Locked Nucleic Acid In situ Hybridization Analysis of miR-21 Expression during Colorectal Cancer Development

Purpose: To better understand microRNA miR-21 function in carcinogenesis, we analyzed miR-21 expression patterns in different stages of colorectal cancer development using in situ hybridization (ISH). Experimental Design: Locked nucleic acid (LNA)/DNA probes and a biotin-free tyramide signal amplifi...

Full description

Saved in:
Bibliographic Details
Published inClinical cancer research Vol. 15; no. 12; pp. 4009 - 4016
Main Authors Yamamichi, Nobutake, Shimomura, Ryoichi, Inada, Ken-ichi, Sakurai, Kouhei, Haraguchi, Takeshi, Ozaki, Yuka, Fujita, Shuji, Mizutani, Taketoshi, Furukawa, Chihiro, Fujishiro, Mitsuhiro, Ichinose, Masao, Shiogama, Kazuya, Tsutsumi, Yutaka, Omata, Masao, Iba, Hideo
Format Journal Article
LanguageEnglish
Published United States American Association for Cancer Research 15.06.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose: To better understand microRNA miR-21 function in carcinogenesis, we analyzed miR-21 expression patterns in different stages of colorectal cancer development using in situ hybridization (ISH). Experimental Design: Locked nucleic acid (LNA)/DNA probes and a biotin-free tyramide signal amplification system were used in ISH analyses of miRNA expression. Conditions for specific detection of miR-21 were determined using human cell lines and miR-21–expressing lentiviral vectors. Expression was determined in 39 surgically excised colorectal tumors and 34 endoscopically resected colorectal polyps. Results: In the surgical samples, miR-21 expression was much higher in colorectal cancers than in normal mucosa. Strong miR-21 expression was also observed in cancer-associated stromal fibroblasts, suggesting miR-21 induction by cancer-secreted cytokines. Protein expression of PDCD4, a miR-21 target, was inversely correlated with miR-21 expression, confirming that miR-21 is indeed a negative regulator of PDCD4 in vivo . In the endoscopic samples, miR-21 expression was very high in malignant adenocarcinomas but was not elevated in nontumorigenic polyps. Precancerous adenomas also frequently showed miR-21 up-regulation. Conclusion: Using the LNA-ISH system for miRNA detection, miR-21 was detectable in precancerous adenomas. The frequency and extent of miR-21 expression increased during the transition from precancerous colorectal adenoma to advanced carcinoma. Expression patterns of miR-21 RNA and its target, tumor suppressor protein PDCD4, were mutually exclusive. This pattern may have clinical application as a biomarker for colorectal cancer development and might be emphasized by self-reinforcing regulatory systems integrated with the miR-21 gene, which has been previously shown in cell culture.
AbstractList To better understand microRNA miR-21 function in carcinogenesis, we analyzed miR-21 expression patterns in different stages of colorectal cancer development using in situ hybridization (ISH). Locked nucleic acid (LNA)/DNA probes and a biotin-free tyramide signal amplification system were used in ISH analyses of miRNA expression. Conditions for specific detection of miR-21 were determined using human cell lines and miR-21-expressing lentiviral vectors. Expression was determined in 39 surgically excised colorectal tumors and 34 endoscopically resected colorectal polyps. In the surgical samples, miR-21 expression was much higher in colorectal cancers than in normal mucosa. Strong miR-21 expression was also observed in cancer-associated stromal fibroblasts, suggesting miR-21 induction by cancer-secreted cytokines. Protein expression of PDCD4, a miR-21 target, was inversely correlated with miR-21 expression, confirming that miR-21 is indeed a negative regulator of PDCD4 in vivo. In the endoscopic samples, miR-21 expression was very high in malignant adenocarcinomas but was not elevated in nontumorigenic polyps. Precancerous adenomas also frequently showed miR-21 up-regulation. Using the LNA-ISH system for miRNA detection, miR-21 was detectable in precancerous adenomas. The frequency and extent of miR-21 expression increased during the transition from precancerous colorectal adenoma to advanced carcinoma. Expression patterns of miR-21 RNA and its target, tumor suppressor protein PDCD4, were mutually exclusive. This pattern may have clinical application as a biomarker for colorectal cancer development and might be emphasized by self-reinforcing regulatory systems integrated with the miR-21 gene, which has been previously shown in cell culture.
Abstract Purpose: To better understand microRNA miR-21 function in carcinogenesis, we analyzed miR-21 expression patterns in different stages of colorectal cancer development using in situ hybridization (ISH). Experimental Design: Locked nucleic acid (LNA)/DNA probes and a biotin-free tyramide signal amplification system were used in ISH analyses of miRNA expression. Conditions for specific detection of miR-21 were determined using human cell lines and miR-21–expressing lentiviral vectors. Expression was determined in 39 surgically excised colorectal tumors and 34 endoscopically resected colorectal polyps. Results: In the surgical samples, miR-21 expression was much higher in colorectal cancers than in normal mucosa. Strong miR-21 expression was also observed in cancer-associated stromal fibroblasts, suggesting miR-21 induction by cancer-secreted cytokines. Protein expression of PDCD4, a miR-21 target, was inversely correlated with miR-21 expression, confirming that miR-21 is indeed a negative regulator of PDCD4 in vivo. In the endoscopic samples, miR-21 expression was very high in malignant adenocarcinomas but was not elevated in nontumorigenic polyps. Precancerous adenomas also frequently showed miR-21 up-regulation. Conclusion: Using the LNA-ISH system for miRNA detection, miR-21 was detectable in precancerous adenomas. The frequency and extent of miR-21 expression increased during the transition from precancerous colorectal adenoma to advanced carcinoma. Expression patterns of miR-21 RNA and its target, tumor suppressor protein PDCD4, were mutually exclusive. This pattern may have clinical application as a biomarker for colorectal cancer development and might be emphasized by self-reinforcing regulatory systems integrated with the miR-21 gene, which has been previously shown in cell culture.
Purpose: To better understand microRNA miR-21 function in carcinogenesis, we analyzed miR-21 expression patterns in different stages of colorectal cancer development using in situ hybridization (ISH). Experimental Design: Locked nucleic acid (LNA)/DNA probes and a biotin-free tyramide signal amplification system were used in ISH analyses of miRNA expression. Conditions for specific detection of miR-21 were determined using human cell lines and miR-21–expressing lentiviral vectors. Expression was determined in 39 surgically excised colorectal tumors and 34 endoscopically resected colorectal polyps. Results: In the surgical samples, miR-21 expression was much higher in colorectal cancers than in normal mucosa. Strong miR-21 expression was also observed in cancer-associated stromal fibroblasts, suggesting miR-21 induction by cancer-secreted cytokines. Protein expression of PDCD4, a miR-21 target, was inversely correlated with miR-21 expression, confirming that miR-21 is indeed a negative regulator of PDCD4 in vivo . In the endoscopic samples, miR-21 expression was very high in malignant adenocarcinomas but was not elevated in nontumorigenic polyps. Precancerous adenomas also frequently showed miR-21 up-regulation. Conclusion: Using the LNA-ISH system for miRNA detection, miR-21 was detectable in precancerous adenomas. The frequency and extent of miR-21 expression increased during the transition from precancerous colorectal adenoma to advanced carcinoma. Expression patterns of miR-21 RNA and its target, tumor suppressor protein PDCD4, were mutually exclusive. This pattern may have clinical application as a biomarker for colorectal cancer development and might be emphasized by self-reinforcing regulatory systems integrated with the miR-21 gene, which has been previously shown in cell culture.
Author Ryoichi Shimomura
Kazuya Shiogama
Takeshi Haraguchi
Chihiro Furukawa
Kouhei Sakurai
Nobutake Yamamichi
Yutaka Tsutsumi
Masao Ichinose
Ken-ichi Inada
Yuka Ozaki
Masao Omata
Mitsuhiro Fujishiro
Taketoshi Mizutani
Hideo Iba
Shuji Fujita
Author_xml – sequence: 1
  givenname: Nobutake
  surname: Yamamichi
  fullname: Yamamichi, Nobutake
  organization: Department of Microbiology and Immunology, Division of Host-Parasite Interaction, Faculty of Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
– sequence: 2
  givenname: Ryoichi
  surname: Shimomura
  fullname: Shimomura, Ryoichi
– sequence: 3
  givenname: Ken-ichi
  surname: Inada
  fullname: Inada, Ken-ichi
– sequence: 4
  givenname: Kouhei
  surname: Sakurai
  fullname: Sakurai, Kouhei
– sequence: 5
  givenname: Takeshi
  surname: Haraguchi
  fullname: Haraguchi, Takeshi
– sequence: 6
  givenname: Yuka
  surname: Ozaki
  fullname: Ozaki, Yuka
– sequence: 7
  givenname: Shuji
  surname: Fujita
  fullname: Fujita, Shuji
– sequence: 8
  givenname: Taketoshi
  surname: Mizutani
  fullname: Mizutani, Taketoshi
– sequence: 9
  givenname: Chihiro
  surname: Furukawa
  fullname: Furukawa, Chihiro
– sequence: 10
  givenname: Mitsuhiro
  surname: Fujishiro
  fullname: Fujishiro, Mitsuhiro
– sequence: 11
  givenname: Masao
  surname: Ichinose
  fullname: Ichinose, Masao
– sequence: 12
  givenname: Kazuya
  surname: Shiogama
  fullname: Shiogama, Kazuya
– sequence: 13
  givenname: Yutaka
  surname: Tsutsumi
  fullname: Tsutsumi, Yutaka
– sequence: 14
  givenname: Masao
  surname: Omata
  fullname: Omata, Masao
– sequence: 15
  givenname: Hideo
  surname: Iba
  fullname: Iba, Hideo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19509156$$D View this record in MEDLINE/PubMed
BookMark eNpFkMFOwzAMhiMEAgY8AihXDh1OmqztcSqDIU0gIe5R6rpboGunpAPG09MyECf_kr_fkr8RO2zahhi7FDAWQqc3ApI0AhXLcZ4_R5BGsdTJATsVWid9nujDPv8xJ2wUwiuAUALUMTsRmYZM6MkpqxctvlHJH7dYk0M-RVfyh4YH1235fFd4V7ov27m24dPG1rvgAm8rvnbPkRR89rnxFMKwLbfeNUuet3XrCTtb89w2SJ7f0jvV7WZNTXfOjipbB7r4nWfs5W72ks-jxdP9Qz5dRKi06iJdUCwxxQomqJKisliWgElFSmKi40LZUigEras0K5TMJKLECUICUgtN8RnT-7Po2xA8VWbj3dr6nRFgBnlmEGMGMaaXZyA1g7y-d7XvbbbFmsr_1q-tHrjeAyu3XH04TwZ_fuwdkPW4MkIbIY0CyOJvCdh78g
CitedBy_id crossref_primary_10_1038_srep08428
crossref_primary_10_1155_2013_762183
crossref_primary_10_1186_1476_4598_9_229
crossref_primary_10_1016_j_ijsu_2019_11_017
crossref_primary_10_1016_j_lfs_2014_04_017
crossref_primary_10_1016_j_lfs_2015_04_016
crossref_primary_10_3892_mco_2015_616
crossref_primary_10_3390_genes10040270
crossref_primary_10_1042_BJ20120434
crossref_primary_10_2217_bmm_10_87
crossref_primary_10_3390_jcm9082509
crossref_primary_10_1586_14737159_2014_946907
crossref_primary_10_1002_jcb_26047
crossref_primary_10_1016_j_canlet_2014_11_051
crossref_primary_10_1002_ijc_25823
crossref_primary_10_1002_mc_20863
crossref_primary_10_3724_SP_J_1008_2012_00940
crossref_primary_10_1016_j_ncrna_2023_11_004
crossref_primary_10_3390_ijms150711713
crossref_primary_10_1007_s00428_011_1046_5
crossref_primary_10_1371_journal_pone_0095193
crossref_primary_10_18632_oncotarget_20265
crossref_primary_10_1007_s13277_013_0688_0
crossref_primary_10_1371_journal_pone_0056766
crossref_primary_10_1007_s10585_010_9355_7
crossref_primary_10_3892_or_2012_1970
crossref_primary_10_1017_S1462399410001663
crossref_primary_10_1038_onc_2015_89
crossref_primary_10_1016_j_ejso_2011_04_001
crossref_primary_10_3892_ijo_2014_2272
crossref_primary_10_1007_s11060_012_0992_3
crossref_primary_10_3389_fimmu_2023_1180233
crossref_primary_10_1097_PRS_0000000000000577
crossref_primary_10_1371_journal_pone_0017167
crossref_primary_10_18632_oncotarget_4895
crossref_primary_10_1016_j_critrevonc_2017_01_007
crossref_primary_10_7314_APJCP_2014_15_17_6989
crossref_primary_10_3390_cells11030564
crossref_primary_10_4132_jptm_2016_03_19
crossref_primary_10_1586_14737159_2014_944507
crossref_primary_10_18632_oncotarget_6390
crossref_primary_10_18632_oncotarget_14975
crossref_primary_10_1371_journal_pone_0119783
crossref_primary_10_1158_0008_5472_CAN_10_2345
crossref_primary_10_3390_cancers9060054
crossref_primary_10_3390_cancers2021328
crossref_primary_10_1111_j_1445_5994_2011_02434_x
crossref_primary_10_1586_erm_11_69
crossref_primary_10_3892_ol_2016_5451
crossref_primary_10_1016_j_bios_2012_01_014
crossref_primary_10_1097_PPO_0b013e318258b78f
crossref_primary_10_1371_journal_pone_0140503
crossref_primary_10_1158_1078_0432_CCR_13_1023
crossref_primary_10_1186_s12929_016_0228_5
crossref_primary_10_1371_journal_pone_0161023
crossref_primary_10_1371_journal_pone_0032754
crossref_primary_10_3892_mmr_2014_1901
crossref_primary_10_1053_j_seminoncol_2011_08_009
crossref_primary_10_1136_jcp_2010_078253
crossref_primary_10_1111_cas_15065
crossref_primary_10_1038_bjc_2014_409
crossref_primary_10_2217_epi_2019_0110
crossref_primary_10_1096_fj_202101042R
crossref_primary_10_3892_or_2013_2580
crossref_primary_10_1007_s11888_011_0110_5
crossref_primary_10_1261_rna_035295_112
crossref_primary_10_1371_journal_pone_0148353
crossref_primary_10_1007_s00428_021_03171_w
crossref_primary_10_3109_07357907_2011_554477
crossref_primary_10_1158_1078_0432_CCR_10_1152
crossref_primary_10_1007_s11010_010_0463_0
crossref_primary_10_1016_j_cca_2020_05_012
crossref_primary_10_1155_2013_249535
crossref_primary_10_1016_j_ajpath_2014_01_037
crossref_primary_10_3390_ijms160819886
crossref_primary_10_3892_ol_2011_372
crossref_primary_10_1016_j_trsl_2013_11_005
crossref_primary_10_1158_1078_0432_CCR_14_2793
crossref_primary_10_7314_APJCP_2014_15_18_7583
crossref_primary_10_3389_fcvm_2022_826478
crossref_primary_10_1007_s00428_012_1352_6
crossref_primary_10_1073_pnas_1914286117
crossref_primary_10_1080_15476286_2024_2314846
crossref_primary_10_1016_j_nano_2021_102469
crossref_primary_10_1038_labinvest_2014_157
crossref_primary_10_1186_s12920_014_0068_7
crossref_primary_10_1038_bjc_2012_365
crossref_primary_10_1016_j_jri_2021_103328
crossref_primary_10_1158_1940_6207_CAPR_10_0036
crossref_primary_10_3390_ijms160613259
crossref_primary_10_1016_j_bbrc_2012_06_087
crossref_primary_10_1177_1010428317692261
crossref_primary_10_1016_j_arr_2014_04_005
crossref_primary_10_1089_omi_2017_0045
crossref_primary_10_5217_ir_2012_10_4_324
crossref_primary_10_1002_jso_23344
crossref_primary_10_3892_ijo_2012_1707
crossref_primary_10_3389_fendo_2022_834075
crossref_primary_10_3390_ijms19102944
crossref_primary_10_1097_MOG_0b013e328332b850
crossref_primary_10_1016_j_yexcr_2022_113442
crossref_primary_10_1186_s12967_016_0917_6
crossref_primary_10_1093_carcin_bgq243
crossref_primary_10_1111_jnc_13174
crossref_primary_10_1186_s13048_022_00985_3
crossref_primary_10_1016_j_aca_2016_02_034
crossref_primary_10_1371_journal_pone_0073009
crossref_primary_10_1186_s13223_019_0345_2
crossref_primary_10_1080_15476286_2018_1445959
crossref_primary_10_1016_j_bios_2018_08_025
crossref_primary_10_1038_s41419_021_03803_8
crossref_primary_10_1371_journal_pone_0026971
crossref_primary_10_3389_fcvm_2021_773083
crossref_primary_10_1016_j_prp_2014_07_008
crossref_primary_10_1111_cas_12300
crossref_primary_10_1038_aps_2010_206
crossref_primary_10_1039_C4CC10231B
crossref_primary_10_1210_jc_2012_3010
crossref_primary_10_1016_j_gene_2016_02_001
crossref_primary_10_1242_dmm_027441
crossref_primary_10_5009_gnl17263
crossref_primary_10_1053_j_gastro_2012_09_032
crossref_primary_10_1142_S0192415X22500719
crossref_primary_10_1007_s00604_017_2246_8
crossref_primary_10_1007_s00428_012_1345_5
crossref_primary_10_1007_s00384_015_2231_9
crossref_primary_10_1053_j_seminoncol_2015_09_007
Cites_doi 10.1038/sj.onc.1210793
10.1038/onc.2008.370
10.1158/0008-5472.CAN-06-0561
10.1158/0008-5472.CAN-05-1783
10.1038/onc.2008.72
10.1042/bj3420189
10.1158/0008-5472.CAN-05-3469
10.1056/NEJMp058190
10.1261/rna.2258506
10.1038/nrm1644
10.1182/blood-2006-12-062398
10.1093/nar/gkp040
10.1200/JCO.2005.05.5194
10.1073/pnas.0510565103
10.1038/nmeth825
10.1158/0008-5472.CAN-05-0137
10.1128/MCB.00479-08
10.1038/nmeth843
10.1053/j.gastro.2007.05.022
10.1074/jbc.M611393200
10.1091/mbc.e08-02-0159
10.1038/sj.onc.1210856
10.1016/j.febslet.2007.09.028
10.1002/ijc.22394
10.1038/sj.onc.1204137
10.1093/bioinformatics/btm589
10.1158/0008-5472.CAN-07-2601
10.1038/sj.onc.1208013
10.1002/cncr.22983
10.1016/j.jmb.2008.03.015
10.1046/j.1365-2168.2002.02120.x
10.1001/jama.299.4.425
10.1038/sj.onc.1210234
10.1097/00129039-200503000-00011
10.1016/j.canlet.2005.12.003
10.1053/j.gastro.2006.02.057
10.1038/sj.onc.1210083
10.1182/blood-2007-03-081133
10.1158/0008-5472.CAN-07-1936
10.1074/jbc.M707224200
10.1128/MCB.23.1.26-37.2003
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
DOI 10.1158/1078-0432.CCR-08-3257
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1557-3265
EndPage 4016
ExternalDocumentID 10_1158_1078_0432_CCR_08_3257
19509156
15_12_4009
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
29B
2WC
34G
39C
3O-
4H-
53G
55
5GY
5RE
5VS
AAPBV
ABFLS
ABOCM
ACIWK
ACPRK
ADACO
ADBBV
ADBIT
AENEX
AETEA
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
C1A
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FH7
FRP
GX1
H13
H~9
IH2
KQ8
L7B
LSO
MVM
O0-
OHT
OK1
P0W
P2P
RCR
RHF
RHI
RNS
SJN
UDS
VH1
W2D
WOQ
X7M
XFK
XJT
ZA5
ZCG
---
.55
18M
2FS
476
6J9
ACGFO
ACSVP
ADCOW
AFHIN
AFOSN
AI.
BR6
BTFSW
CGR
CUY
CVF
ECM
EIF
NPM
QTD
TR2
W8F
YKV
AAYXX
CITATION
ID FETCH-LOGICAL-c454t-5be32c8cf06c47bfacdd0c7fe42c753b4ad14c055f89b4292cc2c6c0702515e3
ISSN 1078-0432
IngestDate Thu Sep 26 15:52:23 EDT 2024
Sat Sep 28 07:53:36 EDT 2024
Fri Jan 15 19:22:14 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c454t-5be32c8cf06c47bfacdd0c7fe42c753b4ad14c055f89b4292cc2c6c0702515e3
OpenAccessLink https://aacrjournals.org/clincancerres/article-pdf/15/12/4009/1982169/4009.pdf
PMID 19509156
PageCount 8
ParticipantIDs crossref_primary_10_1158_1078_0432_CCR_08_3257
pubmed_primary_19509156
highwire_cancerresearch_15_12_4009
ProviderPackageCode RHF
RHI
PublicationCentury 2000
PublicationDate 20090615
2009-Jun-15
2009-06-15
PublicationDateYYYYMMDD 2009-06-15
PublicationDate_xml – month: 06
  year: 2009
  text: 20090615
  day: 15
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Clinical cancer research
PublicationTitleAlternate Clin Cancer Res
PublicationYear 2009
Publisher American Association for Cancer Research
Publisher_xml – name: American Association for Cancer Research
References 2022061022152872700_B14
2022061022152872700_B36
2022061022152872700_B13
2022061022152872700_B35
2022061022152872700_B16
2022061022152872700_B38
2022061022152872700_B15
2022061022152872700_B37
2022061022152872700_B10
2022061022152872700_B32
2022061022152872700_B31
2022061022152872700_B12
2022061022152872700_B34
2022061022152872700_B11
2022061022152872700_B33
2022061022152872700_B9
2022061022152872700_B8
2022061022152872700_B7
2022061022152872700_B6
2022061022152872700_B5
2022061022152872700_B18
2022061022152872700_B4
2022061022152872700_B17
2022061022152872700_B39
2022061022152872700_B3
2022061022152872700_B2
2022061022152872700_B19
2022061022152872700_B30
2022061022152872700_B25
2022061022152872700_B24
2022061022152872700_B27
2022061022152872700_B26
2022061022152872700_B21
2022061022152872700_B20
2022061022152872700_B23
2022061022152872700_B22
2022061022152872700_B29
2022061022152872700_B28
2022061022152872700_B1
2022061022152872700_B41
2022061022152872700_B40
References_xml – ident: 2022061022152872700_B26
  doi: 10.1038/sj.onc.1210793
– ident: 2022061022152872700_B29
  doi: 10.1038/onc.2008.370
– ident: 2022061022152872700_B13
  doi: 10.1158/0008-5472.CAN-06-0561
– ident: 2022061022152872700_B4
  doi: 10.1158/0008-5472.CAN-05-1783
– ident: 2022061022152872700_B23
  doi: 10.1038/onc.2008.72
– ident: 2022061022152872700_B41
  doi: 10.1042/bj3420189
– ident: 2022061022152872700_B24
  doi: 10.1158/0008-5472.CAN-05-3469
– ident: 2022061022152872700_B1
  doi: 10.1056/NEJMp058190
– ident: 2022061022152872700_B36
  doi: 10.1261/rna.2258506
– ident: 2022061022152872700_B33
  doi: 10.1038/nrm1644
– ident: 2022061022152872700_B11
  doi: 10.1182/blood-2006-12-062398
– ident: 2022061022152872700_B22
  doi: 10.1093/nar/gkp040
– ident: 2022061022152872700_B7
  doi: 10.1200/JCO.2005.05.5194
– ident: 2022061022152872700_B3
  doi: 10.1073/pnas.0510565103
– ident: 2022061022152872700_B34
  doi: 10.1038/nmeth825
– ident: 2022061022152872700_B10
  doi: 10.1158/0008-5472.CAN-05-0137
– ident: 2022061022152872700_B17
  doi: 10.1128/MCB.00479-08
– ident: 2022061022152872700_B35
  doi: 10.1038/nmeth843
– ident: 2022061022152872700_B9
  doi: 10.1053/j.gastro.2007.05.022
– ident: 2022061022152872700_B19
  doi: 10.1074/jbc.M611393200
– ident: 2022061022152872700_B18
  doi: 10.1091/mbc.e08-02-0159
– ident: 2022061022152872700_B21
  doi: 10.1038/sj.onc.1210856
– ident: 2022061022152872700_B32
  doi: 10.1016/j.febslet.2007.09.028
– ident: 2022061022152872700_B6
  doi: 10.1002/ijc.22394
– ident: 2022061022152872700_B27
  doi: 10.1038/sj.onc.1204137
– ident: 2022061022152872700_B2
  doi: 10.1093/bioinformatics/btm589
– ident: 2022061022152872700_B31
  doi: 10.1158/0008-5472.CAN-07-2601
– ident: 2022061022152872700_B38
  doi: 10.1038/sj.onc.1208013
– ident: 2022061022152872700_B40
  doi: 10.1002/cncr.22983
– ident: 2022061022152872700_B16
  doi: 10.1016/j.jmb.2008.03.015
– ident: 2022061022152872700_B30
  doi: 10.1046/j.1365-2168.2002.02120.x
– ident: 2022061022152872700_B15
  doi: 10.1001/jama.299.4.425
– ident: 2022061022152872700_B28
  doi: 10.1038/sj.onc.1210234
– ident: 2022061022152872700_B37
  doi: 10.1097/00129039-200503000-00011
– ident: 2022061022152872700_B39
  doi: 10.1016/j.canlet.2005.12.003
– ident: 2022061022152872700_B8
  doi: 10.1053/j.gastro.2006.02.057
– ident: 2022061022152872700_B5
  doi: 10.1038/sj.onc.1210083
– ident: 2022061022152872700_B12
  doi: 10.1182/blood-2007-03-081133
– ident: 2022061022152872700_B14
  doi: 10.1158/0008-5472.CAN-07-1936
– ident: 2022061022152872700_B20
  doi: 10.1074/jbc.M707224200
– ident: 2022061022152872700_B25
  doi: 10.1128/MCB.23.1.26-37.2003
SSID ssj0014104
Score 2.4319708
Snippet Purpose: To better understand microRNA miR-21 function in carcinogenesis, we analyzed miR-21 expression patterns in different stages of colorectal cancer...
To better understand microRNA miR-21 function in carcinogenesis, we analyzed miR-21 expression patterns in different stages of colorectal cancer development...
Abstract Purpose: To better understand microRNA miR-21 function in carcinogenesis, we analyzed miR-21 expression patterns in different stages of colorectal...
SourceID crossref
pubmed
highwire
SourceType Aggregation Database
Index Database
Publisher
StartPage 4009
SubjectTerms Adenocarcinoma - diagnosis
Adenocarcinoma - genetics
Adenocarcinoma - pathology
Apoptosis Regulatory Proteins - metabolism
cancer-associated stromal fibroblasts
colorectal cancer
Colorectal Neoplasms - diagnosis
Colorectal Neoplasms - genetics
Colorectal Neoplasms - pathology
DNA Probes - genetics
Genetic Vectors - metabolism
HeLa Cells
Humans
hybridization
in situ
In Situ Hybridization
LNA
MicroRNAs - analysis
MicroRNAs - genetics
miR-21
Oligonucleotides - genetics
PDCD4
Precancerous Conditions - diagnosis
Precancerous Conditions - genetics
Precancerous Conditions - pathology
RNA-Binding Proteins - metabolism
Title Locked Nucleic Acid In situ Hybridization Analysis of miR-21 Expression during Colorectal Cancer Development
URI http://clincancerres.aacrjournals.org/content/15/12/4009.abstract
https://www.ncbi.nlm.nih.gov/pubmed/19509156
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIiEuFW_CSyvELXKw114_jpUFSoHm0AapnFa7a1u12tgotQ_lf_H_mPGuHaeKEOViRY4zG-18Oy_Pg5APhfIVYxl3uMbXjKDRHOX54LhqN0tcnkV-lzx-sgwX34Mv5_x8Mvk9ylpqGzXXv_bWlfwPV-Ee8BWrZO_A2YEo3IDPwF-4Aofh-k88_gbCDAzGJfYkLvXsSJeY2zu7Lpt2trjBWixbZbnTe2RdnjrMwybHJge26msVUxCEKAAxnoBg2IxTisZWbNqXU2rzmO0YNESWf8g1jrnv5gXPlrVqG3k5AOjsAuCxbjfGar2p8bkBoJXMpC0XcsZfnMlL-IXJPKjbi7zciVZghwPH1GtaAetiR9_AxjRzK3Q5CDpmZkYMUpmP0cdGMhakTjLS1-Aghvt1AY-7sIRdcJ6mp10wmJmO2Lu9t2_pxCFTsfOReCyQjEAyAsgINxZI5h65z0C-ddkBx1-Hl1eB102tHFa2hWNA5uPef7NrEvVtqm_5OZ29s3pEDq2jQo8M6h6TSV49IQ9ObCrGU3JlwEct-CiCjx5XFMFHd8BHe_DRuqAGfHQLPmrAR7fgowZ8dAS-Z2T1-dMqXTh2dIejAx40Dle5z3SsCzfUQaQKqbPM1VGRB0yDg6wCmXmBdjkv4kThxDStmQ416B-wt3nuPycHVV3lLwmVnuQySpRU4PqDua9YyGIWqdgNY-1F2ZTM-80TP02DFvFXpk3J-36LhTkl_SERHhceE4ivKXlhNn9LM0HTmoev7rrea_JwexDekINm0-ZvwZBt1LsONn8AkiaYFg
link.rule.ids 315,783,787,27936,27937
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Locked+Nucleic+Acid+In+situ+Hybridization+Analysis+of+miR-21+Expression+during+Colorectal+Cancer+Development&rft.jtitle=Clinical+cancer+research&rft.au=Yamamichi%2C+Nobutake&rft.au=Shimomura%2C+Ryoichi&rft.au=Inada%2C+Ken-ichi&rft.au=Sakurai%2C+Kouhei&rft.date=2009-06-15&rft.issn=1078-0432&rft.eissn=1557-3265&rft.volume=15&rft.issue=12&rft.spage=4009&rft.epage=4016&rft_id=info:doi/10.1158%2F1078-0432.CCR-08-3257&rft.externalDBID=n%2Fa&rft.externalDocID=10_1158_1078_0432_CCR_08_3257
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-0432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-0432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-0432&client=summon