Locked Nucleic Acid In situ Hybridization Analysis of miR-21 Expression during Colorectal Cancer Development
Purpose: To better understand microRNA miR-21 function in carcinogenesis, we analyzed miR-21 expression patterns in different stages of colorectal cancer development using in situ hybridization (ISH). Experimental Design: Locked nucleic acid (LNA)/DNA probes and a biotin-free tyramide signal amplifi...
Saved in:
Published in | Clinical cancer research Vol. 15; no. 12; pp. 4009 - 4016 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for Cancer Research
15.06.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose: To better understand microRNA miR-21 function in carcinogenesis, we analyzed miR-21 expression patterns in different stages
of colorectal cancer development using in situ hybridization (ISH).
Experimental Design: Locked nucleic acid (LNA)/DNA probes and a biotin-free tyramide signal amplification system were used in ISH analyses of
miRNA expression. Conditions for specific detection of miR-21 were determined using human cell lines and miR-21–expressing
lentiviral vectors. Expression was determined in 39 surgically excised colorectal tumors and 34 endoscopically resected colorectal
polyps.
Results: In the surgical samples, miR-21 expression was much higher in colorectal cancers than in normal mucosa. Strong miR-21 expression
was also observed in cancer-associated stromal fibroblasts, suggesting miR-21 induction by cancer-secreted cytokines. Protein
expression of PDCD4, a miR-21 target, was inversely correlated with miR-21 expression, confirming that miR-21 is indeed a
negative regulator of PDCD4 in vivo . In the endoscopic samples, miR-21 expression was very high in malignant adenocarcinomas but was not elevated in nontumorigenic
polyps. Precancerous adenomas also frequently showed miR-21 up-regulation.
Conclusion: Using the LNA-ISH system for miRNA detection, miR-21 was detectable in precancerous adenomas. The frequency and extent of
miR-21 expression increased during the transition from precancerous colorectal adenoma to advanced carcinoma. Expression patterns
of miR-21 RNA and its target, tumor suppressor protein PDCD4, were mutually exclusive. This pattern may have clinical application
as a biomarker for colorectal cancer development and might be emphasized by self-reinforcing regulatory systems integrated
with the miR-21 gene, which has been previously shown in cell culture. |
---|---|
AbstractList | To better understand microRNA miR-21 function in carcinogenesis, we analyzed miR-21 expression patterns in different stages of colorectal cancer development using in situ hybridization (ISH).
Locked nucleic acid (LNA)/DNA probes and a biotin-free tyramide signal amplification system were used in ISH analyses of miRNA expression. Conditions for specific detection of miR-21 were determined using human cell lines and miR-21-expressing lentiviral vectors. Expression was determined in 39 surgically excised colorectal tumors and 34 endoscopically resected colorectal polyps.
In the surgical samples, miR-21 expression was much higher in colorectal cancers than in normal mucosa. Strong miR-21 expression was also observed in cancer-associated stromal fibroblasts, suggesting miR-21 induction by cancer-secreted cytokines. Protein expression of PDCD4, a miR-21 target, was inversely correlated with miR-21 expression, confirming that miR-21 is indeed a negative regulator of PDCD4 in vivo. In the endoscopic samples, miR-21 expression was very high in malignant adenocarcinomas but was not elevated in nontumorigenic polyps. Precancerous adenomas also frequently showed miR-21 up-regulation.
Using the LNA-ISH system for miRNA detection, miR-21 was detectable in precancerous adenomas. The frequency and extent of miR-21 expression increased during the transition from precancerous colorectal adenoma to advanced carcinoma. Expression patterns of miR-21 RNA and its target, tumor suppressor protein PDCD4, were mutually exclusive. This pattern may have clinical application as a biomarker for colorectal cancer development and might be emphasized by self-reinforcing regulatory systems integrated with the miR-21 gene, which has been previously shown in cell culture. Abstract Purpose: To better understand microRNA miR-21 function in carcinogenesis, we analyzed miR-21 expression patterns in different stages of colorectal cancer development using in situ hybridization (ISH). Experimental Design: Locked nucleic acid (LNA)/DNA probes and a biotin-free tyramide signal amplification system were used in ISH analyses of miRNA expression. Conditions for specific detection of miR-21 were determined using human cell lines and miR-21–expressing lentiviral vectors. Expression was determined in 39 surgically excised colorectal tumors and 34 endoscopically resected colorectal polyps. Results: In the surgical samples, miR-21 expression was much higher in colorectal cancers than in normal mucosa. Strong miR-21 expression was also observed in cancer-associated stromal fibroblasts, suggesting miR-21 induction by cancer-secreted cytokines. Protein expression of PDCD4, a miR-21 target, was inversely correlated with miR-21 expression, confirming that miR-21 is indeed a negative regulator of PDCD4 in vivo. In the endoscopic samples, miR-21 expression was very high in malignant adenocarcinomas but was not elevated in nontumorigenic polyps. Precancerous adenomas also frequently showed miR-21 up-regulation. Conclusion: Using the LNA-ISH system for miRNA detection, miR-21 was detectable in precancerous adenomas. The frequency and extent of miR-21 expression increased during the transition from precancerous colorectal adenoma to advanced carcinoma. Expression patterns of miR-21 RNA and its target, tumor suppressor protein PDCD4, were mutually exclusive. This pattern may have clinical application as a biomarker for colorectal cancer development and might be emphasized by self-reinforcing regulatory systems integrated with the miR-21 gene, which has been previously shown in cell culture. Purpose: To better understand microRNA miR-21 function in carcinogenesis, we analyzed miR-21 expression patterns in different stages of colorectal cancer development using in situ hybridization (ISH). Experimental Design: Locked nucleic acid (LNA)/DNA probes and a biotin-free tyramide signal amplification system were used in ISH analyses of miRNA expression. Conditions for specific detection of miR-21 were determined using human cell lines and miR-21–expressing lentiviral vectors. Expression was determined in 39 surgically excised colorectal tumors and 34 endoscopically resected colorectal polyps. Results: In the surgical samples, miR-21 expression was much higher in colorectal cancers than in normal mucosa. Strong miR-21 expression was also observed in cancer-associated stromal fibroblasts, suggesting miR-21 induction by cancer-secreted cytokines. Protein expression of PDCD4, a miR-21 target, was inversely correlated with miR-21 expression, confirming that miR-21 is indeed a negative regulator of PDCD4 in vivo . In the endoscopic samples, miR-21 expression was very high in malignant adenocarcinomas but was not elevated in nontumorigenic polyps. Precancerous adenomas also frequently showed miR-21 up-regulation. Conclusion: Using the LNA-ISH system for miRNA detection, miR-21 was detectable in precancerous adenomas. The frequency and extent of miR-21 expression increased during the transition from precancerous colorectal adenoma to advanced carcinoma. Expression patterns of miR-21 RNA and its target, tumor suppressor protein PDCD4, were mutually exclusive. This pattern may have clinical application as a biomarker for colorectal cancer development and might be emphasized by self-reinforcing regulatory systems integrated with the miR-21 gene, which has been previously shown in cell culture. |
Author | Ryoichi Shimomura Kazuya Shiogama Takeshi Haraguchi Chihiro Furukawa Kouhei Sakurai Nobutake Yamamichi Yutaka Tsutsumi Masao Ichinose Ken-ichi Inada Yuka Ozaki Masao Omata Mitsuhiro Fujishiro Taketoshi Mizutani Hideo Iba Shuji Fujita |
Author_xml | – sequence: 1 givenname: Nobutake surname: Yamamichi fullname: Yamamichi, Nobutake organization: Department of Microbiology and Immunology, Division of Host-Parasite Interaction, Faculty of Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan – sequence: 2 givenname: Ryoichi surname: Shimomura fullname: Shimomura, Ryoichi – sequence: 3 givenname: Ken-ichi surname: Inada fullname: Inada, Ken-ichi – sequence: 4 givenname: Kouhei surname: Sakurai fullname: Sakurai, Kouhei – sequence: 5 givenname: Takeshi surname: Haraguchi fullname: Haraguchi, Takeshi – sequence: 6 givenname: Yuka surname: Ozaki fullname: Ozaki, Yuka – sequence: 7 givenname: Shuji surname: Fujita fullname: Fujita, Shuji – sequence: 8 givenname: Taketoshi surname: Mizutani fullname: Mizutani, Taketoshi – sequence: 9 givenname: Chihiro surname: Furukawa fullname: Furukawa, Chihiro – sequence: 10 givenname: Mitsuhiro surname: Fujishiro fullname: Fujishiro, Mitsuhiro – sequence: 11 givenname: Masao surname: Ichinose fullname: Ichinose, Masao – sequence: 12 givenname: Kazuya surname: Shiogama fullname: Shiogama, Kazuya – sequence: 13 givenname: Yutaka surname: Tsutsumi fullname: Tsutsumi, Yutaka – sequence: 14 givenname: Masao surname: Omata fullname: Omata, Masao – sequence: 15 givenname: Hideo surname: Iba fullname: Iba, Hideo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19509156$$D View this record in MEDLINE/PubMed |
BookMark | eNpFkMFOwzAMhiMEAgY8AihXDh1OmqztcSqDIU0gIe5R6rpboGunpAPG09MyECf_kr_fkr8RO2zahhi7FDAWQqc3ApI0AhXLcZ4_R5BGsdTJATsVWid9nujDPv8xJ2wUwiuAUALUMTsRmYZM6MkpqxctvlHJH7dYk0M-RVfyh4YH1235fFd4V7ov27m24dPG1rvgAm8rvnbPkRR89rnxFMKwLbfeNUuet3XrCTtb89w2SJ7f0jvV7WZNTXfOjipbB7r4nWfs5W72ks-jxdP9Qz5dRKi06iJdUCwxxQomqJKisliWgElFSmKi40LZUigEras0K5TMJKLECUICUgtN8RnT-7Po2xA8VWbj3dr6nRFgBnlmEGMGMaaXZyA1g7y-d7XvbbbFmsr_1q-tHrjeAyu3XH04TwZ_fuwdkPW4MkIbIY0CyOJvCdh78g |
CitedBy_id | crossref_primary_10_1038_srep08428 crossref_primary_10_1155_2013_762183 crossref_primary_10_1186_1476_4598_9_229 crossref_primary_10_1016_j_ijsu_2019_11_017 crossref_primary_10_1016_j_lfs_2014_04_017 crossref_primary_10_1016_j_lfs_2015_04_016 crossref_primary_10_3892_mco_2015_616 crossref_primary_10_3390_genes10040270 crossref_primary_10_1042_BJ20120434 crossref_primary_10_2217_bmm_10_87 crossref_primary_10_3390_jcm9082509 crossref_primary_10_1586_14737159_2014_946907 crossref_primary_10_1002_jcb_26047 crossref_primary_10_1016_j_canlet_2014_11_051 crossref_primary_10_1002_ijc_25823 crossref_primary_10_1002_mc_20863 crossref_primary_10_3724_SP_J_1008_2012_00940 crossref_primary_10_1016_j_ncrna_2023_11_004 crossref_primary_10_3390_ijms150711713 crossref_primary_10_1007_s00428_011_1046_5 crossref_primary_10_1371_journal_pone_0095193 crossref_primary_10_18632_oncotarget_20265 crossref_primary_10_1007_s13277_013_0688_0 crossref_primary_10_1371_journal_pone_0056766 crossref_primary_10_1007_s10585_010_9355_7 crossref_primary_10_3892_or_2012_1970 crossref_primary_10_1017_S1462399410001663 crossref_primary_10_1038_onc_2015_89 crossref_primary_10_1016_j_ejso_2011_04_001 crossref_primary_10_3892_ijo_2014_2272 crossref_primary_10_1007_s11060_012_0992_3 crossref_primary_10_3389_fimmu_2023_1180233 crossref_primary_10_1097_PRS_0000000000000577 crossref_primary_10_1371_journal_pone_0017167 crossref_primary_10_18632_oncotarget_4895 crossref_primary_10_1016_j_critrevonc_2017_01_007 crossref_primary_10_7314_APJCP_2014_15_17_6989 crossref_primary_10_3390_cells11030564 crossref_primary_10_4132_jptm_2016_03_19 crossref_primary_10_1586_14737159_2014_944507 crossref_primary_10_18632_oncotarget_6390 crossref_primary_10_18632_oncotarget_14975 crossref_primary_10_1371_journal_pone_0119783 crossref_primary_10_1158_0008_5472_CAN_10_2345 crossref_primary_10_3390_cancers9060054 crossref_primary_10_3390_cancers2021328 crossref_primary_10_1111_j_1445_5994_2011_02434_x crossref_primary_10_1586_erm_11_69 crossref_primary_10_3892_ol_2016_5451 crossref_primary_10_1016_j_bios_2012_01_014 crossref_primary_10_1097_PPO_0b013e318258b78f crossref_primary_10_1371_journal_pone_0140503 crossref_primary_10_1158_1078_0432_CCR_13_1023 crossref_primary_10_1186_s12929_016_0228_5 crossref_primary_10_1371_journal_pone_0161023 crossref_primary_10_1371_journal_pone_0032754 crossref_primary_10_3892_mmr_2014_1901 crossref_primary_10_1053_j_seminoncol_2011_08_009 crossref_primary_10_1136_jcp_2010_078253 crossref_primary_10_1111_cas_15065 crossref_primary_10_1038_bjc_2014_409 crossref_primary_10_2217_epi_2019_0110 crossref_primary_10_1096_fj_202101042R crossref_primary_10_3892_or_2013_2580 crossref_primary_10_1007_s11888_011_0110_5 crossref_primary_10_1261_rna_035295_112 crossref_primary_10_1371_journal_pone_0148353 crossref_primary_10_1007_s00428_021_03171_w crossref_primary_10_3109_07357907_2011_554477 crossref_primary_10_1158_1078_0432_CCR_10_1152 crossref_primary_10_1007_s11010_010_0463_0 crossref_primary_10_1016_j_cca_2020_05_012 crossref_primary_10_1155_2013_249535 crossref_primary_10_1016_j_ajpath_2014_01_037 crossref_primary_10_3390_ijms160819886 crossref_primary_10_3892_ol_2011_372 crossref_primary_10_1016_j_trsl_2013_11_005 crossref_primary_10_1158_1078_0432_CCR_14_2793 crossref_primary_10_7314_APJCP_2014_15_18_7583 crossref_primary_10_3389_fcvm_2022_826478 crossref_primary_10_1007_s00428_012_1352_6 crossref_primary_10_1073_pnas_1914286117 crossref_primary_10_1080_15476286_2024_2314846 crossref_primary_10_1016_j_nano_2021_102469 crossref_primary_10_1038_labinvest_2014_157 crossref_primary_10_1186_s12920_014_0068_7 crossref_primary_10_1038_bjc_2012_365 crossref_primary_10_1016_j_jri_2021_103328 crossref_primary_10_1158_1940_6207_CAPR_10_0036 crossref_primary_10_3390_ijms160613259 crossref_primary_10_1016_j_bbrc_2012_06_087 crossref_primary_10_1177_1010428317692261 crossref_primary_10_1016_j_arr_2014_04_005 crossref_primary_10_1089_omi_2017_0045 crossref_primary_10_5217_ir_2012_10_4_324 crossref_primary_10_1002_jso_23344 crossref_primary_10_3892_ijo_2012_1707 crossref_primary_10_3389_fendo_2022_834075 crossref_primary_10_3390_ijms19102944 crossref_primary_10_1097_MOG_0b013e328332b850 crossref_primary_10_1016_j_yexcr_2022_113442 crossref_primary_10_1186_s12967_016_0917_6 crossref_primary_10_1093_carcin_bgq243 crossref_primary_10_1111_jnc_13174 crossref_primary_10_1186_s13048_022_00985_3 crossref_primary_10_1016_j_aca_2016_02_034 crossref_primary_10_1371_journal_pone_0073009 crossref_primary_10_1186_s13223_019_0345_2 crossref_primary_10_1080_15476286_2018_1445959 crossref_primary_10_1016_j_bios_2018_08_025 crossref_primary_10_1038_s41419_021_03803_8 crossref_primary_10_1371_journal_pone_0026971 crossref_primary_10_3389_fcvm_2021_773083 crossref_primary_10_1016_j_prp_2014_07_008 crossref_primary_10_1111_cas_12300 crossref_primary_10_1038_aps_2010_206 crossref_primary_10_1039_C4CC10231B crossref_primary_10_1210_jc_2012_3010 crossref_primary_10_1016_j_gene_2016_02_001 crossref_primary_10_1242_dmm_027441 crossref_primary_10_5009_gnl17263 crossref_primary_10_1053_j_gastro_2012_09_032 crossref_primary_10_1142_S0192415X22500719 crossref_primary_10_1007_s00604_017_2246_8 crossref_primary_10_1007_s00428_012_1345_5 crossref_primary_10_1007_s00384_015_2231_9 crossref_primary_10_1053_j_seminoncol_2015_09_007 |
Cites_doi | 10.1038/sj.onc.1210793 10.1038/onc.2008.370 10.1158/0008-5472.CAN-06-0561 10.1158/0008-5472.CAN-05-1783 10.1038/onc.2008.72 10.1042/bj3420189 10.1158/0008-5472.CAN-05-3469 10.1056/NEJMp058190 10.1261/rna.2258506 10.1038/nrm1644 10.1182/blood-2006-12-062398 10.1093/nar/gkp040 10.1200/JCO.2005.05.5194 10.1073/pnas.0510565103 10.1038/nmeth825 10.1158/0008-5472.CAN-05-0137 10.1128/MCB.00479-08 10.1038/nmeth843 10.1053/j.gastro.2007.05.022 10.1074/jbc.M611393200 10.1091/mbc.e08-02-0159 10.1038/sj.onc.1210856 10.1016/j.febslet.2007.09.028 10.1002/ijc.22394 10.1038/sj.onc.1204137 10.1093/bioinformatics/btm589 10.1158/0008-5472.CAN-07-2601 10.1038/sj.onc.1208013 10.1002/cncr.22983 10.1016/j.jmb.2008.03.015 10.1046/j.1365-2168.2002.02120.x 10.1001/jama.299.4.425 10.1038/sj.onc.1210234 10.1097/00129039-200503000-00011 10.1016/j.canlet.2005.12.003 10.1053/j.gastro.2006.02.057 10.1038/sj.onc.1210083 10.1182/blood-2007-03-081133 10.1158/0008-5472.CAN-07-1936 10.1074/jbc.M707224200 10.1128/MCB.23.1.26-37.2003 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION |
DOI | 10.1158/1078-0432.CCR-08-3257 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef |
DatabaseTitleList | MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1557-3265 |
EndPage | 4016 |
ExternalDocumentID | 10_1158_1078_0432_CCR_08_3257 19509156 15_12_4009 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 29B 2WC 34G 39C 3O- 4H- 53G 55 5GY 5RE 5VS AAPBV ABFLS ABOCM ACIWK ACPRK ADACO ADBBV ADBIT AENEX AETEA AFFNX AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL C1A CS3 DIK DU5 E3Z EBS EJD F5P FH7 FRP GX1 H13 H~9 IH2 KQ8 L7B LSO MVM O0- OHT OK1 P0W P2P RCR RHF RHI RNS SJN UDS VH1 W2D WOQ X7M XFK XJT ZA5 ZCG --- .55 18M 2FS 476 6J9 ACGFO ACSVP ADCOW AFHIN AFOSN AI. BR6 BTFSW CGR CUY CVF ECM EIF NPM QTD TR2 W8F YKV AAYXX CITATION |
ID | FETCH-LOGICAL-c454t-5be32c8cf06c47bfacdd0c7fe42c753b4ad14c055f89b4292cc2c6c0702515e3 |
ISSN | 1078-0432 |
IngestDate | Thu Sep 26 15:52:23 EDT 2024 Sat Sep 28 07:53:36 EDT 2024 Fri Jan 15 19:22:14 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c454t-5be32c8cf06c47bfacdd0c7fe42c753b4ad14c055f89b4292cc2c6c0702515e3 |
OpenAccessLink | https://aacrjournals.org/clincancerres/article-pdf/15/12/4009/1982169/4009.pdf |
PMID | 19509156 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1158_1078_0432_CCR_08_3257 pubmed_primary_19509156 highwire_cancerresearch_15_12_4009 |
ProviderPackageCode | RHF RHI |
PublicationCentury | 2000 |
PublicationDate | 20090615 2009-Jun-15 2009-06-15 |
PublicationDateYYYYMMDD | 2009-06-15 |
PublicationDate_xml | – month: 06 year: 2009 text: 20090615 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Clinical cancer research |
PublicationTitleAlternate | Clin Cancer Res |
PublicationYear | 2009 |
Publisher | American Association for Cancer Research |
Publisher_xml | – name: American Association for Cancer Research |
References | 2022061022152872700_B14 2022061022152872700_B36 2022061022152872700_B13 2022061022152872700_B35 2022061022152872700_B16 2022061022152872700_B38 2022061022152872700_B15 2022061022152872700_B37 2022061022152872700_B10 2022061022152872700_B32 2022061022152872700_B31 2022061022152872700_B12 2022061022152872700_B34 2022061022152872700_B11 2022061022152872700_B33 2022061022152872700_B9 2022061022152872700_B8 2022061022152872700_B7 2022061022152872700_B6 2022061022152872700_B5 2022061022152872700_B18 2022061022152872700_B4 2022061022152872700_B17 2022061022152872700_B39 2022061022152872700_B3 2022061022152872700_B2 2022061022152872700_B19 2022061022152872700_B30 2022061022152872700_B25 2022061022152872700_B24 2022061022152872700_B27 2022061022152872700_B26 2022061022152872700_B21 2022061022152872700_B20 2022061022152872700_B23 2022061022152872700_B22 2022061022152872700_B29 2022061022152872700_B28 2022061022152872700_B1 2022061022152872700_B41 2022061022152872700_B40 |
References_xml | – ident: 2022061022152872700_B26 doi: 10.1038/sj.onc.1210793 – ident: 2022061022152872700_B29 doi: 10.1038/onc.2008.370 – ident: 2022061022152872700_B13 doi: 10.1158/0008-5472.CAN-06-0561 – ident: 2022061022152872700_B4 doi: 10.1158/0008-5472.CAN-05-1783 – ident: 2022061022152872700_B23 doi: 10.1038/onc.2008.72 – ident: 2022061022152872700_B41 doi: 10.1042/bj3420189 – ident: 2022061022152872700_B24 doi: 10.1158/0008-5472.CAN-05-3469 – ident: 2022061022152872700_B1 doi: 10.1056/NEJMp058190 – ident: 2022061022152872700_B36 doi: 10.1261/rna.2258506 – ident: 2022061022152872700_B33 doi: 10.1038/nrm1644 – ident: 2022061022152872700_B11 doi: 10.1182/blood-2006-12-062398 – ident: 2022061022152872700_B22 doi: 10.1093/nar/gkp040 – ident: 2022061022152872700_B7 doi: 10.1200/JCO.2005.05.5194 – ident: 2022061022152872700_B3 doi: 10.1073/pnas.0510565103 – ident: 2022061022152872700_B34 doi: 10.1038/nmeth825 – ident: 2022061022152872700_B10 doi: 10.1158/0008-5472.CAN-05-0137 – ident: 2022061022152872700_B17 doi: 10.1128/MCB.00479-08 – ident: 2022061022152872700_B35 doi: 10.1038/nmeth843 – ident: 2022061022152872700_B9 doi: 10.1053/j.gastro.2007.05.022 – ident: 2022061022152872700_B19 doi: 10.1074/jbc.M611393200 – ident: 2022061022152872700_B18 doi: 10.1091/mbc.e08-02-0159 – ident: 2022061022152872700_B21 doi: 10.1038/sj.onc.1210856 – ident: 2022061022152872700_B32 doi: 10.1016/j.febslet.2007.09.028 – ident: 2022061022152872700_B6 doi: 10.1002/ijc.22394 – ident: 2022061022152872700_B27 doi: 10.1038/sj.onc.1204137 – ident: 2022061022152872700_B2 doi: 10.1093/bioinformatics/btm589 – ident: 2022061022152872700_B31 doi: 10.1158/0008-5472.CAN-07-2601 – ident: 2022061022152872700_B38 doi: 10.1038/sj.onc.1208013 – ident: 2022061022152872700_B40 doi: 10.1002/cncr.22983 – ident: 2022061022152872700_B16 doi: 10.1016/j.jmb.2008.03.015 – ident: 2022061022152872700_B30 doi: 10.1046/j.1365-2168.2002.02120.x – ident: 2022061022152872700_B15 doi: 10.1001/jama.299.4.425 – ident: 2022061022152872700_B28 doi: 10.1038/sj.onc.1210234 – ident: 2022061022152872700_B37 doi: 10.1097/00129039-200503000-00011 – ident: 2022061022152872700_B39 doi: 10.1016/j.canlet.2005.12.003 – ident: 2022061022152872700_B8 doi: 10.1053/j.gastro.2006.02.057 – ident: 2022061022152872700_B5 doi: 10.1038/sj.onc.1210083 – ident: 2022061022152872700_B12 doi: 10.1182/blood-2007-03-081133 – ident: 2022061022152872700_B14 doi: 10.1158/0008-5472.CAN-07-1936 – ident: 2022061022152872700_B20 doi: 10.1074/jbc.M707224200 – ident: 2022061022152872700_B25 doi: 10.1128/MCB.23.1.26-37.2003 |
SSID | ssj0014104 |
Score | 2.4319708 |
Snippet | Purpose: To better understand microRNA miR-21 function in carcinogenesis, we analyzed miR-21 expression patterns in different stages
of colorectal cancer... To better understand microRNA miR-21 function in carcinogenesis, we analyzed miR-21 expression patterns in different stages of colorectal cancer development... Abstract Purpose: To better understand microRNA miR-21 function in carcinogenesis, we analyzed miR-21 expression patterns in different stages of colorectal... |
SourceID | crossref pubmed highwire |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 4009 |
SubjectTerms | Adenocarcinoma - diagnosis Adenocarcinoma - genetics Adenocarcinoma - pathology Apoptosis Regulatory Proteins - metabolism cancer-associated stromal fibroblasts colorectal cancer Colorectal Neoplasms - diagnosis Colorectal Neoplasms - genetics Colorectal Neoplasms - pathology DNA Probes - genetics Genetic Vectors - metabolism HeLa Cells Humans hybridization in situ In Situ Hybridization LNA MicroRNAs - analysis MicroRNAs - genetics miR-21 Oligonucleotides - genetics PDCD4 Precancerous Conditions - diagnosis Precancerous Conditions - genetics Precancerous Conditions - pathology RNA-Binding Proteins - metabolism |
Title | Locked Nucleic Acid In situ Hybridization Analysis of miR-21 Expression during Colorectal Cancer Development |
URI | http://clincancerres.aacrjournals.org/content/15/12/4009.abstract https://www.ncbi.nlm.nih.gov/pubmed/19509156 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIiEuFW_CSyvELXKw114_jpUFSoHm0AapnFa7a1u12tgotQ_lf_H_mPGuHaeKEOViRY4zG-18Oy_Pg5APhfIVYxl3uMbXjKDRHOX54LhqN0tcnkV-lzx-sgwX34Mv5_x8Mvk9ylpqGzXXv_bWlfwPV-Ee8BWrZO_A2YEo3IDPwF-4Aofh-k88_gbCDAzGJfYkLvXsSJeY2zu7Lpt2trjBWixbZbnTe2RdnjrMwybHJge26msVUxCEKAAxnoBg2IxTisZWbNqXU2rzmO0YNESWf8g1jrnv5gXPlrVqG3k5AOjsAuCxbjfGar2p8bkBoJXMpC0XcsZfnMlL-IXJPKjbi7zciVZghwPH1GtaAetiR9_AxjRzK3Q5CDpmZkYMUpmP0cdGMhakTjLS1-Aghvt1AY-7sIRdcJ6mp10wmJmO2Lu9t2_pxCFTsfOReCyQjEAyAsgINxZI5h65z0C-ddkBx1-Hl1eB102tHFa2hWNA5uPef7NrEvVtqm_5OZ29s3pEDq2jQo8M6h6TSV49IQ9ObCrGU3JlwEct-CiCjx5XFMFHd8BHe_DRuqAGfHQLPmrAR7fgowZ8dAS-Z2T1-dMqXTh2dIejAx40Dle5z3SsCzfUQaQKqbPM1VGRB0yDg6wCmXmBdjkv4kThxDStmQ416B-wt3nuPycHVV3lLwmVnuQySpRU4PqDua9YyGIWqdgNY-1F2ZTM-80TP02DFvFXpk3J-36LhTkl_SERHhceE4ivKXlhNn9LM0HTmoev7rrea_JwexDekINm0-ZvwZBt1LsONn8AkiaYFg |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Locked+Nucleic+Acid+In+situ+Hybridization+Analysis+of+miR-21+Expression+during+Colorectal+Cancer+Development&rft.jtitle=Clinical+cancer+research&rft.au=Yamamichi%2C+Nobutake&rft.au=Shimomura%2C+Ryoichi&rft.au=Inada%2C+Ken-ichi&rft.au=Sakurai%2C+Kouhei&rft.date=2009-06-15&rft.issn=1078-0432&rft.eissn=1557-3265&rft.volume=15&rft.issue=12&rft.spage=4009&rft.epage=4016&rft_id=info:doi/10.1158%2F1078-0432.CCR-08-3257&rft.externalDBID=n%2Fa&rft.externalDocID=10_1158_1078_0432_CCR_08_3257 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-0432&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-0432&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-0432&client=summon |