Cover

Loading…
Abstract Active skeletal muscles are capable of keeping the global [adenosine triphosphate (ATP)] reasonably constant during exercise, whether it is mild exercise, activating a few motor units, or all-out exercise using a substantial mass of muscle. This could only be accomplished if there were regulatory processes in place not only to replenish ATP as quickly as possible, but also to modulate the rate of ATP use when that rate threatens to exceed the rate of ATP replenishment, a situation that could lead to metabolic catastrophe. This paper proposes that there is a regulatory process or "peripheral governor" that can modulate activation of muscle to avoid metabolic catastrophe. A peripheral governor, working at the cellular level, should be able to reduce the cellular rate of ATP hydrolysis associated with muscle contraction by attenuating activation. This would necessarily cause something we call peripheral fatigue (i.e., reduced contractile response to a given stimulation). There is no doubt that peripheral fatigue occurs. It has been demonstrated in isolated muscles, in muscles in situ with no central nervous system input, and in intact human subjects performing voluntary exercise with small muscle groups or doing whole-body exercise. The regulation of muscle activation is achieved in at least 3 ways (decreasing membrane excitability, inhibiting Ca 2+ release through ryanodine receptors, and decreasing the availability of Ca 2+ in the sarcoplasmic reticulum), making this a highly redundant control system. The peripheral governor attenuates cellular activation to reduce the metabolic demand, thereby preserving ATP and the integrity of the cell.
AbstractList Active skeletal muscles are capable of keeping the global [adenosine triphosphate (ATP)] reasonably constant during exercise, whether it is mild exercise, activating a few motor units, or all-out exercise using a substantial mass of muscle. This could only be accomplished if there were regulatory processes in place not only to replenish ATP as quickly as possible, but also to modulate the rate of ATP use when that rate threatens to exceed the rate of ATP replenishment, a situation that could lead to metabolic catastrophe. This paper proposes that there is a regulatory process or "peripheral governor" that can modulate activation of muscle to avoid metabolic catastrophe. A peripheral governor, working at the cellular level, should be able to reduce the cellular rate of ATP hydrolysis associated with muscle contraction by attenuating activation. This would necessarily cause something we call peripheral fatigue (i.e., reduced contractile response to a given stimulation). There is no doubt that peripheral fatigue occurs. It has been demonstrated in isolated muscles, in muscles in situ with no central nervous system input, and in intact human subjects performing voluntary exercise with small muscle groups or doing whole-body exercise. The regulation of muscle activation is achieved in at least 3 ways (decreasing membrane excitability, inhibiting Ca 2+ release through ryanodine receptors, and decreasing the availability of Ca 2+ in the sarcoplasmic reticulum), making this a highly redundant control system. The peripheral governor attenuates cellular activation to reduce the metabolic demand, thereby preserving ATP and the integrity of the cell.
Active skeletal muscles are capable of keeping the global [adenosine triphosphate (ATP)] reasonably constant during exercise, whether it is mild exercise, activating a few motor units, or all-out exercise using a substantial mass of muscle. This could only be accomplished if there were regulatory processes in place not only to replenish ATP as quickly as possible, but also to modulate the rate of ATP use when that rate threatens to exceed the rate of ATP replenishment, a situation that could lead to metabolic catastrophe. This paper proposes that there is a regulatory process or "peripheral governor" that can modulate activation of muscle to avoid metabolic catastrophe. A peripheral governor, working at the cellular level, should be able to reduce the cellular rate of ATP hydrolysis associated with muscle contraction by attenuating activation. This would necessarily cause something we call peripheral fatigue (i.e., reduced contractile response to a given stimulation). There is no doubt that peripheral fatigue occurs. It has been demonstrated in isolated muscles, in muscles in situ with no central nervous system input, and in intact human subjects performing voluntary exercise with small muscle groups or doing whole-body exercise. The regulation of muscle activation is achieved in at least 3 ways (decreasing membrane excitability, inhibiting Ca2+ release through ryanodine receptors, and decreasing the availability of Ca2+ in the sarcoplasmic reticulum), making this a highly redundant control system. The peripheral governor attenuates cellular activation to reduce the metabolic demand, thereby preserving ATP and the integrity of the cell.
Active skeletal muscles are capable of keeping the global [adenosine triphosphate (ATP)] reasonably constant during exercise, whether it is mild exercise, activating a few motor units, or all-out exercise using a substantial mass of muscle. This could only be accomplished if there were regulatory processes in place not only to replenish ATP as quickly as possible, but also to modulate the rate of ATP use when that rate threatens to exceed the rate of ATP replenishment, a situation that could lead to metabolic catastrophe. This paper proposes that there is a regulatory process or "peripheral governor" that can modulate activation of muscle to avoid metabolic catastrophe. A peripheral governor, working at the cellular level, should be able to reduce the cellular rate of ATP hydrolysis associated with muscle contraction by attenuating activation. This would necessarily cause something we call peripheral fatigue (i.e., reduced contractile response to a given stimulation). There is no doubt that peripheral fatigue occurs. It has been demonstrated in isolated muscles, in muscles in situ with no central nervous system input, and in intact human subjects performing voluntary exercise with small muscle groups or doing whole-body exercise. The regulation of muscle activation is achieved in at least 3 ways (decreasing membrane excitability, inhibiting [Ca.sup.2+] release through ryanodine receptors, and decreasing the availability of [Ca.sup.2+] in the sarcoplasmic reticulum), making this a highly redundant control system. The peripheral governor attenuates cellular activation to reduce the metabolic demand, thereby preserving ATP and the integrity of the cell.
Active skeletal muscles are capable of keeping the global [adenosine triphosphate (ATP)] reasonably constant during exercise, whether it is mild exercise, activating a few motor units, or all-out exercise using a substantial mass of muscle. This could only be accomplished if there were regulatory processes in place not only to replenish ATP as quickly as possible, but also to modulate the rate of ATP use when that rate threatens to exceed the rate of ATP replenishment, a situation that could lead to metabolic catastrophe. This paper proposes that there is a regulatory process or "peripheral governor" that can modulate activation of muscle to avoid metabolic catastrophe. A peripheral governor, working at the cellular level, should be able to reduce the cellular rate of ATP hydrolysis associated with muscle contraction by attenuating activation. This would necessarily cause something we call peripheral fatigue (i.e., reduced contractile response to a given stimulation). There is no doubt that peripheral fatigue occurs. It has been demonstrated in isolated muscles, in muscles in situ with no central nervous system input, and in intact human subjects performing voluntary exercise with small muscle groups or doing whole-body exercise. The regulation of muscle activation is achieved in at least 3 ways (decreasing membrane excitability, inhibiting [Ca.sup.2+] release through ryanodine receptors, and decreasing the availability of [Ca.sup.2+] in the sarcoplasmic reticulum), making this a highly redundant control system. The peripheral governor attenuates cellular activation to reduce the metabolic demand, thereby preserving ATP and the integrity of the cell. Key words: fatigue, exhaustion, performance, pacing, contractile response. Les muscles squelettiques actifs peuvent garder constante la concentration globale d'[ATP] ([adenosine triphosphate]) au cours d'un exercice physique d'intensite legere en sollicitant quelques unites motrices ou au cours d'un exercice d'intensite maximale en activant une importante quantite de masse musculaire. Ce pheenomene n'est possible qu'en presence d'un meecanisme de regulation concu pour refaire le plus rapidement les stocks d'ATP et pour moduler le taux d'utilisation de l'ATP quand la demande surpasse la resynthese, laquelle situation pourrait entrainer une defaillance metabolique. Cet article propose la presence d'un processus regulateur ou d'un << pilote en peripheerie >> ayant le pouvoir de moduler l'activation du muscle de facjon a eeviter la defaillance metabolique. Ce pilote oeuvrant en peeripherie au niveau cellulaire doit etre capable de ralentir le taux d'hydrolyse de l'ATP en diminuant le degree d'activation des fibres musculaires. Cette capacite serait a la base de ce qui est nomme fatigue peripherique, soit une moindre reponse a une meme stimulation. La fatigue peripherique se manifeste de toute evidence. On l'a demontre chez des muscles isoles, des muscles in situ, sans aucune stimulation du systeme nerveux central et chez des sujets humains intacts s'adonnant a des exercices volontaires par l'activation de petits groupes musculaires et par sollicitation de l'organisme en entier. L'activation des muscles s'effectue au moins de trois facons : en diminuant l'excitabilite membranaire, en inhibant la liberation du [Ca.sup.2+] du reticulum sarcoplasmique par l'action des recepteurs de la ryanodine, en diminuant la disponibilite du [Ca.sup.2+] dans le reticulum sarcoplasmique, ce qui en fait un systeme de controle hautement redondant. Le pilote peripherique atteenue l'activation musculaire afin de diminuer le besoin du metabolisme, preservant ainsi les stocks d'ATP et l'integrite de la cellule. Mots-cles: fatigue, eepuisement, performance, gradation, reponse contractile. [Traduit par la Redaction]
Abstract_FL Les muscles squelettiques actifs peuvent garder constante la concentration globale d'[ATP] ([adenosine triphosphate]) au cours d'un exercice physique d'intensité légère en sollicitant quelques unités motrices ou au cours d'un exercice d'intensité maximale en activant une importante quantité de masse musculaire. Ce phénomène n'est possible qu'en présence d'un mécanisme de régulation conçu pour refaire le plus rapidement les stocks d'ATP et pour moduler le taux d'utilisation de l'ATP quand la demande surpasse la resynthèse, laquelle situation pourrait entraîner une défaillance métabolique. Cet article propose la présence d'un processus régulateur ou d'un « pilote en périphérie » ayant le pouvoir de moduler l'activation du muscle de façon á éviter la défaillance métabolique. Ce pilote œuvrant en périphérie au niveau cellulaire doit être capable de ralentir le taux d'hydrolyse de l'ATP en diminuant le degré d'activation des fibres musculaires. Cette capacité serait á la base de ce qui est nommé fatigue périphérique, soit une moindre réponse á une même stimulation. La fatigue périphérique se manifeste de toute évidence. On l'a démontré chez des muscles isolés, des muscles in situ, sans aucune stimulation du système nerveux central et chez des sujets humains intacts s'adonnant á des exercices volontaires par l'activation de petits groupes musculaires et par sollicitation de l'organisme en entier. L'activation des muscles s'effectue au moins de trois façons : en diminuant l'excitabilité membranaire, en inhibant la libération du Ca 2+ du réticulum sarcoplasmique par l'action des récepteurs de la ryanodine, en diminuant la disponibilité du Ca 2+ dans le réticulum sarcoplasmique, ce qui en fait un système de contrôle hautement redondant. Le pilote périphérique atténue l'activation musculaire afin de diminuer le besoin du métabolisme, préservant ainsi les stocks d'ATP et l'intégrité de la cellule.
Audience Academic
Author MacIntosh, Brian R
Shahi, M. Reza S
Author_xml – sequence: 1
  givenname: Brian R
  surname: MacIntosh
  fullname: MacIntosh, Brian R
  email: brian@kin.ucalgary.ca
  organization: Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
– sequence: 2
  givenname: M. Reza S
  surname: Shahi
  fullname: Shahi, M. Reza S
  email: rsadeghin@yazduni.ac.ir
  organization: Department of Physical Education, University of Yazd, Yazd, Iran
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23969597$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21326373$$D View this record in MEDLINE/PubMed
BookMark eNp10V9rFDEQAPAgFVtr8RvIoqggbM2fzWbzeJTWCgVf-h6y2cltJJusya7gtzfHnWdblDwkhN9MZjIv0UmIARB6TfAlIUx-viW4xoI9Q2dEEF5zRvHJ8UzoKbrI2fUY4452naAv0CkljLZMsDNEN9UMyc0jJO2rbfwJKcRUJdiuXi-Qq2nNxkNlYliSNouL4RV6brXPcHHYz9H9zfX91W199-3L16vNXW0a3iy1xJqxlrZWMtJY3g6c9f1AtBAM045o2nPW9VZaazUuG6dYNNQ02nINomPn6OM-7ZzijxXyoiaXDXivA8Q1q45TiWVDeJFvn8jvcU2h1FZQI6hsJS7o3R5ttQflgo27fnYp1YZyTFjDiCjq8h-qrAEmV_4ArCv3jwI-PAgYQftlzNGvu4_Kj-GhHZNizgmsmpObdPqlCFa7MaoyRlXGWOSbQztrP8FwdH-GVsD7A9DZaG-TDsblv46Vhrl8UFtIJkEGncx4VOP-NTUPtsBP_4dPy_sNX6-8eA
CitedBy_id crossref_primary_10_1017_S0007114515002512
crossref_primary_10_1007_s00421_012_2419_4
crossref_primary_10_1007_s00726_012_1419_3
crossref_primary_10_1136_bjsports_2012_091658
crossref_primary_10_1139_h2012_016
crossref_primary_10_1519_JSC_0000000000004794
crossref_primary_10_1136_bjsports_2012_091333
crossref_primary_10_1371_journal_pone_0254888
crossref_primary_10_1152_ajpregu_00286_2020
crossref_primary_10_1371_journal_pone_0150679
crossref_primary_10_1139_apnm_2018_0858
crossref_primary_10_1139_h11_084
crossref_primary_10_1007_s00421_013_2673_0
crossref_primary_10_1139_h11_081
crossref_primary_10_1113_jphysiol_2012_245316
crossref_primary_10_1123_ijspp_2017_0220
crossref_primary_10_1113_JP273218
crossref_primary_10_1152_japplphysiol_01066_2014
crossref_primary_10_3389_fnhum_2014_00967
crossref_primary_10_3389_fphys_2020_00399
crossref_primary_10_1080_00140139_2023_2183850
crossref_primary_10_1139_apnm_2019_0406
crossref_primary_10_1242_jcs_093674
crossref_primary_10_1519_JSC_0000000000000378
crossref_primary_10_3390_nu14040862
crossref_primary_10_1007_s40279_014_0163_0
crossref_primary_10_1113_jphysiol_2014_277095
crossref_primary_10_1007_s00421_011_2043_8
crossref_primary_10_1080_24725838_2017_1373714
Cites_doi 10.1113/jphysiol.1991.sp018483
10.1242/jeb.204.18.3225
10.1152/jappl.1995.78.5.1665
10.1152/jappl.1999.87.2.471
10.1007/s00421-010-1418-6
10.1097/00001665-200309000-00039
10.1111/j.1469-7793.2001.t01-1-00657.x
10.1152/japplphysiol.00908.2007
10.1139/H09-085
10.1038/274861a0
10.1007/s00421-010-1538-z
10.1034/j.1600-0838.2000.010003123.x
10.1139/h02-003
10.5040/9781492596912
10.1249/01.mss.0000228956.75344.91
10.1152/ajpcell.1997.273.2.C598
10.1074/jbc.272.3.1628
10.1152/jappl.1978.45.5.751
10.1113/expphysiol.1990.sp003468
10.1152/jappl.1986.61.2.421
10.1139/cjpp-79-12-996
10.1002/mus.880100807
10.1113/jphysiol.1990.sp017935
10.1002/mus.880170907
10.1016/j.bbrc.2004.08.033
10.1113/jphysiol.2007.130955
10.1152/japplphysiol.00537.2003
10.1085/jgp.200409173
10.1016/0014-4886(79)90279-6
10.1085/jgp.200409092
10.1139/h02-017
10.1007/s004210000340
10.1016/S1050-6411(98)00043-1
10.1152/ajpcell.00278.2003
10.1074/jbc.272.51.32463
10.1113/jphysiol.1992.sp018939
10.2165/00007256-199213020-00007
10.1007/s00424-007-0273-8
10.1113/jphysiol.1989.sp017730
10.1073/pnas.75.3.1329
10.1113/jphysiol.2002.019216
10.1113/jphysiol.1995.sp020504
10.1152/physrev.2000.80.4.1411
10.1136/bjsm.2003.010330
10.1113/jphysiol.2007.139477
10.1097/00005768-200004000-00017
10.1007/s10974-007-9116-7
10.1007/BF00584355
10.1113/jphysiol.1997.sp021885
10.1249/00005768-199102000-00016
10.1007/BF00421715
10.1080/00140136508930810
10.1007/s00424-001-0756-y
10.1023/A:1013696124358
10.1172/JCI113434
10.1007/BF00421716
10.1016/j.pbiomolbio.2003.11.014
10.1023/A:1013644107519
10.1038/316736a0
10.1152/japplphysiol.00230.2003
10.1080/00140138108924856
10.1007/s00421-010-1610-8
10.1146/annurev.ph.56.030194.002413
10.1146/annurev.ph.49.030187.003325
10.1152/physrev.00015.2007
10.1111/j.1748-1716.1990.tb08947.x
10.1111/j.1440-1681.2006.04441.x
10.1152/physrev.2001.81.4.1725
10.1113/jphysiol.2001.012775
10.1113/expphysiol.2005.032789
10.2174/1566524023362429
10.2170/jjphysiol.48.421
10.1085/jgp.200910290
10.1139/h93-020
10.1152/jappl.1995.78.3.765
10.1055/s-2007-971894
ContentType Journal Article
Copyright 2015 INIST-CNRS
COPYRIGHT 2011 NRC Research Press
Copyright Human Kinetics Feb 2011
Copyright_xml – notice: 2015 INIST-CNRS
– notice: COPYRIGHT 2011 NRC Research Press
– notice: Copyright Human Kinetics Feb 2011
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TS
7X8
DOI 10.1139/H10-073
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Physical Education Index
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Physical Education Index
MEDLINE - Academic
DatabaseTitleList
MEDLINE

CrossRef

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Diet & Clinical Nutrition
Recreation & Sports
EISSN 1715-5320
EndPage 11
ExternalDocumentID 2281515941
A250134317
10_1139_H10_073
21326373
23969597
h10-073
Genre Journal Article
Review
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID 0R
186
23M
2QV
4.4
53G
5GY
5RP
AAIKC
AAWTL
ABDBF
ABFLS
ABFSI
ABPTK
ACGFS
ADHUB
AENEX
ALMA_UNASSIGNED_HOLDINGS
C1A
CAG
COF
CS3
D8U
DL
DXH
E.L
EAD
EAP
EAS
EBD
EBS
EJD
EMK
ESX
F5P
HZ
H~9
IAO
IEA
IFM
IHR
IHW
INH
INR
ITC
NRXXU
O9-
OHT
PQEST
PQQKQ
PV9
RIG
RRP
RZL
TUS
UKR
UPT
X
XFK
-~X
00T
0R~
36B
AAFWJ
AAMNW
ABTAH
ACGFO
DATHI
HZ~
IPNFZ
IQODW
VQG
ZY4
AAHBH
ABJNI
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TS
7X8
ID FETCH-LOGICAL-c454t-90a33626f9314f56d53bbd1a7730281a2b538bf9fffa0f9f520742c4af5ae783
ISSN 1715-5312
IngestDate Fri Aug 16 05:39:00 EDT 2024
Thu Oct 10 17:07:21 EDT 2024
Wed Jul 24 18:21:53 EDT 2024
Tue Nov 12 23:47:08 EST 2024
Tue Aug 20 22:15:25 EDT 2024
Fri Aug 23 03:36:40 EDT 2024
Sat Sep 28 07:51:13 EDT 2024
Sun Oct 22 16:05:55 EDT 2023
Thu May 23 14:20:28 EDT 2019
Wed Nov 11 00:32:57 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Human
Fatigue
Performance
Muscle contraction
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c454t-90a33626f9314f56d53bbd1a7730281a2b538bf9fffa0f9f520742c4af5ae783
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
PMID 21326373
PQID 854729690
PQPubID 28783
PageCount 11
ParticipantIDs proquest_miscellaneous_852909415
crossref_primary_10_1139_H10_073
gale_infotracacademiconefile_A250134317
nrcresearch_primary_10_1139_H10_073
pascalfrancis_primary_23969597
pubmed_primary_21326373
gale_healthsolutions_A250134317
proquest_journals_854729690
gale_infotracmisc_A250134317
PublicationCentury 2000
PublicationDate 2011-02-00
PublicationDateYYYYMMDD 2011-02-01
PublicationDate_xml – month: 02
  year: 2011
  text: 2011-02-00
PublicationDecade 2010
PublicationPlace Ottawa
PublicationPlace_xml – name: Ottawa
– name: Canada
PublicationTitle Applied physiology, nutrition, and metabolism
PublicationTitleAlternate Physiologie appliquée, nutrition et métabolisme
PublicationYear 2011
Publisher Presses scientifiques du CNRC
NRC Research Press
Canadian Science Publishing NRC Research Press
Publisher_xml – name: Presses scientifiques du CNRC
– name: NRC Research Press
– name: Canadian Science Publishing NRC Research Press
References 21972927 - Appl Physiol Nutr Metab. 2011 Oct;36(5):773-4; discussion 775-6
rg39/ref39
rg75/ref75
Bigland-Ritchie B. (rg15/ref15) 1986; 128
rg21/ref21
rg57/ref57
Sejersted O.M. (rg76/ref76) 2000; 80
rg82/ref82
rg72/ref72
Cairns S.P. (rg18/ref18) 1997; 273
Carnevale T.J. (rg19/ref19) 1991; 23
rg53/ref53
rg24/ref24
rg61/ref61
rg10/ref10
rg4/ref4
rg50/ref50
rg64/ref64
rg78/ref78
Favero T.G. (rg29/ref29) 1999; 87
Favero T.G. (rg30/ref30) 1995; 78
rg13/ref13
Allen D.G. (rg7/ref7) 1989; 415
Allen D.G. (rg5/ref5) 1997; 498
Gladden L.B. (rg33/ref33) 1978; 45
Gong B. (rg35/ref35) 2003; 285
rg42/ref42
rg56/ref56
Zucchi R. (rg83/ref83) 1997; 49
rg26/ref26
rg63/ref63
rg8/ref8
rg2/ref2
rg45/ref45
rg71/ref71
rg20/ref20
rg60/ref60
rg34/ref34
Bigland-Ritchie B. (rg16/ref16) 1986; 61
rg1/ref1
rg48/ref48
Noakes T.D. (rg68/ref68) 2001; 204
rg41/ref41
rg77/ref77
rg59/ref59
rg12/ref12
rg52/ref52
rg66/ref66
rg81/ref81
rg73/ref73
rg55/ref55
Davies N.W. (rg23/ref23) 1992; 445
rg70/ref70
rg27/ref27
rg38/ref38
rg44/ref44
rg47/ref47
rg51/ref51
rg65/ref65
rg6/ref6
rg11/ref11
rg3/ref3
rg36/ref36
rg62/ref62
Renaud J.-M. (rg74/ref74) 2002; 27
atypb1/ref555
Fryer M.W. (rg31/ref31) 1995; 482
rg17/ref17
Lamb G.D. (rg46/ref46) 1991; 434
MacIntosh B.R. (rg54/ref54) 2002; 27
Awan M.Z. (rg9/ref9) 1972; 1
rg43/ref43
Lindinger M.I. (rg49/ref49) 1995; 78
Medbø J.I. (rg58/ref58) 1990; 421
rg79/ref79
Gandevia S.C. (rg32/ref32) 2001; 81
Darques J.L. (rg22/ref22) 2003; 95
Grange R.W. (rg37/ref37) 1993; 18
rg80/ref80
rg14/ref14
rg28/ref28
de Haan A. (rg25/ref25) 1990; 75
rg40/ref40
References_xml – volume: 434
  start-page: 507
  issue: 1
  year: 1991
  ident: rg46/ref46
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1991.sp018483
  contributor:
    fullname: Lamb G.D.
– volume: 204
  start-page: 3225
  issue: 18
  year: 2001
  ident: rg68/ref68
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.204.18.3225
  contributor:
    fullname: Noakes T.D.
– volume: 78
  start-page: 1665
  issue: 5
  year: 1995
  ident: rg30/ref30
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1995.78.5.1665
  contributor:
    fullname: Favero T.G.
– volume: 87
  start-page: 471
  issue: 2
  year: 1999
  ident: rg29/ref29
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1999.87.2.471
  contributor:
    fullname: Favero T.G.
– ident: rg57/ref57
  doi: 10.1007/s00421-010-1418-6
– ident: rg38/ref38
  doi: 10.1097/00001665-200309000-00039
– ident: rg1/ref1
  doi: 10.1111/j.1469-7793.2001.t01-1-00657.x
– ident: rg3/ref3
  doi: 10.1152/japplphysiol.00908.2007
– ident: rg20/ref20
  doi: 10.1139/H09-085
– ident: rg24/ref24
  doi: 10.1038/274861a0
– ident: rg2/ref2
  doi: 10.1007/s00421-010-1538-z
– ident: rg66/ref66
  doi: 10.1034/j.1600-0838.2000.010003123.x
– volume: 27
  start-page: 42
  issue: 1
  year: 2002
  ident: rg54/ref54
  publication-title: Can. J. Appl. Physiol.
  doi: 10.1139/h02-003
  contributor:
    fullname: MacIntosh B.R.
– ident: rg55/ref55
  doi: 10.5040/9781492596912
– ident: rg40/ref40
  doi: 10.1249/01.mss.0000228956.75344.91
– volume: 273
  start-page: C598
  issue: 2
  year: 1997
  ident: rg18/ref18
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.1997.273.2.C598
  contributor:
    fullname: Cairns S.P.
– ident: rg60/ref60
  doi: 10.1074/jbc.272.3.1628
– volume: 45
  start-page: 751
  issue: 5
  year: 1978
  ident: rg33/ref33
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1978.45.5.751
  contributor:
    fullname: Gladden L.B.
– volume: 75
  start-page: 851
  issue: 6
  year: 1990
  ident: rg25/ref25
  publication-title: Exp. Physiol.
  doi: 10.1113/expphysiol.1990.sp003468
  contributor:
    fullname: de Haan A.
– volume: 49
  start-page: 1
  issue: 1
  year: 1997
  ident: rg83/ref83
  publication-title: Pharmacol. Rev.
  contributor:
    fullname: Zucchi R.
– volume: 61
  start-page: 421
  issue: 2
  year: 1986
  ident: rg16/ref16
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1986.61.2.421
  contributor:
    fullname: Bigland-Ritchie B.
– ident: rg50/ref50
  doi: 10.1139/cjpp-79-12-996
– ident: rg53/ref53
  doi: 10.1002/mus.880100807
– volume: 421
  start-page: 105
  issue: 1
  year: 1990
  ident: rg58/ref58
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1990.sp017935
  contributor:
    fullname: Medbø J.I.
– ident: rg10/ref10
  doi: 10.1002/mus.880170907
– ident: rg13/ref13
  doi: 10.1016/j.bbrc.2004.08.033
– ident: rg21/ref21
  doi: 10.1113/jphysiol.2007.130955
– ident: rg34/ref34
  doi: 10.1152/japplphysiol.00537.2003
– ident: rg71/ref71
  doi: 10.1085/jgp.200409173
– volume: 1
  start-page: 97
  issue: 2
  year: 1972
  ident: rg9/ref9
  publication-title: J. Mech. Cell Motility
  contributor:
    fullname: Awan M.Z.
– ident: rg43/ref43
  doi: 10.1016/0014-4886(79)90279-6
– ident: rg48/ref48
  doi: 10.1085/jgp.200409092
– volume: 27
  start-page: 296
  issue: 3
  year: 2002
  ident: rg74/ref74
  publication-title: Can. J. Appl. Physiol.
  doi: 10.1139/h02-017
  contributor:
    fullname: Renaud J.-M.
– ident: rg44/ref44
  doi: 10.1007/s004210000340
– ident: rg14/ref14
  doi: 10.1016/S1050-6411(98)00043-1
– ident: rg75/ref75
– ident: rg27/ref27
– volume: 285
  start-page: C1464
  issue: 6
  year: 2003
  ident: rg35/ref35
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00278.2003
  contributor:
    fullname: Gong B.
– ident: rg82/ref82
  doi: 10.1074/jbc.272.51.32463
– volume: 445
  start-page: 549
  issue: 1
  year: 1992
  ident: rg23/ref23
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1992.sp018939
  contributor:
    fullname: Davies N.W.
– ident: rg8/ref8
  doi: 10.2165/00007256-199213020-00007
– ident: rg56/ref56
  doi: 10.1007/s00424-007-0273-8
– volume: 415
  start-page: 433
  issue: 1
  year: 1989
  ident: rg7/ref7
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1989.sp017730
  contributor:
    fullname: Allen D.G.
– ident: rg36/ref36
  doi: 10.1073/pnas.75.3.1329
– ident: rg73/ref73
  doi: 10.1113/jphysiol.2002.019216
– volume: 128
  start-page: 137
  year: 1986
  ident: rg15/ref15
  publication-title: Acta Physiol. Scand.
  contributor:
    fullname: Bigland-Ritchie B.
– volume: 482
  start-page: 123
  issue: 1
  year: 1995
  ident: rg31/ref31
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1995.sp020504
  contributor:
    fullname: Fryer M.W.
– volume: 80
  start-page: 1411
  issue: 4
  year: 2000
  ident: rg76/ref76
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.2000.80.4.1411
  contributor:
    fullname: Sejersted O.M.
– ident: rg70/ref70
  doi: 10.1136/bjsm.2003.010330
– ident: rg28/ref28
  doi: 10.1113/jphysiol.2007.139477
– ident: rg39/ref39
  doi: 10.1097/00005768-200004000-00017
– ident: rg11/ref11
  doi: 10.1007/s10974-007-9116-7
– ident: rg72/ref72
  doi: 10.1007/BF00584355
– volume: 498
  start-page: 587
  issue: 3
  year: 1997
  ident: rg5/ref5
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1997.sp021885
  contributor:
    fullname: Allen D.G.
– volume: 23
  start-page: 242
  issue: 2
  year: 1991
  ident: rg19/ref19
  publication-title: Med. Sci. Sports Exerc.
  doi: 10.1249/00005768-199102000-00016
  contributor:
    fullname: Carnevale T.J.
– ident: rg80/ref80
  doi: 10.1007/BF00421715
– ident: rg62/ref62
  doi: 10.1080/00140136508930810
– ident: rg6/ref6
  doi: 10.1007/s00424-001-0756-y
– ident: rg64/ref64
  doi: 10.1023/A:1013696124358
– ident: rg61/ref61
  doi: 10.1172/JCI113434
– ident: rg81/ref81
  doi: 10.1007/BF00421716
– ident: rg77/ref77
  doi: 10.1016/j.pbiomolbio.2003.11.014
– ident: rg51/ref51
  doi: 10.1023/A:1013644107519
– ident: rg79/ref79
  doi: 10.1038/316736a0
– volume: 95
  start-page: 1476
  issue: 4
  year: 2003
  ident: rg22/ref22
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00230.2003
  contributor:
    fullname: Darques J.L.
– ident: rg63/ref63
  doi: 10.1080/00140138108924856
– ident: rg52/ref52
  doi: 10.1007/s00421-010-1610-8
– ident: rg59/ref59
  doi: 10.1146/annurev.ph.56.030194.002413
– ident: rg42/ref42
  doi: 10.1146/annurev.ph.49.030187.003325
– ident: rg4/ref4
  doi: 10.1152/physrev.00015.2007
– ident: rg78/ref78
  doi: 10.1111/j.1748-1716.1990.tb08947.x
– ident: rg26/ref26
  doi: 10.1111/j.1440-1681.2006.04441.x
– volume: 81
  start-page: 1725
  issue: 4
  year: 2001
  ident: rg32/ref32
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.2001.81.4.1725
  contributor:
    fullname: Gandevia S.C.
– ident: rg47/ref47
  doi: 10.1113/jphysiol.2001.012775
– ident: rg12/ref12
  doi: 10.1113/expphysiol.2005.032789
– ident: rg65/ref65
  doi: 10.2174/1566524023362429
– ident: rg41/ref41
– ident: rg45/ref45
  doi: 10.2170/jjphysiol.48.421
– ident: atypb1/ref555
  doi: 10.1085/jgp.200910290
– volume: 18
  start-page: 229
  issue: 3
  year: 1993
  ident: rg37/ref37
  publication-title: Can. J. Appl. Physiol.
  doi: 10.1139/h93-020
  contributor:
    fullname: Grange R.W.
– volume: 78
  start-page: 765
  issue: 3
  year: 1995
  ident: rg49/ref49
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1995.78.3.765
  contributor:
    fullname: Lindinger M.I.
– ident: rg17/ref17
  doi: 10.1055/s-2007-971894
SSID ssib000828872
ssj0045063
Score 2.0995245
SecondaryResourceType review_article
Snippet Active skeletal muscles are capable of keeping the global [adenosine triphosphate (ATP)] reasonably constant during exercise, whether it is mild exercise,...
SourceID proquest
gale
crossref
pubmed
pascalfrancis
nrcresearch
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Adenosine triphosphatase
Adenosine triphosphate
Adenosine Triphosphate - metabolism
Animals
Biological and medical sciences
Calcium - metabolism
Contractile Proteins - metabolism
contractile response
Electromyography
Exercise
exhaustion
Fatigue
Fundamental and applied biological sciences. Psychology
gradation
Humans
Hydrolysis
Muscle Contraction
Muscle Fatigue
Muscle, Skeletal - physiology
Musculoskeletal system
pacing
Physiological aspects
Recruitment, Neurophysiological
Ryanodine Receptor Calcium Release Channel - metabolism
réponse contractile
Sarcoplasmic Reticulum - metabolism
Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports
épuisement
Title A peripheral governor regulates muscle contraction
URI http://www.nrcresearchpress.com/doi/abs/10.1139/H10-073
https://www.ncbi.nlm.nih.gov/pubmed/21326373
https://www.proquest.com/docview/854729690
https://search.proquest.com/docview/852909415
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb5swFLe29rIdpi77Yv2YpU3bIaIL2AZ8TNtV0aTmsGVSb8gQe6mUkiqQS__6vYfBhCn7vJAIXsDx-_l9mPdByDuhogQrkfnRPNI-j7nwpUmEj6qIccPykcJE4atpNPnGP1-L667xX51dUmWn-f3OvJL_4SqcA75iluw_cNbdFE7Ad-AvHIHDcPwrHo-x6vBNXRhgOfxed81drYdr215el8PbTQm_sOHoNoFh2xZtDdB6c8MlrRRtef42rvNWVwCUZVtq0O1er8qFBQeKCPe-6OtC1W2Ch1enwLp71WytzruN0l6MxvTLuQv-64WDoJSMA-HD4u2JUVvHpAcXKxOD3ZKaYaHTCb6Kt71M-rWwf9JRLnJwDCZbwNDqeUj2QxAuINX2x2cXZ5et_uXC9s9zg7Sp0vjAj83jejZIo4kfF-u8qa-0wABZVcIaMba5ya-9j9oKmR2QJ437QMcWC0_JA10MiHdxoyv6njY1Xpd02vJwQAadXwAUdU_78hkJx7RDDm2RQx1yqEUO3ULOczK7_DQ7n_hN9ww_54JXvhwphrWGjGQBNyKaC5Zl80DFINPDJFBhBrouM9IYo0bwIULcJsm5MkLpOGEvyF6xKvQrQrUOYsZVDrpAcpHLLNQRj0zM8ywAhZF7hLbTmd7ZGilp7VsymcKMpzDjHnmD05za5F639tKOnR75UFMgSPCfqSY9BIaAFcp6lEc9SpCHee_y2y1W_mZAu6gW9mp6NzceOemBwNGETEYS_HCPHLaoSBuhUKaJ4OCuRnIEk-Ku4ggxlrHQqw2ShHIkwXD2yEuLpe7WAXhTLGav_zhdh-RRt2iPyF613uhjMI-r7KRZDz8AZuu40w
link.rule.ids 315,783,787,27936,27937
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+peripheral+governor+regulates+muscle+contraction&rft.jtitle=Applied+physiology%2C+nutrition%2C+and+metabolism&rft.au=MacIntosh%2C+Brian+R&rft.au=Shahi%2C+M.+Reza+S&rft.date=2011-02-01&rft.pub=NRC+Research+Press&rft.issn=1715-5312&rft.volume=36&rft.issue=1&rft.spage=1&rft_id=info:doi/10.1139%2FH10-073&rft.externalDBID=n%2Fa&rft.externalDocID=A250134317
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1715-5312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1715-5312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1715-5312&client=summon