Anti-PD-L1 Efficacy Can Be Enhanced by Inhibition of Myeloid-Derived Suppressor Cells with a Selective Inhibitor of PI3Kδ/γ

Checkpoint inhibitors are relatively inefficacious in head and neck cancers, despite an abundance of genetic alterations and a T-cell-inflamed phenotype. One significant barrier to efficacy may be the recruitment of myeloid-derived suppressor cells (MDSC) into the tumor microenvironment. Here we dem...

Full description

Saved in:
Bibliographic Details
Published inCancer research (Chicago, Ill.) Vol. 77; no. 10; pp. 2607 - 2619
Main Authors Davis, Ruth J, Moore, Ellen C, Clavijo, Paul E, Friedman, Jay, Cash, Harrison, Chen, Zhong, Silvin, Chris, Van Waes, Carter, Allen, Clint
Format Journal Article
LanguageEnglish
Published United States American Association for Cancer Research, Inc 15.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Checkpoint inhibitors are relatively inefficacious in head and neck cancers, despite an abundance of genetic alterations and a T-cell-inflamed phenotype. One significant barrier to efficacy may be the recruitment of myeloid-derived suppressor cells (MDSC) into the tumor microenvironment. Here we demonstrate functional inhibition of MDSC with IPI-145, an inhibitor of PI3Kδ and PI3Kγ isoforms, which enhances responses to PD-L1 blockade. Combination therapy induced CD8 T lymphocyte-dependent primary tumor growth delay and prolonged survival only in T-cell-inflamed tumor models of head and neck cancers. However, higher doses of IPI-145 reversed the observed enhancement of anti-PD-L1 efficacy due to off-target suppression of the activity of tumor-infiltrating T lymphocytes. Together, our results offer a preclinical proof of concept for the low-dose use of isoform-specific PI3Kδ/γ inhibitors to suppress MDSC to enhance responses to immune checkpoint blockade. .
AbstractList These findings highlight the therapeutic balance required between blocking immunosuppressive myeloid cells and blocking effector immune cells in response to isoform-specific PI3Kδ/γ inhibitors.Checkpoint inhibitors are relatively inefficacious in head and neck cancers, despite an abundance of genetic alterations and a T-cell–inflamed phenotype. One significant barrier to efficacy may be the recruitment of myeloid-derived suppressor cells (MDSC) into the tumor microenvironment. Here we demonstrate functional inhibition of MDSC with IPI-145, an inhibitor of PI3Kδ and PI3Kγ isoforms, which enhances responses to PD-L1 blockade. Combination therapy induced CD8+ T lymphocyte–dependent primary tumor growth delay and prolonged survival only in T-cell–inflamed tumor models of head and neck cancers. However, higher doses of IPI-145 reversed the observed enhancement of anti-PD-L1 efficacy due to off-target suppression of the activity of tumor-infiltrating T lymphocytes. Together, our results offer a preclinical proof of concept for the low-dose use of isoform-specific PI3Kδ/γ inhibitors to suppress MDSC to enhance responses to immune checkpoint blockade. Cancer Res; 77(10); 2607–19. ©2017 AACR.
Checkpoint inhibitors are relatively inefficacious in head and neck cancers, despite an abundance of genetic alterations and a T-cell-inflamed phenotype. One significant barrier to efficacy may be the recruitment of myeloid-derived suppressor cells (MDSC) into the tumor microenvironment. Here we demonstrate functional inhibition of MDSC with IPI-145, an inhibitor of PI3Kδ and PI3Kγ isoforms, which enhances responses to PD-L1 blockade. Combination therapy induced CD8 T lymphocyte-dependent primary tumor growth delay and prolonged survival only in T-cell-inflamed tumor models of head and neck cancers. However, higher doses of IPI-145 reversed the observed enhancement of anti-PD-L1 efficacy due to off-target suppression of the activity of tumor-infiltrating T lymphocytes. Together, our results offer a preclinical proof of concept for the low-dose use of isoform-specific PI3Kδ/γ inhibitors to suppress MDSC to enhance responses to immune checkpoint blockade. .
These findings highlight the therapeutic balance required between blocking immunosuppressive myeloid cells and blocking effector immune cells in response to isoform-specific PI3K delta / gamma inhibitors. Checkpoint inhibitors are relatively inefficacious in head and neck cancers, despite an abundance of genetic alterations and a T-cell-inflamed phenotype. One significant barrier to efficacy may be the recruitment of myeloid-derived suppressor cells (MDSC) into the tumor microenvironment. Here we demonstrate functional inhibition of MDSC with IPI-145, an inhibitor of PI3K delta and PI3K gamma isoforms, which enhances responses to PD-L1 blockade. Combination therapy induced CD8+ T lymphocyte-dependent primary tumor growth delay and prolonged survival only in T-cell-inflamed tumor models of head and neck cancers. However, higher doses of IPI-145 reversed the observed enhancement of anti-PD-L1 efficacy due to off-target suppression of the activity of tumor-infiltrating T lymphocytes. Together, our results offer a preclinical proof of concept for the low-dose use of isoform-specific PI3K delta / gamma inhibitors to suppress MDSC to enhance responses to immune checkpoint blockade. Cancer Res; 77(10); 2607-19. [copy2017 AACR.
Checkpoint inhibitors are relatively inefficacious in head and neck cancers, despite an abundance of genetic alterations and a T cell-inflamed phenotype. One significant barrier to efficacy may be the recruitment of myeloid-derived suppressor cells (MDSC) into the tumor microenvironment. Here we demonstrate functional inhibition of MDSC with IPI-145, an inhibitor of PI3Kδ and PI3Kγ isoforms which enhances responses to PD-L1 blockade. Combination therapy induced CD8+ T lymphocyte-dependent primary tumor growth delay and prolonged survival only in T cell-inflamed tumor models of head and neck cancers. However, higher doses of IPI-145 reversed the observed enhancement of anti-PD-L1 efficacy due to off-target suppression of the activity f tumor-infiltrating T lymphocytes. Together, our results offer a preclinical proof of concept for the low dose use of isoform-specific PI3Kδ/γ inhibitors to suppress MDSC to enhance responses to immune checkpoint blockade.
Abstract Checkpoint inhibitors are relatively inefficacious in head and neck cancers, despite an abundance of genetic alterations and a T-cell–inflamed phenotype. One significant barrier to efficacy may be the recruitment of myeloid-derived suppressor cells (MDSC) into the tumor microenvironment. Here we demonstrate functional inhibition of MDSC with IPI-145, an inhibitor of PI3Kδ and PI3Kγ isoforms, which enhances responses to PD-L1 blockade. Combination therapy induced CD8+ T lymphocyte–dependent primary tumor growth delay and prolonged survival only in T-cell–inflamed tumor models of head and neck cancers. However, higher doses of IPI-145 reversed the observed enhancement of anti-PD-L1 efficacy due to off-target suppression of the activity of tumor-infiltrating T lymphocytes. Together, our results offer a preclinical proof of concept for the low-dose use of isoform-specific PI3Kδ/γ inhibitors to suppress MDSC to enhance responses to immune checkpoint blockade. Cancer Res; 77(10); 2607–19. ©2017 AACR.
Checkpoint inhibitors are relatively inefficacious in head and neck cancers, despite an abundance of genetic alterations and a T-cell-inflamed phenotype. One significant barrier to efficacy may be the recruitment of myeloid-derived suppressor cells (MDSC) into the tumor microenvironment. Here we demonstrate functional inhibition of MDSC with IPI-145, an inhibitor of PI3Kδ and PI3Kγ isoforms, which enhances responses to PD-L1 blockade. Combination therapy induced CD8+ T lymphocyte-dependent primary tumor growth delay and prolonged survival only in T-cell-inflamed tumor models of head and neck cancers. However, higher doses of IPI-145 reversed the observed enhancement of anti-PD-L1 efficacy due to off-target suppression of the activity of tumor-infiltrating T lymphocytes. Together, our results offer a preclinical proof of concept for the low-dose use of isoform-specific PI3Kδ/γ inhibitors to suppress MDSC to enhance responses to immune checkpoint blockade. Cancer Res; 77(10); 2607-19. ©2017 AACR.Checkpoint inhibitors are relatively inefficacious in head and neck cancers, despite an abundance of genetic alterations and a T-cell-inflamed phenotype. One significant barrier to efficacy may be the recruitment of myeloid-derived suppressor cells (MDSC) into the tumor microenvironment. Here we demonstrate functional inhibition of MDSC with IPI-145, an inhibitor of PI3Kδ and PI3Kγ isoforms, which enhances responses to PD-L1 blockade. Combination therapy induced CD8+ T lymphocyte-dependent primary tumor growth delay and prolonged survival only in T-cell-inflamed tumor models of head and neck cancers. However, higher doses of IPI-145 reversed the observed enhancement of anti-PD-L1 efficacy due to off-target suppression of the activity of tumor-infiltrating T lymphocytes. Together, our results offer a preclinical proof of concept for the low-dose use of isoform-specific PI3Kδ/γ inhibitors to suppress MDSC to enhance responses to immune checkpoint blockade. Cancer Res; 77(10); 2607-19. ©2017 AACR.
Author Silvin, Chris
Clavijo, Paul E
Allen, Clint
Davis, Ruth J
Cash, Harrison
Chen, Zhong
Moore, Ellen C
Van Waes, Carter
Friedman, Jay
AuthorAffiliation 2 Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD
1 Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD
AuthorAffiliation_xml – name: 1 Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD
– name: 2 Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD
Author_xml – sequence: 1
  givenname: Ruth J
  surname: Davis
  fullname: Davis, Ruth J
  organization: Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
– sequence: 2
  givenname: Ellen C
  surname: Moore
  fullname: Moore, Ellen C
  organization: Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
– sequence: 3
  givenname: Paul E
  surname: Clavijo
  fullname: Clavijo, Paul E
  organization: Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
– sequence: 4
  givenname: Jay
  surname: Friedman
  fullname: Friedman, Jay
  organization: Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
– sequence: 5
  givenname: Harrison
  surname: Cash
  fullname: Cash, Harrison
  organization: Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
– sequence: 6
  givenname: Zhong
  surname: Chen
  fullname: Chen, Zhong
  organization: Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
– sequence: 7
  givenname: Chris
  surname: Silvin
  fullname: Silvin, Chris
  organization: Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
– sequence: 8
  givenname: Carter
  surname: Van Waes
  fullname: Van Waes, Carter
  organization: Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland
– sequence: 9
  givenname: Clint
  surname: Allen
  fullname: Allen, Clint
  email: clint.allen@nih.gov
  organization: Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28364000$$D View this record in MEDLINE/PubMed
BookMark eNqFks9uEzEQxi3UiqaFRwBZ4sJlW3v9NxeksA0QNUClwtlyvLPE1cZO17tFOfBU8Bx9JrxqGwEXTtbIv-_TfDNzjA5CDIDQC0pOKRX6jBCiC8FVeVrNPhVUFqVg_AmaUMF0oTgXB2iyZ47QcUrXuRSUiKfoqNRM8lxO0I9Z6H1xeV4sKZ43jXfW7XBlA34LeB7WNjio8WqHF2HtV773MeDY4I87aKOvi3Po_G0GrobttoOUYocraNuEv_t-jS2-ghZcn5FHfQay_HLBLu5-nd39fIYOG9smeP7wnqCv7-Zfqg_F8vP7RTVbFo4L3hfMNVRbyWqYKgpK1w3hTKvVVEHNdGOBOe10TR2AbVStairLHETJmhEuS85O0Jt73-2w2kDtIPSdbc228xvb7Uy03vz9E_zafIu3RnApidLZ4PWDQRdvBki92fjkclQbIA7J0CmhipeUy_-jWjOqy6kc23r1D3odhy7kSWRDzUoxpZJkStxTrospddDs-6bEjLdgxj2bcc8m34Kh0oy3kHUv_wy9Vz0un_0GTiSyiA
CitedBy_id crossref_primary_10_1038_s41523_019_0133_7
crossref_primary_10_1186_s12943_019_1023_1
crossref_primary_10_1016_j_jcmgh_2022_10_013
crossref_primary_10_26599_FSHW_2022_9250194
crossref_primary_10_1080_2162402X_2018_1471440
crossref_primary_10_1111_exd_14489
crossref_primary_10_3390_cells10102700
crossref_primary_10_1016_j_oraloncology_2022_106012
crossref_primary_10_3390_vaccines8020182
crossref_primary_10_1080_2162402X_2019_1581556
crossref_primary_10_1016_j_tranon_2018_11_003
crossref_primary_10_1158_2326_6066_CIR_17_0235
crossref_primary_10_1038_s41568_022_00546_2
crossref_primary_10_3390_cancers13133236
crossref_primary_10_1158_2159_8290_CD_21_0764
crossref_primary_10_1039_D2NR03053E
crossref_primary_10_1186_s13045_024_01544_7
crossref_primary_10_1021_acs_jmedchem_1c00237
crossref_primary_10_1038_s41571_019_0222_4
crossref_primary_10_1080_2162402X_2017_1395996
crossref_primary_10_1158_2326_6066_CIR_18_0489
crossref_primary_10_1177_10732748241238047
crossref_primary_10_1136_jitc_2021_003402
crossref_primary_10_3390_ijms21072337
crossref_primary_10_1038_s41568_022_00531_9
crossref_primary_10_1038_s43018_021_00218_4
crossref_primary_10_1158_1078_0432_CCR_18_1038
crossref_primary_10_1158_0008_5472_CAN_20_1414
crossref_primary_10_3390_jcm10132872
crossref_primary_10_1007_s11095_018_2459_5
crossref_primary_10_1038_s41598_020_63789_9
crossref_primary_10_1080_2162402X_2022_2131084
crossref_primary_10_1016_j_trecan_2019_04_004
crossref_primary_10_1080_2162402X_2017_1349587
crossref_primary_10_1186_s12943_022_01657_y
crossref_primary_10_1136_jitc_2020_002242
crossref_primary_10_1016_j_ctrv_2020_101977
crossref_primary_10_1007_s00262_020_02523_w
crossref_primary_10_3389_fimmu_2023_1161848
crossref_primary_10_1186_s13046_021_01872_3
crossref_primary_10_1002_cam4_5153
crossref_primary_10_1016_j_ccell_2019_03_008
crossref_primary_10_1021_acs_molpharmaceut_8b01165
crossref_primary_10_1016_j_canlet_2020_03_013
crossref_primary_10_1007_s12272_019_01165_6
crossref_primary_10_1111_imcb_12054
crossref_primary_10_3389_fcell_2021_738373
crossref_primary_10_3389_fimmu_2023_1200970
crossref_primary_10_3390_biomedicines10123035
crossref_primary_10_1038_s41423_021_00727_3
crossref_primary_10_3390_cancers11091318
crossref_primary_10_1016_j_jconrel_2021_01_009
crossref_primary_10_1038_s41590_017_0022_x
crossref_primary_10_1038_s41416_018_0333_1
crossref_primary_10_1021_acsnano_3c01019
crossref_primary_10_1038_s41419_021_03745_1
crossref_primary_10_1186_s12943_023_01714_0
crossref_primary_10_1016_j_oraloncology_2023_106562
crossref_primary_10_1002_adhm_202302013
crossref_primary_10_3390_biomedicines10051181
crossref_primary_10_1158_2326_6066_CIR_19_0517
crossref_primary_10_1016_j_imlet_2019_03_006
crossref_primary_10_3389_fimmu_2022_933847
crossref_primary_10_4251_wjgo_v16_i5_1690
crossref_primary_10_1016_j_jbo_2018_11_001
crossref_primary_10_1172_JCI170762
crossref_primary_10_1038_s41416_022_01917_0
crossref_primary_10_1038_s41422_020_0337_2
crossref_primary_10_3389_fcell_2020_00351
crossref_primary_10_1016_j_otc_2021_04_004
crossref_primary_10_1158_2326_6066_CIR_18_0156
crossref_primary_10_3390_cells10051073
crossref_primary_10_1016_j_pharmthera_2023_108370
crossref_primary_10_1158_1078_0432_CCR_19_2625
crossref_primary_10_1021_acs_jmedchem_0c01203
crossref_primary_10_1007_s12672_024_01010_3
crossref_primary_10_1016_j_canlet_2019_03_018
crossref_primary_10_1016_j_jep_2024_118260
crossref_primary_10_3390_molecules27196211
crossref_primary_10_3748_wjg_v24_i17_1839
crossref_primary_10_1016_j_ccell_2020_11_009
crossref_primary_10_1016_j_tcb_2021_06_008
crossref_primary_10_1016_j_urolonc_2018_02_018
crossref_primary_10_18632_oncotarget_18437
crossref_primary_10_3390_cells10020329
crossref_primary_10_1080_2162402X_2018_1488359
crossref_primary_10_3389_fimmu_2021_623639
crossref_primary_10_1155_2019_5245034
crossref_primary_10_1016_j_cellimm_2021_104301
crossref_primary_10_1080_2162402X_2017_1404216
crossref_primary_10_1038_s41573_022_00415_5
crossref_primary_10_3390_biom13091309
crossref_primary_10_1136_jitc_2021_003564
crossref_primary_10_1002_jcp_30575
crossref_primary_10_3233_BLC_190219
crossref_primary_10_3389_froh_2022_902160
crossref_primary_10_1038_s41401_020_00500_8
crossref_primary_10_1126_sciimmunol_add8005
crossref_primary_10_1186_s13045_022_01335_y
crossref_primary_10_4062_biomolther_2019_069
crossref_primary_10_1371_journal_pone_0234548
crossref_primary_10_1172_jci_insight_93397
crossref_primary_10_1016_j_ultrasmedbio_2018_10_002
crossref_primary_10_3389_fimmu_2019_01912
crossref_primary_10_1093_jleuko_qiad150
crossref_primary_10_3389_fimmu_2021_690869
crossref_primary_10_3389_fonc_2022_793805
crossref_primary_10_1016_j_molimm_2019_12_012
crossref_primary_10_1002_ijc_32041
crossref_primary_10_3389_fonc_2021_738626
crossref_primary_10_1097_SHK_0000000000002007
crossref_primary_10_1186_s40425_018_0374_2
crossref_primary_10_1016_j_ccell_2019_02_008
crossref_primary_10_1186_s40364_021_00333_5
crossref_primary_10_3389_fimmu_2020_00783
crossref_primary_10_1016_j_semcancer_2019_07_017
crossref_primary_10_1124_jpet_118_254953
crossref_primary_10_3389_fimmu_2019_01786
crossref_primary_10_3390_ijms25052985
crossref_primary_10_1002_cti2_1154
crossref_primary_10_1016_j_semcancer_2022_02_019
crossref_primary_10_1158_0008_5472_CAN_21_3896
crossref_primary_10_1186_s40425_018_0457_0
crossref_primary_10_3389_fonc_2022_837835
crossref_primary_10_3390_cancers16040703
crossref_primary_10_1186_s40364_023_00475_8
crossref_primary_10_3389_fimmu_2021_718621
crossref_primary_10_1038_s41416_023_02555_w
crossref_primary_10_1172_jci_insight_126853
crossref_primary_10_1016_j_pharmthera_2020_107662
crossref_primary_10_3389_fimmu_2024_1356321
crossref_primary_10_1080_08923973_2019_1678634
crossref_primary_10_1172_jci_insight_128633
crossref_primary_10_1172_jci_insight_156522
crossref_primary_10_3389_fonc_2023_1233376
crossref_primary_10_37349_ei_2021_00013
crossref_primary_10_1016_j_jbc_2023_105276
crossref_primary_10_1038_s41388_022_02324_8
crossref_primary_10_1016_j_celrep_2020_108597
crossref_primary_10_3390_cancers13050953
crossref_primary_10_1016_j_bbcan_2018_08_001
crossref_primary_10_3389_fimmu_2021_754196
crossref_primary_10_3892_ol_2022_13213
crossref_primary_10_3324_haematol_2020_268037
crossref_primary_10_3389_fimmu_2018_01310
crossref_primary_10_3390_vaccines8030528
crossref_primary_10_1002_chem_202400425
crossref_primary_10_1038_s41467_021_22033_2
crossref_primary_10_1080_08923973_2021_1990315
crossref_primary_10_1136_jitc_2022_006272
crossref_primary_10_1016_j_oraloncology_2024_106705
Cites_doi 10.1158/2159-8290.CD-15-1346
10.1038/nature20554
10.1038/nature13444
10.1016/j.oraloncology.2016.05.002
10.1038/sj.gene.6364352
10.1517/14712598.2014.927432
10.1172/JCI60083
10.1158/0008-5472.CAN-11-1831
10.4049/jimmunol.1501293
10.1111/febs.13656
10.1016/j.chembiol.2013.09.017
10.1016/S1470-2045(16)30066-3
10.1038/nature14129
10.1158/1078-0432.CCR-07-0472
10.1158/2326-6066.CIR-15-0252
10.1158/1078-0432.CCR-14-1711
10.4161/onci.27817
10.1038/nature12213
10.1158/0008-5472.CAN-06-3037
10.4049/jimmunol.1302167
10.1182/blood-2009-07-232330
10.3892/ijmm.2014.1982
10.1038/ni.2703
10.1038/nrm2882
10.1002/cyto.a.21010
10.1038/nature19834
10.1056/NEJMoa1406498
10.4049/jimmunol.1202498
10.1182/blood.V124.21.802.802
10.1007/s00262-011-1028-0
10.1016/S0198-8859(01)00222-1
10.1007/s00262-011-1172-6
10.1126/scitranslmed.3003689
10.1158/2326-6066.CIR-16-0104
10.1158/1078-0432.CCR-14-2481
10.1038/sj.onc.1203687
10.4049/jimmunol.172.12.7565
10.1038/nri2506
ContentType Journal Article
Copyright 2017 American Association for Cancer Research.
Copyright American Association for Cancer Research, Inc. May 15, 2017
Copyright_xml – notice: 2017 American Association for Cancer Research.
– notice: Copyright American Association for Cancer Research, Inc. May 15, 2017
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7T5
7TM
7TO
7U9
8FD
FR3
H94
P64
RC3
7X8
5PM
DOI 10.1158/0008-5472.CAN-16-2534
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Immunology Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
MEDLINE
AIDS and Cancer Research Abstracts

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1538-7445
EndPage 2619
ExternalDocumentID 10_1158_0008_5472_CAN_16_2534
28364000
Genre Journal Article
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: ZIA DC000087
– fundername: Intramural NIH HHS
  grantid: ZIA DC000087-01
– fundername: NIDCD NIH HHS
  grantid: R01 DC000087
– fundername: Howard Hughes Medical Institute
GroupedDBID ---
-ET
18M
29B
2WC
34G
39C
476
53G
5GY
5RE
5VS
6J9
ABOCM
ACGFO
ACIWK
ACPRK
ACSVP
ADBBV
ADCOW
ADNWM
AENEX
AFHIN
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CGR
CS3
CUY
CVF
DIK
DU5
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
IH2
KQ8
L7B
LSO
NPM
OK1
P0W
P2P
PQQKQ
RCR
RHF
RHI
RNS
SJN
TR2
W2D
W8F
WH7
WOQ
YKV
YZZ
AAYXX
CITATION
7T5
7TM
7TO
7U9
8FD
FR3
H94
P64
RC3
7X8
5PM
AETEA
ID FETCH-LOGICAL-c454t-3cf18a63de971e78df04387b97ed38fae3c8c8d1ceeaf7d7d162cac76d3046243
ISSN 0008-5472
1538-7445
IngestDate Tue Sep 17 21:20:31 EDT 2024
Fri Oct 25 11:18:58 EDT 2024
Sat Oct 26 04:55:11 EDT 2024
Thu Oct 10 18:04:33 EDT 2024
Thu Sep 26 17:02:54 EDT 2024
Sat Nov 02 12:15:07 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License 2017 American Association for Cancer Research.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c454t-3cf18a63de971e78df04387b97ed38fae3c8c8d1ceeaf7d7d162cac76d3046243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://cancerres.aacrjournals.org/content/canres/77/10/2607.full.pdf
PMID 28364000
PQID 1983259160
PQPubID 105549
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5466078
proquest_miscellaneous_1901742146
proquest_miscellaneous_1883182964
proquest_journals_1983259160
crossref_primary_10_1158_0008_5472_CAN_16_2534
pubmed_primary_28364000
PublicationCentury 2000
PublicationDate 2017-05-15
PublicationDateYYYYMMDD 2017-05-15
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Baltimore
PublicationTitle Cancer research (Chicago, Ill.)
PublicationTitleAlternate Cancer Res
PublicationYear 2017
Publisher American Association for Cancer Research, Inc
Publisher_xml – name: American Association for Cancer Research, Inc
References Roederer (2022061706072776600_bib27) 2011; 79
Vasquez-Dunddel (2022061706072776600_bib9) 2013; 123
Gabrilovich (2022061706072776600_bib12) 2007; 67
Vanhaesebroeck (2022061706072776600_bib18) 2010; 11
Kaneda (2022061706072776600_bib19) 2016; 539
Kaneda (2022061706072776600_bib35) 2016; 6
De Henau (2022061706072776600_bib20) 2016; 539
Dickensheets (2022061706072776600_bib34) 2007; 8
Davis (2022061706072776600_bib26) 2016
Davis (2022061706072776600_bib10) 2016; 58
Young (2022061706072776600_bib11) 2001; 62
Liu (2022061706072776600_bib40) 2016; 283
Pak (2022061706072776600_bib14) 1995; 1
Moore (2022061706072776600_bib28) 2016; 4
Seiwert (2022061706072776600_bib7) 2016; 17
Soond (2022061706072776600_bib36) 2010; 115
Arina (2022061706072776600_bib13) 2014; 192
Champiat (2022061706072776600_bib1) 2014; 3
Whiteside (2022061706072776600_bib39) 2014; 14
Ali (2022061706072776600_bib21) 2014; 510
Taube (2022061706072776600_bib6) 2012; 4
Ian Flinn (2022061706072776600_bib23) 2014; 124
Ji (2022061706072776600_bib29) 2012; 61
Keck (2022061706072776600_bib4) 2015; 21
Gabrilovich (2022061706072776600_bib8) 2009; 9
Pauleau (2022061706072776600_bib33) 2004; 172
Winkler (2022061706072776600_bib22) 2013; 20
Sahin (2022061706072776600_bib31) 2014; 193
Moore (2022061706072776600_bib24) 2016; 4
Judd (2022061706072776600_bib25) 2012; 72
Younis (2022061706072776600_bib37) 2016; 196
Choi (2022061706072776600_bib32) 2015; 35
Gajewski (2022061706072776600_bib5) 2013; 14
Snyder (2022061706072776600_bib30) 2014; 371
Weed (2022061706072776600_bib15) 2015; 21
Gabitass (2022061706072776600_bib16) 2011; 60
Loukinova (2022061706072776600_bib17) 2000; 19
Lawrence (2022061706072776600_bib2) 2013; 499
Strauss (2022061706072776600_bib38) 2007; 13
Cancer Genome Atlas Network (2022061706072776600_bib3) 2015; 517
References_xml – volume: 6
  start-page: 870
  year: 2016
  ident: 2022061706072776600_bib35
  article-title: Macrophage PI3Kgamma drives pancreatic ductal adenocarcinoma progression
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-15-1346
  contributor:
    fullname: Kaneda
– volume: 539
  start-page: 443
  year: 2016
  ident: 2022061706072776600_bib20
  article-title: Overcoming resistance to checkpoint blockade therapy by targeting PI3Kgamma in myeloid cells
  publication-title: Nature
  doi: 10.1038/nature20554
  contributor:
    fullname: De Henau
– volume: 510
  start-page: 407
  year: 2014
  ident: 2022061706072776600_bib21
  article-title: Inactivation of PI(3)K p110delta breaks regulatory T-cell-mediated immune tolerance to cancer
  publication-title: Nature
  doi: 10.1038/nature13444
  contributor:
    fullname: Ali
– volume: 58
  start-page: 59
  year: 2016
  ident: 2022061706072776600_bib10
  article-title: Overcoming barriers to effective immunotherapy: MDSCs, TAMs, and Tregs as mediators of the immunosuppressive microenvironment in head and neck cancer
  publication-title: Oral Oncol
  doi: 10.1016/j.oraloncology.2016.05.002
  contributor:
    fullname: Davis
– volume: 8
  start-page: 21
  year: 2007
  ident: 2022061706072776600_bib34
  article-title: Suppressor of cytokine signaling-1 is an IL-4-inducible gene in macrophages and feedback inhibits IL-4 signaling
  publication-title: Genes Immun
  doi: 10.1038/sj.gene.6364352
  contributor:
    fullname: Dickensheets
– volume: 14
  start-page: 1411
  year: 2014
  ident: 2022061706072776600_bib39
  article-title: Induced regulatory T cells in inhibitory microenvironments created by cancer
  publication-title: Expert Opin Biol Ther
  doi: 10.1517/14712598.2014.927432
  contributor:
    fullname: Whiteside
– volume: 123
  start-page: 1580
  year: 2013
  ident: 2022061706072776600_bib9
  article-title: STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients
  publication-title: J Clin Invest
  doi: 10.1172/JCI60083
  contributor:
    fullname: Vasquez-Dunddel
– volume: 72
  start-page: 365
  year: 2012
  ident: 2022061706072776600_bib25
  article-title: ERK1/2 regulation of CD44 modulates oral cancer aggressiveness
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-11-1831
  contributor:
    fullname: Judd
– volume: 196
  start-page: 1419
  year: 2016
  ident: 2022061706072776600_bib37
  article-title: Human head and neck squamous cell carcinoma-associated semaphorin 4D induces expansion of myeloid-derived suppressor cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1501293
  contributor:
    fullname: Younis
– volume: 283
  start-page: 2731
  year: 2016
  ident: 2022061706072776600_bib40
  article-title: Targeting regulatory T cells in tumors
  publication-title: FEBS J
  doi: 10.1111/febs.13656
  contributor:
    fullname: Liu
– volume: 20
  start-page: 1364
  year: 2013
  ident: 2022061706072776600_bib22
  article-title: PI3K-delta and PI3K-gamma inhibition by IPI-145 abrogates immune responses and suppresses activity in autoimmune and inflammatory disease models
  publication-title: Chem Biol
  doi: 10.1016/j.chembiol.2013.09.017
  contributor:
    fullname: Winkler
– start-page: S0022
  year: 2016
  ident: 2022061706072776600_bib26
  article-title: Avoiding phagocytosis-related artifact in myeloid derived suppressor cell T-lymphocyte suppression assays
  publication-title: J Immunol Methods
  contributor:
    fullname: Davis
– volume: 17
  start-page: 956
  year: 2016
  ident: 2022061706072776600_bib7
  article-title: Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(16)30066-3
  contributor:
    fullname: Seiwert
– volume: 517
  start-page: 576
  year: 2015
  ident: 2022061706072776600_bib3
  article-title: Comprehensive genomic characterization of head and neck squamous cell carcinomas
  publication-title: Nature
  doi: 10.1038/nature14129
  contributor:
    fullname: Cancer Genome Atlas Network
– volume: 13
  start-page: 4345
  year: 2007
  ident: 2022061706072776600_bib38
  article-title: A unique subset of CD4+CD25highFoxp3+ T cells secreting interleukin-10 and transforming growth factor-beta1 mediates suppression in the tumor microenvironment
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-07-0472
  contributor:
    fullname: Strauss
– volume: 4
  start-page: 611
  year: 2016
  ident: 2022061706072776600_bib24
  article-title: Enhanced tumor control with combination mTOR and PD-L1 inhibition in syngeneic oral cavity cancers
  publication-title: Cancer Immunol Res
  doi: 10.1158/2326-6066.CIR-15-0252
  contributor:
    fullname: Moore
– volume: 21
  start-page: 39
  year: 2015
  ident: 2022061706072776600_bib15
  article-title: Tadalafil reduces myeloid-derived suppressor cells and regulatory T cells and promotes tumor immunity in patients with head and neck squamous cell carcinoma
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-14-1711
  contributor:
    fullname: Weed
– volume: 3
  start-page: e27817
  year: 2014
  ident: 2022061706072776600_bib1
  article-title: Exomics and immunogenics: Bridging mutational load and immune checkpoints efficacy
  publication-title: Oncoimmunology
  doi: 10.4161/onci.27817
  contributor:
    fullname: Champiat
– volume: 499
  start-page: 214
  year: 2013
  ident: 2022061706072776600_bib2
  article-title: Mutational heterogeneity in cancer and the search for new cancer-associated genes
  publication-title: Nature
  doi: 10.1038/nature12213
  contributor:
    fullname: Lawrence
– volume: 67
  start-page: 425
  year: 2007
  ident: 2022061706072776600_bib12
  article-title: The terminology issue for myeloid-derived suppressor cells
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-06-3037
  contributor:
    fullname: Gabrilovich
– volume: 193
  start-page: 1717
  year: 2014
  ident: 2022061706072776600_bib31
  article-title: Macrophage PTEN regulates expression and secretion of arginase I modulating innate and adaptive immune responses
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1302167
  contributor:
    fullname: Sahin
– volume: 115
  start-page: 2203
  year: 2010
  ident: 2022061706072776600_bib36
  article-title: PI3K p110delta regulates T-cell cytokine production during primary and secondary immune responses in mice and humans
  publication-title: Blood
  doi: 10.1182/blood-2009-07-232330
  contributor:
    fullname: Soond
– volume: 35
  start-page: 202
  year: 2015
  ident: 2022061706072776600_bib32
  article-title: Veratric acid inhibits iNOS expression through the regulation of PI3K activation and histone acetylation in LPS-stimulated RAW264.7 cells
  publication-title: Int J Mol Med
  doi: 10.3892/ijmm.2014.1982
  contributor:
    fullname: Choi
– volume: 14
  start-page: 1014
  year: 2013
  ident: 2022061706072776600_bib5
  article-title: Innate and adaptive immune cells in the tumor microenvironment
  publication-title: Nat Immunol
  doi: 10.1038/ni.2703
  contributor:
    fullname: Gajewski
– volume: 11
  start-page: 329
  year: 2010
  ident: 2022061706072776600_bib18
  article-title: The emerging mechanisms of isoform-specific PI3K signalling
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2882
  contributor:
    fullname: Vanhaesebroeck
– volume: 79
  start-page: 95
  year: 2011
  ident: 2022061706072776600_bib27
  article-title: Interpretation of cellular proliferation data: avoid the panglossian
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.21010
  contributor:
    fullname: Roederer
– volume: 539
  start-page: 437
  year: 2016
  ident: 2022061706072776600_bib19
  article-title: PI3Kgamma is a molecular switch that controls immune suppression
  publication-title: Nature
  doi: 10.1038/nature19834
  contributor:
    fullname: Kaneda
– volume: 371
  start-page: 2189
  year: 2014
  ident: 2022061706072776600_bib30
  article-title: Genetic basis for clinical response to CTLA-4 blockade in melanoma
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1406498
  contributor:
    fullname: Snyder
– volume: 192
  start-page: 1286
  year: 2014
  ident: 2022061706072776600_bib13
  article-title: Adoptively transferred immune T cells eradicate established tumors despite cancer-induced immune suppression
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1202498
  contributor:
    fullname: Arina
– volume: 124
  start-page: 802
  year: 2014
  ident: 2022061706072776600_bib23
  article-title: a Phase 1 evaluation of duvelisib (IPI-145), a PI3K-δ,γ inhibitor, in patients with relapsed/refractory iNHL
  publication-title: Blood
  doi: 10.1182/blood.V124.21.802.802
  contributor:
    fullname: Ian Flinn
– volume: 60
  start-page: 1419
  year: 2011
  ident: 2022061706072776600_bib16
  article-title: Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13
  publication-title: Cancer Immunol Immunother
  doi: 10.1007/s00262-011-1028-0
  contributor:
    fullname: Gabitass
– volume: 62
  start-page: 332
  year: 2001
  ident: 2022061706072776600_bib11
  article-title: Human squamous cell carcinomas of the head and neck chemoattract immune suppressive CD34(+) progenitor cells
  publication-title: Human Immunol
  doi: 10.1016/S0198-8859(01)00222-1
  contributor:
    fullname: Young
– volume: 1
  start-page: 95
  year: 1995
  ident: 2022061706072776600_bib14
  article-title: Mechanisms of immune suppression in patients with head and neck cancer: presence of CD34(+) cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-stimulating factor
  publication-title: Clin Cancer Res
  contributor:
    fullname: Pak
– volume: 61
  start-page: 1019
  year: 2012
  ident: 2022061706072776600_bib29
  article-title: An immune-active tumor microenvironment favors clinical response to ipilimumab
  publication-title: Cancer Immunol Immunother
  doi: 10.1007/s00262-011-1172-6
  contributor:
    fullname: Ji
– volume: 4
  start-page: 127ra37
  year: 2012
  ident: 2022061706072776600_bib6
  article-title: Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape
  publication-title: Sci Translat Med
  doi: 10.1126/scitranslmed.3003689
  contributor:
    fullname: Taube
– volume: 4
  start-page: 1061
  year: 2016
  ident: 2022061706072776600_bib28
  article-title: Established T cell-inflamed tumors rejected after adaptive resistance was reversed by combination STING Activation and PD-1 pathway blockade
  publication-title: Cancer Immunol Res
  doi: 10.1158/2326-6066.CIR-16-0104
  contributor:
    fullname: Moore
– volume: 21
  start-page: 870
  year: 2015
  ident: 2022061706072776600_bib4
  article-title: Integrative analysis of head and neck cancer identifies two biologically distinct HPV and three non-HPV subtypes
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-14-2481
  contributor:
    fullname: Keck
– volume: 19
  start-page: 3477
  year: 2000
  ident: 2022061706072776600_bib17
  article-title: Growth regulated oncogene-alpha expression by murine squamous cell carcinoma promotes tumor growth, metastasis, leukocyte infiltration and angiogenesis by a host CXC receptor-2 dependent mechanism
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1203687
  contributor:
    fullname: Loukinova
– volume: 172
  start-page: 7565
  year: 2004
  ident: 2022061706072776600_bib33
  article-title: Enhancer-mediated control of macrophage-specific arginase I expression
  publication-title: J Immunol
  doi: 10.4049/jimmunol.172.12.7565
  contributor:
    fullname: Pauleau
– volume: 9
  start-page: 162
  year: 2009
  ident: 2022061706072776600_bib8
  article-title: Myeloid-derived suppressor cells as regulators of the immune system
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri2506
  contributor:
    fullname: Gabrilovich
SSID ssj0005105
Score 2.6230347
Snippet Checkpoint inhibitors are relatively inefficacious in head and neck cancers, despite an abundance of genetic alterations and a T-cell-inflamed phenotype. One...
Abstract Checkpoint inhibitors are relatively inefficacious in head and neck cancers, despite an abundance of genetic alterations and a T-cell–inflamed...
These findings highlight the therapeutic balance required between blocking immunosuppressive myeloid cells and blocking effector immune cells in response to...
Checkpoint inhibitors are relatively inefficacious in head and neck cancers, despite an abundance of genetic alterations and a T cell-inflamed phenotype. One...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 2607
SubjectTerms Animals
Antibodies, Monoclonal - pharmacology
Antineoplastic Agents - pharmacology
B7-H1 Antigen - antagonists & inhibitors
Cancer
CD8 antigen
Cell culture
Cell Line, Tumor
Cell survival
Class I Phosphatidylinositol 3-Kinases - antagonists & inhibitors
Disease Models, Animal
Effector cells
Epitopes, T-Lymphocyte - immunology
Head & neck cancer
Head and neck
Immune checkpoint
Immunomodulation - drug effects
Immunosuppression
Inflammation
Inhibition
Inhibitors
Isoforms
Isoquinolines - pharmacology
Lymphocyte Activation - drug effects
Lymphocyte Activation - immunology
Lymphocytes
Lymphocytes T
Lymphocytes, Tumor-Infiltrating - drug effects
Lymphocytes, Tumor-Infiltrating - immunology
Lymphocytes, Tumor-Infiltrating - metabolism
Mice
Myeloid cells
Myeloid-Derived Suppressor Cells - drug effects
Myeloid-Derived Suppressor Cells - immunology
Myeloid-Derived Suppressor Cells - metabolism
Neoplasms - drug therapy
Neoplasms - immunology
Neoplasms - metabolism
Neoplasms - pathology
PD-L1 protein
Protein Kinase Inhibitors - pharmacology
Purines - pharmacology
Suppressor cells
Survival Analysis
Tumor Microenvironment - immunology
Title Anti-PD-L1 Efficacy Can Be Enhanced by Inhibition of Myeloid-Derived Suppressor Cells with a Selective Inhibitor of PI3Kδ/γ
URI https://www.ncbi.nlm.nih.gov/pubmed/28364000
https://www.proquest.com/docview/1983259160
https://www.proquest.com/docview/1883182964
https://search.proquest.com/docview/1901742146
https://pubmed.ncbi.nlm.nih.gov/PMC5466078
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBAviPsKAxmJPUXJmotj53GETqOwqUibtLcoiR21qEuqXpCKxK-C37HfxDmJcylUCPYSRbFdWz5fj8-xP59DyFsJbpX0BTMHPGCmx2JuJnEgzVhJ13ac1AMbCdkW5_7ppTe6Yle9XjdC8HqVWOm3nfdKbiNV-AZyxVuy_yHZ5kfhA7yDfOEJEobnP8n4OF9NzfF785ONvAyY7nSDLC4jUYbKJ9XZfoIX-ybTZFqbhtcbNSum0pAwwq9QYbmel2TYYmHgLn593c1YlhlykFik2xflgcL4g_vxMBwevvNg3OWL2zVwQ-x1YegYQpPykLhie5TaaDazOnsPTYgD5NkbI6uRfqHZv0NM9GKETUE4gxZfiprSaAybkhNw-aXezR1pYpDezIAFEuOgsi0FLUzmVdl8LNXqZO5VUSdrpa1zv2hwDroq2K_S6OrlHD3E3UsFExW3surQCo_PTds3HVZtrnbgM78u8QOGmA8ab9CunDVbYHwWMs-HfsUdctfBiIPIDvjchq1nmktbd6avksEQjnYOAENU69627aU_nKDfubwd4-jiIXmgvRp6XEH0Eemp_DG5d6Z5G0_I9xaptEYqBaTSRNEaqTTZ0BaptMioRirVSKUtUmmJVIpIpTFtkEobpGJzROrNz6ObH0_J5cnwIjw1deIPM_WYtzLdNLNF7LtSBdxWXMgMz6t5EnDQICKLlZuKVEgbDLw445JL23dg4NyXeM7veO4zspcXudonNLVjm2U88ZOBwuTqAfNSlcgM9yGyVLA-serpjeZVfJeo9IuZQF6GiFA0EYgmsv0IRdMnB7UQIq0KlpEdwMLIwNMa9MmbphgUNc5GnKtiDXWEgPUTWQ5_qQPWOfccsF765Hkl12ZUNSD6hG9JvKmAgeK3S_LppAwYr8H54tYtX5L77b_1gOytFmv1CozxVfK6BPovhNfawQ
link.rule.ids 230,315,783,787,888,27937,27938
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anti-PD-L1+efficacy+can+be+enhanced+by+inhibition+of+myeloid+derived+suppressor+cells+with+a+selective+inhibitor+of+PI3K%CE%B4%2F%CE%B3&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Davis%2C+Ruth+J.&rft.au=Moore%2C+Ellen+C.&rft.au=Clavijo%2C+Paul+E.&rft.au=Friedman%2C+Jay&rft.date=2017-05-15&rft.issn=0008-5472&rft.eissn=1538-7445&rft.volume=77&rft.issue=10&rft.spage=2607&rft.epage=2619&rft_id=info:doi/10.1158%2F0008-5472.CAN-16-2534&rft_id=info%3Apmid%2F28364000&rft.externalDBID=PMC5466078
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon