Interaction of Epstein-Barr virus (EBV) with human B-lymphocytes

Epstein-Barr virus, EBV, and humans have a common history that reaches back to our primate ancestors. The virus co-evolved with man and has established a largely harmless and highly complex co-existence. It is carried as silent infection by almost all human adults. A serendipitous discovery establis...

Full description

Saved in:
Bibliographic Details
Published inBiochemical and biophysical research communications Vol. 396; no. 1; pp. 67 - 73
Main Authors Klein, George, Klein, Eva, Kashuba, Elena
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 21.05.2010
Subjects
Online AccessGet full text
ISSN0006-291X
1090-2104
1090-2104
DOI10.1016/j.bbrc.2010.02.146

Cover

Loading…
Abstract Epstein-Barr virus, EBV, and humans have a common history that reaches back to our primate ancestors. The virus co-evolved with man and has established a largely harmless and highly complex co-existence. It is carried as silent infection by almost all human adults. A serendipitous discovery established that it is the causative agent of infectious mononucleosis. Still, EBV became known first in 1964, in a rare, geographically prevalent malignant lymphoma of B-cell origin, Burkitt lymphoma BL. Its association with a malignancy prompted intensive studies and its capacity to immortalize B-lymphocytes in vitro was soon demonstrated. Consequently EBV was classified therefore as a potentially tumorigenic virus. Despite of this property however, the virus carrier state itself does not lead to malignancies because the transformed cells are recognized by the immune response. Consequently the EBV induced proliferation of EBV carrying B-lymphocytes is manifested only under immunosuppressive conditions. The expression of EBV encoded genes is regulated by the cell phenotype. The virus genome can be found in malignancies originating from cell types other than the B-lymphocyte. Even in the EBV infected B-cell, the direct transforming capacity is restricted to a defined window of differentiation. A complex interaction between virally encoded proteins and B-cell specific cellular proteins constitute the proliferation inducing program. In this short review we touch upon aspects which are the subject of our present work. We describe the mechanisms of some of the functional interactions between EBV encoded and cellular proteins that determine the phenotype of latently infected B-cells. The growth promoting EBV encoded genes are not expressed in the virus carrying BL cells. Still, EBV seems to contribute to the etiology of this tumor by modifying events that influence cell survival and proliferation. We describe a possible growth promoting mechanism in the genesis of Burkitt lymphoma that depends on the presence of EBV.
AbstractList Epstein-Barr virus, EBV, and humans have a common history that reaches back to our primate ancestors. The virus co-evolved with man and has established a largely harmless and highly complex co-existence. It is carried as silent infection by almost all human adults. A serendipitous discovery established that it is the causative agent of infectious mononucleosis. Still, EBV became known first in 1964, in a rare, geographically prevalent malignant lymphoma of B-cell origin, Burkitt lymphoma BL. Its association with a malignancy prompted intensive studies and its capacity to immortalize B-lymphocytes in vitro was soon demonstrated. Consequently EBV was classified therefore as a potentially tumorigenic virus. Despite of this property however, the virus carrier state itself does not lead to malignancies because the transformed cells are recognized by the immune response. Consequently the EBV induced proliferation of EBV carrying B-lymphocytes is manifested only under immunosuppressive conditions. The expression of EBV encoded genes is regulated by the cell phenotype. The virus genome can be found in malignancies originating from cell types other than the B-lymphocyte. Even in the EBV infected B-cell, the direct transforming capacity is restricted to a defined window of differentiation. A complex interaction between virally encoded proteins and B-cell specific cellular proteins constitute the proliferation inducing program. In this short review we touch upon aspects which are the subject of our present work. We describe the mechanisms of some of the functional interactions between EBV encoded and cellular proteins that determine the phenotype of latently infected B-cells. The growth promoting EBV encoded genes are not expressed in the virus carrying BL cells. Still, EBV seems to contribute to the etiology of this tumor by modifying events that influence cell survival and proliferation. We describe a possible growth promoting mechanism in the genesis of Burkitt lymphoma that depends on the presence of EBV.
Epstein-Barr virus, EBV, and humans have a common history that reaches back to our primate ancestors. The virus co-evolved with man and has established a largely harmless and highly complex co-existence. It is carried as silent infection by almost all human adults. A serendipitous discovery established that it is the causative agent of infectious mononucleosis. Still, EBV became known first in 1964, in a rare, geographically prevalent malignant lymphoma of B-cell origin, Burkitt lymphoma BL. Its association with a malignancy prompted intensive studies and its capacity to immortalize B-lymphocytes in vitro was soon demonstrated. Consequently EBV was classified therefore as a potentially tumorigenic virus. Despite of this property however, the virus carrier state itself does not lead to malignancies because the transformed cells are recognized by the immune response. Consequently the EBV induced proliferation of EBV carrying B-lymphocytes is manifested only under immunosuppressive conditions. The expression of EBV encoded genes is regulated by the cell phenotype. The virus genome can be found in malignancies originating from cell types other than the B-lymphocyte. Even in the EBV infected B-cell, the direct transforming capacity is restricted to a defined window of differentiation. A complex interaction between virally encoded proteins and B-cell specific cellular proteins constitute the proliferation inducing program. In this short review we touch upon aspects which are the subject of our present work. We describe the mechanisms of some of the functional interactions between EBV encoded and cellular proteins that determine the phenotype of latently infected B-cells. The growth promoting EBV encoded genes are not expressed in the virus carrying BL cells. Still, EBV seems to contribute to the etiology of this tumor by modifying events that influence cell survival and proliferation. We describe a possible growth promoting mechanism in the genesis of Burkitt lymphoma that depends on the presence of EBV.Epstein-Barr virus, EBV, and humans have a common history that reaches back to our primate ancestors. The virus co-evolved with man and has established a largely harmless and highly complex co-existence. It is carried as silent infection by almost all human adults. A serendipitous discovery established that it is the causative agent of infectious mononucleosis. Still, EBV became known first in 1964, in a rare, geographically prevalent malignant lymphoma of B-cell origin, Burkitt lymphoma BL. Its association with a malignancy prompted intensive studies and its capacity to immortalize B-lymphocytes in vitro was soon demonstrated. Consequently EBV was classified therefore as a potentially tumorigenic virus. Despite of this property however, the virus carrier state itself does not lead to malignancies because the transformed cells are recognized by the immune response. Consequently the EBV induced proliferation of EBV carrying B-lymphocytes is manifested only under immunosuppressive conditions. The expression of EBV encoded genes is regulated by the cell phenotype. The virus genome can be found in malignancies originating from cell types other than the B-lymphocyte. Even in the EBV infected B-cell, the direct transforming capacity is restricted to a defined window of differentiation. A complex interaction between virally encoded proteins and B-cell specific cellular proteins constitute the proliferation inducing program. In this short review we touch upon aspects which are the subject of our present work. We describe the mechanisms of some of the functional interactions between EBV encoded and cellular proteins that determine the phenotype of latently infected B-cells. The growth promoting EBV encoded genes are not expressed in the virus carrying BL cells. Still, EBV seems to contribute to the etiology of this tumor by modifying events that influence cell survival and proliferation. We describe a possible growth promoting mechanism in the genesis of Burkitt lymphoma that depends on the presence of EBV.
Epstein-Barr virus, EBV, and humans have a common history that reaches back to our primate ancestors. The virus co-evolved with man and has established a largely harmless and highly complex co-existence. It is carried as silent infection by almost all human adults. A serendipitous discovery established that it is the causative agent of infectious mononucleosis. Still, EBV became known first in 1964, in a rare, geographically prevalent malignant lymphoma of B-cell origin, Burkitt lymphoma BL. Its association with a malignancy prompted intensive studies and its capacity to immortalize B-lymphocytes in vitro was soon demonstrated. Consequently EBV was classified therefore as a potentially tumorigenic virus. Despite of this property however, the virus carrier state itself does not lead to malignancies because the transformed cells are recognized by the immune response. Consequently the EBV induced proliferation of EBV carrying B-lymphocytes is manifested only under immunosuppressive conditions. The expression of EBV encoded genes is regulated by the cell phenotype. The virus genome can be found in malignancies originating from cell types other than the B-lymphocyte. Even in the EBV infected B-cell, the direct transforming capacity is restricted to a defined window of differentiation. A complex interaction between virally encoded proteins and B-cell specific cellular proteins constitute the proliferation inducing program. In this short review we touch upon aspects which are the subject of our present work. We describe the mechanisms of some of the functional interactions between EBV encoded and cellular proteins that determine the phenotype of latently infected B-cells. The growth promoting EBV encoded genes are not expressed in the virus carrying BL cells. Still, EBV seems to contribute to the etiology of this tumor by modifying events that influence cell survival and proliferation. We describe a possible growth promoting mechanism in the genesis of Burkitt lymphoma that depends on the presence of EBV.
Author Klein, George
Kashuba, Elena
Klein, Eva
Author_xml – sequence: 1
  givenname: George
  surname: Klein
  fullname: Klein, George
  email: Georg.Klein@ki.se
– sequence: 2
  givenname: Eva
  surname: Klein
  fullname: Klein, Eva
– sequence: 3
  givenname: Elena
  surname: Kashuba
  fullname: Kashuba, Elena
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20494113$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/22202603$$D View this record in Osti.gov
http://kipublications.ki.se/Default.aspx?queryparsed=id:120539401$$DView record from Swedish Publication Index
BookMark eNp9kUFv1DAUhC1URLeFP8ABReJAe8jybCfeROIAWy1QqRIXQNwsx3nReknsre202n9fR9ly4LAnW0_fjEYzF-TMOouEvKWwpEDFx92yabxeMkgHYEtaiBdkQaGGnFEozsgCAETOavrnnFyEsAOgialfkXMGRV1Qyhfk862N6JWOxtnMddlmHyIam6-V99mD8WPIrjbr39fZo4nbbDsOymbrvD8M-63Th4jhNXnZqT7gm-N7SX593fy8-Z7f_fh2e_PlLtdFWcRcdB0vK6VRiVrrUqAoOy5SnmLFG14BdG0lRMWxQ8FF065UzTkCRV4xzeuWX5J89g2PuB8bufdmUP4gnTLyePqbfijLktJVmfj3M-9CTHdtIuqtdtaijpIxBkwAT9SHmdp7dz9iiHIwQWPfK4tuDHLFOS8F5yyRVyfJtEgBdSVYkdB3R3RsBmz_RX1uPQHVDGjvQvDYyRRPTRNEr0yfvCY7IXdyGlhOA0tgMo2XpOw_6bP7SdGnWYRpoAeDfuoDrcbW-KmO1plT8ieNe7vb
CitedBy_id crossref_primary_10_3390_v10050239
crossref_primary_10_1007_s12308_024_00595_6
crossref_primary_10_3109_08830185_2012_748053
crossref_primary_10_1177_1559325818813227
crossref_primary_10_1016_j_virol_2016_03_015
crossref_primary_10_1038_srep20707
crossref_primary_10_1186_s12985_015_0260_1
crossref_primary_10_1177_0192623312467521
crossref_primary_10_1002_hsr2_1898
crossref_primary_10_1002_acn3_72
crossref_primary_10_2217_fmb_12_147
crossref_primary_10_3390_biology10060533
crossref_primary_10_3389_fonc_2024_1369765
crossref_primary_10_1155_2014_246076
crossref_primary_10_1007_s11033_022_07357_6
crossref_primary_10_1002_rmv_1763
crossref_primary_10_3892_or_2015_4401
crossref_primary_10_1002_pbc_23231
crossref_primary_10_1111_cei_12337
crossref_primary_10_1002_ijc_26087
crossref_primary_10_5501_wjv_v1_i6_154
crossref_primary_10_1371_journal_pone_0085387
crossref_primary_10_1016_j_semcancer_2013_07_005
crossref_primary_10_1158_1541_7786_MCR_11_0145
crossref_primary_10_1212_WNL_0000000000001420
crossref_primary_10_3390_v6104047
crossref_primary_10_1158_1078_0432_CCR_10_2578
crossref_primary_10_1038_nrmicro3135
crossref_primary_10_1007_s12026_014_8584_2
crossref_primary_10_1158_1535_7163_MCT_11_0725
crossref_primary_10_1155_2016_6468342
crossref_primary_10_3390_ijms18102048
crossref_primary_10_1007_s12026_010_8168_8
crossref_primary_10_1111_2049_632X_12066
crossref_primary_10_3390_ijms22073696
crossref_primary_10_1002_ajh_22263
crossref_primary_10_1097_PPO_0000000000000448
crossref_primary_10_1371_journal_pone_0179124
crossref_primary_10_1007_s00381_021_05038_6
crossref_primary_10_7841_ksbbj_2012_27_3_186
crossref_primary_10_4049_jimmunol_1302068
crossref_primary_10_1097_QCO_0b013e328349ac4f
crossref_primary_10_1186_2045_824X_4_3
crossref_primary_10_4103_1673_5374_245462
crossref_primary_10_1111_cei_12682
crossref_primary_10_1080_15548627_2015_1115939
crossref_primary_10_1016_j_ppotor_2013_08_010
crossref_primary_10_15407_oncology_2024_04_249
crossref_primary_10_1016_j_ajpath_2013_08_030
crossref_primary_10_1371_journal_pone_0136142
crossref_primary_10_3389_fimmu_2021_644664
crossref_primary_10_1002_jmv_24526
crossref_primary_10_1158_1055_9965_EPI_20_1702
crossref_primary_10_1186_1743_422X_9_77
crossref_primary_10_1155_2011_439456
crossref_primary_10_3390_v7052592
crossref_primary_10_4049_jimmunol_1301343
Cites_doi 10.1128/MCB.15.9.4735
10.1016/0092-8674(92)90123-T
10.1128/JVI.69.6.3624-3630.1995
10.1038/26683
10.1073/pnas.86.23.9558
10.1016/j.semcancer.2009.11.002
10.1099/0022-1317-82-2-345
10.1074/jbc.M303977200
10.1073/pnas.0801053105
10.1073/pnas.81.12.3806
10.1128/JVI.70.9.6020-6028.1996
10.1128/JVI.72.11.9150-9156.1998
10.1038/sj.onc.1207253
10.1182/blood-2005-01-0168
10.1128/MCB.6.11.3838
10.1371/journal.ppat.1000506
10.1128/MCB.25.5.1749-1763.2005
10.1073/pnas.98.3.1012
10.1128/JVI.69.5.3108-3116.1995
10.1128/JVI.78.4.1981-1991.2004
10.1073/pnas.0905691106
10.1038/sj.emboj.7600820
10.1016/j.semcancer.2009.10.001
10.1186/1476-4598-2-18
10.1128/JVI.68.9.6069-6073.1994
10.1128/JVI.75.16.7749-7755.2001
10.1073/pnas.92.14.6577
10.1128/JVI.78.21.11487-11505.2004
10.1128/MCB.20.15.5722-5735.2000
10.1002/j.1460-2075.1995.tb00182.x
10.1038/sj.onc.1203327
10.1002/ijc.10498
10.1128/MCB.25.12.4934-4945.2005
10.1128/JVI.76.1.232-242.2002
10.1128/JVI.65.12.6826-6837.1991
10.1128/JVI.67.4.2014-2025.1993
10.1016/S0092-8674(02)00689-X
10.1099/0022-1317-80-4-987
10.1038/newbio246140a0
10.1038/340393a0
10.1016/j.virol.2003.09.032
10.1101/gad.989602
10.1007/s00216-006-0867-6
10.1073/pnas.90.19.9150
10.1038/sj.onc.1203501
10.1002/ijc.11124
10.1128/JVI.77.19.10437-10447.2003
10.1093/nar/26.2.631
10.1006/viro.1999.0054
10.1073/pnas.91.16.7568
10.1128/JVI.77.8.5008-5013.2003
10.1128/JVI.74.21.10104-10111.2000
10.1073/pnas.0609320103
10.1128/JVI.69.1.253-262.1995
10.1016/j.molimm.2008.03.002
10.1128/jvi.76.5.2480-2490.2002
10.1073/pnas.0912920107
10.1002/j.1460-2075.1994.tb06634.x
10.1128/JVI.73.2.1195-1204.1999
10.1128/JVI.75.5.2475-2481.2001
10.1128/JVI.63.1.101-110.1989
10.1073/pnas.0503886102
10.1128/JVI.70.4.2562-2568.1996
10.1006/viro.1997.8874
10.1073/pnas.0604919104
10.1073/pnas.95.23.13765
10.1073/pnas.97.1.430
10.1128/MCB.23.19.6901-6908.2003
10.1002/j.1460-2075.1995.tb06978.x
10.1074/jbc.272.7.3999
10.1073/pnas.2336099100
10.1099/0022-1317-76-10-2423
10.1073/pnas.0605985103
10.1128/JVI.73.7.5688-5697.1999
10.1128/JVI.69.1.231-238.1995
10.1038/85499
10.1126/science.8016657
10.1128/JVI.71.9.6611-6618.1997
10.1128/JVI.79.3.1559-1568.2005
10.1093/nar/24.23.4741
10.1006/viro.1996.0662
10.1128/JVI.02408-08
10.1074/jbc.274.27.19136
10.1002/ijc.2910110302
10.1128/JVI.69.12.8169-8172.1995
10.1128/JVI.71.9.6619-6628.1997
10.1074/jbc.M509036200
10.1128/JVI.77.7.4261-4272.2003
10.1073/pnas.59.1.94
10.1016/0092-8674(85)90282-X
10.1128/JVI.01680-08
10.1128/JVI.78.22.12694-12697.2004
10.1016/S0140-6736(75)92004-8
10.1006/viro.1994.1578
10.1128/JVI.73.4.2587-2595.1999
10.1186/1471-2121-3-23
10.1089/jir.2008.0023
ContentType Journal Article
Copyright 2010 Elsevier Inc.
2010 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2010 Elsevier Inc.
– notice: 2010 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7U9
H94
7X8
OTOTI
ADTPV
AOWAS
DOI 10.1016/j.bbrc.2010.02.146
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
MEDLINE - Academic
OSTI.GOV
SwePub
SwePub Articles
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Virology and AIDS Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
AIDS and Cancer Research Abstracts


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1090-2104
EndPage 73
ExternalDocumentID oai_swepub_ki_se_551175
22202603
20494113
10_1016_j_bbrc_2010_02_146
S0006291X10003803
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.55
.GJ
.HR
.~1
0R~
1B1
1CY
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
9M8
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYJJ
ABEFU
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACKIV
ACNCT
ACRLP
ADBBV
ADEZE
ADFGL
ADIYS
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AHPSJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
D0L
DM4
DOVZS
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
LG5
LX2
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
TWZ
UQL
WH7
WUQ
X7M
XPP
XSW
Y6R
ZA5
ZGI
ZKB
ZMT
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7T5
7U9
H94
7X8
AALMO
AAPBV
ABPIF
ABQIS
EFJIC
OTOTI
ADTPV
AOWAS
ID FETCH-LOGICAL-c454t-6ff358acea69cc56e65f36114473b3800fd86683efe636bd7a933e01e382c39d3
IEDL.DBID AIKHN
ISSN 0006-291X
1090-2104
IngestDate Mon Sep 01 03:23:38 EDT 2025
Thu May 18 18:35:47 EDT 2023
Thu Aug 07 15:27:59 EDT 2025
Fri Jul 11 02:51:29 EDT 2025
Mon Jul 21 05:52:47 EDT 2025
Tue Jul 01 04:24:07 EDT 2025
Thu Apr 24 22:57:05 EDT 2025
Fri Feb 23 02:34:27 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords EBNA
Burkitt lymphoma
Cell cycle control
Epstein-Barr virus
Cell transformation
Protein–protein interaction
Apoptosis
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
2010 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c454t-6ff358acea69cc56e65f36114473b3800fd86683efe636bd7a933e01e382c39d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Review-3
PMID 20494113
PQID 1014098624
PQPubID 23462
PageCount 7
ParticipantIDs swepub_primary_oai_swepub_ki_se_551175
osti_scitechconnect_22202603
proquest_miscellaneous_733356332
proquest_miscellaneous_1014098624
pubmed_primary_20494113
crossref_citationtrail_10_1016_j_bbrc_2010_02_146
crossref_primary_10_1016_j_bbrc_2010_02_146
elsevier_sciencedirect_doi_10_1016_j_bbrc_2010_02_146
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-05-21
PublicationDateYYYYMMDD 2010-05-21
PublicationDate_xml – month: 05
  year: 2010
  text: 2010-05-21
  day: 21
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemical and biophysical research communications
PublicationTitleAlternate Biochem Biophys Res Commun
PublicationYear 2010
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Wu, Kapoor, Frappier (bib20) 2002; 76
Grundhoff, Kremmer, Tureci, Glieden, Gindorf, Atz, Mueller-Lantzsch, Schubach, Grasser (bib58) 1999; 274
Nagy, Maeda, Bandobashi, Kis, Nishikawa, Trivedi, Faggioni, Klein, Klein (bib94) 2002; 100
Maruo, Johannsen, Illanes, Cooper, Kieff (bib75) 2003; 77
Kuzhandaivelu, Cong, Inouye, Yang, Seto (bib74) 1996; 24
Snopok, Yurchenko, Szekely, Klein, Kashuba (bib90) 2006; 386
Muller, Janz, Goedert, Potter, Rabkin (bib91) 1995; 92
Purtilo, Cassel, Yang, Harper (bib95) 1975; 1
Ito, Ikeda, Kato, Matsumoto, Ishikawa, Kumakubo, Yanagi (bib27) 2000; 266
Grossman, Johannsen, Tong, Yalamanchili, Kieff (bib35) 1994; 91
Szekely, Pokrovskaja, Jiang, de The, Ringertz, Klein (bib83) 1996; 70
Krauer, Kienzle, Young, Sculley (bib41) 1996; 226
Touitou, Hickabottom, Parker, Crook, Allday (bib54) 2001; 75
Radkov, Touitou, Brehm, Rowe, West, Kouzarides, Allday (bib55) 1999; 73
Nichols, Harkin, Levitz, Krainer, Kolquist, Genovese, Bernard, Ferguson, Zuo, Snyder, Buckler, Wise, Ashley, Lovett, Valentine, Look, Gerald, Housman, Haber (bib96) 1998; 95
Kennedy, Komano, Sugden (bib24) 2003; 100
Portal, Rosendorff, Kieff (bib52) 2006; 103
Fischer, Kremmer, Lautscham, Mueller-Lantzsch, Grasser (bib26) 1997; 272
Nitsche, Bell, Rickinson (bib81) 1997; 71
Henle, Henle, Diehl (bib3) 1968; 59
Barth, Liss, Voss, Dobner, Fischer, Meister, Grasser (bib36) 2003; 77
Tong, Drapkin, Yalamanchili, Mosialos, Kieff (bib37) 1995; 15
Komano, Sugiura, Takada (bib23) 1998; 72
Kempkes, Spitkovsky, Jansen-Durr, Ellwart, Kremmer, Delecluse, Rottenberger, Bornkamm, Hammerschmidt (bib10) 1995; 14
Allday, Inman, Crawford, Farrell (bib88) 1995; 14
Maruo, Wu, Ishikawa, Kanda, Iwakiri, Takada (bib79) 2006; 103
Krauer, Burgess, Buck, Flanagan, Sculley, Gabrielli (bib42) 2004; 23
Kienzle, Young, Liaskou, Buck, Greco, Sculley (bib71) 1999; 73
Krauer, Buck, Belzer, Flanagan, Chojnowski, Sculley (bib59) 2004; 318
Kashuba, Kashuba, Pokrovskaja, Klein, Szekely (bib43) 2000; 19
Kashuba, Yurchenko, Szirak, Stahl, Klein, Szekely (bib51) 2005; 303
Lin, Wang, Nguyen, Shire, Frappier (bib31) 2008; 82
Cotter, Robertson (bib57) 2000; 20
Knight, Sharma, Robertson (bib78) 2005; 102
Mannick, Cohen, Birkenbach, Marchini, Kieff (bib11) 1991; 65
Saha, Murakami, Kumar, Bajaj, Sims, Robertson (bib64) 2009; 83
E. Klein, G. Klein (Ed.), Burkitt lymphoma, Semin. Cancer Biol. 19 (6) (2009).
Knight, Lan, Subramanian, Robertson (bib56) 2003; 77
Bellan, Lazzi, Hummel, Palummo, de Santi, Amato, Nyagol, Sabattini, Lazure, Pileri, Raphael, Stein, Tosi, Leoncini (bib100) 2005; 106
Subramanian, Cotter, Robertson (bib62) 2001; 7
Johannsen, Koh, Mosialos, Tong, Kieff, Grossman (bib33) 1995; 69
Reedman, Klein (bib5) 1973; 11
Rawlins, Milman, Hayward, Hayward (bib13) 1985; 42
Kapoor, Lavoie, Frappier (bib21) 2005; 25
Robertson, Grossman, Johannsen, Miller, Lin, Tomkinson, Kieff (bib40) 1995; 69
Shimizu, Tanabe-Tochikura, Kuroiwa, Takada (bib93) 1994; 68
Kashuba, Mattsson, Klein, Szekely (bib87) 2003; 2
Siemer, Kurth, Lang, Lehnerdt, Stanelle, Kuppers (bib4) 2008; 45
Kennedy, Sugden (bib17) 2003; 23
Mattsson, Pokrovskaja, Kiss, Klein, Szekely (bib86) 2001; 98
Evan, Wyllie, Gilbert, Littlewood, Land, Brooks, Waters, Penn, Hancock (bib92) 1992; 69
Wang, Grossman, Kieff (bib38) 2000; 97
Lin, Johannsen, Robertson, Kieff (bib73) 2002; 76
Wu, Kalpana, Goff, Schubach (bib34) 1996; 70
Parker, Touitou, Allday (bib77) 2000; 19
Kashuba, Pokrovskaja, Klein, Szekely (bib44) 1999; 2
Zhang, Frappier, Gibbs, Hurwitz, O’Donnell (bib29) 1998; 26
L.L. Kis, D. Salamon, E.K. Persson, N. Nagy, F.A. Scheeren, H. Spits, G. Klein, E. Klein, IL-21 imposes a type II EBV gene expression on type III and type I B cells by the repression of C- and activation of LMP-1-promoter, Proc. Natl. Acad. Sci. USA 107 (2010) 872–877.
Tomkinson, Robertson, Kieff (bib8) 1993; 67
Sears, Ujihara, Wong, Ott, Middeldorp, Aiyar (bib22) 2004; 78
Nagy, Klein, Klein (bib99) 2009; 19
Kashuba, Gradin, Isaguliants, Szekely, Poellinger, Klein, Kazlauskas (bib45) 2006; 281
Seto, Bellen, Lloyd (bib69) 2002; 16
Nagy, Matskova, Kis, Hellman, Klein, Klein (bib98) 2009; 106
Kashuba, Kashuba, Sandalova, Klein, Szekely (bib46) 2002; 3
Henkel, Ling, Hayward, Peterson (bib32) 1994; 265
Ling, Peng, Nakajima, Yu, Tan, Moses, Yang, Zhao, Kieff, Bloch, Bloch (bib82) 2005; 24
Kashuba, Yurchenko, Yenamandra, Snopok, Isaguliants, Szekely, Klein (bib63) 2008; 105
Holowaty, Zeghouf, Wu, Tellam, Athanasopoulos, Greenblatt, Frappier (bib25) 2003; 278
Murakami, Lan, Subramanian, Robertson (bib30) 2005; 79
Allman, Punt, Izon, Aster, Pear (bib70) 2002; 109
Cohen, Wang, Mannick, Kieff (bib7) 1989; 86
Lee, Lee, Farrell, Ling, Kempkes, Park, Hayward (bib39) 2004; 78
Yates, Warren, Reisman, Sugden (bib15) 1984; 81
Kieff, Rikinson (bib66) 2007
Marshall, Sample (bib72) 1995; 69
Altmann, Pich, Ruiss, Wang, Sugden, Hammerschmidt (bib18) 2006; 103
Echendu, Ling (bib53) 2008; 28
Shire, Ceccarelli, Avolio-Hunter, Frappier (bib19) 1999; 73
Yalamanchili, Tong, Grossman, Johannsen, Mosialos, Kieff (bib65) 1994; 204
Kempkes, Pich, Zeidler, Sugden, Hammerschmidt (bib9) 1995; 69
Jones, Hayward, Rawlins (bib14) 1989; 63
Harada, Kieff (bib80) 1997; 71
Knight, Robertson (bib60) 2004; 78
Pokrovskaja, Mattsson, Kashuba, Klein, Szekely (bib85) 2001; 82
Han, Harada, Weaver, Xue, Lane, Orstavik, Skalhegg, Kieff (bib49) 2001; 75
Pope, Scott, Moss (bib2) 1973; 246
Pokrovskaja, Okan, Kashuba, Lowbeer, Klein, Szekely (bib89) 1999; 80
Mannick, Tong, Hemnes, Kieff (bib47) 1995; 69
Szekely, Jiang, Pokrovskaja, Wiman, Klein, Ringertz (bib84) 1995; 76
Kashuba, Mattsson, Pokrovskaja, Kiss, Protopopova, Ehlin-Henriksson, Klein, Szekely (bib50) 2003; 105
Reisman, Sugden (bib16) 1986; 6
Kim, Maher, Hayman, Ozer, Zerby, Yates, Lieberman (bib28) 1997; 239
Sinclair, Palmero, Peters, Farrell (bib67) 1994; 13
Kawaguchi, Nakajima, Igarashi, Morita, Tanaka, Suzuki, Yokoyama, Matsuda, Kato, Kanamori, Hirai (bib48) 2000; 74
Kaye, Izumi, Kieff (bib12) 1993; 90
Hertle, Popp, Petermann, Maier, Kremmer, Lang, Mages, Kempkes (bib76) 2009; 5
Sayos, Wu, Morra, Wang, Zhang, Allen, Van Schaik, Notarangelo, Geha, Roncarolo, Oettgen, De Vries, Aversa, Terhorst (bib97) 1998; 395
Knight, Sharma, Robertson (bib61) 2005; 25
Hammerschmidt, Sugden (bib6) 1989; 340
Grossman (10.1016/j.bbrc.2010.02.146_bib35) 1994; 91
Kashuba (10.1016/j.bbrc.2010.02.146_bib43) 2000; 19
Purtilo (10.1016/j.bbrc.2010.02.146_bib95) 1975; 1
Lee (10.1016/j.bbrc.2010.02.146_bib39) 2004; 78
Siemer (10.1016/j.bbrc.2010.02.146_bib4) 2008; 45
Rawlins (10.1016/j.bbrc.2010.02.146_bib13) 1985; 42
Kashuba (10.1016/j.bbrc.2010.02.146_bib87) 2003; 2
10.1016/j.bbrc.2010.02.146_bib1
Nagy (10.1016/j.bbrc.2010.02.146_bib98) 2009; 106
Marshall (10.1016/j.bbrc.2010.02.146_bib72) 1995; 69
Muller (10.1016/j.bbrc.2010.02.146_bib91) 1995; 92
Kieff (10.1016/j.bbrc.2010.02.146_bib66) 2007
Allman (10.1016/j.bbrc.2010.02.146_bib70) 2002; 109
Kuzhandaivelu (10.1016/j.bbrc.2010.02.146_bib74) 1996; 24
Saha (10.1016/j.bbrc.2010.02.146_bib64) 2009; 83
10.1016/j.bbrc.2010.02.146_bib68
Kapoor (10.1016/j.bbrc.2010.02.146_bib21) 2005; 25
Henle (10.1016/j.bbrc.2010.02.146_bib3) 1968; 59
Kaye (10.1016/j.bbrc.2010.02.146_bib12) 1993; 90
Ling (10.1016/j.bbrc.2010.02.146_bib82) 2005; 24
Nagy (10.1016/j.bbrc.2010.02.146_bib99) 2009; 19
Lin (10.1016/j.bbrc.2010.02.146_bib73) 2002; 76
Wang (10.1016/j.bbrc.2010.02.146_bib38) 2000; 97
Henkel (10.1016/j.bbrc.2010.02.146_bib32) 1994; 265
Knight (10.1016/j.bbrc.2010.02.146_bib60) 2004; 78
Sinclair (10.1016/j.bbrc.2010.02.146_bib67) 1994; 13
Jones (10.1016/j.bbrc.2010.02.146_bib14) 1989; 63
Allday (10.1016/j.bbrc.2010.02.146_bib88) 1995; 14
Fischer (10.1016/j.bbrc.2010.02.146_bib26) 1997; 272
Pokrovskaja (10.1016/j.bbrc.2010.02.146_bib85) 2001; 82
Holowaty (10.1016/j.bbrc.2010.02.146_bib25) 2003; 278
Kienzle (10.1016/j.bbrc.2010.02.146_bib71) 1999; 73
Touitou (10.1016/j.bbrc.2010.02.146_bib54) 2001; 75
Kennedy (10.1016/j.bbrc.2010.02.146_bib24) 2003; 100
Kim (10.1016/j.bbrc.2010.02.146_bib28) 1997; 239
Kennedy (10.1016/j.bbrc.2010.02.146_bib17) 2003; 23
Kashuba (10.1016/j.bbrc.2010.02.146_bib44) 1999; 2
Yates (10.1016/j.bbrc.2010.02.146_bib15) 1984; 81
Nitsche (10.1016/j.bbrc.2010.02.146_bib81) 1997; 71
Harada (10.1016/j.bbrc.2010.02.146_bib80) 1997; 71
Barth (10.1016/j.bbrc.2010.02.146_bib36) 2003; 77
Mannick (10.1016/j.bbrc.2010.02.146_bib47) 1995; 69
Ito (10.1016/j.bbrc.2010.02.146_bib27) 2000; 266
Parker (10.1016/j.bbrc.2010.02.146_bib77) 2000; 19
Mattsson (10.1016/j.bbrc.2010.02.146_bib86) 2001; 98
Echendu (10.1016/j.bbrc.2010.02.146_bib53) 2008; 28
Subramanian (10.1016/j.bbrc.2010.02.146_bib62) 2001; 7
Pokrovskaja (10.1016/j.bbrc.2010.02.146_bib89) 1999; 80
Krauer (10.1016/j.bbrc.2010.02.146_bib42) 2004; 23
Altmann (10.1016/j.bbrc.2010.02.146_bib18) 2006; 103
Portal (10.1016/j.bbrc.2010.02.146_bib52) 2006; 103
Seto (10.1016/j.bbrc.2010.02.146_bib69) 2002; 16
Kempkes (10.1016/j.bbrc.2010.02.146_bib9) 1995; 69
Szekely (10.1016/j.bbrc.2010.02.146_bib83) 1996; 70
Sayos (10.1016/j.bbrc.2010.02.146_bib97) 1998; 395
Reedman (10.1016/j.bbrc.2010.02.146_bib5) 1973; 11
Lin (10.1016/j.bbrc.2010.02.146_bib31) 2008; 82
Yalamanchili (10.1016/j.bbrc.2010.02.146_bib65) 1994; 204
Zhang (10.1016/j.bbrc.2010.02.146_bib29) 1998; 26
Hertle (10.1016/j.bbrc.2010.02.146_bib76) 2009; 5
Hammerschmidt (10.1016/j.bbrc.2010.02.146_bib6) 1989; 340
Cohen (10.1016/j.bbrc.2010.02.146_bib7) 1989; 86
Tomkinson (10.1016/j.bbrc.2010.02.146_bib8) 1993; 67
Robertson (10.1016/j.bbrc.2010.02.146_bib40) 1995; 69
Bellan (10.1016/j.bbrc.2010.02.146_bib100) 2005; 106
Komano (10.1016/j.bbrc.2010.02.146_bib23) 1998; 72
Tong (10.1016/j.bbrc.2010.02.146_bib37) 1995; 15
Krauer (10.1016/j.bbrc.2010.02.146_bib59) 2004; 318
Cotter (10.1016/j.bbrc.2010.02.146_bib57) 2000; 20
Han (10.1016/j.bbrc.2010.02.146_bib49) 2001; 75
Knight (10.1016/j.bbrc.2010.02.146_bib78) 2005; 102
Knight (10.1016/j.bbrc.2010.02.146_bib61) 2005; 25
Wu (10.1016/j.bbrc.2010.02.146_bib20) 2002; 76
Johannsen (10.1016/j.bbrc.2010.02.146_bib33) 1995; 69
Krauer (10.1016/j.bbrc.2010.02.146_bib41) 1996; 226
Kashuba (10.1016/j.bbrc.2010.02.146_bib51) 2005; 303
Shire (10.1016/j.bbrc.2010.02.146_bib19) 1999; 73
Wu (10.1016/j.bbrc.2010.02.146_bib34) 1996; 70
Shimizu (10.1016/j.bbrc.2010.02.146_bib93) 1994; 68
Kashuba (10.1016/j.bbrc.2010.02.146_bib63) 2008; 105
Reisman (10.1016/j.bbrc.2010.02.146_bib16) 1986; 6
Nagy (10.1016/j.bbrc.2010.02.146_bib94) 2002; 100
Grundhoff (10.1016/j.bbrc.2010.02.146_bib58) 1999; 274
Pope (10.1016/j.bbrc.2010.02.146_bib2) 1973; 246
Radkov (10.1016/j.bbrc.2010.02.146_bib55) 1999; 73
Evan (10.1016/j.bbrc.2010.02.146_bib92) 1992; 69
Mannick (10.1016/j.bbrc.2010.02.146_bib11) 1991; 65
Kashuba (10.1016/j.bbrc.2010.02.146_bib46) 2002; 3
Knight (10.1016/j.bbrc.2010.02.146_bib56) 2003; 77
Kempkes (10.1016/j.bbrc.2010.02.146_bib10) 1995; 14
Kawaguchi (10.1016/j.bbrc.2010.02.146_bib48) 2000; 74
Szekely (10.1016/j.bbrc.2010.02.146_bib84) 1995; 76
Snopok (10.1016/j.bbrc.2010.02.146_bib90) 2006; 386
Nichols (10.1016/j.bbrc.2010.02.146_bib96) 1998; 95
Kashuba (10.1016/j.bbrc.2010.02.146_bib45) 2006; 281
Kashuba (10.1016/j.bbrc.2010.02.146_bib50) 2003; 105
Sears (10.1016/j.bbrc.2010.02.146_bib22) 2004; 78
Murakami (10.1016/j.bbrc.2010.02.146_bib30) 2005; 79
Maruo (10.1016/j.bbrc.2010.02.146_bib79) 2006; 103
Maruo (10.1016/j.bbrc.2010.02.146_bib75) 2003; 77
References_xml – volume: 274
  start-page: 19136
  year: 1999
  end-page: 19144
  ident: bib58
  article-title: Characterization of DP103, a novel DEAD box protein that binds to the Epstein-Barr virus nuclear proteins EBNA2 and EBNA3C
  publication-title: J. Biol. Chem.
– volume: 65
  start-page: 6826
  year: 1991
  end-page: 6837
  ident: bib11
  article-title: The Epstein-Barr virus nuclear protein encoded by the leader of the EBNA RNAs is important in B-lymphocyte transformation
  publication-title: J. Virol.
– volume: 67
  start-page: 2014
  year: 1993
  end-page: 2025
  ident: bib8
  article-title: Epstein-Barr virus nuclear proteins EBNA-3A and EBNA-3C are essential for B-lymphocyte growth transformation
  publication-title: J. Virol.
– volume: 76
  start-page: 2480
  year: 2002
  end-page: 2490
  ident: bib20
  article-title: Separation of the DNA replication, segregation, and transcriptional activation functions of Epstein-Barr nuclear antigen 1
  publication-title: J. Virol.
– volume: 278
  start-page: 29987
  year: 2003
  end-page: 29994
  ident: bib25
  article-title: Protein profiling with Epstein-Barr nuclear antigen-1 reveals an interaction with the herpesvirus-associated ubiquitin-specific protease HAUSP/USP7
  publication-title: J. Biol. Chem.
– volume: 63
  start-page: 101
  year: 1989
  end-page: 110
  ident: bib14
  article-title: Interaction of the lymphocyte-derived Epstein-Barr virus nuclear antigen EBNA-1 with its DNA-binding sites
  publication-title: J. Virol.
– volume: 272
  start-page: 3999
  year: 1997
  end-page: 4005
  ident: bib26
  article-title: Epstein-Barr virus nuclear antigen 1 forms a complex with the nuclear transporter karyopherin alpha2
  publication-title: J. Biol. Chem.
– volume: 74
  start-page: 10104
  year: 2000
  end-page: 10111
  ident: bib48
  article-title: Interaction of Epstein-Barr virus nuclear antigen leader protein (EBNA-LP) with HS1-associated protein X-1: implication of cytoplasmic function of EBNA-LP
  publication-title: J. Virol.
– volume: 265
  start-page: 92
  year: 1994
  end-page: 95
  ident: bib32
  article-title: Mediation of Epstein-Barr virus EBNA2 transactivation by recombination signal-binding protein J kappa
  publication-title: Science
– volume: 103
  start-page: 14188
  year: 2006
  end-page: 14193
  ident: bib18
  article-title: Transcriptional activation by EBV nuclear antigen 1 is essential for the expression of EBV’s transforming genes
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 76
  start-page: 2423
  year: 1995
  end-page: 2432
  ident: bib84
  article-title: Reversible nucleolar translocation of Epstein-Barr virus-encoded EBNA-5 and hsp70 proteins after exposure to heat shock or cell density congestion
  publication-title: J. Gen. Virol.
– volume: 78
  start-page: 11487
  year: 2004
  end-page: 11505
  ident: bib22
  article-title: The amino terminus of Epstein-Barr Virus (EBV) nuclear antigen 1 contains AT hooks that facilitate the replication and partitioning of latent EBV genomes by tethering them to cellular chromosomes
  publication-title: J. Virol.
– volume: 103
  start-page: 19500
  year: 2006
  end-page: 19505
  ident: bib79
  article-title: Epstein-Barr virus nuclear protein EBNA3C is required for cell cycle progression and growth maintenance of lymphoblastoid cells
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 318
  start-page: 280
  year: 2004
  end-page: 294
  ident: bib59
  article-title: The Epstein-Barr virus nuclear antigen-6 protein co-localizes with EBNA-3 and survival of motor neurons protein
  publication-title: Virology
– volume: 97
  start-page: 430
  year: 2000
  end-page: 435
  ident: bib38
  article-title: Epstein-Barr virus nuclear protein 2 interacts with p300, CBP, and PCAF histone acetyltransferases in activation of the LMP1 promoter
  publication-title: Proc. Natl. Acad. Sci. USA
– start-page: 2603
  year: 2007
  end-page: 2654
  ident: bib66
  article-title: Epstein-Barr virus and its replication
  publication-title: Fields Virology
– volume: 69
  start-page: 231
  year: 1995
  end-page: 238
  ident: bib9
  article-title: Immortalization of human B lymphocytes by a plasmid containing 71 kilobase pairs of Epstein-Barr virus DNA
  publication-title: J. Virol.
– volume: 2
  start-page: 33
  year: 1999
  end-page: 37
  ident: bib44
  article-title: Epstein-Barr virus-encoded nuclear protein EBNA-3 interacts with the epsilon-subunit of the T-complex protein 1 chaperonin complex
  publication-title: J. Hum. Virol.
– volume: 14
  start-page: 4994
  year: 1995
  end-page: 5005
  ident: bib88
  article-title: DNA damage in human B cells can induce apoptosis, proceeding from G1/S when p53 is transactivation competent and G2/M when it is transactivation defective
  publication-title: EMBO J.
– volume: 109
  start-page: S1
  year: 2002
  end-page: S11
  ident: bib70
  article-title: An invitation to T and more: notch signaling in lymphopoiesis
  publication-title: Cell
– volume: 77
  start-page: 10437
  year: 2003
  end-page: 10447
  ident: bib75
  article-title: Epstein-Barr virus nuclear protein EBNA3A is critical for maintaining lymphoblastoid cell line growth
  publication-title: J. Virol.
– volume: 80
  start-page: 987
  year: 1999
  end-page: 995
  ident: bib89
  article-title: Epstein-Barr virus infection and mitogen stimulation of normal B cells induces wild-type p53 without subsequent growth arrest or apoptosis
  publication-title: J. Gen. Virol.
– volume: 23
  start-page: 1342
  year: 2004
  end-page: 1353
  ident: bib42
  article-title: The EBNA-3 gene family proteins disrupt the G2/M checkpoint
  publication-title: Oncogene
– volume: 100
  start-page: 433
  year: 2002
  end-page: 440
  ident: bib94
  article-title: SH2D1A expression in Burkitt lymphoma cells is restricted to EBV positive group I lines and is downregulated in parallel with immunoblastic transformation
  publication-title: Int. J. Cancer
– volume: 24
  start-page: 3565
  year: 2005
  end-page: 3575
  ident: bib82
  article-title: Mediation of Epstein-Barr virus EBNA-LP transcriptional coactivation by Sp100
  publication-title: EMBO J.
– volume: 103
  start-page: 19278
  year: 2006
  end-page: 19283
  ident: bib52
  article-title: Epstein-Barr nuclear antigen leader protein coactivates transcription through interaction with histone deacetylase 4
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 82
  start-page: 12009
  year: 2008
  end-page: 12019
  ident: bib31
  article-title: The EBNA1 protein of Epstein-Barr virus functionally interacts with Brd4
  publication-title: J. Virol.
– volume: 78
  start-page: 12694
  year: 2004
  end-page: 12697
  ident: bib39
  article-title: EBNA2 is required for protection of latently Epstein-Barr virus-infected B cells against specific apoptotic stimuli
  publication-title: J. Virol.
– volume: 69
  start-page: 3624
  year: 1995
  end-page: 3630
  ident: bib72
  article-title: Epstein-Barr virus nuclear antigen 3C is a transcriptional regulator
  publication-title: J. Virol.
– volume: 70
  start-page: 6020
  year: 1996
  end-page: 6028
  ident: bib34
  article-title: Epstein-Barr virus nuclear protein 2 (EBNA2) binds to a component of the human SNF–SWI complex, hSNF5/Ini1
  publication-title: J. Virol.
– volume: 95
  start-page: 13765
  year: 1998
  end-page: 13770
  ident: bib96
  article-title: Inactivating mutations in an SH2 domain-encoding gene in X-linked lymphoproliferative syndrome
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 11
  start-page: 499
  year: 1973
  end-page: 520
  ident: bib5
  article-title: Cellular localization of an Epstein-Barr virus (EBV)-associated complement-fixing antigen in producer and non-producer lymphoblastoid cell lines
  publication-title: Int. J. Cancer
– volume: 71
  start-page: 6619
  year: 1997
  end-page: 6628
  ident: bib81
  article-title: Epstein-Barr virus leader protein enhances EBNA-2-mediated transactivation of latent membrane protein 1 expression: a role for the W1W2 repeat domain
  publication-title: J. Virol.
– volume: 106
  start-page: 1031
  year: 2005
  end-page: 1036
  ident: bib100
  article-title: Immunoglobulin gene analysis reveals 2 distinct cells of origin for EBV-positive and EBV-negative Burkitt lymphomas
  publication-title: Blood
– volume: 73
  start-page: 2587
  year: 1999
  end-page: 2595
  ident: bib19
  article-title: EBP2, a human protein that interacts with sequences of the Epstein-Barr virus nuclear antigen 1 important for plasmid maintenance
  publication-title: J. Virol.
– volume: 28
  start-page: 667
  year: 2008
  end-page: 678
  ident: bib53
  article-title: Regulation of Sp100A subnuclear localization and transcriptional function by EBNA-LP and interferon
  publication-title: J. Interferon Cytokine Res.
– volume: 16
  start-page: 1314
  year: 2002
  end-page: 1336
  ident: bib69
  article-title: When cell biology meets development: endocytic regulation of signaling pathways
  publication-title: Genes Dev.
– volume: 69
  start-page: 3108
  year: 1995
  end-page: 3116
  ident: bib40
  article-title: Epstein-Barr virus nuclear protein 3C modulates transcription through interaction with the sequence-specific DNA-binding protein J kappa
  publication-title: J. Virol.
– volume: 386
  start-page: 2063
  year: 2006
  end-page: 2073
  ident: bib90
  article-title: SPR-based immunocapture approach to creating an interfacial sensing architecture: mapping of the MRS18-2 binding site on retinoblastoma protein
  publication-title: Anal. Bioanal. Chem.
– volume: 340
  start-page: 393
  year: 1989
  end-page: 397
  ident: bib6
  article-title: Genetic analysis of immortalizing functions of Epstein-Barr virus in human B lymphocytes
  publication-title: Nature
– volume: 83
  start-page: 4652
  year: 2009
  end-page: 4669
  ident: bib64
  article-title: Epstein-Barr virus nuclear antigen 3C augments Mdm2-mediated p53 ubiquitination and degradation by deubiquitinating Mdm2
  publication-title: J. Virol.
– reference: E. Klein, G. Klein (Ed.), Burkitt lymphoma, Semin. Cancer Biol. 19 (6) (2009).
– volume: 42
  start-page: 859
  year: 1985
  end-page: 868
  ident: bib13
  article-title: Sequence-specific DNA binding of the Epstein-Barr virus nuclear antigen (EBNA-1) to clustered sites in the plasmid maintenance region
  publication-title: Cell
– volume: 2
  start-page: 18
  year: 2003
  ident: bib87
  article-title: P14ARF induces the relocation of HDM2 and p53 to extranucleolar sites that are targeted by PML bodies and proteasomes
  publication-title: Mol. Cancer
– volume: 77
  start-page: 5008
  year: 2003
  end-page: 5013
  ident: bib36
  article-title: Epstein-Barr virus nuclear antigen 2 binds via its methylated arginine–glycine repeat to the survival motor neuron protein
  publication-title: J. Virol.
– volume: 68
  start-page: 6069
  year: 1994
  end-page: 6073
  ident: bib93
  article-title: Isolation of Epstein-Barr virus (EBV)-negative cell clones from the EBV-positive Burkitt’s lymphoma (BL) line Akata: malignant phenotypes of BL cells are dependent on EBV
  publication-title: J. Virol.
– volume: 239
  start-page: 340
  year: 1997
  end-page: 351
  ident: bib28
  article-title: An imperfect correlation between DNA replication activity of Epstein-Barr virus nuclear antigen 1 (EBNA1) and binding to the nuclear import receptor, Rch1/importin alpha
  publication-title: Virology
– volume: 102
  start-page: 18562
  year: 2005
  end-page: 18566
  ident: bib78
  article-title: Epstein-Barr virus latent antigen 3C can mediate the degradation of the retinoblastoma protein through an SCF cellular ubiquitin ligase
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 71
  start-page: 6611
  year: 1997
  end-page: 6618
  ident: bib80
  article-title: Epstein-Barr virus nuclear protein LP stimulates EBNA-2 acidic domain-mediated transcriptional activation
  publication-title: J. Virol.
– volume: 303
  start-page: 47
  year: 2005
  end-page: 55
  ident: bib51
  article-title: Epstein-Barr virus-encoded EBNA-5 binds to Epstein-Barr virus-induced Fte1/S3a protein
  publication-title: Exp. Cell Res.
– volume: 105
  start-page: 5489
  year: 2008
  end-page: 5494
  ident: bib63
  article-title: EBV-encoded EBNA-6 binds and targets MRS18-2 to the nucleus, resulting in the disruption of pRb–E2F1 complexes
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 90
  start-page: 9150
  year: 1993
  end-page: 9154
  ident: bib12
  article-title: Epstein-Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 79
  start-page: 1559
  year: 2005
  end-page: 1568
  ident: bib30
  article-title: Epstein-Barr virus nuclear antigen 1 interacts with Nm23-H1 in lymphoblastoid cell lines and inhibits its ability to suppress cell migration
  publication-title: J. Virol.
– volume: 13
  start-page: 3321
  year: 1994
  end-page: 3328
  ident: bib67
  article-title: EBNA-2 and EBNA-LP cooperate to cause G0 to G1 transition during immortalization of resting human B lymphocytes by Epstein-Barr virus
  publication-title: EMBO J.
– volume: 73
  start-page: 1195
  year: 1999
  end-page: 1204
  ident: bib71
  article-title: Intron retention may regulate expression of Epstein-Barr virus nuclear antigen 3 family genes
  publication-title: J. Virol.
– volume: 105
  start-page: 644
  year: 2003
  end-page: 653
  ident: bib50
  article-title: EBV-encoded EBNA-5 associates with P14ARF in extranucleolar inclusions and prolongs the survival of P14ARF-expressing cells
  publication-title: Int. J. Cancer
– volume: 92
  start-page: 6577
  year: 1995
  end-page: 6581
  ident: bib91
  article-title: Persistence of immunoglobulin heavy chain/c-myc recombination-positive lymphocyte clones in the blood of human immunodeficiency virus-infected homosexual men
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 26
  start-page: 631
  year: 1998
  end-page: 637
  ident: bib29
  article-title: Human RPA (hSSB) interacts with EBNA1, the latent origin binding protein of Epstein-Barr virus
  publication-title: Nucleic Acids Res.
– volume: 7
  start-page: 350
  year: 2001
  end-page: 355
  ident: bib62
  article-title: Epstein-Barr virus nuclear protein EBNA-3C interacts with the human metastatic suppressor Nm23-H1: a molecular link to cancer metastasis
  publication-title: Nat. Med.
– volume: 59
  start-page: 94
  year: 1968
  end-page: 101
  ident: bib3
  article-title: Relation of Burkitt’s tumor-associated herpes-type virus to infectious mononucleosis
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 1
  start-page: 935
  year: 1975
  end-page: 940
  ident: bib95
  article-title: X-linked recessive progressive combined variable immunodeficiency (Duncan’s disease)
  publication-title: Lancet
– volume: 14
  start-page: 88
  year: 1995
  end-page: 96
  ident: bib10
  article-title: B-cell proliferation and induction of early G1-regulating proteins by Epstein-Barr virus mutants conditional for EBNA2
  publication-title: EMBO J.
– volume: 19
  start-page: 1801
  year: 2000
  end-page: 1806
  ident: bib43
  article-title: Epstein-Barr virus encoded nuclear protein EBNA-3 binds XAP-2, a protein associated with hepatitis B virus X antigen
  publication-title: Oncogene
– volume: 204
  start-page: 634
  year: 1994
  end-page: 641
  ident: bib65
  article-title: Genetic and biochemical evidence that EBNA 2 interaction with a 63-kDa cellular GTG-binding protein is essential for B lymphocyte growth transformation by EBV
  publication-title: Virology
– volume: 23
  start-page: 6901
  year: 2003
  end-page: 6908
  ident: bib17
  article-title: EBNA-1, a bifunctional transcriptional activator
  publication-title: Mol. Cell. Biol.
– volume: 6
  start-page: 3838
  year: 1986
  end-page: 3846
  ident: bib16
  article-title: Trans activation of an Epstein-Barr viral transcriptional enhancer by the Epstein-Barr viral nuclear antigen 1
  publication-title: Mol. Cell. Biol.
– volume: 45
  start-page: 3133
  year: 2008
  end-page: 3141
  ident: bib4
  article-title: EBV transformation overrides gene expression patterns of B cell differentiation stages
  publication-title: Mol. Immunol.
– volume: 25
  start-page: 4934
  year: 2005
  end-page: 4945
  ident: bib21
  article-title: EBP2 plays a key role in Epstein-Barr virus mitotic segregation and is regulated by aurora family kinases
  publication-title: Mol. Cell. Biol.
– volume: 72
  start-page: 9150
  year: 1998
  end-page: 9156
  ident: bib23
  article-title: Epstein-Barr virus contributes to the malignant phenotype and to apoptosis resistance in Burkitt’s lymphoma cell line Akata
  publication-title: J. Virol.
– volume: 98
  start-page: 1012
  year: 2001
  end-page: 1017
  ident: bib86
  article-title: Proteins associated with the promyelocytic leukemia gene product (PML)-containing nuclear body move to the nucleolus upon inhibition of proteasome-dependent protein degradation
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 226
  start-page: 346
  year: 1996
  end-page: 353
  ident: bib41
  article-title: Epstein-Barr nuclear antigen-3 and -4 interact with RBP-2N, a major isoform of RBP-J kappa in B lymphocytes
  publication-title: Virology
– volume: 281
  start-page: 1215
  year: 2006
  end-page: 1223
  ident: bib45
  article-title: Regulation of transactivation function of the aryl hydrocarbon receptor by the Epstein-Barr virus-encoded EBNA-3 protein
  publication-title: J. Biol. Chem.
– volume: 5
  start-page: e1000506
  year: 2009
  ident: bib76
  article-title: Differential gene expression patterns of EBV infected EBNA-3A positive and negative human B lymphocytes
  publication-title: PLoS Pathog.
– volume: 82
  start-page: 345
  year: 2001
  end-page: 358
  ident: bib85
  article-title: Proteasome inhibitor induces nucleolar translocation of Epstein-Barr virus-encoded EBNA-5
  publication-title: J. Gen. Virol.
– volume: 81
  start-page: 3806
  year: 1984
  end-page: 3810
  ident: bib15
  article-title: A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 91
  start-page: 7568
  year: 1994
  end-page: 7572
  ident: bib35
  article-title: The Epstein-Barr virus nuclear antigen 2 transactivator is directed to response elements by the J kappa recombination signal binding protein
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 24
  start-page: 4741
  year: 1996
  end-page: 4750
  ident: bib74
  article-title: XAP2, a novel hepatitis B virus X-associated protein that inhibits X transactivation
  publication-title: Nucleic Acids Res.
– volume: 69
  start-page: 253
  year: 1995
  end-page: 262
  ident: bib33
  article-title: Epstein-Barr virus nuclear protein 2 transactivation of the latent membrane protein 1 promoter is mediated by J kappa and PU.1
  publication-title: J. Virol.
– volume: 75
  start-page: 7749
  year: 2001
  end-page: 7755
  ident: bib54
  article-title: Physical and functional interactions between the corepressor CtBP and the Epstein-Barr virus nuclear antigen EBNA3C
  publication-title: J. Virol.
– volume: 19
  start-page: 700
  year: 2000
  end-page: 709
  ident: bib77
  article-title: Epstein-Barr virus EBNA3C can disrupt multiple cell cycle checkpoints and induce nuclear division divorced from cytokinesis
  publication-title: Oncogene
– volume: 266
  start-page: 110
  year: 2000
  end-page: 119
  ident: bib27
  article-title: Epstein-Barr virus nuclear antigen-1 binds to nuclear transporter karyopherin alpha1/NPI-1 in addition to karyopherin alpha2/Rch1
  publication-title: Virology
– volume: 76
  start-page: 232
  year: 2002
  end-page: 242
  ident: bib73
  article-title: Epstein-Barr virus nuclear antigen 3C putative repression domain mediates coactivation of the LMP1 promoter with EBNA-2
  publication-title: J. Virol.
– volume: 78
  start-page: 1981
  year: 2004
  end-page: 1991
  ident: bib60
  article-title: Epstein-Barr virus nuclear antigen 3C regulates cyclin A/p27 complexes and enhances cyclin A-dependent kinase activity
  publication-title: J. Virol.
– volume: 69
  start-page: 8169
  year: 1995
  end-page: 8172
  ident: bib47
  article-title: The Epstein-Barr virus nuclear antigen leader protein associates with hsp72/hsc73
  publication-title: J. Virol.
– volume: 3
  start-page: 23
  year: 2002
  ident: bib46
  article-title: Epstein-Barr virus encoded nuclear protein EBNA-3 binds a novel human uridine kinase/uracil phosphoribosyltransferase
  publication-title: BMC Cell Biol.
– volume: 69
  start-page: 119
  year: 1992
  end-page: 128
  ident: bib92
  article-title: Induction of apoptosis in fibroblasts by c-myc protein
  publication-title: Cell
– volume: 25
  start-page: 1749
  year: 2005
  end-page: 1763
  ident: bib61
  article-title: SCFSkp2 complex targeted by Epstein-Barr virus essential nuclear antigen
  publication-title: Mol. Cell. Biol.
– volume: 73
  start-page: 5688
  year: 1999
  end-page: 5697
  ident: bib55
  article-title: Epstein-Barr virus nuclear antigen 3C interacts with histone deacetylase to repress transcription
  publication-title: J. Virol.
– volume: 19
  start-page: 407
  year: 2009
  end-page: 410
  ident: bib99
  article-title: To the genesis of Burkitt lymphoma: regulation of apoptosis by EBNA-1 and SAP may determine the fate of Ig-myc translocation carrying B lymphocytes
  publication-title: Semin. Cancer Biol.
– volume: 70
  start-page: 2562
  year: 1996
  end-page: 2568
  ident: bib83
  article-title: The Epstein-Barr virus-encoded nuclear antigen EBNA-5 accumulates in PML-containing bodies
  publication-title: J. Virol.
– volume: 77
  start-page: 4261
  year: 2003
  end-page: 4272
  ident: bib56
  article-title: Epstein-Barr virus nuclear antigen 3C recruits histone deacetylase activity and associates with the corepressors mSin3A and NCoR in human B-cell lines
  publication-title: J. Virol.
– volume: 15
  start-page: 4735
  year: 1995
  end-page: 4744
  ident: bib37
  article-title: The Epstein-Barr virus nuclear protein 2 acidic domain forms a complex with a novel cellular coactivator that can interact with TFIIE
  publication-title: Mol. Cell. Biol.
– volume: 20
  start-page: 5722
  year: 2000
  end-page: 5735
  ident: bib57
  article-title: Modulation of histone acetyltransferase activity through interaction of epstein-barr nuclear antigen 3C with prothymosin alpha
  publication-title: Mol. Cell. Biol.
– volume: 100
  start-page: 14269
  year: 2003
  end-page: 14274
  ident: bib24
  article-title: Epstein-Barr virus provides a survival factor to Burkitt’s lymphomas
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 106
  start-page: 11966
  year: 2009
  end-page: 11971
  ident: bib98
  article-title: The proapoptotic function of SAP provides a clue to the clinical picture of X-linked lymphoproliferative disease
  publication-title: Proc. Natl. Acad. Sci. USA
– reference: L.L. Kis, D. Salamon, E.K. Persson, N. Nagy, F.A. Scheeren, H. Spits, G. Klein, E. Klein, IL-21 imposes a type II EBV gene expression on type III and type I B cells by the repression of C- and activation of LMP-1-promoter, Proc. Natl. Acad. Sci. USA 107 (2010) 872–877.
– volume: 75
  start-page: 2475
  year: 2001
  end-page: 2481
  ident: bib49
  article-title: EBNA-LP associates with cellular proteins including DNA-PK and HA95
  publication-title: J. Virol.
– volume: 246
  start-page: 140
  year: 1973
  end-page: 141
  ident: bib2
  article-title: Human lymphoid cell transformation by Epstein-Barr virus
  publication-title: Nat. New Biol.
– volume: 86
  start-page: 9558
  year: 1989
  end-page: 9562
  ident: bib7
  article-title: Epstein-Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 395
  start-page: 462
  year: 1998
  end-page: 469
  ident: bib97
  article-title: The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM
  publication-title: Nature
– volume: 15
  start-page: 4735
  year: 1995
  ident: 10.1016/j.bbrc.2010.02.146_bib37
  article-title: The Epstein-Barr virus nuclear protein 2 acidic domain forms a complex with a novel cellular coactivator that can interact with TFIIE
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.15.9.4735
– volume: 69
  start-page: 119
  year: 1992
  ident: 10.1016/j.bbrc.2010.02.146_bib92
  article-title: Induction of apoptosis in fibroblasts by c-myc protein
  publication-title: Cell
  doi: 10.1016/0092-8674(92)90123-T
– volume: 69
  start-page: 3624
  year: 1995
  ident: 10.1016/j.bbrc.2010.02.146_bib72
  article-title: Epstein-Barr virus nuclear antigen 3C is a transcriptional regulator
  publication-title: J. Virol.
  doi: 10.1128/JVI.69.6.3624-3630.1995
– volume: 395
  start-page: 462
  year: 1998
  ident: 10.1016/j.bbrc.2010.02.146_bib97
  article-title: The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM
  publication-title: Nature
  doi: 10.1038/26683
– volume: 86
  start-page: 9558
  year: 1989
  ident: 10.1016/j.bbrc.2010.02.146_bib7
  article-title: Epstein-Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.86.23.9558
– ident: 10.1016/j.bbrc.2010.02.146_bib1
  doi: 10.1016/j.semcancer.2009.11.002
– volume: 82
  start-page: 345
  year: 2001
  ident: 10.1016/j.bbrc.2010.02.146_bib85
  article-title: Proteasome inhibitor induces nucleolar translocation of Epstein-Barr virus-encoded EBNA-5
  publication-title: J. Gen. Virol.
  doi: 10.1099/0022-1317-82-2-345
– volume: 278
  start-page: 29987
  year: 2003
  ident: 10.1016/j.bbrc.2010.02.146_bib25
  article-title: Protein profiling with Epstein-Barr nuclear antigen-1 reveals an interaction with the herpesvirus-associated ubiquitin-specific protease HAUSP/USP7
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M303977200
– volume: 105
  start-page: 5489
  year: 2008
  ident: 10.1016/j.bbrc.2010.02.146_bib63
  article-title: EBV-encoded EBNA-6 binds and targets MRS18-2 to the nucleus, resulting in the disruption of pRb–E2F1 complexes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0801053105
– volume: 81
  start-page: 3806
  year: 1984
  ident: 10.1016/j.bbrc.2010.02.146_bib15
  article-title: A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.81.12.3806
– volume: 70
  start-page: 6020
  year: 1996
  ident: 10.1016/j.bbrc.2010.02.146_bib34
  article-title: Epstein-Barr virus nuclear protein 2 (EBNA2) binds to a component of the human SNF–SWI complex, hSNF5/Ini1
  publication-title: J. Virol.
  doi: 10.1128/JVI.70.9.6020-6028.1996
– volume: 72
  start-page: 9150
  year: 1998
  ident: 10.1016/j.bbrc.2010.02.146_bib23
  article-title: Epstein-Barr virus contributes to the malignant phenotype and to apoptosis resistance in Burkitt’s lymphoma cell line Akata
  publication-title: J. Virol.
  doi: 10.1128/JVI.72.11.9150-9156.1998
– volume: 23
  start-page: 1342
  year: 2004
  ident: 10.1016/j.bbrc.2010.02.146_bib42
  article-title: The EBNA-3 gene family proteins disrupt the G2/M checkpoint
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1207253
– volume: 106
  start-page: 1031
  year: 2005
  ident: 10.1016/j.bbrc.2010.02.146_bib100
  article-title: Immunoglobulin gene analysis reveals 2 distinct cells of origin for EBV-positive and EBV-negative Burkitt lymphomas
  publication-title: Blood
  doi: 10.1182/blood-2005-01-0168
– volume: 6
  start-page: 3838
  year: 1986
  ident: 10.1016/j.bbrc.2010.02.146_bib16
  article-title: Trans activation of an Epstein-Barr viral transcriptional enhancer by the Epstein-Barr viral nuclear antigen 1
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.6.11.3838
– volume: 5
  start-page: e1000506
  year: 2009
  ident: 10.1016/j.bbrc.2010.02.146_bib76
  article-title: Differential gene expression patterns of EBV infected EBNA-3A positive and negative human B lymphocytes
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1000506
– volume: 25
  start-page: 1749
  year: 2005
  ident: 10.1016/j.bbrc.2010.02.146_bib61
  article-title: SCFSkp2 complex targeted by Epstein-Barr virus essential nuclear antigen
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.25.5.1749-1763.2005
– volume: 98
  start-page: 1012
  year: 2001
  ident: 10.1016/j.bbrc.2010.02.146_bib86
  article-title: Proteins associated with the promyelocytic leukemia gene product (PML)-containing nuclear body move to the nucleolus upon inhibition of proteasome-dependent protein degradation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.98.3.1012
– volume: 69
  start-page: 3108
  year: 1995
  ident: 10.1016/j.bbrc.2010.02.146_bib40
  article-title: Epstein-Barr virus nuclear protein 3C modulates transcription through interaction with the sequence-specific DNA-binding protein J kappa
  publication-title: J. Virol.
  doi: 10.1128/JVI.69.5.3108-3116.1995
– volume: 78
  start-page: 1981
  year: 2004
  ident: 10.1016/j.bbrc.2010.02.146_bib60
  article-title: Epstein-Barr virus nuclear antigen 3C regulates cyclin A/p27 complexes and enhances cyclin A-dependent kinase activity
  publication-title: J. Virol.
  doi: 10.1128/JVI.78.4.1981-1991.2004
– volume: 106
  start-page: 11966
  year: 2009
  ident: 10.1016/j.bbrc.2010.02.146_bib98
  article-title: The proapoptotic function of SAP provides a clue to the clinical picture of X-linked lymphoproliferative disease
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0905691106
– volume: 24
  start-page: 3565
  year: 2005
  ident: 10.1016/j.bbrc.2010.02.146_bib82
  article-title: Mediation of Epstein-Barr virus EBNA-LP transcriptional coactivation by Sp100
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600820
– volume: 19
  start-page: 407
  year: 2009
  ident: 10.1016/j.bbrc.2010.02.146_bib99
  article-title: To the genesis of Burkitt lymphoma: regulation of apoptosis by EBNA-1 and SAP may determine the fate of Ig-myc translocation carrying B lymphocytes
  publication-title: Semin. Cancer Biol.
  doi: 10.1016/j.semcancer.2009.10.001
– volume: 2
  start-page: 18
  year: 2003
  ident: 10.1016/j.bbrc.2010.02.146_bib87
  article-title: P14ARF induces the relocation of HDM2 and p53 to extranucleolar sites that are targeted by PML bodies and proteasomes
  publication-title: Mol. Cancer
  doi: 10.1186/1476-4598-2-18
– volume: 68
  start-page: 6069
  year: 1994
  ident: 10.1016/j.bbrc.2010.02.146_bib93
  article-title: Isolation of Epstein-Barr virus (EBV)-negative cell clones from the EBV-positive Burkitt’s lymphoma (BL) line Akata: malignant phenotypes of BL cells are dependent on EBV
  publication-title: J. Virol.
  doi: 10.1128/JVI.68.9.6069-6073.1994
– volume: 75
  start-page: 7749
  year: 2001
  ident: 10.1016/j.bbrc.2010.02.146_bib54
  article-title: Physical and functional interactions between the corepressor CtBP and the Epstein-Barr virus nuclear antigen EBNA3C
  publication-title: J. Virol.
  doi: 10.1128/JVI.75.16.7749-7755.2001
– volume: 92
  start-page: 6577
  year: 1995
  ident: 10.1016/j.bbrc.2010.02.146_bib91
  article-title: Persistence of immunoglobulin heavy chain/c-myc recombination-positive lymphocyte clones in the blood of human immunodeficiency virus-infected homosexual men
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.92.14.6577
– volume: 78
  start-page: 11487
  year: 2004
  ident: 10.1016/j.bbrc.2010.02.146_bib22
  article-title: The amino terminus of Epstein-Barr Virus (EBV) nuclear antigen 1 contains AT hooks that facilitate the replication and partitioning of latent EBV genomes by tethering them to cellular chromosomes
  publication-title: J. Virol.
  doi: 10.1128/JVI.78.21.11487-11505.2004
– volume: 20
  start-page: 5722
  year: 2000
  ident: 10.1016/j.bbrc.2010.02.146_bib57
  article-title: Modulation of histone acetyltransferase activity through interaction of epstein-barr nuclear antigen 3C with prothymosin alpha
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.20.15.5722-5735.2000
– volume: 14
  start-page: 4994
  year: 1995
  ident: 10.1016/j.bbrc.2010.02.146_bib88
  article-title: DNA damage in human B cells can induce apoptosis, proceeding from G1/S when p53 is transactivation competent and G2/M when it is transactivation defective
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1995.tb00182.x
– volume: 19
  start-page: 700
  year: 2000
  ident: 10.1016/j.bbrc.2010.02.146_bib77
  article-title: Epstein-Barr virus EBNA3C can disrupt multiple cell cycle checkpoints and induce nuclear division divorced from cytokinesis
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1203327
– volume: 100
  start-page: 433
  year: 2002
  ident: 10.1016/j.bbrc.2010.02.146_bib94
  article-title: SH2D1A expression in Burkitt lymphoma cells is restricted to EBV positive group I lines and is downregulated in parallel with immunoblastic transformation
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.10498
– volume: 25
  start-page: 4934
  year: 2005
  ident: 10.1016/j.bbrc.2010.02.146_bib21
  article-title: EBP2 plays a key role in Epstein-Barr virus mitotic segregation and is regulated by aurora family kinases
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.25.12.4934-4945.2005
– volume: 76
  start-page: 232
  year: 2002
  ident: 10.1016/j.bbrc.2010.02.146_bib73
  article-title: Epstein-Barr virus nuclear antigen 3C putative repression domain mediates coactivation of the LMP1 promoter with EBNA-2
  publication-title: J. Virol.
  doi: 10.1128/JVI.76.1.232-242.2002
– volume: 65
  start-page: 6826
  year: 1991
  ident: 10.1016/j.bbrc.2010.02.146_bib11
  article-title: The Epstein-Barr virus nuclear protein encoded by the leader of the EBNA RNAs is important in B-lymphocyte transformation
  publication-title: J. Virol.
  doi: 10.1128/JVI.65.12.6826-6837.1991
– volume: 67
  start-page: 2014
  year: 1993
  ident: 10.1016/j.bbrc.2010.02.146_bib8
  article-title: Epstein-Barr virus nuclear proteins EBNA-3A and EBNA-3C are essential for B-lymphocyte growth transformation
  publication-title: J. Virol.
  doi: 10.1128/JVI.67.4.2014-2025.1993
– volume: 109
  start-page: S1
  issue: Suppl.
  year: 2002
  ident: 10.1016/j.bbrc.2010.02.146_bib70
  article-title: An invitation to T and more: notch signaling in lymphopoiesis
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00689-X
– volume: 80
  start-page: 987
  issue: Pt. 4
  year: 1999
  ident: 10.1016/j.bbrc.2010.02.146_bib89
  article-title: Epstein-Barr virus infection and mitogen stimulation of normal B cells induces wild-type p53 without subsequent growth arrest or apoptosis
  publication-title: J. Gen. Virol.
  doi: 10.1099/0022-1317-80-4-987
– volume: 246
  start-page: 140
  year: 1973
  ident: 10.1016/j.bbrc.2010.02.146_bib2
  article-title: Human lymphoid cell transformation by Epstein-Barr virus
  publication-title: Nat. New Biol.
  doi: 10.1038/newbio246140a0
– volume: 340
  start-page: 393
  year: 1989
  ident: 10.1016/j.bbrc.2010.02.146_bib6
  article-title: Genetic analysis of immortalizing functions of Epstein-Barr virus in human B lymphocytes
  publication-title: Nature
  doi: 10.1038/340393a0
– volume: 318
  start-page: 280
  year: 2004
  ident: 10.1016/j.bbrc.2010.02.146_bib59
  article-title: The Epstein-Barr virus nuclear antigen-6 protein co-localizes with EBNA-3 and survival of motor neurons protein
  publication-title: Virology
  doi: 10.1016/j.virol.2003.09.032
– volume: 16
  start-page: 1314
  year: 2002
  ident: 10.1016/j.bbrc.2010.02.146_bib69
  article-title: When cell biology meets development: endocytic regulation of signaling pathways
  publication-title: Genes Dev.
  doi: 10.1101/gad.989602
– volume: 386
  start-page: 2063
  year: 2006
  ident: 10.1016/j.bbrc.2010.02.146_bib90
  article-title: SPR-based immunocapture approach to creating an interfacial sensing architecture: mapping of the MRS18-2 binding site on retinoblastoma protein
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-006-0867-6
– volume: 90
  start-page: 9150
  year: 1993
  ident: 10.1016/j.bbrc.2010.02.146_bib12
  article-title: Epstein-Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.90.19.9150
– volume: 19
  start-page: 1801
  year: 2000
  ident: 10.1016/j.bbrc.2010.02.146_bib43
  article-title: Epstein-Barr virus encoded nuclear protein EBNA-3 binds XAP-2, a protein associated with hepatitis B virus X antigen
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1203501
– volume: 105
  start-page: 644
  year: 2003
  ident: 10.1016/j.bbrc.2010.02.146_bib50
  article-title: EBV-encoded EBNA-5 associates with P14ARF in extranucleolar inclusions and prolongs the survival of P14ARF-expressing cells
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.11124
– volume: 77
  start-page: 10437
  year: 2003
  ident: 10.1016/j.bbrc.2010.02.146_bib75
  article-title: Epstein-Barr virus nuclear protein EBNA3A is critical for maintaining lymphoblastoid cell line growth
  publication-title: J. Virol.
  doi: 10.1128/JVI.77.19.10437-10447.2003
– volume: 26
  start-page: 631
  year: 1998
  ident: 10.1016/j.bbrc.2010.02.146_bib29
  article-title: Human RPA (hSSB) interacts with EBNA1, the latent origin binding protein of Epstein-Barr virus
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/26.2.631
– volume: 266
  start-page: 110
  year: 2000
  ident: 10.1016/j.bbrc.2010.02.146_bib27
  article-title: Epstein-Barr virus nuclear antigen-1 binds to nuclear transporter karyopherin alpha1/NPI-1 in addition to karyopherin alpha2/Rch1
  publication-title: Virology
  doi: 10.1006/viro.1999.0054
– volume: 91
  start-page: 7568
  year: 1994
  ident: 10.1016/j.bbrc.2010.02.146_bib35
  article-title: The Epstein-Barr virus nuclear antigen 2 transactivator is directed to response elements by the J kappa recombination signal binding protein
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.91.16.7568
– volume: 77
  start-page: 5008
  year: 2003
  ident: 10.1016/j.bbrc.2010.02.146_bib36
  article-title: Epstein-Barr virus nuclear antigen 2 binds via its methylated arginine–glycine repeat to the survival motor neuron protein
  publication-title: J. Virol.
  doi: 10.1128/JVI.77.8.5008-5013.2003
– volume: 74
  start-page: 10104
  year: 2000
  ident: 10.1016/j.bbrc.2010.02.146_bib48
  article-title: Interaction of Epstein-Barr virus nuclear antigen leader protein (EBNA-LP) with HS1-associated protein X-1: implication of cytoplasmic function of EBNA-LP
  publication-title: J. Virol.
  doi: 10.1128/JVI.74.21.10104-10111.2000
– volume: 103
  start-page: 19278
  year: 2006
  ident: 10.1016/j.bbrc.2010.02.146_bib52
  article-title: Epstein-Barr nuclear antigen leader protein coactivates transcription through interaction with histone deacetylase 4
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0609320103
– volume: 69
  start-page: 253
  year: 1995
  ident: 10.1016/j.bbrc.2010.02.146_bib33
  article-title: Epstein-Barr virus nuclear protein 2 transactivation of the latent membrane protein 1 promoter is mediated by J kappa and PU.1
  publication-title: J. Virol.
  doi: 10.1128/JVI.69.1.253-262.1995
– volume: 45
  start-page: 3133
  year: 2008
  ident: 10.1016/j.bbrc.2010.02.146_bib4
  article-title: EBV transformation overrides gene expression patterns of B cell differentiation stages
  publication-title: Mol. Immunol.
  doi: 10.1016/j.molimm.2008.03.002
– volume: 76
  start-page: 2480
  year: 2002
  ident: 10.1016/j.bbrc.2010.02.146_bib20
  article-title: Separation of the DNA replication, segregation, and transcriptional activation functions of Epstein-Barr nuclear antigen 1
  publication-title: J. Virol.
  doi: 10.1128/jvi.76.5.2480-2490.2002
– ident: 10.1016/j.bbrc.2010.02.146_bib68
  doi: 10.1073/pnas.0912920107
– volume: 13
  start-page: 3321
  year: 1994
  ident: 10.1016/j.bbrc.2010.02.146_bib67
  article-title: EBNA-2 and EBNA-LP cooperate to cause G0 to G1 transition during immortalization of resting human B lymphocytes by Epstein-Barr virus
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1994.tb06634.x
– volume: 73
  start-page: 1195
  year: 1999
  ident: 10.1016/j.bbrc.2010.02.146_bib71
  article-title: Intron retention may regulate expression of Epstein-Barr virus nuclear antigen 3 family genes
  publication-title: J. Virol.
  doi: 10.1128/JVI.73.2.1195-1204.1999
– volume: 75
  start-page: 2475
  year: 2001
  ident: 10.1016/j.bbrc.2010.02.146_bib49
  article-title: EBNA-LP associates with cellular proteins including DNA-PK and HA95
  publication-title: J. Virol.
  doi: 10.1128/JVI.75.5.2475-2481.2001
– volume: 63
  start-page: 101
  year: 1989
  ident: 10.1016/j.bbrc.2010.02.146_bib14
  article-title: Interaction of the lymphocyte-derived Epstein-Barr virus nuclear antigen EBNA-1 with its DNA-binding sites
  publication-title: J. Virol.
  doi: 10.1128/JVI.63.1.101-110.1989
– volume: 102
  start-page: 18562
  year: 2005
  ident: 10.1016/j.bbrc.2010.02.146_bib78
  article-title: Epstein-Barr virus latent antigen 3C can mediate the degradation of the retinoblastoma protein through an SCF cellular ubiquitin ligase
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0503886102
– volume: 70
  start-page: 2562
  year: 1996
  ident: 10.1016/j.bbrc.2010.02.146_bib83
  article-title: The Epstein-Barr virus-encoded nuclear antigen EBNA-5 accumulates in PML-containing bodies
  publication-title: J. Virol.
  doi: 10.1128/JVI.70.4.2562-2568.1996
– volume: 239
  start-page: 340
  year: 1997
  ident: 10.1016/j.bbrc.2010.02.146_bib28
  article-title: An imperfect correlation between DNA replication activity of Epstein-Barr virus nuclear antigen 1 (EBNA1) and binding to the nuclear import receptor, Rch1/importin alpha
  publication-title: Virology
  doi: 10.1006/viro.1997.8874
– volume: 103
  start-page: 19500
  year: 2006
  ident: 10.1016/j.bbrc.2010.02.146_bib79
  article-title: Epstein-Barr virus nuclear protein EBNA3C is required for cell cycle progression and growth maintenance of lymphoblastoid cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0604919104
– volume: 95
  start-page: 13765
  year: 1998
  ident: 10.1016/j.bbrc.2010.02.146_bib96
  article-title: Inactivating mutations in an SH2 domain-encoding gene in X-linked lymphoproliferative syndrome
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.95.23.13765
– volume: 97
  start-page: 430
  year: 2000
  ident: 10.1016/j.bbrc.2010.02.146_bib38
  article-title: Epstein-Barr virus nuclear protein 2 interacts with p300, CBP, and PCAF histone acetyltransferases in activation of the LMP1 promoter
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.97.1.430
– start-page: 2603
  year: 2007
  ident: 10.1016/j.bbrc.2010.02.146_bib66
  article-title: Epstein-Barr virus and its replication
– volume: 23
  start-page: 6901
  year: 2003
  ident: 10.1016/j.bbrc.2010.02.146_bib17
  article-title: EBNA-1, a bifunctional transcriptional activator
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.23.19.6901-6908.2003
– volume: 14
  start-page: 88
  year: 1995
  ident: 10.1016/j.bbrc.2010.02.146_bib10
  article-title: B-cell proliferation and induction of early G1-regulating proteins by Epstein-Barr virus mutants conditional for EBNA2
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1995.tb06978.x
– volume: 303
  start-page: 47
  year: 2005
  ident: 10.1016/j.bbrc.2010.02.146_bib51
  article-title: Epstein-Barr virus-encoded EBNA-5 binds to Epstein-Barr virus-induced Fte1/S3a protein
  publication-title: Exp. Cell Res.
– volume: 272
  start-page: 3999
  year: 1997
  ident: 10.1016/j.bbrc.2010.02.146_bib26
  article-title: Epstein-Barr virus nuclear antigen 1 forms a complex with the nuclear transporter karyopherin alpha2
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.7.3999
– volume: 100
  start-page: 14269
  year: 2003
  ident: 10.1016/j.bbrc.2010.02.146_bib24
  article-title: Epstein-Barr virus provides a survival factor to Burkitt’s lymphomas
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2336099100
– volume: 76
  start-page: 2423
  issue: Pt. 10
  year: 1995
  ident: 10.1016/j.bbrc.2010.02.146_bib84
  article-title: Reversible nucleolar translocation of Epstein-Barr virus-encoded EBNA-5 and hsp70 proteins after exposure to heat shock or cell density congestion
  publication-title: J. Gen. Virol.
  doi: 10.1099/0022-1317-76-10-2423
– volume: 103
  start-page: 14188
  year: 2006
  ident: 10.1016/j.bbrc.2010.02.146_bib18
  article-title: Transcriptional activation by EBV nuclear antigen 1 is essential for the expression of EBV’s transforming genes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0605985103
– volume: 73
  start-page: 5688
  year: 1999
  ident: 10.1016/j.bbrc.2010.02.146_bib55
  article-title: Epstein-Barr virus nuclear antigen 3C interacts with histone deacetylase to repress transcription
  publication-title: J. Virol.
  doi: 10.1128/JVI.73.7.5688-5697.1999
– volume: 69
  start-page: 231
  year: 1995
  ident: 10.1016/j.bbrc.2010.02.146_bib9
  article-title: Immortalization of human B lymphocytes by a plasmid containing 71 kilobase pairs of Epstein-Barr virus DNA
  publication-title: J. Virol.
  doi: 10.1128/JVI.69.1.231-238.1995
– volume: 7
  start-page: 350
  year: 2001
  ident: 10.1016/j.bbrc.2010.02.146_bib62
  article-title: Epstein-Barr virus nuclear protein EBNA-3C interacts with the human metastatic suppressor Nm23-H1: a molecular link to cancer metastasis
  publication-title: Nat. Med.
  doi: 10.1038/85499
– volume: 265
  start-page: 92
  year: 1994
  ident: 10.1016/j.bbrc.2010.02.146_bib32
  article-title: Mediation of Epstein-Barr virus EBNA2 transactivation by recombination signal-binding protein J kappa
  publication-title: Science
  doi: 10.1126/science.8016657
– volume: 71
  start-page: 6611
  year: 1997
  ident: 10.1016/j.bbrc.2010.02.146_bib80
  article-title: Epstein-Barr virus nuclear protein LP stimulates EBNA-2 acidic domain-mediated transcriptional activation
  publication-title: J. Virol.
  doi: 10.1128/JVI.71.9.6611-6618.1997
– volume: 79
  start-page: 1559
  year: 2005
  ident: 10.1016/j.bbrc.2010.02.146_bib30
  article-title: Epstein-Barr virus nuclear antigen 1 interacts with Nm23-H1 in lymphoblastoid cell lines and inhibits its ability to suppress cell migration
  publication-title: J. Virol.
  doi: 10.1128/JVI.79.3.1559-1568.2005
– volume: 24
  start-page: 4741
  year: 1996
  ident: 10.1016/j.bbrc.2010.02.146_bib74
  article-title: XAP2, a novel hepatitis B virus X-associated protein that inhibits X transactivation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/24.23.4741
– volume: 226
  start-page: 346
  year: 1996
  ident: 10.1016/j.bbrc.2010.02.146_bib41
  article-title: Epstein-Barr nuclear antigen-3 and -4 interact with RBP-2N, a major isoform of RBP-J kappa in B lymphocytes
  publication-title: Virology
  doi: 10.1006/viro.1996.0662
– volume: 83
  start-page: 4652
  year: 2009
  ident: 10.1016/j.bbrc.2010.02.146_bib64
  article-title: Epstein-Barr virus nuclear antigen 3C augments Mdm2-mediated p53 ubiquitination and degradation by deubiquitinating Mdm2
  publication-title: J. Virol.
  doi: 10.1128/JVI.02408-08
– volume: 274
  start-page: 19136
  year: 1999
  ident: 10.1016/j.bbrc.2010.02.146_bib58
  article-title: Characterization of DP103, a novel DEAD box protein that binds to the Epstein-Barr virus nuclear proteins EBNA2 and EBNA3C
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.27.19136
– volume: 11
  start-page: 499
  year: 1973
  ident: 10.1016/j.bbrc.2010.02.146_bib5
  article-title: Cellular localization of an Epstein-Barr virus (EBV)-associated complement-fixing antigen in producer and non-producer lymphoblastoid cell lines
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.2910110302
– volume: 69
  start-page: 8169
  year: 1995
  ident: 10.1016/j.bbrc.2010.02.146_bib47
  article-title: The Epstein-Barr virus nuclear antigen leader protein associates with hsp72/hsc73
  publication-title: J. Virol.
  doi: 10.1128/JVI.69.12.8169-8172.1995
– volume: 71
  start-page: 6619
  year: 1997
  ident: 10.1016/j.bbrc.2010.02.146_bib81
  article-title: Epstein-Barr virus leader protein enhances EBNA-2-mediated transactivation of latent membrane protein 1 expression: a role for the W1W2 repeat domain
  publication-title: J. Virol.
  doi: 10.1128/JVI.71.9.6619-6628.1997
– volume: 281
  start-page: 1215
  year: 2006
  ident: 10.1016/j.bbrc.2010.02.146_bib45
  article-title: Regulation of transactivation function of the aryl hydrocarbon receptor by the Epstein-Barr virus-encoded EBNA-3 protein
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M509036200
– volume: 77
  start-page: 4261
  year: 2003
  ident: 10.1016/j.bbrc.2010.02.146_bib56
  article-title: Epstein-Barr virus nuclear antigen 3C recruits histone deacetylase activity and associates with the corepressors mSin3A and NCoR in human B-cell lines
  publication-title: J. Virol.
  doi: 10.1128/JVI.77.7.4261-4272.2003
– volume: 59
  start-page: 94
  year: 1968
  ident: 10.1016/j.bbrc.2010.02.146_bib3
  article-title: Relation of Burkitt’s tumor-associated herpes-type virus to infectious mononucleosis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.59.1.94
– volume: 42
  start-page: 859
  year: 1985
  ident: 10.1016/j.bbrc.2010.02.146_bib13
  article-title: Sequence-specific DNA binding of the Epstein-Barr virus nuclear antigen (EBNA-1) to clustered sites in the plasmid maintenance region
  publication-title: Cell
  doi: 10.1016/0092-8674(85)90282-X
– volume: 82
  start-page: 12009
  year: 2008
  ident: 10.1016/j.bbrc.2010.02.146_bib31
  article-title: The EBNA1 protein of Epstein-Barr virus functionally interacts with Brd4
  publication-title: J. Virol.
  doi: 10.1128/JVI.01680-08
– volume: 78
  start-page: 12694
  year: 2004
  ident: 10.1016/j.bbrc.2010.02.146_bib39
  article-title: EBNA2 is required for protection of latently Epstein-Barr virus-infected B cells against specific apoptotic stimuli
  publication-title: J. Virol.
  doi: 10.1128/JVI.78.22.12694-12697.2004
– volume: 1
  start-page: 935
  year: 1975
  ident: 10.1016/j.bbrc.2010.02.146_bib95
  article-title: X-linked recessive progressive combined variable immunodeficiency (Duncan’s disease)
  publication-title: Lancet
  doi: 10.1016/S0140-6736(75)92004-8
– volume: 2
  start-page: 33
  year: 1999
  ident: 10.1016/j.bbrc.2010.02.146_bib44
  article-title: Epstein-Barr virus-encoded nuclear protein EBNA-3 interacts with the epsilon-subunit of the T-complex protein 1 chaperonin complex
  publication-title: J. Hum. Virol.
– volume: 204
  start-page: 634
  year: 1994
  ident: 10.1016/j.bbrc.2010.02.146_bib65
  article-title: Genetic and biochemical evidence that EBNA 2 interaction with a 63-kDa cellular GTG-binding protein is essential for B lymphocyte growth transformation by EBV
  publication-title: Virology
  doi: 10.1006/viro.1994.1578
– volume: 73
  start-page: 2587
  year: 1999
  ident: 10.1016/j.bbrc.2010.02.146_bib19
  article-title: EBP2, a human protein that interacts with sequences of the Epstein-Barr virus nuclear antigen 1 important for plasmid maintenance
  publication-title: J. Virol.
  doi: 10.1128/JVI.73.4.2587-2595.1999
– volume: 3
  start-page: 23
  year: 2002
  ident: 10.1016/j.bbrc.2010.02.146_bib46
  article-title: Epstein-Barr virus encoded nuclear protein EBNA-3 binds a novel human uridine kinase/uracil phosphoribosyltransferase
  publication-title: BMC Cell Biol.
  doi: 10.1186/1471-2121-3-23
– volume: 28
  start-page: 667
  year: 2008
  ident: 10.1016/j.bbrc.2010.02.146_bib53
  article-title: Regulation of Sp100A subnuclear localization and transcriptional function by EBNA-LP and interferon
  publication-title: J. Interferon Cytokine Res.
  doi: 10.1089/jir.2008.0023
SSID ssj0011469
Score 2.261066
SecondaryResourceType review_article
Snippet Epstein-Barr virus, EBV, and humans have a common history that reaches back to our primate ancestors. The virus co-evolved with man and has established a...
SourceID swepub
osti
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 67
SubjectTerms 60 APPLIED LIFE SCIENCES
Apoptosis
B-Lymphocytes - virology
Burkitt lymphoma
Burkitt Lymphoma - metabolism
Burkitt Lymphoma - virology
CELL CYCLE
Cell cycle control
CELL PROLIFERATION
Cell transformation
E2F1 Transcription Factor - metabolism
EBNA
Epstein-Barr virus
Epstein-Barr Virus Nuclear Antigens - metabolism
Gene Expression Regulation, Viral
Herpesvirus 4, Human - genetics
Herpesvirus 4, Human - growth & development
Humans
LYMPHOCYTES
LYMPHOMAS
ONCOGENIC VIRUSES
Primates
PROTEINS
Protein–protein interaction
Retinoblastoma Protein - metabolism
Tumor Suppressor Protein p53 - metabolism
Title Interaction of Epstein-Barr virus (EBV) with human B-lymphocytes
URI https://dx.doi.org/10.1016/j.bbrc.2010.02.146
https://www.ncbi.nlm.nih.gov/pubmed/20494113
https://www.proquest.com/docview/1014098624
https://www.proquest.com/docview/733356332
https://www.osti.gov/biblio/22202603
http://kipublications.ki.se/Default.aspx?queryparsed=id:120539401
Volume 396
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdGJwQvCDY-CmMyEppAKFv8meSNtupUQOyJob5FtuNIZVtSpS1SX_jbuUucSqCxB96iJJfEvsv5Z_vud4S8dSVLbGEBuZk0jqQySWQAd0SlSYXlPpFpy9359ULPLuXnuZrvkUmfC4NhlcH3dz699dbhzFnozbPlYoE5vrHmGZuzdnsLGT_3ucg0mPb-6NOX2cVuMwGcQUDBOkKBkDvThXlZ27gQ4cVPWxx8-_g0qOGXuw2G_sUx2o5L54_JowAo6aj75idkz1cH5HBUwWT6ZktPaBvi2a6dH5D74_7owaQv9HZIPrargl2CA61LOl2usARmNDZNQ38ums2KvpuOv7-nuGZL26J-dBxdb8EOarcFqPqUXJ5Pv01mUSisEDmp5DrSZSlUapw3OnNOaa9VKTT0k0yEha6MyyLVOhW-9FpoWyQmE8LHzIuUO5EV4hkZVHXlXxDKhQaIGSeWWy69lpmWhVQq1UYb8MF8SFjfnbkLrONY_OI678PLfuSoghxVkMccpyJD8mEns-w4N-68W_Vayv-wnBwGhTvljlClKIN0uQ7jikAI8BLSrIkhedOrOgd94DaKqXy9WeHzYFKMiTVDQv9xTyKEUFoIaP_zzkx2LeHIyMMYvOCks5vdFWT6Dqeu4MjngGYB3b38zwa-Ig_7UAfOjshg3Wz8a0BQa3tM7p3-YsfhP_kNAK0Vzg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLemIjQuCDZghQFGQhMIZUv8leTGWnUqsO20od4i23GkwkiqtEXqhb-d9xynEmjswM1y7CR-zx8_2-_9HiFvbZWkpjSA3HQWR0LqNNKAO6JKZ9wwl4rMc3deXKrptfg8k7MdMu59YdCsMsz93ZzuZ-uQcxKkebKYz9HHN1YsT2aJv95Cxs97AoYvjs7jX1s7D_S6DRhYRVg8eM50Rl7GtDbYd7Fjj4JvX50GDQy420DoXwyjflU6e0QeBjhJT7s_fkx2XL1H9k9r2Er_2NAj6g08_cn5Hrk_6lO74z7M2z756M8EO_cG2lR0slhiAMxopNuW_py36yV9Nxl9fU_xxJb6kH50FN1soBc0dgNA9Qm5PptcjadRCKsQWSHFKlJVxWWmrdMqt1Yqp2TFFchJpNyAIOOqzJTKuKuc4sqUqc45d3HieMYsz0v-lAzqpnYHhDKuAGDGqWGGCadErkQppMyUVhpmYDYkSS_OwgbOcQx9cVP0xmXfClRBgSooYoYbkSH5sK2z6Bg37iwtey0Vf_SbApaEO-sdokqxDpLlWrQqgkqAlpBkjQ_Jm17VBegDL1F07Zr1Et8HW2J0qxkS-o8yKedcKs6h_c-6brJtCUM-niSBDxx1_Wb7BHm-Q9Z3SLkCsCxgu-f_2cDXZHd6dXFenH-6_PKCPOiNHlhySAardu1eApZamVd-rPwGQAYWkg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interaction+of+Epstein-Barr+virus+%28EBV%29+with+human+B-lymphocytes&rft.jtitle=Biochemical+and+biophysical+research+communications&rft.au=Klein%2C+George&rft.au=Klein%2C+Eva&rft.au=Kashuba%2C+Elena&rft.date=2010-05-21&rft.issn=0006-291X&rft.eissn=1090-2104&rft.volume=396&rft.issue=1&rft_id=info:doi/10.1016%2FJ.BBRC.2010.02.146&rft.externalDocID=22202603
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-291X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-291X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-291X&client=summon