Disrupted Brain Functional Organization in Epilepsy Revealed by Graph Theory Analysis
The human brain is a complex and dynamic system that can be modeled as a large-scale brain network to better understand the reorganizational changes secondary to epilepsy. In this study, we developed a brain functional network model using graph theory methods applied to resting-state fMRI data acqui...
Saved in:
Published in | Brain connectivity Vol. 5; no. 5; pp. 276 - 283 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Mary Ann Liebert, Inc
01.06.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 2158-0014 2158-0022 2158-0022 |
DOI | 10.1089/brain.2014.0308 |
Cover
Abstract | The human brain is a complex and dynamic system that can be modeled as a large-scale brain network to better understand the reorganizational changes secondary to epilepsy. In this study, we developed a brain functional network model using graph theory methods applied to resting-state fMRI data acquired from a group of epilepsy patients and age- and gender-matched healthy controls. A brain functional network model was constructed based on resting-state functional connectivity. A minimum spanning tree combined with proportional thresholding approach was used to obtain sparse connectivity matrices for each subject, which formed the basis of brain networks. We examined the brain reorganizational changes in epilepsy thoroughly at the level of the whole brain, the functional network, and individual brain regions. At the whole-brain level, local efficiency was significantly decreased in epilepsy patients compared with the healthy controls. However, global efficiency was significantly increased in epilepsy due to increased number of functional connections between networks (although weakly connected). At the functional network level, there were significant proportions of newly formed connections between the default mode network and other networks and between the subcortical network and other networks. There was a significant proportion of decreasing connections between the cingulo-opercular task control network and other networks. Individual brain regions from different functional networks, however, showed a distinct pattern of reorganizational changes in epilepsy. These findings suggest that epilepsy alters brain efficiency in a consistent pattern at the whole-brain level, yet alters brain functional networks and individual brain regions differently. |
---|---|
AbstractList | The human brain is a complex and dynamic system that can be modeled as a large-scale brain network to better understand the reorganizational changes secondary to epilepsy. In this study, we developed a brain functional network model using graph theory methods applied to resting-state fMRI data acquired from a group of epilepsy patients and age- and gender-matched healthy controls. A brain functional network model was constructed based on resting-state functional connectivity. A minimum spanning tree combined with proportional thresholding approach was used to obtain sparse connectivity matrices for each subject, which formed the basis of brain networks. We examined the brain reorganizational changes in epilepsy thoroughly at the level of the whole brain, the functional network, and individual brain regions. At the whole-brain level, local efficiency was significantly decreased in epilepsy patients compared with the healthy controls. However, global efficiency was significantly increased in epilepsy due to increased number of functional connections between networks (although weakly connected). At the functional network level, there were significant proportions of newly formed connections between the default mode network and other networks and between the subcortical network and other networks. There was a significant proportion of decreasing connections between the cingulo-opercular task control network and other networks. Individual brain regions from different functional networks, however, showed a distinct pattern of reorganizational changes in epilepsy. These findings suggest that epilepsy alters brain efficiency in a consistent pattern at the whole-brain level, yet alters brain functional networks and individual brain regions differently. The human brain is a complex and dynamic system that can be modeled as a large-scale brain network to better understand the reorganizational changes secondary to epilepsy. In this study, we developed a brain functional network model using graph theory methods applied to resting-state fMRI data acquired from a group of epilepsy patients and age- and gender-matched healthy controls. A brain functional network model was constructed based on resting-state functional connectivity. A minimum spanning tree combined with proportional thresholding approach was used to obtain sparse connectivity matrices for each subject, which formed the basis of brain networks. We examined the brain reorganizational changes in epilepsy thoroughly at the level of the whole brain, the functional network, and individual brain regions. At the whole-brain level, local efficiency was significantly decreased in epilepsy patients compared with the healthy controls. However, global efficiency was significantly increased in epilepsy due to increased number of functional connections between networks (although weakly connected). At the functional network level, there were significant proportions of newly formed connections between the default mode network and other networks and between the subcortical network and other networks. There was a significant proportion of decreasing connections between the cingulo-opercular task control network and other networks. Individual brain regions from different functional networks, however, showed a distinct pattern of reorganizational changes in epilepsy. These findings suggest that epilepsy alters brain efficiency in a consistent pattern at the whole-brain level, yet alters brain functional networks and individual brain regions differently.The human brain is a complex and dynamic system that can be modeled as a large-scale brain network to better understand the reorganizational changes secondary to epilepsy. In this study, we developed a brain functional network model using graph theory methods applied to resting-state fMRI data acquired from a group of epilepsy patients and age- and gender-matched healthy controls. A brain functional network model was constructed based on resting-state functional connectivity. A minimum spanning tree combined with proportional thresholding approach was used to obtain sparse connectivity matrices for each subject, which formed the basis of brain networks. We examined the brain reorganizational changes in epilepsy thoroughly at the level of the whole brain, the functional network, and individual brain regions. At the whole-brain level, local efficiency was significantly decreased in epilepsy patients compared with the healthy controls. However, global efficiency was significantly increased in epilepsy due to increased number of functional connections between networks (although weakly connected). At the functional network level, there were significant proportions of newly formed connections between the default mode network and other networks and between the subcortical network and other networks. There was a significant proportion of decreasing connections between the cingulo-opercular task control network and other networks. Individual brain regions from different functional networks, however, showed a distinct pattern of reorganizational changes in epilepsy. These findings suggest that epilepsy alters brain efficiency in a consistent pattern at the whole-brain level, yet alters brain functional networks and individual brain regions differently. |
Author | Song, Jie Gaggl, Wolfgang Prabhakaran, Vivek Nair, Veena A. |
Author_xml | – sequence: 1 givenname: Jie surname: Song fullname: Song, Jie organization: Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin., Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin – sequence: 2 givenname: Veena A. surname: Nair fullname: Nair, Veena A. organization: Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin – sequence: 3 givenname: Wolfgang surname: Gaggl fullname: Gaggl, Wolfgang organization: Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin – sequence: 4 givenname: Vivek surname: Prabhakaran fullname: Prabhakaran, Vivek organization: Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin., Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin., Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin., Medical Scientist Training Program, University of Wisconsin-Madison, Madison, Wisconsin., Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25647011$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1LHTEUxYMo1VrX7spAN928Z5LJ56agVq0gCEXXIS9zxxeZl0yTGWH61zej9tEKpdkk4f7O4ebmvEe7IQZA6JjgJcFKn6yS9WFJMWFLXGO1gw4o4WqBMaW72zNh--go50dcFmcKY_YO7VMumMSEHKD7rz6nsR-gqc5mu-pyDG7wMdiuuk0PNvifdr5WpXTR-w76PFXf4QlsVySrqbpKtl9Xd2uIaapOi2zKPn9Ae63tMhy97ofo_vLi7vzb4ub26vr89GbhGGfDgkoHjomGNMAbWqumBqFb2TZaKt0yIoBJbWtKGlVrUTPOtWZcuVZI6yi09SH68uLbj6sNNA7CkGxn-uQ3Nk0mWm_-rgS_Ng_xyTCmsZSiGHx-NUjxxwh5MBufHXSdDRDHbEiZElO1pPT_qFBaUEaULOinN-hjHFOZzUxpoZTWihTq45_Nb7v-_TkFOHkBXIo5J2i3CMFmToB5ToCZE2DmBBQFf6Nwfnj-v_J63_1T9wt7k7V3 |
CitedBy_id | crossref_primary_10_3390_brainsci14050507 crossref_primary_10_1371_journal_pone_0134352 crossref_primary_10_3390_biomedicines10071553 crossref_primary_10_3390_nu13072186 crossref_primary_10_1016_j_jns_2019_116529 crossref_primary_10_3389_fnhum_2021_637071 crossref_primary_10_1111_epi_17903 crossref_primary_10_3389_fninf_2017_00028 crossref_primary_10_1016_j_nbd_2024_106425 crossref_primary_10_3389_fnins_2023_1150668 crossref_primary_10_1089_neu_2016_4581 crossref_primary_10_3389_fnins_2016_00143 crossref_primary_10_1016_j_yebeh_2016_07_016 crossref_primary_10_1089_brain_2018_0601 crossref_primary_10_3389_fnins_2022_1031163 crossref_primary_10_1016_j_yebeh_2021_107841 crossref_primary_10_1016_j_eplepsyres_2024_107312 crossref_primary_10_1016_j_jocn_2022_07_003 crossref_primary_10_1093_cercor_bhae419 crossref_primary_10_1007_s10548_021_00875_9 crossref_primary_10_1111_epi_13133 crossref_primary_10_1212_WNL_0000000000004035 crossref_primary_10_1007_s11682_019_00243_z crossref_primary_10_1016_j_yebeh_2018_10_025 crossref_primary_10_1016_j_nic_2020_02_003 crossref_primary_10_1080_00207454_2020_1837802 crossref_primary_10_1007_s12264_025_01348_w crossref_primary_10_1007_s12572_024_00381_8 crossref_primary_10_1007_s41105_022_00440_2 crossref_primary_10_1016_j_neuroscience_2023_08_017 crossref_primary_10_1007_s00415_022_11263_z crossref_primary_10_1007_s11571_019_09551_y crossref_primary_10_1016_j_clinph_2022_12_011 crossref_primary_10_1016_j_eplepsyres_2016_04_001 crossref_primary_10_1016_j_nicl_2016_10_017 crossref_primary_10_1016_j_nbd_2023_106053 crossref_primary_10_1162_netn_a_00395 crossref_primary_10_3389_fnins_2022_952940 crossref_primary_10_1371_journal_pone_0141186 crossref_primary_10_1016_j_neuroimage_2019_116144 |
Cites_doi | 10.1073/pnas.1208933109 10.1371/journal.pcbi.0010042 10.3389/fnsys.2010.00147 10.1371/journal.pcbi.1000381 10.1016/j.clinph.2013.12.120 10.1016/j.seizure.2014.07.004 10.1093/cercor/bhq291 10.1155/2013/935154 10.1007/s10548-014-0366-6 10.1016/j.neuron.2011.09.006 10.1016/j.neuroimage.2009.07.051 10.1111/epi.12581 10.1016/j.neuroimage.2011.12.063 10.1002/jmri.23572 10.1371/journal.pone.0049847 10.1016/j.neuroimage.2013.05.099 10.1006/cbmr.1996.0014 10.1093/brain/awr223 10.1016/j.neuroimage.2011.12.052 10.1371/journal.pcbi.0030017 10.1016/j.neuroimage.2008.09.037 10.1212/WNL.0b013e31822cfc2f 10.1089/brain.2014.0286 10.1111/j.0013-9580.2005.66104.x 10.1016/j.neuroimage.2004.07.051 10.1016/j.neuroimage.2011.07.044 10.1371/journal.pone.0021976 10.1016/j.neuroimage.2009.10.003 |
ContentType | Journal Article |
Copyright | (©) Copyright 2015, Mary Ann Liebert, Inc. Copyright 2015, Mary Ann Liebert, Inc. 2015 |
Copyright_xml | – notice: (©) Copyright 2015, Mary Ann Liebert, Inc. – notice: Copyright 2015, Mary Ann Liebert, Inc. 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7RV 7TK 7X7 7XB 88E 88G 8FD 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ K9. KB0 M0S M1P M2M NAPCQ P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 5PM |
DOI | 10.1089/brain.2014.0308 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Nursing & Allied Health Database Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Medical Database Psychology Database Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Animal Behavior Abstracts ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE - Academic MEDLINE Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2158-0022 |
EndPage | 283 |
ExternalDocumentID | PMC4490776 3745618591 25647011 10_1089_brain_2014_0308 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCATS NIH HHS grantid: UL1 TR000427 – fundername: NINDS NIH HHS grantid: K23NS086852 – fundername: NIMH NIH HHS grantid: RC1MH090912-01 – fundername: NIBIB NIH HHS grantid: T32EB011434 – fundername: NCATS NIH HHS grantid: UL1TR000427 – fundername: NIGMS NIH HHS grantid: T32GM008692 |
GroupedDBID | --- 0R~ 4.4 53G 7RV 7X7 88E 8FI 8FJ AAYXX ABBKN ABJNI ABUWG ACGFS ACPRK ADBBV AFKRA AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BKEYQ BNQNF BPHCQ BVXVI CCPQU CITATION DWQXO EBS EJD FYUFA GNUQQ HMCUK IM4 M1P M2M NAPCQ O9- PHGZM PHGZT PQQKQ PROAC PSQYO PSYQQ RML UKHRP CGR CUY CVF ECM EIF NPM 3V. 7QG 7TK 7XB 8FD 8FK FR3 K9. P64 PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO SCNPE 5PM |
ID | FETCH-LOGICAL-c454t-27cec46d1de5d238d3e69f7fd9789f416e479a321d8396345599458cf67ac2ef3 |
IEDL.DBID | BENPR |
ISSN | 2158-0014 2158-0022 |
IngestDate | Thu Aug 21 14:30:29 EDT 2025 Fri Sep 05 13:18:42 EDT 2025 Sun Aug 24 03:05:38 EDT 2025 Fri Jul 25 08:09:57 EDT 2025 Thu Apr 03 07:02:42 EDT 2025 Thu Apr 24 23:09:11 EDT 2025 Tue Jul 01 03:51:48 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | epilepsy network analysis functional networks graph theory |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c454t-27cec46d1de5d238d3e69f7fd9789f416e479a321d8396345599458cf67ac2ef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://doi.org/10.1089/brain.2014.0308 |
PMID | 25647011 |
PQID | 1696889981 |
PQPubID | 2029230 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4490776 proquest_miscellaneous_1701483722 proquest_miscellaneous_1689624187 proquest_journals_1696889981 pubmed_primary_25647011 crossref_primary_10_1089_brain_2014_0308 crossref_citationtrail_10_1089_brain_2014_0308 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-06-01 |
PublicationDateYYYYMMDD | 2015-06-01 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New Rochelle – name: 140 Huguenot Street, 3rd FloorNew Rochelle, NY 10801USA |
PublicationTitle | Brain connectivity |
PublicationTitleAlternate | Brain Connect |
PublicationYear | 2015 |
Publisher | Mary Ann Liebert, Inc |
Publisher_xml | – name: Mary Ann Liebert, Inc |
References | B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B10 B11 Holm S (B12) 1979; 6 B13 B14 B15 B16 B17 B18 B19 B1 B2 B3 B4 B5 B6 B7 B8 B9 8812068 - Comput Biomed Res. 1996 Jun;29(3):162-73 19646533 - Neuroimage. 2010 Jan 1;49(1):401-14 25127370 - Seizure. 2014 Nov;23(10):809-18 22233733 - Neuroimage. 2012 Mar;60(1):623-32 21031030 - Front Syst Neurosci. 2010 Oct 08;4:147 21975588 - Brain. 2011 Oct;134(Pt 10):2912-28 18976717 - Neuroimage. 2009 Feb 1;44(3):839-48 15501092 - Neuroimage. 2004;23 Suppl 1:S208-19 19819337 - Neuroimage. 2010 Sep;52(3):1059-69 21810475 - Neuroimage. 2012 Jan 2;59(1):431-8 25183440 - Brain Connect. 2014 Nov;4(9):662-76 24686109 - Clin Neurophysiol. 2014 Sep;125(9):1744-56 15816939 - Epilepsia. 2005 Apr;46(4):470-2 22314879 - J Magn Reson Imaging. 2012 Jul;36(1):39-54 23227153 - PLoS One. 2012;7(12):e49847 24415902 - J Appl Math. 2013 May 21;2013:null 21818285 - PLoS One. 2011;6(7):e21976 17274684 - PLoS Comput Biol. 2007 Feb 2;3(2):e17 19412534 - PLoS Comput Biol. 2009 May;5(5):e1000381 22099467 - Neuron. 2011 Nov 17;72(4):665-78 16201007 - PLoS Comput Biol. 2005 Sep;1(4):e42 21330467 - Cereb Cortex. 2011 Sep;21(9):2147-57 22227886 - Neuroimage. 2012 Mar;60(1):601-13 23747458 - Neuroimage. 2013 Dec;83:550-8 24650167 - Epilepsia. 2014 May;55(5):674-82 21832213 - Neurology. 2011 Sep 6;77(10):938-44 23185007 - Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20608-13 24881003 - Brain Topogr. 2015 Jan;28(1):113-26 |
References_xml | – ident: B2 doi: 10.1073/pnas.1208933109 – ident: B24 doi: 10.1371/journal.pcbi.0010042 – ident: B3 doi: 10.3389/fnsys.2010.00147 – ident: B8 doi: 10.1371/journal.pcbi.1000381 – ident: B27 doi: 10.1016/j.clinph.2013.12.120 – ident: B11 doi: 10.1016/j.seizure.2014.07.004 – ident: B4 doi: 10.1093/cercor/bhq291 – ident: B13 doi: 10.1155/2013/935154 – ident: B7 doi: 10.1007/s10548-014-0366-6 – ident: B17 doi: 10.1016/j.neuron.2011.09.006 – ident: B14 doi: 10.1016/j.neuroimage.2009.07.051 – ident: B15 doi: 10.1111/epi.12581 – ident: B20 doi: 10.1016/j.neuroimage.2011.12.063 – ident: B10 doi: 10.1002/jmri.23572 – ident: B23 doi: 10.1371/journal.pone.0049847 – ident: B5 doi: 10.1016/j.neuroimage.2013.05.099 – ident: B6 doi: 10.1006/cbmr.1996.0014 – volume: 6 start-page: 65 year: 1979 ident: B12 publication-title: Scand J Stat – ident: B29 doi: 10.1093/brain/awr223 – ident: B16 doi: 10.1016/j.neuroimage.2011.12.052 – ident: B1 doi: 10.1371/journal.pcbi.0030017 – ident: B19 doi: 10.1016/j.neuroimage.2008.09.037 – ident: B26 doi: 10.1212/WNL.0b013e31822cfc2f – ident: B22 doi: 10.1089/brain.2014.0286 – ident: B9 doi: 10.1111/j.0013-9580.2005.66104.x – ident: B21 doi: 10.1016/j.neuroimage.2004.07.051 – ident: B25 doi: 10.1016/j.neuroimage.2011.07.044 – ident: B28 doi: 10.1371/journal.pone.0021976 – ident: B18 doi: 10.1016/j.neuroimage.2009.10.003 – reference: 25127370 - Seizure. 2014 Nov;23(10):809-18 – reference: 19819337 - Neuroimage. 2010 Sep;52(3):1059-69 – reference: 16201007 - PLoS Comput Biol. 2005 Sep;1(4):e42 – reference: 24415902 - J Appl Math. 2013 May 21;2013:null – reference: 21330467 - Cereb Cortex. 2011 Sep;21(9):2147-57 – reference: 15816939 - Epilepsia. 2005 Apr;46(4):470-2 – reference: 17274684 - PLoS Comput Biol. 2007 Feb 2;3(2):e17 – reference: 25183440 - Brain Connect. 2014 Nov;4(9):662-76 – reference: 18976717 - Neuroimage. 2009 Feb 1;44(3):839-48 – reference: 24881003 - Brain Topogr. 2015 Jan;28(1):113-26 – reference: 22233733 - Neuroimage. 2012 Mar;60(1):623-32 – reference: 21810475 - Neuroimage. 2012 Jan 2;59(1):431-8 – reference: 8812068 - Comput Biomed Res. 1996 Jun;29(3):162-73 – reference: 21832213 - Neurology. 2011 Sep 6;77(10):938-44 – reference: 19412534 - PLoS Comput Biol. 2009 May;5(5):e1000381 – reference: 24686109 - Clin Neurophysiol. 2014 Sep;125(9):1744-56 – reference: 21031030 - Front Syst Neurosci. 2010 Oct 08;4:147 – reference: 23227153 - PLoS One. 2012;7(12):e49847 – reference: 23185007 - Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20608-13 – reference: 19646533 - Neuroimage. 2010 Jan 1;49(1):401-14 – reference: 21818285 - PLoS One. 2011;6(7):e21976 – reference: 22314879 - J Magn Reson Imaging. 2012 Jul;36(1):39-54 – reference: 24650167 - Epilepsia. 2014 May;55(5):674-82 – reference: 22099467 - Neuron. 2011 Nov 17;72(4):665-78 – reference: 21975588 - Brain. 2011 Oct;134(Pt 10):2912-28 – reference: 22227886 - Neuroimage. 2012 Mar;60(1):601-13 – reference: 23747458 - Neuroimage. 2013 Dec;83:550-8 – reference: 15501092 - Neuroimage. 2004;23 Suppl 1:S208-19 |
SSID | ssj0000548004 |
Score | 2.1947577 |
Snippet | The human brain is a complex and dynamic system that can be modeled as a large-scale brain network to better understand the reorganizational changes secondary... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 276 |
SubjectTerms | Adult Brain - physiopathology Brain Mapping Case-Control Studies Epilepsy - pathology Female Humans Imaging, Three-Dimensional Magnetic Resonance Imaging Male Nerve Net - physiopathology Neural Pathways - physiopathology Original Statistics, Nonparametric Young Adult |
Title | Disrupted Brain Functional Organization in Epilepsy Revealed by Graph Theory Analysis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25647011 https://www.proquest.com/docview/1696889981 https://www.proquest.com/docview/1689624187 https://www.proquest.com/docview/1701483722 https://pubmed.ncbi.nlm.nih.gov/PMC4490776 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZS8NAEB48XnwRb-vFCiK-RE2yyWafxKNVBEXEQt9CsgcWNI22FfrvncmlVfR5N2SzszvzzZFvAA546ib2lPKDgqcOasnUSTzuO4H1hdUW75glR_HuPrzp8tte0KsCbsOqrLLWiYWi1gNFMfITl1hcyDlwz_I3h7pGUXa1aqExC_OogiM85_MX7fuHxybKckp0ZkUPQTRtkUMOQc3vE8mTlLowUHkXPybalmnT9Atv_iyb_GaHOkuwWAFIdl5KfBlmTLYCq-cZOs-vE3bIipLOIla-Ct2r_vB9nCOoZBe0CNZBK1YG_9j3nzAZDrVz1A_5cMIezQeBR83SCbsmOmtW_r_Pav6SNeh22k-XN07VR8FRPOAjxxPKKB5qV5tAo4nWvgmlRVGgByktIjLDhUx8z9WIlkKfEwkZDyJlQ5Eoz1h_HeayQWY2gclAaz8UrkqM5AolS-6LZw2CAvRMPNuC43oLY1WRjFOvi5e4SHZHMi72PKY9j2nPW3DUPJCX_Bp_T92pZRJXF20Yfx2LFuw3w3hFKO-RZGYwpjmRDBGpROKfOYJCq77wvBZslGJu1oOokOMwvkFMHYBmAlF0T49k_eeCqptzSXxJW_8vfRsW8CuDsgJtB-ZG72Ozi1hnlO7BrOiJvepYfwIWHf-6 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ_A8QAvRgX1FHVNlPBSoNttt_tgDMidh8CFEC7hrbb7EUm0V7k7zf1T_o3O9EtOIm8877bdzs7u_GZ29jcAb0Xmp26PzgelyDzcJTMv5SLwQhdIZxyuMUeO4ukwGozE58vwcgl-N3dhKK2y2RPLjdqMNcXId31icSHnwP9Q_PCoahSdrjYlNCq1OLbzX-iyTd4fHeL8vuO837v4OPDqqgKeFqGYelxqq0VkfGNDgwbLBDZSDgeG_pRyiE-skCoNuG8QO0SBIEouEcbaRTLV3LoA37sMK4JutHZg5aA3PDtvozp7RJ9W1ixEUxp75IA0fEKx2s2o6gOlk4kdoolZNIW38O2_aZo37F7_ITyoASvbrzTsESzZ_DGs7-forH-fsy1WppCWsfl1GB1eTa5nBYJYdkCDYH20mlWwkd289MmwqVfgflRM5uzc_iSwalg2Z5-IPptVfAGs4UvZgNG9SPgJdPJxbp8BU6ExQSR9nVolNGoSuUvcWQQh6Alx14WdRoSJrknNqbbGt6Q8XI9VUso8IZknJPMubLcPFBWfx_-7bjZzktQLe5L8VcMuvGmbcUnSOUua2_GM-sQqQmQUyzv6SArlBpLzLjytprkdD6JQgc34BbmgAG0HogRfbMmvvpbU4EIo4md6fvfQX8Pq4OL0JDk5Gh6_gDX847DKftuEzvR6Zl8izppmr2rlZvDlvtfTHx57O0s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJcEFBKAwW2UkG9uKnXa6_3UKGWJLQUoqoiUm-uvQ9RCRzTJKD8tf46ZvyiAdFbz7tO1rMzO9_Mjr8B2BaZn7o9uh-UIvPwlMy8lIvAC10gnXFoY44Cxc-j6GgsPp6H5ytw3XwLQ2WVzZlYHtRmoilH3vOJxYWCA7_n6rKI0_7wXfHDow5SdNPatNOoVOTELn5h-DbdP-7jXr_hfDj48v7IqzsMeFqEYuZxqa0WkfGNDQ06LxPYSDlcJMZWyiFWsUKqNOC-QRwRBYLouUQYaxfJVHPrAvzde7Aq0SuKDqweDkanZ22GZ4-o1Mr-hehWY4-CkYZbKFa9jDpAUGmZ2CXKmGW3-A_W_btk84YPHD6ChzV4ZQeVtj2GFZs_gbWDHAP37wv2lpXlpGWefg3G_cvp1bxAQMsOaRFsiB60Sjyymx-AMhwaFHg2FdMFO7M_Cbgali3YB6LSZhV3AGu4U57C-E4kvA6dfJLbDWAqNCaIpK9Tq4RGraLQiTuLgASjIu66sNuIMNE1wTn12fiWlBftsUpKmSck84Rk3oWd9oGi4vb4_9TNZk-S2sinyR-V7MJWO4zmSXcuaW4nc5oTqwhRUixvmSMprRtIzrvwrNrmdj2ISAUO4z_IJQVoJxA9-PJIfvm1pAkXQhFX0_Pbl_4a7qMdJZ-ORycv4AG-cFgVwm1CZ3Y1ty8Rcs2yV7VuM7i4a3P6DZLlP3c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disrupted+Brain+Functional+Organization+in+Epilepsy+Revealed+by+Graph+Theory+Analysis&rft.jtitle=Brain+connectivity&rft.au=Song%2C+Jie&rft.au=Nair%2C+Veena+A&rft.au=Gaggl%2C+Wolfgang&rft.au=Prabhakaran%2C+Vivek&rft.date=2015-06-01&rft.eissn=2158-0022&rft.volume=5&rft.issue=5&rft.spage=276&rft_id=info:doi/10.1089%2Fbrain.2014.0308&rft_id=info%3Apmid%2F25647011&rft.externalDocID=25647011 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-0014&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-0014&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-0014&client=summon |