Noncontact Proximity Vital Sign Sensor Based on PLL for Sensitivity Enhancement

In this paper, a noncontact proximity vital sign sensor, using a phase locked loop (PLL) incorporated with voltage controlled oscillator (VCO) built-in planar type circular resonator, is proposed to enhance sensitivity in severe environments. The planar type circular resonator acts as a series feedb...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical circuits and systems Vol. 8; no. 4; pp. 584 - 593
Main Authors Hong, Yunseog, Kim, Sang-Gyu, Kim, Byung-Hyun, Ha, Sung-Jae, Lee, Hee-Jo, Yun, Gi-Ho, Yook, Jong-Gwan
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, a noncontact proximity vital sign sensor, using a phase locked loop (PLL) incorporated with voltage controlled oscillator (VCO) built-in planar type circular resonator, is proposed to enhance sensitivity in severe environments. The planar type circular resonator acts as a series feedback element of the VCO as well as a near-field receiving antenna. The frequency deviation of the VCO related to the body proximity effect ranges from 0.07 MHz/mm to 1.8 MHz/mm (6.8 mV/mm to 205 mV/mm in sensitivity) up to a distance of 50 mm, while the amount of VCO drift is about 21 MHz in the condition of 60 ° C temperature range and discrete component tolerance of ±5%. Total frequency variation occurs in the capture range of the PLL which is 60 MHz. Thus, its loop control voltage converts the amount of frequency deviation into a difference of direct current (DC) voltage, which is utilized to extract vital signs regardless of the ambient temperature. The experimental results reveal that the proposed sensor placed 50 mm away from a subject can reliably detect respiration and heartbeat signals without the ambiguity of harmonic signals caused by respiration signal at an operating frequency of 2.4 GHz.
AbstractList In this paper, a noncontact proximity vital sign sensor, using a phase locked loop (PLL) incorporated with voltage controlled oscillator (VCO) built-in planar type circular resonator, is proposed to enhance sensitivity in severe environments. The planar type circular resonator acts as a series feedback element of the VCO as well as a near-field receiving antenna. The frequency deviation of the VCO related to the body proximity effect ranges from 0.07 MHz/mm to 1.8 MHz/mm (6.8 mV/mm to 205 mV/mm in sensitivity) up to a distance of 50 mm, while the amount of VCO drift is about 21 MHz in the condition of 60 (°)C temperature range and discrete component tolerance of ± 5%. Total frequency variation occurs in the capture range of the PLL which is 60 MHz. Thus, its loop control voltage converts the amount of frequency deviation into a difference of direct current (DC) voltage, which is utilized to extract vital signs regardless of the ambient temperature. The experimental results reveal that the proposed sensor placed 50 mm away from a subject can reliably detect respiration and heartbeat signals without the ambiguity of harmonic signals caused by respiration signal at an operating frequency of 2.4 GHz.
In this paper, a noncontact proximity vital sign sensor, using a phase locked loop (PLL) incorporated with voltage controlled oscillator (VCO) built-in planar type circular resonator, is proposed to enhance sensitivity in severe environments. The planar type circular resonator acts as a series feedback element of the VCO as well as a near-field receiving antenna. The frequency deviation of the VCO related to the body proximity effect ranges from 0.07 MHz/mm to 1.8 MHz/mm (6.8 mV/mm to 205 mV/mm in sensitivity) up to a distance of 50 mm, while the amount of VCO drift is about 21 MHz in the condition of 60 [compfn] rmC temperature range and discrete component tolerance of plus or minus 5%. Total frequency variation occurs in the capture range of the PLL which is 60 MHz. Thus, its loop control voltage converts the amount of frequency deviation into a difference of direct current (DC) voltage, which is utilized to extract vital signs regardless of the ambient temperature. The experimental results reveal that the proposed sensor placed 50 mm away from a subject can reliably detect respiration and heartbeat signals without the ambiguity of harmonic signals caused by respiration signal at an operating frequency of 2.4 GHz.
In this paper, a noncontact proximity vital sign sensor, using a phase locked loop (PLL) incorporated with voltage controlled oscillator (VCO) built-in planar type circular resonator, is proposed to enhance sensitivity in severe environments. The planar type circular resonator acts as a series feedback element of the VCO as well as a near-field receiving antenna. The frequency deviation of the VCO related to the body proximity effect ranges from 0.07 MHz/mm to 1.8 MHz/mm (6.8 mV/mm to 205 mV/mm in sensitivity) up to a distance of 50 mm, while the amount of VCO drift is about 21 MHz in the condition of 60 ° C temperature range and discrete component tolerance of ±5%. Total frequency variation occurs in the capture range of the PLL which is 60 MHz. Thus, its loop control voltage converts the amount of frequency deviation into a difference of direct current (DC) voltage, which is utilized to extract vital signs regardless of the ambient temperature. The experimental results reveal that the proposed sensor placed 50 mm away from a subject can reliably detect respiration and heartbeat signals without the ambiguity of harmonic signals caused by respiration signal at an operating frequency of 2.4 GHz.
In this paper, a noncontact proximity vital sign sensor, using a phase locked loop (PLL) incorporated with voltage controlled oscillator (VCO) built-in planar type circular resonator, is proposed to enhance sensitivity in severe environments. The planar type circular resonator acts as a series feedback element of the VCO as well as a near-field receiving antenna. The frequency deviation of the VCO related to the body proximity effect ranges from 0.07 MHz/mm to 1.8 MHz/mm (6.8 mV/mm to 205 mV/mm in sensitivity) up to a distance of 50 mm, while the amount of VCO drift is about 21 MHz in the condition of 60[Formula Omitted] temperature range and discrete component tolerance of [Formula Omitted]5%. Total frequency variation occurs in the capture range of the PLL which is 60 MHz. Thus, its loop control voltage converts the amount of frequency deviation into a difference of direct current (DC) voltage, which is utilized to extract vital signs regardless of the ambient temperature. The experimental results reveal that the proposed sensor placed 50 mm away from a subject can reliably detect respiration and heartbeat signals without the ambiguity of harmonic signals caused by respiration signal at an operating frequency of 2.4 GHz.
In this paper, a noncontact proximity vital sign sensor, using a phase locked loop (PLL) incorporated with voltage controlled oscillator (VCO) built-in planar type circular resonator, is proposed to enhance sensitivity in severe environments. The planar type circular resonator acts as a series feedback element of the VCO as well as a near-field receiving antenna. The frequency deviation of the VCO related to the body proximity effect ranges from 0.07 MHz/mm to 1.8 MHz/mm (6.8 mV/mm to 205 mV/mm in sensitivity) up to a distance of 50 mm, while the amount of VCO drift is about 21 MHz in the condition of 60 (°)C temperature range and discrete component tolerance of ± 5%. Total frequency variation occurs in the capture range of the PLL which is 60 MHz. Thus, its loop control voltage converts the amount of frequency deviation into a difference of direct current (DC) voltage, which is utilized to extract vital signs regardless of the ambient temperature. The experimental results reveal that the proposed sensor placed 50 mm away from a subject can reliably detect respiration and heartbeat signals without the ambiguity of harmonic signals caused by respiration signal at an operating frequency of 2.4 GHz.In this paper, a noncontact proximity vital sign sensor, using a phase locked loop (PLL) incorporated with voltage controlled oscillator (VCO) built-in planar type circular resonator, is proposed to enhance sensitivity in severe environments. The planar type circular resonator acts as a series feedback element of the VCO as well as a near-field receiving antenna. The frequency deviation of the VCO related to the body proximity effect ranges from 0.07 MHz/mm to 1.8 MHz/mm (6.8 mV/mm to 205 mV/mm in sensitivity) up to a distance of 50 mm, while the amount of VCO drift is about 21 MHz in the condition of 60 (°)C temperature range and discrete component tolerance of ± 5%. Total frequency variation occurs in the capture range of the PLL which is 60 MHz. Thus, its loop control voltage converts the amount of frequency deviation into a difference of direct current (DC) voltage, which is utilized to extract vital signs regardless of the ambient temperature. The experimental results reveal that the proposed sensor placed 50 mm away from a subject can reliably detect respiration and heartbeat signals without the ambiguity of harmonic signals caused by respiration signal at an operating frequency of 2.4 GHz.
Author Yunseog Hong
Gi-Ho Yun
Jong-Gwan Yook
Sung-Jae Ha
Sang-Gyu Kim
Byung-Hyun Kim
Hee-Jo Lee
Author_xml – sequence: 1
  givenname: Yunseog
  surname: Hong
  fullname: Hong, Yunseog
– sequence: 2
  givenname: Sang-Gyu
  surname: Kim
  fullname: Kim, Sang-Gyu
– sequence: 3
  givenname: Byung-Hyun
  surname: Kim
  fullname: Kim, Byung-Hyun
– sequence: 4
  givenname: Sung-Jae
  surname: Ha
  fullname: Ha, Sung-Jae
– sequence: 5
  givenname: Hee-Jo
  surname: Lee
  fullname: Lee, Hee-Jo
– sequence: 6
  givenname: Gi-Ho
  surname: Yun
  fullname: Yun, Gi-Ho
– sequence: 7
  givenname: Jong-Gwan
  surname: Yook
  fullname: Yook, Jong-Gwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24235311$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtr3DAUhUVJaR7NH2ihGLrpxlNdvWwtkyF9wNAEJs1WaOyrVsGWUslTkn8fuTPpIovSlcTlO5dzzzkmByEGJOQN0AUA1R-vz5dn6wWjwBeMtVQDf0GOQAtaa63pwfznrBZSyENynPMtpVIxzV6RQyYYlxzgiFx-i6GLYbLdVF2leO9HPz1UN36yQ7X2P0K1xpBjqs5txr6KobparSpXBvPcT_73jF-EnzZ0OGKYXpOXzg4ZT_fvCfn-6eJ6-aVeXX7-ujxb1V3xM9Vi03CQgBvXuuJktoMaeqEEtpwr1SvEHoVrVb-RrtdUuUZ3oKgDCz1T_IR82O29S_HXFvNkRp87HAYbMG6zASklhaZpxf-glBayYQV9_wy9jdsUyiGFEhpoCa4t1Ls9td2M2Ju75EebHsxTqgVod0CXYs4JnelKoJMvOSfrBwPUzAWaPwWauUCzL7BI2TPp0_Z_it7uRB4R_wqUkoJpyh8Bjn2jqg
CODEN ITBCCW
CitedBy_id crossref_primary_10_3390_s19092210
crossref_primary_10_3390_s17092131
crossref_primary_10_3390_rs11101237
crossref_primary_10_5515_KJKIEES_2016_27_3_299
crossref_primary_10_1049_iet_map_2017_0003
crossref_primary_10_1049_el_2015_3103
crossref_primary_10_1109_JSEN_2019_2913665
crossref_primary_10_1109_TBME_2015_2439681
crossref_primary_10_1063_1_4897220
crossref_primary_10_1109_TBCAS_2015_2434618
crossref_primary_10_1109_LES_2015_2489209
crossref_primary_10_1109_TBCAS_2015_2406776
crossref_primary_10_1109_JSEN_2020_3031066
crossref_primary_10_1007_s00034_017_0640_4
crossref_primary_10_1109_TBCAS_2014_2349074
crossref_primary_10_1109_TBCAS_2019_2945575
crossref_primary_10_1109_JSEN_2022_3179707
crossref_primary_10_1109_TBCAS_2014_2380435
crossref_primary_10_1109_ACCESS_2019_2961130
crossref_primary_10_1109_RBME_2021_3081180
crossref_primary_10_1109_TBCAS_2019_2908198
crossref_primary_10_1109_TMTT_2016_2549531
crossref_primary_10_1109_TMTT_2016_2608772
crossref_primary_10_3390_s17112496
crossref_primary_10_3390_s19051013
crossref_primary_10_1002_smll_202405224
crossref_primary_10_1038_s41598_017_18979_3
crossref_primary_10_1109_JSEN_2020_3012996
crossref_primary_10_4015_S1016237220500386
crossref_primary_10_5515_KJKIEES_2018_29_4_247
Cites_doi 10.1016/j.measurement.2004.11.002
10.1109/TMTT.2008.2007363
10.1109/IEMBS.2010.5627525
10.1109/TBCAS.2012.2189007
10.1109/IEMBS.2008.4650309
10.1109/FREQ.1995.483925
10.5515/JKIEES.2011.11.2.105
10.1109/TBCAS.2009.2019628
10.1109/RBME.2010.2084078
10.1109/TMTT.2008.2007139
10.1109/BIOCAS.2007.4463332
10.1002/0471221619
10.1109/TMTT.2006.884652
10.5515/JKIEES.2012.12.4.234
10.1109/TMTT.2010.2087349
10.1109/ISSMDBS.2008.4575048
10.1002/0471224316
10.1109/TBME.2006.889194
10.1109/TBME.2006.872823
10.1109/TBCAS.2011.2173340
10.1109/TAP.2009.2014574
10.1109/TBME.2006.889201
10.1109/TBCAS.2007.910900
10.1109/22.740074
10.1109/TBCAS.2011.2176937
10.1109/IEMBS.2007.4352942
10.1109/22.989979
10.1109/TMTT.2011.2175403
10.1109/TMTT.2006.872789
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SP
7TB
8FD
FR3
L7M
P64
7X8
DOI 10.1109/TBCAS.2013.2280913
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Engineering Research Database

Biotechnology Research Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1940-9990
EndPage 593
ExternalDocumentID 3386474891
24235311
10_1109_TBCAS_2013_2280913
6654290
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Basic Science Research Program
– fundername: National Research of Korea (NRF)
– fundername: Ministry of Education
GroupedDBID ---
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SP
7TB
8FD
FR3
L7M
P64
7X8
ID FETCH-LOGICAL-c454t-4b73151ebf8f3534235e91d464e83366d6eede4f86db5fd906f79c160f1a1d263
IEDL.DBID RIE
ISSN 1932-4545
1940-9990
IngestDate Fri Jul 11 08:10:20 EDT 2025
Fri Jul 11 09:21:30 EDT 2025
Mon Jun 30 08:32:35 EDT 2025
Mon Jul 21 05:41:48 EDT 2025
Tue Jul 01 03:26:29 EDT 2025
Thu Apr 24 23:02:34 EDT 2025
Tue Aug 26 16:49:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c454t-4b73151ebf8f3534235e91d464e83366d6eede4f86db5fd906f79c160f1a1d263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 24235311
PQID 1549102428
PQPubID 85510
PageCount 10
ParticipantIDs proquest_miscellaneous_1555017784
proquest_journals_1549102428
ieee_primary_6654290
pubmed_primary_24235311
crossref_citationtrail_10_1109_TBCAS_2013_2280913
crossref_primary_10_1109_TBCAS_2013_2280913
proquest_miscellaneous_1550077872
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-01
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical circuits and systems
PublicationTitleAbbrev TBCAS
PublicationTitleAlternate IEEE Trans Biomed Circuits Syst
PublicationYear 2014
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref37
ref15
ref36
ref14
li (ref5) 2009
ref31
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref16
ref18
balanis (ref28) 1997
banerjee (ref34) 1998
mass (ref30) 2003
proakis (ref35) 2007
gonzalez (ref20) 2007
ref26
(ref23) 2013
ref25
ref22
ref21
stauffer (ref24) 2003; 2
ref27
ref29
ref8
ref7
ref9
li (ref38) 2008; 56
ref4
ref6
h (ref19) 2013
thuery (ref3) 1992
References_xml – ident: ref2
  doi: 10.1016/j.measurement.2004.11.002
– ident: ref25
  doi: 10.1109/TMTT.2008.2007363
– year: 1998
  ident: ref34
  publication-title: PLL Performance Simulation and Design
– year: 2013
  ident: ref19
  article-title: Advanced non-contact near-field proximity vital sign sensor using phase locked loop
  publication-title: 40th Eur Microwave Conf
– year: 2013
  ident: ref23
– ident: ref16
  doi: 10.1109/IEMBS.2010.5627525
– ident: ref17
  doi: 10.1109/TBCAS.2012.2189007
– ident: ref36
  doi: 10.1109/IEMBS.2008.4650309
– ident: ref22
  doi: 10.1109/FREQ.1995.483925
– year: 1997
  ident: ref28
  publication-title: Antenna Theory Analysis and Design
– ident: ref32
  doi: 10.5515/JKIEES.2011.11.2.105
– ident: ref4
  doi: 10.1109/TBCAS.2009.2019628
– start-page: 97
  year: 2009
  ident: ref5
  article-title: Software configurable 5.8 GHz radar sensor receiver chip in 0.13 <tex Notation="TeX">$\mu{\rm m}$</tex> CMOS for non-contact vital sign detection
  publication-title: Proc IEEE Radio Frequency Integrated Circuits Symp
– year: 2007
  ident: ref20
  publication-title: Foundations of Oscillator Circuit Design
– start-page: 345
  year: 2007
  ident: ref35
  publication-title: Digital Signal Processing Principles Algorithms and Applications
– volume: 2
  start-page: 22
  year: 2003
  ident: ref24
  article-title: Finding the lumped element varactor diode model
  publication-title: High Freq Electron
– ident: ref15
  doi: 10.1109/RBME.2010.2084078
– volume: 56
  start-page: 3143
  year: 2008
  ident: ref38
  article-title: Random body movement cancellation in Doppler radar vital sign detection
  publication-title: IEEE Trans Microw Theory Tech
  doi: 10.1109/TMTT.2008.2007139
– ident: ref11
  doi: 10.1109/BIOCAS.2007.4463332
– year: 1992
  ident: ref3
  publication-title: Microwaves Industrial Scientific and Medical Applications
– ident: ref21
  doi: 10.1002/0471221619
– ident: ref7
  doi: 10.1109/TMTT.2006.884652
– ident: ref39
  doi: 10.5515/JKIEES.2012.12.4.234
– ident: ref6
  doi: 10.1109/TMTT.2010.2087349
– ident: ref12
  doi: 10.1109/ISSMDBS.2008.4575048
– ident: ref33
  doi: 10.1002/0471224316
– ident: ref10
  doi: 10.1109/TBME.2006.889194
– ident: ref9
  doi: 10.1109/TBME.2006.872823
– ident: ref31
  doi: 10.1109/TBCAS.2011.2173340
– ident: ref27
  doi: 10.1109/TAP.2009.2014574
– ident: ref14
  doi: 10.1109/TBME.2006.889201
– ident: ref37
  doi: 10.1109/TBCAS.2007.910900
– ident: ref29
  doi: 10.1109/22.740074
– ident: ref8
  doi: 10.1109/TBCAS.2011.2176937
– ident: ref13
  doi: 10.1109/IEMBS.2007.4352942
– ident: ref1
  doi: 10.1109/22.989979
– year: 2003
  ident: ref30
  publication-title: Nonlinear Microwave and RF Circuits
– ident: ref18
  doi: 10.1109/TMTT.2011.2175403
– ident: ref26
  doi: 10.1109/TMTT.2006.872789
SSID ssj0056292
Score 2.1823003
Snippet In this paper, a noncontact proximity vital sign sensor, using a phase locked loop (PLL) incorporated with voltage controlled oscillator (VCO) built-in planar...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 584
SubjectTerms Ambient temperature
Biomedicine
Breath Tests - instrumentation
Equipment Design
feedback circuit
Heart Rate - physiology
Humans
Impedance
input impedance variation
near-field receiving antenna
noncontact
phase locked loop (PLL)
Phase locked loops
remote sensing
Resonant frequency
Respiration
Sensitivity
Signal Processing, Computer-Assisted
Temperature sensors
vital sign sensor
Voltage-controlled oscillators
Title Noncontact Proximity Vital Sign Sensor Based on PLL for Sensitivity Enhancement
URI https://ieeexplore.ieee.org/document/6654290
https://www.ncbi.nlm.nih.gov/pubmed/24235311
https://www.proquest.com/docview/1549102428
https://www.proquest.com/docview/1550077872
https://www.proquest.com/docview/1555017784
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VnugBCltgaUGuxA2yG28cxzm2VasVKttK21a9RbZjlxUoQSV7gF_fGeehgkrFLUomsj0zznwTzwPgQyZ0miaaRzNeCnJQXKSEMZGxyqJCJXniQ7TFQs4vxefr9HoDPg25MM65EHzmJnQZzvLL2q7pV9lUhu5K6KA_QcetzdXqv7poxkMDZMIjVMc77RNk4nx6cXh0sKQormRCxV9yTs1zCEeg_vE_7FFosPJvrBlszslz-NLPtg01-TZZN2Zif_9VyPF_l7MNzzrwyQ5abXkBG656CVv3ShKO4GxRVxS-rm3DznFcyn_6xa6otQhbrm4qtkS_t75lh2j9SlZX7Pz0lCHwDfdXbSsKdlx9JWWi4Xfg8uT44mgedU0XIotsayJhsgRRgDNeeWQQccnlKEcpnEoSKUuJVtUJr2RpUl_msfRZbrmMPde8nMnkFWxWdeXeALOlnRmfOq-1FVzFOkd3TXObSVRfhEJj4D3rC9tVJKfGGN-L4JnEeREkV5Dkik5yY_g4vPOjrcfxKPWI2D5Qdhwfw14v4aLbsj8LqlXHCbGoMewPj3Gz0QmKrly9JpqU6h-pbPYoTYqfuUzh-l632jOM3yvd24fntQtPcfaijS_cg83mdu3eIeZpzPug7HdEp_j3
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5QAceBXolgJG4gbZxonjOMe2arXAdqm0W9RbZDs2rUAJarMH-PXMOA8BgopblEzkeGbs-SaeB8DrXOgsSzWPEl4JclBcpIQxkbHKokKlRepDtMVCzs7E-_PsfAPejrkwzrkQfOamdBnO8qvGrulX2Z4M3ZXQQb-Fdj9LumytYd9FQx5aIBMioUre2ZAiExd7q4PD_SXFcaVTKv9ScGqfQ0gCNZD_ZpFCi5V_o81gdY7vw8nwvV2wyZfpujVT--OPUo7_O6EHcK-Hn2y_05eHsOHqR3D3l6KEW_Bx0dQUwK5ty05xXMqA-s4-UXMRtrz8XLMler7NFTtA-1expman8zlD6BvuX3bNKNhRfUHqRMM_hrPjo9XhLOrbLkQW2dZGwuQp4gBnvPLIIOKSK1CSUjiVplJWEu2qE17JymS-KmLp88JyGXuueZXI9Als1k3ttoHZyibGZ85rbQVXsS7QYdPc5hIVGMHQBPjA-tL2NcmpNcbXMvgmcVEGyZUkubKX3ATejO986ypy3Ei9RWwfKXuOT2B3kHDZL9rrkqrVccIsagKvxse43OgMRdeuWRNNRhWQVJ7cSJPhRpcrnN_TTnvG8Qel2_n7d72E27PVybycv1t8eAZ3cCaiizbchc32au2eIwJqzYug-D8BalH8QQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noncontact+Proximity+Vital+Sign+Sensor+Based+on+PLL+for+Sensitivity+Enhancement&rft.jtitle=IEEE+transactions+on+biomedical+circuits+and+systems&rft.au=Hong%2C+Yunseog&rft.au=Kim%2C+Sang-Gyu&rft.au=Kim%2C+Byung-Hyun&rft.au=Ha%2C+Sung-Jae&rft.date=2014-08-01&rft.issn=1932-4545&rft.eissn=1940-9990&rft.volume=8&rft.issue=4&rft.spage=584&rft.epage=593&rft_id=info:doi/10.1109%2FTBCAS.2013.2280913&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4545&client=summon