Noncontact Proximity Vital Sign Sensor Based on PLL for Sensitivity Enhancement
In this paper, a noncontact proximity vital sign sensor, using a phase locked loop (PLL) incorporated with voltage controlled oscillator (VCO) built-in planar type circular resonator, is proposed to enhance sensitivity in severe environments. The planar type circular resonator acts as a series feedb...
Saved in:
Published in | IEEE transactions on biomedical circuits and systems Vol. 8; no. 4; pp. 584 - 593 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.08.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, a noncontact proximity vital sign sensor, using a phase locked loop (PLL) incorporated with voltage controlled oscillator (VCO) built-in planar type circular resonator, is proposed to enhance sensitivity in severe environments. The planar type circular resonator acts as a series feedback element of the VCO as well as a near-field receiving antenna. The frequency deviation of the VCO related to the body proximity effect ranges from 0.07 MHz/mm to 1.8 MHz/mm (6.8 mV/mm to 205 mV/mm in sensitivity) up to a distance of 50 mm, while the amount of VCO drift is about 21 MHz in the condition of 60 ° C temperature range and discrete component tolerance of ±5%. Total frequency variation occurs in the capture range of the PLL which is 60 MHz. Thus, its loop control voltage converts the amount of frequency deviation into a difference of direct current (DC) voltage, which is utilized to extract vital signs regardless of the ambient temperature. The experimental results reveal that the proposed sensor placed 50 mm away from a subject can reliably detect respiration and heartbeat signals without the ambiguity of harmonic signals caused by respiration signal at an operating frequency of 2.4 GHz. |
---|---|
AbstractList | In this paper, a noncontact proximity vital sign sensor, using a phase locked loop (PLL) incorporated with voltage controlled oscillator (VCO) built-in planar type circular resonator, is proposed to enhance sensitivity in severe environments. The planar type circular resonator acts as a series feedback element of the VCO as well as a near-field receiving antenna. The frequency deviation of the VCO related to the body proximity effect ranges from 0.07 MHz/mm to 1.8 MHz/mm (6.8 mV/mm to 205 mV/mm in sensitivity) up to a distance of 50 mm, while the amount of VCO drift is about 21 MHz in the condition of 60 (°)C temperature range and discrete component tolerance of ± 5%. Total frequency variation occurs in the capture range of the PLL which is 60 MHz. Thus, its loop control voltage converts the amount of frequency deviation into a difference of direct current (DC) voltage, which is utilized to extract vital signs regardless of the ambient temperature. The experimental results reveal that the proposed sensor placed 50 mm away from a subject can reliably detect respiration and heartbeat signals without the ambiguity of harmonic signals caused by respiration signal at an operating frequency of 2.4 GHz. In this paper, a noncontact proximity vital sign sensor, using a phase locked loop (PLL) incorporated with voltage controlled oscillator (VCO) built-in planar type circular resonator, is proposed to enhance sensitivity in severe environments. The planar type circular resonator acts as a series feedback element of the VCO as well as a near-field receiving antenna. The frequency deviation of the VCO related to the body proximity effect ranges from 0.07 MHz/mm to 1.8 MHz/mm (6.8 mV/mm to 205 mV/mm in sensitivity) up to a distance of 50 mm, while the amount of VCO drift is about 21 MHz in the condition of 60 [compfn] rmC temperature range and discrete component tolerance of plus or minus 5%. Total frequency variation occurs in the capture range of the PLL which is 60 MHz. Thus, its loop control voltage converts the amount of frequency deviation into a difference of direct current (DC) voltage, which is utilized to extract vital signs regardless of the ambient temperature. The experimental results reveal that the proposed sensor placed 50 mm away from a subject can reliably detect respiration and heartbeat signals without the ambiguity of harmonic signals caused by respiration signal at an operating frequency of 2.4 GHz. In this paper, a noncontact proximity vital sign sensor, using a phase locked loop (PLL) incorporated with voltage controlled oscillator (VCO) built-in planar type circular resonator, is proposed to enhance sensitivity in severe environments. The planar type circular resonator acts as a series feedback element of the VCO as well as a near-field receiving antenna. The frequency deviation of the VCO related to the body proximity effect ranges from 0.07 MHz/mm to 1.8 MHz/mm (6.8 mV/mm to 205 mV/mm in sensitivity) up to a distance of 50 mm, while the amount of VCO drift is about 21 MHz in the condition of 60 ° C temperature range and discrete component tolerance of ±5%. Total frequency variation occurs in the capture range of the PLL which is 60 MHz. Thus, its loop control voltage converts the amount of frequency deviation into a difference of direct current (DC) voltage, which is utilized to extract vital signs regardless of the ambient temperature. The experimental results reveal that the proposed sensor placed 50 mm away from a subject can reliably detect respiration and heartbeat signals without the ambiguity of harmonic signals caused by respiration signal at an operating frequency of 2.4 GHz. In this paper, a noncontact proximity vital sign sensor, using a phase locked loop (PLL) incorporated with voltage controlled oscillator (VCO) built-in planar type circular resonator, is proposed to enhance sensitivity in severe environments. The planar type circular resonator acts as a series feedback element of the VCO as well as a near-field receiving antenna. The frequency deviation of the VCO related to the body proximity effect ranges from 0.07 MHz/mm to 1.8 MHz/mm (6.8 mV/mm to 205 mV/mm in sensitivity) up to a distance of 50 mm, while the amount of VCO drift is about 21 MHz in the condition of 60[Formula Omitted] temperature range and discrete component tolerance of [Formula Omitted]5%. Total frequency variation occurs in the capture range of the PLL which is 60 MHz. Thus, its loop control voltage converts the amount of frequency deviation into a difference of direct current (DC) voltage, which is utilized to extract vital signs regardless of the ambient temperature. The experimental results reveal that the proposed sensor placed 50 mm away from a subject can reliably detect respiration and heartbeat signals without the ambiguity of harmonic signals caused by respiration signal at an operating frequency of 2.4 GHz. In this paper, a noncontact proximity vital sign sensor, using a phase locked loop (PLL) incorporated with voltage controlled oscillator (VCO) built-in planar type circular resonator, is proposed to enhance sensitivity in severe environments. The planar type circular resonator acts as a series feedback element of the VCO as well as a near-field receiving antenna. The frequency deviation of the VCO related to the body proximity effect ranges from 0.07 MHz/mm to 1.8 MHz/mm (6.8 mV/mm to 205 mV/mm in sensitivity) up to a distance of 50 mm, while the amount of VCO drift is about 21 MHz in the condition of 60 (°)C temperature range and discrete component tolerance of ± 5%. Total frequency variation occurs in the capture range of the PLL which is 60 MHz. Thus, its loop control voltage converts the amount of frequency deviation into a difference of direct current (DC) voltage, which is utilized to extract vital signs regardless of the ambient temperature. The experimental results reveal that the proposed sensor placed 50 mm away from a subject can reliably detect respiration and heartbeat signals without the ambiguity of harmonic signals caused by respiration signal at an operating frequency of 2.4 GHz.In this paper, a noncontact proximity vital sign sensor, using a phase locked loop (PLL) incorporated with voltage controlled oscillator (VCO) built-in planar type circular resonator, is proposed to enhance sensitivity in severe environments. The planar type circular resonator acts as a series feedback element of the VCO as well as a near-field receiving antenna. The frequency deviation of the VCO related to the body proximity effect ranges from 0.07 MHz/mm to 1.8 MHz/mm (6.8 mV/mm to 205 mV/mm in sensitivity) up to a distance of 50 mm, while the amount of VCO drift is about 21 MHz in the condition of 60 (°)C temperature range and discrete component tolerance of ± 5%. Total frequency variation occurs in the capture range of the PLL which is 60 MHz. Thus, its loop control voltage converts the amount of frequency deviation into a difference of direct current (DC) voltage, which is utilized to extract vital signs regardless of the ambient temperature. The experimental results reveal that the proposed sensor placed 50 mm away from a subject can reliably detect respiration and heartbeat signals without the ambiguity of harmonic signals caused by respiration signal at an operating frequency of 2.4 GHz. |
Author | Yunseog Hong Gi-Ho Yun Jong-Gwan Yook Sung-Jae Ha Sang-Gyu Kim Byung-Hyun Kim Hee-Jo Lee |
Author_xml | – sequence: 1 givenname: Yunseog surname: Hong fullname: Hong, Yunseog – sequence: 2 givenname: Sang-Gyu surname: Kim fullname: Kim, Sang-Gyu – sequence: 3 givenname: Byung-Hyun surname: Kim fullname: Kim, Byung-Hyun – sequence: 4 givenname: Sung-Jae surname: Ha fullname: Ha, Sung-Jae – sequence: 5 givenname: Hee-Jo surname: Lee fullname: Lee, Hee-Jo – sequence: 6 givenname: Gi-Ho surname: Yun fullname: Yun, Gi-Ho – sequence: 7 givenname: Jong-Gwan surname: Yook fullname: Yook, Jong-Gwan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24235311$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtr3DAUhUVJaR7NH2ihGLrpxlNdvWwtkyF9wNAEJs1WaOyrVsGWUslTkn8fuTPpIovSlcTlO5dzzzkmByEGJOQN0AUA1R-vz5dn6wWjwBeMtVQDf0GOQAtaa63pwfznrBZSyENynPMtpVIxzV6RQyYYlxzgiFx-i6GLYbLdVF2leO9HPz1UN36yQ7X2P0K1xpBjqs5txr6KobparSpXBvPcT_73jF-EnzZ0OGKYXpOXzg4ZT_fvCfn-6eJ6-aVeXX7-ujxb1V3xM9Vi03CQgBvXuuJktoMaeqEEtpwr1SvEHoVrVb-RrtdUuUZ3oKgDCz1T_IR82O29S_HXFvNkRp87HAYbMG6zASklhaZpxf-glBayYQV9_wy9jdsUyiGFEhpoCa4t1Ls9td2M2Ju75EebHsxTqgVod0CXYs4JnelKoJMvOSfrBwPUzAWaPwWauUCzL7BI2TPp0_Z_it7uRB4R_wqUkoJpyh8Bjn2jqg |
CODEN | ITBCCW |
CitedBy_id | crossref_primary_10_3390_s19092210 crossref_primary_10_3390_s17092131 crossref_primary_10_3390_rs11101237 crossref_primary_10_5515_KJKIEES_2016_27_3_299 crossref_primary_10_1049_iet_map_2017_0003 crossref_primary_10_1049_el_2015_3103 crossref_primary_10_1109_JSEN_2019_2913665 crossref_primary_10_1109_TBME_2015_2439681 crossref_primary_10_1063_1_4897220 crossref_primary_10_1109_TBCAS_2015_2434618 crossref_primary_10_1109_LES_2015_2489209 crossref_primary_10_1109_TBCAS_2015_2406776 crossref_primary_10_1109_JSEN_2020_3031066 crossref_primary_10_1007_s00034_017_0640_4 crossref_primary_10_1109_TBCAS_2014_2349074 crossref_primary_10_1109_TBCAS_2019_2945575 crossref_primary_10_1109_JSEN_2022_3179707 crossref_primary_10_1109_TBCAS_2014_2380435 crossref_primary_10_1109_ACCESS_2019_2961130 crossref_primary_10_1109_RBME_2021_3081180 crossref_primary_10_1109_TBCAS_2019_2908198 crossref_primary_10_1109_TMTT_2016_2549531 crossref_primary_10_1109_TMTT_2016_2608772 crossref_primary_10_3390_s17112496 crossref_primary_10_3390_s19051013 crossref_primary_10_1002_smll_202405224 crossref_primary_10_1038_s41598_017_18979_3 crossref_primary_10_1109_JSEN_2020_3012996 crossref_primary_10_4015_S1016237220500386 crossref_primary_10_5515_KJKIEES_2018_29_4_247 |
Cites_doi | 10.1016/j.measurement.2004.11.002 10.1109/TMTT.2008.2007363 10.1109/IEMBS.2010.5627525 10.1109/TBCAS.2012.2189007 10.1109/IEMBS.2008.4650309 10.1109/FREQ.1995.483925 10.5515/JKIEES.2011.11.2.105 10.1109/TBCAS.2009.2019628 10.1109/RBME.2010.2084078 10.1109/TMTT.2008.2007139 10.1109/BIOCAS.2007.4463332 10.1002/0471221619 10.1109/TMTT.2006.884652 10.5515/JKIEES.2012.12.4.234 10.1109/TMTT.2010.2087349 10.1109/ISSMDBS.2008.4575048 10.1002/0471224316 10.1109/TBME.2006.889194 10.1109/TBME.2006.872823 10.1109/TBCAS.2011.2173340 10.1109/TAP.2009.2014574 10.1109/TBME.2006.889201 10.1109/TBCAS.2007.910900 10.1109/22.740074 10.1109/TBCAS.2011.2176937 10.1109/IEMBS.2007.4352942 10.1109/22.989979 10.1109/TMTT.2011.2175403 10.1109/TMTT.2006.872789 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SP 7TB 8FD FR3 L7M P64 7X8 |
DOI | 10.1109/TBCAS.2013.2280913 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Engineering Research Database Biotechnology Research Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1940-9990 |
EndPage | 593 |
ExternalDocumentID | 3386474891 24235311 10_1109_TBCAS_2013_2280913 6654290 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Basic Science Research Program – fundername: National Research of Korea (NRF) – fundername: Ministry of Education |
GroupedDBID | --- 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QO 7SP 7TB 8FD FR3 L7M P64 7X8 |
ID | FETCH-LOGICAL-c454t-4b73151ebf8f3534235e91d464e83366d6eede4f86db5fd906f79c160f1a1d263 |
IEDL.DBID | RIE |
ISSN | 1932-4545 1940-9990 |
IngestDate | Fri Jul 11 08:10:20 EDT 2025 Fri Jul 11 09:21:30 EDT 2025 Mon Jun 30 08:32:35 EDT 2025 Mon Jul 21 05:41:48 EDT 2025 Tue Jul 01 03:26:29 EDT 2025 Thu Apr 24 23:02:34 EDT 2025 Tue Aug 26 16:49:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c454t-4b73151ebf8f3534235e91d464e83366d6eede4f86db5fd906f79c160f1a1d263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 24235311 |
PQID | 1549102428 |
PQPubID | 85510 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1555017784 proquest_journals_1549102428 ieee_primary_6654290 pubmed_primary_24235311 crossref_citationtrail_10_1109_TBCAS_2013_2280913 crossref_primary_10_1109_TBCAS_2013_2280913 proquest_miscellaneous_1550077872 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-01 |
PublicationDateYYYYMMDD | 2014-08-01 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical circuits and systems |
PublicationTitleAbbrev | TBCAS |
PublicationTitleAlternate | IEEE Trans Biomed Circuits Syst |
PublicationYear | 2014 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref37 ref15 ref36 ref14 li (ref5) 2009 ref31 ref33 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref16 ref18 balanis (ref28) 1997 banerjee (ref34) 1998 mass (ref30) 2003 proakis (ref35) 2007 gonzalez (ref20) 2007 ref26 (ref23) 2013 ref25 ref22 ref21 stauffer (ref24) 2003; 2 ref27 ref29 ref8 ref7 ref9 li (ref38) 2008; 56 ref4 ref6 h (ref19) 2013 thuery (ref3) 1992 |
References_xml | – ident: ref2 doi: 10.1016/j.measurement.2004.11.002 – ident: ref25 doi: 10.1109/TMTT.2008.2007363 – year: 1998 ident: ref34 publication-title: PLL Performance Simulation and Design – year: 2013 ident: ref19 article-title: Advanced non-contact near-field proximity vital sign sensor using phase locked loop publication-title: 40th Eur Microwave Conf – year: 2013 ident: ref23 – ident: ref16 doi: 10.1109/IEMBS.2010.5627525 – ident: ref17 doi: 10.1109/TBCAS.2012.2189007 – ident: ref36 doi: 10.1109/IEMBS.2008.4650309 – ident: ref22 doi: 10.1109/FREQ.1995.483925 – year: 1997 ident: ref28 publication-title: Antenna Theory Analysis and Design – ident: ref32 doi: 10.5515/JKIEES.2011.11.2.105 – ident: ref4 doi: 10.1109/TBCAS.2009.2019628 – start-page: 97 year: 2009 ident: ref5 article-title: Software configurable 5.8 GHz radar sensor receiver chip in 0.13 <tex Notation="TeX">$\mu{\rm m}$</tex> CMOS for non-contact vital sign detection publication-title: Proc IEEE Radio Frequency Integrated Circuits Symp – year: 2007 ident: ref20 publication-title: Foundations of Oscillator Circuit Design – start-page: 345 year: 2007 ident: ref35 publication-title: Digital Signal Processing Principles Algorithms and Applications – volume: 2 start-page: 22 year: 2003 ident: ref24 article-title: Finding the lumped element varactor diode model publication-title: High Freq Electron – ident: ref15 doi: 10.1109/RBME.2010.2084078 – volume: 56 start-page: 3143 year: 2008 ident: ref38 article-title: Random body movement cancellation in Doppler radar vital sign detection publication-title: IEEE Trans Microw Theory Tech doi: 10.1109/TMTT.2008.2007139 – ident: ref11 doi: 10.1109/BIOCAS.2007.4463332 – year: 1992 ident: ref3 publication-title: Microwaves Industrial Scientific and Medical Applications – ident: ref21 doi: 10.1002/0471221619 – ident: ref7 doi: 10.1109/TMTT.2006.884652 – ident: ref39 doi: 10.5515/JKIEES.2012.12.4.234 – ident: ref6 doi: 10.1109/TMTT.2010.2087349 – ident: ref12 doi: 10.1109/ISSMDBS.2008.4575048 – ident: ref33 doi: 10.1002/0471224316 – ident: ref10 doi: 10.1109/TBME.2006.889194 – ident: ref9 doi: 10.1109/TBME.2006.872823 – ident: ref31 doi: 10.1109/TBCAS.2011.2173340 – ident: ref27 doi: 10.1109/TAP.2009.2014574 – ident: ref14 doi: 10.1109/TBME.2006.889201 – ident: ref37 doi: 10.1109/TBCAS.2007.910900 – ident: ref29 doi: 10.1109/22.740074 – ident: ref8 doi: 10.1109/TBCAS.2011.2176937 – ident: ref13 doi: 10.1109/IEMBS.2007.4352942 – ident: ref1 doi: 10.1109/22.989979 – year: 2003 ident: ref30 publication-title: Nonlinear Microwave and RF Circuits – ident: ref18 doi: 10.1109/TMTT.2011.2175403 – ident: ref26 doi: 10.1109/TMTT.2006.872789 |
SSID | ssj0056292 |
Score | 2.1823003 |
Snippet | In this paper, a noncontact proximity vital sign sensor, using a phase locked loop (PLL) incorporated with voltage controlled oscillator (VCO) built-in planar... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 584 |
SubjectTerms | Ambient temperature Biomedicine Breath Tests - instrumentation Equipment Design feedback circuit Heart Rate - physiology Humans Impedance input impedance variation near-field receiving antenna noncontact phase locked loop (PLL) Phase locked loops remote sensing Resonant frequency Respiration Sensitivity Signal Processing, Computer-Assisted Temperature sensors vital sign sensor Voltage-controlled oscillators |
Title | Noncontact Proximity Vital Sign Sensor Based on PLL for Sensitivity Enhancement |
URI | https://ieeexplore.ieee.org/document/6654290 https://www.ncbi.nlm.nih.gov/pubmed/24235311 https://www.proquest.com/docview/1549102428 https://www.proquest.com/docview/1550077872 https://www.proquest.com/docview/1555017784 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VnugBCltgaUGuxA2yG28cxzm2VasVKttK21a9RbZjlxUoQSV7gF_fGeehgkrFLUomsj0zznwTzwPgQyZ0miaaRzNeCnJQXKSEMZGxyqJCJXniQ7TFQs4vxefr9HoDPg25MM65EHzmJnQZzvLL2q7pV9lUhu5K6KA_QcetzdXqv7poxkMDZMIjVMc77RNk4nx6cXh0sKQormRCxV9yTs1zCEeg_vE_7FFosPJvrBlszslz-NLPtg01-TZZN2Zif_9VyPF_l7MNzzrwyQ5abXkBG656CVv3ShKO4GxRVxS-rm3DznFcyn_6xa6otQhbrm4qtkS_t75lh2j9SlZX7Pz0lCHwDfdXbSsKdlx9JWWi4Xfg8uT44mgedU0XIotsayJhsgRRgDNeeWQQccnlKEcpnEoSKUuJVtUJr2RpUl_msfRZbrmMPde8nMnkFWxWdeXeALOlnRmfOq-1FVzFOkd3TXObSVRfhEJj4D3rC9tVJKfGGN-L4JnEeREkV5Dkik5yY_g4vPOjrcfxKPWI2D5Qdhwfw14v4aLbsj8LqlXHCbGoMewPj3Gz0QmKrly9JpqU6h-pbPYoTYqfuUzh-l632jOM3yvd24fntQtPcfaijS_cg83mdu3eIeZpzPug7HdEp_j3 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5QAceBXolgJG4gbZxonjOMe2arXAdqm0W9RbZDs2rUAJarMH-PXMOA8BgopblEzkeGbs-SaeB8DrXOgsSzWPEl4JclBcpIQxkbHKokKlRepDtMVCzs7E-_PsfAPejrkwzrkQfOamdBnO8qvGrulX2Z4M3ZXQQb-Fdj9LumytYd9FQx5aIBMioUre2ZAiExd7q4PD_SXFcaVTKv9ScGqfQ0gCNZD_ZpFCi5V_o81gdY7vw8nwvV2wyZfpujVT--OPUo7_O6EHcK-Hn2y_05eHsOHqR3D3l6KEW_Bx0dQUwK5ty05xXMqA-s4-UXMRtrz8XLMler7NFTtA-1expman8zlD6BvuX3bNKNhRfUHqRMM_hrPjo9XhLOrbLkQW2dZGwuQp4gBnvPLIIOKSK1CSUjiVplJWEu2qE17JymS-KmLp88JyGXuueZXI9Als1k3ttoHZyibGZ85rbQVXsS7QYdPc5hIVGMHQBPjA-tL2NcmpNcbXMvgmcVEGyZUkubKX3ATejO986ypy3Ei9RWwfKXuOT2B3kHDZL9rrkqrVccIsagKvxse43OgMRdeuWRNNRhWQVJ7cSJPhRpcrnN_TTnvG8Qel2_n7d72E27PVybycv1t8eAZ3cCaiizbchc32au2eIwJqzYug-D8BalH8QQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noncontact+Proximity+Vital+Sign+Sensor+Based+on+PLL+for+Sensitivity+Enhancement&rft.jtitle=IEEE+transactions+on+biomedical+circuits+and+systems&rft.au=Hong%2C+Yunseog&rft.au=Kim%2C+Sang-Gyu&rft.au=Kim%2C+Byung-Hyun&rft.au=Ha%2C+Sung-Jae&rft.date=2014-08-01&rft.issn=1932-4545&rft.eissn=1940-9990&rft.volume=8&rft.issue=4&rft.spage=584&rft.epage=593&rft_id=info:doi/10.1109%2FTBCAS.2013.2280913&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4545&client=summon |