ref48 doi: 10.1085/jgp.200409092 – volume: 27 start-page: 296 issue: 3 year: 2002 ident: rg74/ref74 publication-title: Can. J. Appl. Physiol. doi: 10.1139/h02-017 contributor: fullname: Renaud J.-M. – ident: rg44/ref44 doi: 10.1007/s004210000340 – ident: rg14/ref14 doi: 10.1016/S1050-6411(98)00043-1 – ident: rg75/ref75 – ident: rg27/ref27 – volume: 285 start-page: C1464 issue: 6 year: 2003 ident: rg35/ref35 publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00278.2003 contributor: fullname: Gong B. – ident: rg82/ref82 doi: 10.1074/jbc.272.51.32463 – volume: 445 start-page: 549 issue: 1 year: 1992 ident: rg23/ref23 publication-title: J. Physiol. doi: 10.1113/jphysiol.1992.sp018939 contributor: fullname: Davies N.W. – ident: rg8/ref8 doi: 10.2165/00007256-199213020-00007 – ident: rg56/ref56 doi: 10.1007/s00424-007-0273-8 – volume: 415 start-page: 433 issue: 1 year: 1989 ident: rg7/ref7 publication-title: J. Physiol. doi: 10.1113/jphysiol.1989.sp017730 contributor: fullname: Allen D.G. – ident: rg36/ref36 doi: 10.1073/pnas.75.3.1329 – ident: rg73/ref73 doi: 10.1113/jphysiol.2002.019216 – volume: 128 start-page: 137 year: 1986 ident: rg15/ref15 publication-title: Acta Physiol. Scand. contributor: fullname: Bigland-Ritchie B. – volume: 482 start-page: 123 issue: 1 year: 1995 ident: rg31/ref31 publication-title: J. Physiol. doi: 10.1113/jphysiol.1995.sp020504 contributor: fullname: Fryer M.W. – volume: 80 start-page: 1411 issue: 4 year: 2000 ident: rg76/ref76 publication-title: Physiol. Rev. doi: 10.1152/physrev.2000.80.4.1411 contributor: fullname: Sejersted O.M. – ident: rg70/ref70 doi: 10.1136/bjsm.2003.010330 – ident: rg28/ref28 doi: 10.1113/jphysiol.2007.139477 – ident: rg39/ref39 doi: 10.1097/00005768-200004000-00017 – ident: rg11/ref11 doi: 10.1007/s10974-007-9116-7 – ident: rg72/ref72 doi: 10.1007/BF00584355 – volume: 498 start-page: 587 issue: 3 year: 1997 ident: rg5/ref5 publication-title: J. Physiol. doi: 10.1113/jphysiol.1997.sp021885 contributor: fullname: Allen D.G. – volume: 23 start-page: 242 issue: 2 year: 1991 ident: rg19/ref19 publication-title: Med. Sci. Sports Exerc. doi: 10.1249/00005768-199102000-00016 contributor: fullname: Carnevale T.J. – ident: rg80/ref80 doi: 10.1007/BF00421715 – ident: rg62/ref62 doi: 10.1080/00140136508930810 – ident: rg6/ref6 doi: 10.1007/s00424-001-0756-y – ident: rg64/ref64 doi: 10.1023/A:1013696124358 – ident: rg61/ref61 doi: 10.1172/JCI113434 – ident: rg81/ref81 doi: 10.1007/BF00421716 – ident: rg77/ref77 doi: 10.1016/j.pbiomolbio.2003.11.014 – ident: rg51/ref51 doi: 10.1023/A:1013644107519 – ident: rg79/ref79 doi: 10.1038/316736a0 – volume: 95 start-page: 1476 issue: 4 year: 2003 ident: rg22/ref22 publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00230.2003 contributor: fullname: Darques J.L. – ident: rg63/ref63 doi: 10.1080/00140138108924856 – ident: rg52/ref52 doi: 10.1007/s00421-010-1610-8 – ident: rg59/ref59 doi: 10.1146/annurev.ph.56.030194.002413 – ident: rg42/ref42 doi: 10.1146/annurev.ph.49.030187.003325 – ident: rg4/ref4 doi: 10.1152/physrev.00015.2007 – ident: rg78/ref78 doi: 10.1111/j.1748-1716.1990.tb08947.x – ident: rg26/ref26 doi: 10.1111/j.1440-1681.2006.04441.x – volume: 81 start-page: 1725 issue: 4 year: 2001 ident: rg32/ref32 publication-title: Physiol. Rev. doi: 10.1152/physrev.2001.81.4.1725 contributor: fullname: Gandevia S.C. – ident: rg47/ref47 doi: 10.1113/jphysiol.2001.012775 – ident: rg12/ref12 doi: 10.1113/expphysiol.2005.032789 – ident: rg65/ref65 doi: 10.2174/1566524023362429 – ident: rg41/ref41 – ident: rg45/ref45 doi: 10.2170/jjphysiol.48.421 – ident: atypb1/ref555 doi: 10.1085/jgp.200910290 – volume: 18 start-page: 229 issue: 3 year: 1993 ident: rg37/ref37 publication-title: Can. J. Appl. Physiol. doi: 10.1139/h93-020 contributor: fullname: Grange R.W. – volume: 78 start-page: 765 issue: 3 year: 1995 ident: rg49/ref49 publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1995.78.3.765 contributor: fullname: Lindinger M.I. – ident: rg17/ref17 doi: 10.1055/s-2007-971894 |
SSID | ssib000828872 ssj0045063 |
Score | 2.0995245 |
SecondaryResourceType | review_article |
Snippet | Active skeletal muscles are capable of keeping the global [adenosine triphosphate (ATP)] reasonably constant during exercise, whether it is mild exercise,... |
SourceID | proquest gale crossref pubmed pascalfrancis nrcresearch |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Adenosine triphosphatase Adenosine triphosphate Adenosine Triphosphate - metabolism Animals Biological and medical sciences Calcium - metabolism Contractile Proteins - metabolism contractile response Electromyography Exercise exhaustion Fatigue Fundamental and applied biological sciences. Psychology gradation Humans Hydrolysis Muscle Contraction Muscle Fatigue Muscle, Skeletal - physiology Musculoskeletal system pacing Physiological aspects Recruitment, Neurophysiological Ryanodine Receptor Calcium Release Channel - metabolism réponse contractile Sarcoplasmic Reticulum - metabolism Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports épuisement |
Title | A peripheral governor regulates muscle contraction |
URI | http://www.nrcresearchpress.com/doi/abs/10.1139/H10-073 https://www.ncbi.nlm.nih.gov/pubmed/21326373 https://www.proquest.com/docview/854729690 https://search.proquest.com/docview/852909415 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb5swFLe29rIdpi77Yv2YpU3bIaIL2AZ8TNtV0aTmsGVSb8gQe6mUkiqQS__6vYfBhCn7vJAIXsDx-_l9mPdByDuhogQrkfnRPNI-j7nwpUmEj6qIccPykcJE4atpNPnGP1-L667xX51dUmWn-f3OvJL_4SqcA75iluw_cNbdFE7Ad-AvHIHDcPwrHo-x6vBNXRhgOfxed81drYdr215el8PbTQm_sOHoNoFh2xZtDdB6c8MlrRRtef42rvNWVwCUZVtq0O1er8qFBQeKCPe-6OtC1W2Ch1enwLp71WytzruN0l6MxvTLuQv-64WDoJSMA-HD4u2JUVvHpAcXKxOD3ZKaYaHTCb6Kt71M-rWwf9JRLnJwDCZbwNDqeUj2QxAuINX2x2cXZ5et_uXC9s9zg7Sp0vjAj83jejZIo4kfF-u8qa-0wABZVcIaMba5ya-9j9oKmR2QJ437QMcWC0_JA10MiHdxoyv6njY1Xpd02vJwQAadXwAUdU_78hkJx7RDDm2RQx1yqEUO3ULOczK7_DQ7n_hN9ww_54JXvhwphrWGjGQBNyKaC5Zl80DFINPDJFBhBrouM9IYo0bwIULcJsm5MkLpOGEvyF6xKvQrQrUOYsZVDrpAcpHLLNQRj0zM8ywAhZF7hLbTmd7ZGilp7VsymcKMpzDjHnmD05za5F639tKOnR75UFMgSPCfqSY9BIaAFcp6lEc9SpCHee_y2y1W_mZAu6gW9mp6NzceOemBwNGETEYS_HCPHLaoSBuhUKaJ4OCuRnIEk-Ku4ggxlrHQqw2ShHIkwXD2yEuLpe7WAXhTLGav_zhdh-RRt2iPyF613uhjMI-r7KRZDz8AZuu40w |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+peripheral+governor+regulates+muscle+contraction&rft.jtitle=Applied+physiology%2C+nutrition%2C+and+metabolism&rft.au=MacIntosh%2C+Brian+R&rft.au=Shahi%2C+M.+Reza+S&rft.date=2011-02-01&rft.pub=NRC+Research+Press&rft.issn=1715-5312&rft.volume=36&rft.issue=1&rft.spage=1&rft_id=info:doi/10.1139%2FH10-073&rft.externalDBID=n%2Fa&rft.externalDocID=A250134317 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1715-5312&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1715-5312&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1715-5312&client=summon |