Anti-PD-L1 Efficacy Can Be Enhanced by Inhibition of Myeloid-Derived Suppressor Cells with a Selective Inhibitor of PI3Kδ/γ
Checkpoint inhibitors are relatively inefficacious in head and neck cancers, despite an abundance of genetic alterations and a T-cell-inflamed phenotype. One significant barrier to efficacy may be the recruitment of myeloid-derived suppressor cells (MDSC) into the tumor microenvironment. Here we dem...
Saved in:
Published in | Cancer research (Chicago, Ill.) Vol. 77; no. 10; pp. 2607 - 2619 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for Cancer Research, Inc
15.05.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Checkpoint inhibitors are relatively inefficacious in head and neck cancers, despite an abundance of genetic alterations and a T-cell-inflamed phenotype. One significant barrier to efficacy may be the recruitment of myeloid-derived suppressor cells (MDSC) into the tumor microenvironment. Here we demonstrate functional inhibition of MDSC with IPI-145, an inhibitor of PI3Kδ and PI3Kγ isoforms, which enhances responses to PD-L1 blockade. Combination therapy induced CD8
T lymphocyte-dependent primary tumor growth delay and prolonged survival only in T-cell-inflamed tumor models of head and neck cancers. However, higher doses of IPI-145 reversed the observed enhancement of anti-PD-L1 efficacy due to off-target suppression of the activity of tumor-infiltrating T lymphocytes. Together, our results offer a preclinical proof of concept for the low-dose use of isoform-specific PI3Kδ/γ inhibitors to suppress MDSC to enhance responses to immune checkpoint blockade.
. |
---|---|
AbstractList | These findings highlight the therapeutic balance required between blocking immunosuppressive myeloid cells and blocking effector immune cells in response to isoform-specific PI3Kδ/γ inhibitors.Checkpoint inhibitors are relatively inefficacious in head and neck cancers, despite an abundance of genetic alterations and a T-cell–inflamed phenotype. One significant barrier to efficacy may be the recruitment of myeloid-derived suppressor cells (MDSC) into the tumor microenvironment. Here we demonstrate functional inhibition of MDSC with IPI-145, an inhibitor of PI3Kδ and PI3Kγ isoforms, which enhances responses to PD-L1 blockade. Combination therapy induced CD8+ T lymphocyte–dependent primary tumor growth delay and prolonged survival only in T-cell–inflamed tumor models of head and neck cancers. However, higher doses of IPI-145 reversed the observed enhancement of anti-PD-L1 efficacy due to off-target suppression of the activity of tumor-infiltrating T lymphocytes. Together, our results offer a preclinical proof of concept for the low-dose use of isoform-specific PI3Kδ/γ inhibitors to suppress MDSC to enhance responses to immune checkpoint blockade. Cancer Res; 77(10); 2607–19. ©2017 AACR. Checkpoint inhibitors are relatively inefficacious in head and neck cancers, despite an abundance of genetic alterations and a T-cell-inflamed phenotype. One significant barrier to efficacy may be the recruitment of myeloid-derived suppressor cells (MDSC) into the tumor microenvironment. Here we demonstrate functional inhibition of MDSC with IPI-145, an inhibitor of PI3Kδ and PI3Kγ isoforms, which enhances responses to PD-L1 blockade. Combination therapy induced CD8 T lymphocyte-dependent primary tumor growth delay and prolonged survival only in T-cell-inflamed tumor models of head and neck cancers. However, higher doses of IPI-145 reversed the observed enhancement of anti-PD-L1 efficacy due to off-target suppression of the activity of tumor-infiltrating T lymphocytes. Together, our results offer a preclinical proof of concept for the low-dose use of isoform-specific PI3Kδ/γ inhibitors to suppress MDSC to enhance responses to immune checkpoint blockade. . These findings highlight the therapeutic balance required between blocking immunosuppressive myeloid cells and blocking effector immune cells in response to isoform-specific PI3K delta / gamma inhibitors. Checkpoint inhibitors are relatively inefficacious in head and neck cancers, despite an abundance of genetic alterations and a T-cell-inflamed phenotype. One significant barrier to efficacy may be the recruitment of myeloid-derived suppressor cells (MDSC) into the tumor microenvironment. Here we demonstrate functional inhibition of MDSC with IPI-145, an inhibitor of PI3K delta and PI3K gamma isoforms, which enhances responses to PD-L1 blockade. Combination therapy induced CD8+ T lymphocyte-dependent primary tumor growth delay and prolonged survival only in T-cell-inflamed tumor models of head and neck cancers. However, higher doses of IPI-145 reversed the observed enhancement of anti-PD-L1 efficacy due to off-target suppression of the activity of tumor-infiltrating T lymphocytes. Together, our results offer a preclinical proof of concept for the low-dose use of isoform-specific PI3K delta / gamma inhibitors to suppress MDSC to enhance responses to immune checkpoint blockade. Cancer Res; 77(10); 2607-19. [copy2017 AACR. Checkpoint inhibitors are relatively inefficacious in head and neck cancers, despite an abundance of genetic alterations and a T cell-inflamed phenotype. One significant barrier to efficacy may be the recruitment of myeloid-derived suppressor cells (MDSC) into the tumor microenvironment. Here we demonstrate functional inhibition of MDSC with IPI-145, an inhibitor of PI3Kδ and PI3Kγ isoforms which enhances responses to PD-L1 blockade. Combination therapy induced CD8+ T lymphocyte-dependent primary tumor growth delay and prolonged survival only in T cell-inflamed tumor models of head and neck cancers. However, higher doses of IPI-145 reversed the observed enhancement of anti-PD-L1 efficacy due to off-target suppression of the activity f tumor-infiltrating T lymphocytes. Together, our results offer a preclinical proof of concept for the low dose use of isoform-specific PI3Kδ/γ inhibitors to suppress MDSC to enhance responses to immune checkpoint blockade. Abstract Checkpoint inhibitors are relatively inefficacious in head and neck cancers, despite an abundance of genetic alterations and a T-cell–inflamed phenotype. One significant barrier to efficacy may be the recruitment of myeloid-derived suppressor cells (MDSC) into the tumor microenvironment. Here we demonstrate functional inhibition of MDSC with IPI-145, an inhibitor of PI3Kδ and PI3Kγ isoforms, which enhances responses to PD-L1 blockade. Combination therapy induced CD8+ T lymphocyte–dependent primary tumor growth delay and prolonged survival only in T-cell–inflamed tumor models of head and neck cancers. However, higher doses of IPI-145 reversed the observed enhancement of anti-PD-L1 efficacy due to off-target suppression of the activity of tumor-infiltrating T lymphocytes. Together, our results offer a preclinical proof of concept for the low-dose use of isoform-specific PI3Kδ/γ inhibitors to suppress MDSC to enhance responses to immune checkpoint blockade. Cancer Res; 77(10); 2607–19. ©2017 AACR. Checkpoint inhibitors are relatively inefficacious in head and neck cancers, despite an abundance of genetic alterations and a T-cell-inflamed phenotype. One significant barrier to efficacy may be the recruitment of myeloid-derived suppressor cells (MDSC) into the tumor microenvironment. Here we demonstrate functional inhibition of MDSC with IPI-145, an inhibitor of PI3Kδ and PI3Kγ isoforms, which enhances responses to PD-L1 blockade. Combination therapy induced CD8+ T lymphocyte-dependent primary tumor growth delay and prolonged survival only in T-cell-inflamed tumor models of head and neck cancers. However, higher doses of IPI-145 reversed the observed enhancement of anti-PD-L1 efficacy due to off-target suppression of the activity of tumor-infiltrating T lymphocytes. Together, our results offer a preclinical proof of concept for the low-dose use of isoform-specific PI3Kδ/γ inhibitors to suppress MDSC to enhance responses to immune checkpoint blockade. Cancer Res; 77(10); 2607-19. ©2017 AACR.Checkpoint inhibitors are relatively inefficacious in head and neck cancers, despite an abundance of genetic alterations and a T-cell-inflamed phenotype. One significant barrier to efficacy may be the recruitment of myeloid-derived suppressor cells (MDSC) into the tumor microenvironment. Here we demonstrate functional inhibition of MDSC with IPI-145, an inhibitor of PI3Kδ and PI3Kγ isoforms, which enhances responses to PD-L1 blockade. Combination therapy induced CD8+ T lymphocyte-dependent primary tumor growth delay and prolonged survival only in T-cell-inflamed tumor models of head and neck cancers. However, higher doses of IPI-145 reversed the observed enhancement of anti-PD-L1 efficacy due to off-target suppression of the activity of tumor-infiltrating T lymphocytes. Together, our results offer a preclinical proof of concept for the low-dose use of isoform-specific PI3Kδ/γ inhibitors to suppress MDSC to enhance responses to immune checkpoint blockade. Cancer Res; 77(10); 2607-19. ©2017 AACR. |
Author | Silvin, Chris Clavijo, Paul E Allen, Clint Davis, Ruth J Cash, Harrison Chen, Zhong Moore, Ellen C Van Waes, Carter Friedman, Jay |
AuthorAffiliation | 2 Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD 1 Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD |
AuthorAffiliation_xml | – name: 1 Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD – name: 2 Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD |
Author_xml | – sequence: 1 givenname: Ruth J surname: Davis fullname: Davis, Ruth J organization: Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland – sequence: 2 givenname: Ellen C surname: Moore fullname: Moore, Ellen C organization: Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland – sequence: 3 givenname: Paul E surname: Clavijo fullname: Clavijo, Paul E organization: Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland – sequence: 4 givenname: Jay surname: Friedman fullname: Friedman, Jay organization: Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland – sequence: 5 givenname: Harrison surname: Cash fullname: Cash, Harrison organization: Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland – sequence: 6 givenname: Zhong surname: Chen fullname: Chen, Zhong organization: Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland – sequence: 7 givenname: Chris surname: Silvin fullname: Silvin, Chris organization: Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland – sequence: 8 givenname: Carter surname: Van Waes fullname: Van Waes, Carter organization: Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland – sequence: 9 givenname: Clint surname: Allen fullname: Allen, Clint email: clint.allen@nih.gov organization: Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28364000$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks9uEzEQxi3UiqaFRwBZ4sJlW3v9NxeksA0QNUClwtlyvLPE1cZO17tFOfBU8Bx9JrxqGwEXTtbIv-_TfDNzjA5CDIDQC0pOKRX6jBCiC8FVeVrNPhVUFqVg_AmaUMF0oTgXB2iyZ47QcUrXuRSUiKfoqNRM8lxO0I9Z6H1xeV4sKZ43jXfW7XBlA34LeB7WNjio8WqHF2HtV773MeDY4I87aKOvi3Po_G0GrobttoOUYocraNuEv_t-jS2-ghZcn5FHfQay_HLBLu5-nd39fIYOG9smeP7wnqCv7-Zfqg_F8vP7RTVbFo4L3hfMNVRbyWqYKgpK1w3hTKvVVEHNdGOBOe10TR2AbVStairLHETJmhEuS85O0Jt73-2w2kDtIPSdbc228xvb7Uy03vz9E_zafIu3RnApidLZ4PWDQRdvBki92fjkclQbIA7J0CmhipeUy_-jWjOqy6kc23r1D3odhy7kSWRDzUoxpZJkStxTrospddDs-6bEjLdgxj2bcc8m34Kh0oy3kHUv_wy9Vz0un_0GTiSyiA |
CitedBy_id | crossref_primary_10_1038_s41523_019_0133_7 crossref_primary_10_1186_s12943_019_1023_1 crossref_primary_10_1016_j_jcmgh_2022_10_013 crossref_primary_10_26599_FSHW_2022_9250194 crossref_primary_10_1080_2162402X_2018_1471440 crossref_primary_10_1111_exd_14489 crossref_primary_10_3390_cells10102700 crossref_primary_10_1016_j_oraloncology_2022_106012 crossref_primary_10_3390_vaccines8020182 crossref_primary_10_1080_2162402X_2019_1581556 crossref_primary_10_1016_j_tranon_2018_11_003 crossref_primary_10_1158_2326_6066_CIR_17_0235 crossref_primary_10_1038_s41568_022_00546_2 crossref_primary_10_3390_cancers13133236 crossref_primary_10_1158_2159_8290_CD_21_0764 crossref_primary_10_1039_D2NR03053E crossref_primary_10_1186_s13045_024_01544_7 crossref_primary_10_1021_acs_jmedchem_1c00237 crossref_primary_10_1038_s41571_019_0222_4 crossref_primary_10_1080_2162402X_2017_1395996 crossref_primary_10_1158_2326_6066_CIR_18_0489 crossref_primary_10_1177_10732748241238047 crossref_primary_10_1136_jitc_2021_003402 crossref_primary_10_3390_ijms21072337 crossref_primary_10_1038_s41568_022_00531_9 crossref_primary_10_1038_s43018_021_00218_4 crossref_primary_10_1158_1078_0432_CCR_18_1038 crossref_primary_10_1158_0008_5472_CAN_20_1414 crossref_primary_10_3390_jcm10132872 crossref_primary_10_1007_s11095_018_2459_5 crossref_primary_10_1038_s41598_020_63789_9 crossref_primary_10_1080_2162402X_2022_2131084 crossref_primary_10_1016_j_trecan_2019_04_004 crossref_primary_10_1080_2162402X_2017_1349587 crossref_primary_10_1186_s12943_022_01657_y crossref_primary_10_1136_jitc_2020_002242 crossref_primary_10_1016_j_ctrv_2020_101977 crossref_primary_10_1007_s00262_020_02523_w crossref_primary_10_3389_fimmu_2023_1161848 crossref_primary_10_1186_s13046_021_01872_3 crossref_primary_10_1002_cam4_5153 crossref_primary_10_1016_j_ccell_2019_03_008 crossref_primary_10_1021_acs_molpharmaceut_8b01165 crossref_primary_10_1016_j_canlet_2020_03_013 crossref_primary_10_1007_s12272_019_01165_6 crossref_primary_10_1111_imcb_12054 crossref_primary_10_3389_fcell_2021_738373 crossref_primary_10_3389_fimmu_2023_1200970 crossref_primary_10_3390_biomedicines10123035 crossref_primary_10_1038_s41423_021_00727_3 crossref_primary_10_3390_cancers11091318 crossref_primary_10_1016_j_jconrel_2021_01_009 crossref_primary_10_1038_s41590_017_0022_x crossref_primary_10_1038_s41416_018_0333_1 crossref_primary_10_1021_acsnano_3c01019 crossref_primary_10_1038_s41419_021_03745_1 crossref_primary_10_1186_s12943_023_01714_0 crossref_primary_10_1016_j_oraloncology_2023_106562 crossref_primary_10_1002_adhm_202302013 crossref_primary_10_3390_biomedicines10051181 crossref_primary_10_1158_2326_6066_CIR_19_0517 crossref_primary_10_1016_j_imlet_2019_03_006 crossref_primary_10_3389_fimmu_2022_933847 crossref_primary_10_4251_wjgo_v16_i5_1690 crossref_primary_10_1016_j_jbo_2018_11_001 crossref_primary_10_1172_JCI170762 crossref_primary_10_1038_s41416_022_01917_0 crossref_primary_10_1038_s41422_020_0337_2 crossref_primary_10_3389_fcell_2020_00351 crossref_primary_10_1016_j_otc_2021_04_004 crossref_primary_10_1158_2326_6066_CIR_18_0156 crossref_primary_10_3390_cells10051073 crossref_primary_10_1016_j_pharmthera_2023_108370 crossref_primary_10_1158_1078_0432_CCR_19_2625 crossref_primary_10_1021_acs_jmedchem_0c01203 crossref_primary_10_1007_s12672_024_01010_3 crossref_primary_10_1016_j_canlet_2019_03_018 crossref_primary_10_1016_j_jep_2024_118260 crossref_primary_10_3390_molecules27196211 crossref_primary_10_3748_wjg_v24_i17_1839 crossref_primary_10_1016_j_ccell_2020_11_009 crossref_primary_10_1016_j_tcb_2021_06_008 crossref_primary_10_1016_j_urolonc_2018_02_018 crossref_primary_10_18632_oncotarget_18437 crossref_primary_10_3390_cells10020329 crossref_primary_10_1080_2162402X_2018_1488359 crossref_primary_10_3389_fimmu_2021_623639 crossref_primary_10_1155_2019_5245034 crossref_primary_10_1016_j_cellimm_2021_104301 crossref_primary_10_1080_2162402X_2017_1404216 crossref_primary_10_1038_s41573_022_00415_5 crossref_primary_10_3390_biom13091309 crossref_primary_10_1136_jitc_2021_003564 crossref_primary_10_1002_jcp_30575 crossref_primary_10_3233_BLC_190219 crossref_primary_10_3389_froh_2022_902160 crossref_primary_10_1038_s41401_020_00500_8 crossref_primary_10_1126_sciimmunol_add8005 crossref_primary_10_1186_s13045_022_01335_y crossref_primary_10_4062_biomolther_2019_069 crossref_primary_10_1371_journal_pone_0234548 crossref_primary_10_1172_jci_insight_93397 crossref_primary_10_1016_j_ultrasmedbio_2018_10_002 crossref_primary_10_3389_fimmu_2019_01912 crossref_primary_10_1093_jleuko_qiad150 crossref_primary_10_3389_fimmu_2021_690869 crossref_primary_10_3389_fonc_2022_793805 crossref_primary_10_1016_j_molimm_2019_12_012 crossref_primary_10_1002_ijc_32041 crossref_primary_10_3389_fonc_2021_738626 crossref_primary_10_1097_SHK_0000000000002007 crossref_primary_10_1186_s40425_018_0374_2 crossref_primary_10_1016_j_ccell_2019_02_008 crossref_primary_10_1186_s40364_021_00333_5 crossref_primary_10_3389_fimmu_2020_00783 crossref_primary_10_1016_j_semcancer_2019_07_017 crossref_primary_10_1124_jpet_118_254953 crossref_primary_10_3389_fimmu_2019_01786 crossref_primary_10_3390_ijms25052985 crossref_primary_10_1002_cti2_1154 crossref_primary_10_1016_j_semcancer_2022_02_019 crossref_primary_10_1158_0008_5472_CAN_21_3896 crossref_primary_10_1186_s40425_018_0457_0 crossref_primary_10_3389_fonc_2022_837835 crossref_primary_10_3390_cancers16040703 crossref_primary_10_1186_s40364_023_00475_8 crossref_primary_10_3389_fimmu_2021_718621 crossref_primary_10_1038_s41416_023_02555_w crossref_primary_10_1172_jci_insight_126853 crossref_primary_10_1016_j_pharmthera_2020_107662 crossref_primary_10_3389_fimmu_2024_1356321 crossref_primary_10_1080_08923973_2019_1678634 crossref_primary_10_1172_jci_insight_128633 crossref_primary_10_1172_jci_insight_156522 crossref_primary_10_3389_fonc_2023_1233376 crossref_primary_10_37349_ei_2021_00013 crossref_primary_10_1016_j_jbc_2023_105276 crossref_primary_10_1038_s41388_022_02324_8 crossref_primary_10_1016_j_celrep_2020_108597 crossref_primary_10_3390_cancers13050953 crossref_primary_10_1016_j_bbcan_2018_08_001 crossref_primary_10_3389_fimmu_2021_754196 crossref_primary_10_3892_ol_2022_13213 crossref_primary_10_3324_haematol_2020_268037 crossref_primary_10_3389_fimmu_2018_01310 crossref_primary_10_3390_vaccines8030528 crossref_primary_10_1002_chem_202400425 crossref_primary_10_1038_s41467_021_22033_2 crossref_primary_10_1080_08923973_2021_1990315 crossref_primary_10_1136_jitc_2022_006272 crossref_primary_10_1016_j_oraloncology_2024_106705 |
Cites_doi | 10.1158/2159-8290.CD-15-1346 10.1038/nature20554 10.1038/nature13444 10.1016/j.oraloncology.2016.05.002 10.1038/sj.gene.6364352 10.1517/14712598.2014.927432 10.1172/JCI60083 10.1158/0008-5472.CAN-11-1831 10.4049/jimmunol.1501293 10.1111/febs.13656 10.1016/j.chembiol.2013.09.017 10.1016/S1470-2045(16)30066-3 10.1038/nature14129 10.1158/1078-0432.CCR-07-0472 10.1158/2326-6066.CIR-15-0252 10.1158/1078-0432.CCR-14-1711 10.4161/onci.27817 10.1038/nature12213 10.1158/0008-5472.CAN-06-3037 10.4049/jimmunol.1302167 10.1182/blood-2009-07-232330 10.3892/ijmm.2014.1982 10.1038/ni.2703 10.1038/nrm2882 10.1002/cyto.a.21010 10.1038/nature19834 10.1056/NEJMoa1406498 10.4049/jimmunol.1202498 10.1182/blood.V124.21.802.802 10.1007/s00262-011-1028-0 10.1016/S0198-8859(01)00222-1 10.1007/s00262-011-1172-6 10.1126/scitranslmed.3003689 10.1158/2326-6066.CIR-16-0104 10.1158/1078-0432.CCR-14-2481 10.1038/sj.onc.1203687 10.4049/jimmunol.172.12.7565 10.1038/nri2506 |
ContentType | Journal Article |
Copyright | 2017 American Association for Cancer Research. Copyright American Association for Cancer Research, Inc. May 15, 2017 |
Copyright_xml | – notice: 2017 American Association for Cancer Research. – notice: Copyright American Association for Cancer Research, Inc. May 15, 2017 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7T5 7TM 7TO 7U9 8FD FR3 H94 P64 RC3 7X8 5PM |
DOI | 10.1158/0008-5472.CAN-16-2534 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Immunology Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE AIDS and Cancer Research Abstracts CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1538-7445 |
EndPage | 2619 |
ExternalDocumentID | 10_1158_0008_5472_CAN_16_2534 28364000 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Intramural NIH HHS grantid: ZIA DC000087 – fundername: Intramural NIH HHS grantid: ZIA DC000087-01 – fundername: NIDCD NIH HHS grantid: R01 DC000087 – fundername: Howard Hughes Medical Institute |
GroupedDBID | --- -ET 18M 29B 2WC 34G 39C 476 53G 5GY 5RE 5VS 6J9 ABOCM ACGFO ACIWK ACPRK ACSVP ADBBV ADCOW ADNWM AENEX AFHIN AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CGR CS3 CUY CVF DIK DU5 EBS ECM EIF EJD F5P FRP GX1 H13 IH2 KQ8 L7B LSO NPM OK1 P0W P2P PQQKQ RCR RHF RHI RNS SJN TR2 W2D W8F WH7 WOQ YKV YZZ AAYXX CITATION 7T5 7TM 7TO 7U9 8FD FR3 H94 P64 RC3 7X8 5PM AETEA |
ID | FETCH-LOGICAL-c454t-3cf18a63de971e78df04387b97ed38fae3c8c8d1ceeaf7d7d162cac76d3046243 |
ISSN | 0008-5472 1538-7445 |
IngestDate | Tue Sep 17 21:20:31 EDT 2024 Fri Oct 25 11:18:58 EDT 2024 Sat Oct 26 04:55:11 EDT 2024 Thu Oct 10 18:04:33 EDT 2024 Thu Sep 26 17:02:54 EDT 2024 Sat Nov 02 12:15:07 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | 2017 American Association for Cancer Research. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c454t-3cf18a63de971e78df04387b97ed38fae3c8c8d1ceeaf7d7d162cac76d3046243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://cancerres.aacrjournals.org/content/canres/77/10/2607.full.pdf |
PMID | 28364000 |
PQID | 1983259160 |
PQPubID | 105549 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5466078 proquest_miscellaneous_1901742146 proquest_miscellaneous_1883182964 proquest_journals_1983259160 crossref_primary_10_1158_0008_5472_CAN_16_2534 pubmed_primary_28364000 |
PublicationCentury | 2000 |
PublicationDate | 2017-05-15 |
PublicationDateYYYYMMDD | 2017-05-15 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Baltimore |
PublicationTitle | Cancer research (Chicago, Ill.) |
PublicationTitleAlternate | Cancer Res |
PublicationYear | 2017 |
Publisher | American Association for Cancer Research, Inc |
Publisher_xml | – name: American Association for Cancer Research, Inc |
References | Roederer (2022061706072776600_bib27) 2011; 79 Vasquez-Dunddel (2022061706072776600_bib9) 2013; 123 Gabrilovich (2022061706072776600_bib12) 2007; 67 Vanhaesebroeck (2022061706072776600_bib18) 2010; 11 Kaneda (2022061706072776600_bib19) 2016; 539 Kaneda (2022061706072776600_bib35) 2016; 6 De Henau (2022061706072776600_bib20) 2016; 539 Dickensheets (2022061706072776600_bib34) 2007; 8 Davis (2022061706072776600_bib26) 2016 Davis (2022061706072776600_bib10) 2016; 58 Young (2022061706072776600_bib11) 2001; 62 Liu (2022061706072776600_bib40) 2016; 283 Pak (2022061706072776600_bib14) 1995; 1 Moore (2022061706072776600_bib28) 2016; 4 Seiwert (2022061706072776600_bib7) 2016; 17 Soond (2022061706072776600_bib36) 2010; 115 Arina (2022061706072776600_bib13) 2014; 192 Champiat (2022061706072776600_bib1) 2014; 3 Whiteside (2022061706072776600_bib39) 2014; 14 Ali (2022061706072776600_bib21) 2014; 510 Taube (2022061706072776600_bib6) 2012; 4 Ian Flinn (2022061706072776600_bib23) 2014; 124 Ji (2022061706072776600_bib29) 2012; 61 Keck (2022061706072776600_bib4) 2015; 21 Gabrilovich (2022061706072776600_bib8) 2009; 9 Pauleau (2022061706072776600_bib33) 2004; 172 Winkler (2022061706072776600_bib22) 2013; 20 Sahin (2022061706072776600_bib31) 2014; 193 Moore (2022061706072776600_bib24) 2016; 4 Judd (2022061706072776600_bib25) 2012; 72 Younis (2022061706072776600_bib37) 2016; 196 Choi (2022061706072776600_bib32) 2015; 35 Gajewski (2022061706072776600_bib5) 2013; 14 Snyder (2022061706072776600_bib30) 2014; 371 Weed (2022061706072776600_bib15) 2015; 21 Gabitass (2022061706072776600_bib16) 2011; 60 Loukinova (2022061706072776600_bib17) 2000; 19 Lawrence (2022061706072776600_bib2) 2013; 499 Strauss (2022061706072776600_bib38) 2007; 13 Cancer Genome Atlas Network (2022061706072776600_bib3) 2015; 517 |
References_xml | – volume: 6 start-page: 870 year: 2016 ident: 2022061706072776600_bib35 article-title: Macrophage PI3Kgamma drives pancreatic ductal adenocarcinoma progression publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-15-1346 contributor: fullname: Kaneda – volume: 539 start-page: 443 year: 2016 ident: 2022061706072776600_bib20 article-title: Overcoming resistance to checkpoint blockade therapy by targeting PI3Kgamma in myeloid cells publication-title: Nature doi: 10.1038/nature20554 contributor: fullname: De Henau – volume: 510 start-page: 407 year: 2014 ident: 2022061706072776600_bib21 article-title: Inactivation of PI(3)K p110delta breaks regulatory T-cell-mediated immune tolerance to cancer publication-title: Nature doi: 10.1038/nature13444 contributor: fullname: Ali – volume: 58 start-page: 59 year: 2016 ident: 2022061706072776600_bib10 article-title: Overcoming barriers to effective immunotherapy: MDSCs, TAMs, and Tregs as mediators of the immunosuppressive microenvironment in head and neck cancer publication-title: Oral Oncol doi: 10.1016/j.oraloncology.2016.05.002 contributor: fullname: Davis – volume: 8 start-page: 21 year: 2007 ident: 2022061706072776600_bib34 article-title: Suppressor of cytokine signaling-1 is an IL-4-inducible gene in macrophages and feedback inhibits IL-4 signaling publication-title: Genes Immun doi: 10.1038/sj.gene.6364352 contributor: fullname: Dickensheets – volume: 14 start-page: 1411 year: 2014 ident: 2022061706072776600_bib39 article-title: Induced regulatory T cells in inhibitory microenvironments created by cancer publication-title: Expert Opin Biol Ther doi: 10.1517/14712598.2014.927432 contributor: fullname: Whiteside – volume: 123 start-page: 1580 year: 2013 ident: 2022061706072776600_bib9 article-title: STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients publication-title: J Clin Invest doi: 10.1172/JCI60083 contributor: fullname: Vasquez-Dunddel – volume: 72 start-page: 365 year: 2012 ident: 2022061706072776600_bib25 article-title: ERK1/2 regulation of CD44 modulates oral cancer aggressiveness publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-11-1831 contributor: fullname: Judd – volume: 196 start-page: 1419 year: 2016 ident: 2022061706072776600_bib37 article-title: Human head and neck squamous cell carcinoma-associated semaphorin 4D induces expansion of myeloid-derived suppressor cells publication-title: J Immunol doi: 10.4049/jimmunol.1501293 contributor: fullname: Younis – volume: 283 start-page: 2731 year: 2016 ident: 2022061706072776600_bib40 article-title: Targeting regulatory T cells in tumors publication-title: FEBS J doi: 10.1111/febs.13656 contributor: fullname: Liu – volume: 20 start-page: 1364 year: 2013 ident: 2022061706072776600_bib22 article-title: PI3K-delta and PI3K-gamma inhibition by IPI-145 abrogates immune responses and suppresses activity in autoimmune and inflammatory disease models publication-title: Chem Biol doi: 10.1016/j.chembiol.2013.09.017 contributor: fullname: Winkler – start-page: S0022 year: 2016 ident: 2022061706072776600_bib26 article-title: Avoiding phagocytosis-related artifact in myeloid derived suppressor cell T-lymphocyte suppression assays publication-title: J Immunol Methods contributor: fullname: Davis – volume: 17 start-page: 956 year: 2016 ident: 2022061706072776600_bib7 article-title: Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial publication-title: Lancet Oncol doi: 10.1016/S1470-2045(16)30066-3 contributor: fullname: Seiwert – volume: 517 start-page: 576 year: 2015 ident: 2022061706072776600_bib3 article-title: Comprehensive genomic characterization of head and neck squamous cell carcinomas publication-title: Nature doi: 10.1038/nature14129 contributor: fullname: Cancer Genome Atlas Network – volume: 13 start-page: 4345 year: 2007 ident: 2022061706072776600_bib38 article-title: A unique subset of CD4+CD25highFoxp3+ T cells secreting interleukin-10 and transforming growth factor-beta1 mediates suppression in the tumor microenvironment publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-07-0472 contributor: fullname: Strauss – volume: 4 start-page: 611 year: 2016 ident: 2022061706072776600_bib24 article-title: Enhanced tumor control with combination mTOR and PD-L1 inhibition in syngeneic oral cavity cancers publication-title: Cancer Immunol Res doi: 10.1158/2326-6066.CIR-15-0252 contributor: fullname: Moore – volume: 21 start-page: 39 year: 2015 ident: 2022061706072776600_bib15 article-title: Tadalafil reduces myeloid-derived suppressor cells and regulatory T cells and promotes tumor immunity in patients with head and neck squamous cell carcinoma publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-14-1711 contributor: fullname: Weed – volume: 3 start-page: e27817 year: 2014 ident: 2022061706072776600_bib1 article-title: Exomics and immunogenics: Bridging mutational load and immune checkpoints efficacy publication-title: Oncoimmunology doi: 10.4161/onci.27817 contributor: fullname: Champiat – volume: 499 start-page: 214 year: 2013 ident: 2022061706072776600_bib2 article-title: Mutational heterogeneity in cancer and the search for new cancer-associated genes publication-title: Nature doi: 10.1038/nature12213 contributor: fullname: Lawrence – volume: 67 start-page: 425 year: 2007 ident: 2022061706072776600_bib12 article-title: The terminology issue for myeloid-derived suppressor cells publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-06-3037 contributor: fullname: Gabrilovich – volume: 193 start-page: 1717 year: 2014 ident: 2022061706072776600_bib31 article-title: Macrophage PTEN regulates expression and secretion of arginase I modulating innate and adaptive immune responses publication-title: J Immunol doi: 10.4049/jimmunol.1302167 contributor: fullname: Sahin – volume: 115 start-page: 2203 year: 2010 ident: 2022061706072776600_bib36 article-title: PI3K p110delta regulates T-cell cytokine production during primary and secondary immune responses in mice and humans publication-title: Blood doi: 10.1182/blood-2009-07-232330 contributor: fullname: Soond – volume: 35 start-page: 202 year: 2015 ident: 2022061706072776600_bib32 article-title: Veratric acid inhibits iNOS expression through the regulation of PI3K activation and histone acetylation in LPS-stimulated RAW264.7 cells publication-title: Int J Mol Med doi: 10.3892/ijmm.2014.1982 contributor: fullname: Choi – volume: 14 start-page: 1014 year: 2013 ident: 2022061706072776600_bib5 article-title: Innate and adaptive immune cells in the tumor microenvironment publication-title: Nat Immunol doi: 10.1038/ni.2703 contributor: fullname: Gajewski – volume: 11 start-page: 329 year: 2010 ident: 2022061706072776600_bib18 article-title: The emerging mechanisms of isoform-specific PI3K signalling publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2882 contributor: fullname: Vanhaesebroeck – volume: 79 start-page: 95 year: 2011 ident: 2022061706072776600_bib27 article-title: Interpretation of cellular proliferation data: avoid the panglossian publication-title: Cytometry A doi: 10.1002/cyto.a.21010 contributor: fullname: Roederer – volume: 539 start-page: 437 year: 2016 ident: 2022061706072776600_bib19 article-title: PI3Kgamma is a molecular switch that controls immune suppression publication-title: Nature doi: 10.1038/nature19834 contributor: fullname: Kaneda – volume: 371 start-page: 2189 year: 2014 ident: 2022061706072776600_bib30 article-title: Genetic basis for clinical response to CTLA-4 blockade in melanoma publication-title: N Engl J Med doi: 10.1056/NEJMoa1406498 contributor: fullname: Snyder – volume: 192 start-page: 1286 year: 2014 ident: 2022061706072776600_bib13 article-title: Adoptively transferred immune T cells eradicate established tumors despite cancer-induced immune suppression publication-title: J Immunol doi: 10.4049/jimmunol.1202498 contributor: fullname: Arina – volume: 124 start-page: 802 year: 2014 ident: 2022061706072776600_bib23 article-title: a Phase 1 evaluation of duvelisib (IPI-145), a PI3K-δ,γ inhibitor, in patients with relapsed/refractory iNHL publication-title: Blood doi: 10.1182/blood.V124.21.802.802 contributor: fullname: Ian Flinn – volume: 60 start-page: 1419 year: 2011 ident: 2022061706072776600_bib16 article-title: Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13 publication-title: Cancer Immunol Immunother doi: 10.1007/s00262-011-1028-0 contributor: fullname: Gabitass – volume: 62 start-page: 332 year: 2001 ident: 2022061706072776600_bib11 article-title: Human squamous cell carcinomas of the head and neck chemoattract immune suppressive CD34(+) progenitor cells publication-title: Human Immunol doi: 10.1016/S0198-8859(01)00222-1 contributor: fullname: Young – volume: 1 start-page: 95 year: 1995 ident: 2022061706072776600_bib14 article-title: Mechanisms of immune suppression in patients with head and neck cancer: presence of CD34(+) cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-stimulating factor publication-title: Clin Cancer Res contributor: fullname: Pak – volume: 61 start-page: 1019 year: 2012 ident: 2022061706072776600_bib29 article-title: An immune-active tumor microenvironment favors clinical response to ipilimumab publication-title: Cancer Immunol Immunother doi: 10.1007/s00262-011-1172-6 contributor: fullname: Ji – volume: 4 start-page: 127ra37 year: 2012 ident: 2022061706072776600_bib6 article-title: Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape publication-title: Sci Translat Med doi: 10.1126/scitranslmed.3003689 contributor: fullname: Taube – volume: 4 start-page: 1061 year: 2016 ident: 2022061706072776600_bib28 article-title: Established T cell-inflamed tumors rejected after adaptive resistance was reversed by combination STING Activation and PD-1 pathway blockade publication-title: Cancer Immunol Res doi: 10.1158/2326-6066.CIR-16-0104 contributor: fullname: Moore – volume: 21 start-page: 870 year: 2015 ident: 2022061706072776600_bib4 article-title: Integrative analysis of head and neck cancer identifies two biologically distinct HPV and three non-HPV subtypes publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-14-2481 contributor: fullname: Keck – volume: 19 start-page: 3477 year: 2000 ident: 2022061706072776600_bib17 article-title: Growth regulated oncogene-alpha expression by murine squamous cell carcinoma promotes tumor growth, metastasis, leukocyte infiltration and angiogenesis by a host CXC receptor-2 dependent mechanism publication-title: Oncogene doi: 10.1038/sj.onc.1203687 contributor: fullname: Loukinova – volume: 172 start-page: 7565 year: 2004 ident: 2022061706072776600_bib33 article-title: Enhancer-mediated control of macrophage-specific arginase I expression publication-title: J Immunol doi: 10.4049/jimmunol.172.12.7565 contributor: fullname: Pauleau – volume: 9 start-page: 162 year: 2009 ident: 2022061706072776600_bib8 article-title: Myeloid-derived suppressor cells as regulators of the immune system publication-title: Nat Rev Immunol doi: 10.1038/nri2506 contributor: fullname: Gabrilovich |
SSID | ssj0005105 |
Score | 2.6230347 |
Snippet | Checkpoint inhibitors are relatively inefficacious in head and neck cancers, despite an abundance of genetic alterations and a T-cell-inflamed phenotype. One... Abstract Checkpoint inhibitors are relatively inefficacious in head and neck cancers, despite an abundance of genetic alterations and a T-cell–inflamed... These findings highlight the therapeutic balance required between blocking immunosuppressive myeloid cells and blocking effector immune cells in response to... Checkpoint inhibitors are relatively inefficacious in head and neck cancers, despite an abundance of genetic alterations and a T cell-inflamed phenotype. One... |
SourceID | pubmedcentral proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 2607 |
SubjectTerms | Animals Antibodies, Monoclonal - pharmacology Antineoplastic Agents - pharmacology B7-H1 Antigen - antagonists & inhibitors Cancer CD8 antigen Cell culture Cell Line, Tumor Cell survival Class I Phosphatidylinositol 3-Kinases - antagonists & inhibitors Disease Models, Animal Effector cells Epitopes, T-Lymphocyte - immunology Head & neck cancer Head and neck Immune checkpoint Immunomodulation - drug effects Immunosuppression Inflammation Inhibition Inhibitors Isoforms Isoquinolines - pharmacology Lymphocyte Activation - drug effects Lymphocyte Activation - immunology Lymphocytes Lymphocytes T Lymphocytes, Tumor-Infiltrating - drug effects Lymphocytes, Tumor-Infiltrating - immunology Lymphocytes, Tumor-Infiltrating - metabolism Mice Myeloid cells Myeloid-Derived Suppressor Cells - drug effects Myeloid-Derived Suppressor Cells - immunology Myeloid-Derived Suppressor Cells - metabolism Neoplasms - drug therapy Neoplasms - immunology Neoplasms - metabolism Neoplasms - pathology PD-L1 protein Protein Kinase Inhibitors - pharmacology Purines - pharmacology Suppressor cells Survival Analysis Tumor Microenvironment - immunology |
Title | Anti-PD-L1 Efficacy Can Be Enhanced by Inhibition of Myeloid-Derived Suppressor Cells with a Selective Inhibitor of PI3Kδ/γ |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28364000 https://www.proquest.com/docview/1983259160 https://www.proquest.com/docview/1883182964 https://search.proquest.com/docview/1901742146 https://pubmed.ncbi.nlm.nih.gov/PMC5466078 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBAviPsKAxmJPUXJmotj53GETqOwqUibtLcoiR21qEuqXpCKxK-C37HfxDmJcylUCPYSRbFdWz5fj8-xP59DyFsJbpX0BTMHPGCmx2JuJnEgzVhJ13ac1AMbCdkW5_7ppTe6Yle9XjdC8HqVWOm3nfdKbiNV-AZyxVuy_yHZ5kfhA7yDfOEJEobnP8n4OF9NzfF785ONvAyY7nSDLC4jUYbKJ9XZfoIX-ybTZFqbhtcbNSum0pAwwq9QYbmel2TYYmHgLn593c1YlhlykFik2xflgcL4g_vxMBwevvNg3OWL2zVwQ-x1YegYQpPykLhie5TaaDazOnsPTYgD5NkbI6uRfqHZv0NM9GKETUE4gxZfiprSaAybkhNw-aXezR1pYpDezIAFEuOgsi0FLUzmVdl8LNXqZO5VUSdrpa1zv2hwDroq2K_S6OrlHD3E3UsFExW3surQCo_PTds3HVZtrnbgM78u8QOGmA8ab9CunDVbYHwWMs-HfsUdctfBiIPIDvjchq1nmktbd6avksEQjnYOAENU69627aU_nKDfubwd4-jiIXmgvRp6XEH0Eemp_DG5d6Z5G0_I9xaptEYqBaTSRNEaqTTZ0BaptMioRirVSKUtUmmJVIpIpTFtkEobpGJzROrNz6ObH0_J5cnwIjw1deIPM_WYtzLdNLNF7LtSBdxWXMgMz6t5EnDQICKLlZuKVEgbDLw445JL23dg4NyXeM7veO4zspcXudonNLVjm2U88ZOBwuTqAfNSlcgM9yGyVLA-serpjeZVfJeo9IuZQF6GiFA0EYgmsv0IRdMnB7UQIq0KlpEdwMLIwNMa9MmbphgUNc5GnKtiDXWEgPUTWQ5_qQPWOfccsF765Hkl12ZUNSD6hG9JvKmAgeK3S_LppAwYr8H54tYtX5L77b_1gOytFmv1CozxVfK6BPovhNfawQ |
link.rule.ids | 230,315,783,787,888,27937,27938 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anti-PD-L1+efficacy+can+be+enhanced+by+inhibition+of+myeloid+derived+suppressor+cells+with+a+selective+inhibitor+of+PI3K%CE%B4%2F%CE%B3&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Davis%2C+Ruth+J.&rft.au=Moore%2C+Ellen+C.&rft.au=Clavijo%2C+Paul+E.&rft.au=Friedman%2C+Jay&rft.date=2017-05-15&rft.issn=0008-5472&rft.eissn=1538-7445&rft.volume=77&rft.issue=10&rft.spage=2607&rft.epage=2619&rft_id=info:doi/10.1158%2F0008-5472.CAN-16-2534&rft_id=info%3Apmid%2F28364000&rft.externalDBID=PMC5466078 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon |