Disrupted Brain Functional Organization in Epilepsy Revealed by Graph Theory Analysis

The human brain is a complex and dynamic system that can be modeled as a large-scale brain network to better understand the reorganizational changes secondary to epilepsy. In this study, we developed a brain functional network model using graph theory methods applied to resting-state fMRI data acqui...

Full description

Saved in:
Bibliographic Details
Published inBrain connectivity Vol. 5; no. 5; pp. 276 - 283
Main Authors Song, Jie, Nair, Veena A., Gaggl, Wolfgang, Prabhakaran, Vivek
Format Journal Article
LanguageEnglish
Published United States Mary Ann Liebert, Inc 01.06.2015
Subjects
Online AccessGet full text
ISSN2158-0014
2158-0022
2158-0022
DOI10.1089/brain.2014.0308

Cover

Abstract The human brain is a complex and dynamic system that can be modeled as a large-scale brain network to better understand the reorganizational changes secondary to epilepsy. In this study, we developed a brain functional network model using graph theory methods applied to resting-state fMRI data acquired from a group of epilepsy patients and age- and gender-matched healthy controls. A brain functional network model was constructed based on resting-state functional connectivity. A minimum spanning tree combined with proportional thresholding approach was used to obtain sparse connectivity matrices for each subject, which formed the basis of brain networks. We examined the brain reorganizational changes in epilepsy thoroughly at the level of the whole brain, the functional network, and individual brain regions. At the whole-brain level, local efficiency was significantly decreased in epilepsy patients compared with the healthy controls. However, global efficiency was significantly increased in epilepsy due to increased number of functional connections between networks (although weakly connected). At the functional network level, there were significant proportions of newly formed connections between the default mode network and other networks and between the subcortical network and other networks. There was a significant proportion of decreasing connections between the cingulo-opercular task control network and other networks. Individual brain regions from different functional networks, however, showed a distinct pattern of reorganizational changes in epilepsy. These findings suggest that epilepsy alters brain efficiency in a consistent pattern at the whole-brain level, yet alters brain functional networks and individual brain regions differently.
AbstractList The human brain is a complex and dynamic system that can be modeled as a large-scale brain network to better understand the reorganizational changes secondary to epilepsy. In this study, we developed a brain functional network model using graph theory methods applied to resting-state fMRI data acquired from a group of epilepsy patients and age- and gender-matched healthy controls. A brain functional network model was constructed based on resting-state functional connectivity. A minimum spanning tree combined with proportional thresholding approach was used to obtain sparse connectivity matrices for each subject, which formed the basis of brain networks. We examined the brain reorganizational changes in epilepsy thoroughly at the level of the whole brain, the functional network, and individual brain regions. At the whole-brain level, local efficiency was significantly decreased in epilepsy patients compared with the healthy controls. However, global efficiency was significantly increased in epilepsy due to increased number of functional connections between networks (although weakly connected). At the functional network level, there were significant proportions of newly formed connections between the default mode network and other networks and between the subcortical network and other networks. There was a significant proportion of decreasing connections between the cingulo-opercular task control network and other networks. Individual brain regions from different functional networks, however, showed a distinct pattern of reorganizational changes in epilepsy. These findings suggest that epilepsy alters brain efficiency in a consistent pattern at the whole-brain level, yet alters brain functional networks and individual brain regions differently.
The human brain is a complex and dynamic system that can be modeled as a large-scale brain network to better understand the reorganizational changes secondary to epilepsy. In this study, we developed a brain functional network model using graph theory methods applied to resting-state fMRI data acquired from a group of epilepsy patients and age- and gender-matched healthy controls. A brain functional network model was constructed based on resting-state functional connectivity. A minimum spanning tree combined with proportional thresholding approach was used to obtain sparse connectivity matrices for each subject, which formed the basis of brain networks. We examined the brain reorganizational changes in epilepsy thoroughly at the level of the whole brain, the functional network, and individual brain regions. At the whole-brain level, local efficiency was significantly decreased in epilepsy patients compared with the healthy controls. However, global efficiency was significantly increased in epilepsy due to increased number of functional connections between networks (although weakly connected). At the functional network level, there were significant proportions of newly formed connections between the default mode network and other networks and between the subcortical network and other networks. There was a significant proportion of decreasing connections between the cingulo-opercular task control network and other networks. Individual brain regions from different functional networks, however, showed a distinct pattern of reorganizational changes in epilepsy. These findings suggest that epilepsy alters brain efficiency in a consistent pattern at the whole-brain level, yet alters brain functional networks and individual brain regions differently.The human brain is a complex and dynamic system that can be modeled as a large-scale brain network to better understand the reorganizational changes secondary to epilepsy. In this study, we developed a brain functional network model using graph theory methods applied to resting-state fMRI data acquired from a group of epilepsy patients and age- and gender-matched healthy controls. A brain functional network model was constructed based on resting-state functional connectivity. A minimum spanning tree combined with proportional thresholding approach was used to obtain sparse connectivity matrices for each subject, which formed the basis of brain networks. We examined the brain reorganizational changes in epilepsy thoroughly at the level of the whole brain, the functional network, and individual brain regions. At the whole-brain level, local efficiency was significantly decreased in epilepsy patients compared with the healthy controls. However, global efficiency was significantly increased in epilepsy due to increased number of functional connections between networks (although weakly connected). At the functional network level, there were significant proportions of newly formed connections between the default mode network and other networks and between the subcortical network and other networks. There was a significant proportion of decreasing connections between the cingulo-opercular task control network and other networks. Individual brain regions from different functional networks, however, showed a distinct pattern of reorganizational changes in epilepsy. These findings suggest that epilepsy alters brain efficiency in a consistent pattern at the whole-brain level, yet alters brain functional networks and individual brain regions differently.
Author Song, Jie
Gaggl, Wolfgang
Prabhakaran, Vivek
Nair, Veena A.
Author_xml – sequence: 1
  givenname: Jie
  surname: Song
  fullname: Song, Jie
  organization: Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin., Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
– sequence: 2
  givenname: Veena A.
  surname: Nair
  fullname: Nair, Veena A.
  organization: Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
– sequence: 3
  givenname: Wolfgang
  surname: Gaggl
  fullname: Gaggl, Wolfgang
  organization: Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
– sequence: 4
  givenname: Vivek
  surname: Prabhakaran
  fullname: Prabhakaran, Vivek
  organization: Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin., Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin., Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin., Medical Scientist Training Program, University of Wisconsin-Madison, Madison, Wisconsin., Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25647011$$D View this record in MEDLINE/PubMed
BookMark eNqFks1LHTEUxYMo1VrX7spAN928Z5LJ56agVq0gCEXXIS9zxxeZl0yTGWH61zej9tEKpdkk4f7O4ebmvEe7IQZA6JjgJcFKn6yS9WFJMWFLXGO1gw4o4WqBMaW72zNh--go50dcFmcKY_YO7VMumMSEHKD7rz6nsR-gqc5mu-pyDG7wMdiuuk0PNvifdr5WpXTR-w76PFXf4QlsVySrqbpKtl9Xd2uIaapOi2zKPn9Ae63tMhy97ofo_vLi7vzb4ub26vr89GbhGGfDgkoHjomGNMAbWqumBqFb2TZaKt0yIoBJbWtKGlVrUTPOtWZcuVZI6yi09SH68uLbj6sNNA7CkGxn-uQ3Nk0mWm_-rgS_Ng_xyTCmsZSiGHx-NUjxxwh5MBufHXSdDRDHbEiZElO1pPT_qFBaUEaULOinN-hjHFOZzUxpoZTWihTq45_Nb7v-_TkFOHkBXIo5J2i3CMFmToB5ToCZE2DmBBQFf6Nwfnj-v_J63_1T9wt7k7V3
CitedBy_id crossref_primary_10_3390_brainsci14050507
crossref_primary_10_1371_journal_pone_0134352
crossref_primary_10_3390_biomedicines10071553
crossref_primary_10_3390_nu13072186
crossref_primary_10_1016_j_jns_2019_116529
crossref_primary_10_3389_fnhum_2021_637071
crossref_primary_10_1111_epi_17903
crossref_primary_10_3389_fninf_2017_00028
crossref_primary_10_1016_j_nbd_2024_106425
crossref_primary_10_3389_fnins_2023_1150668
crossref_primary_10_1089_neu_2016_4581
crossref_primary_10_3389_fnins_2016_00143
crossref_primary_10_1016_j_yebeh_2016_07_016
crossref_primary_10_1089_brain_2018_0601
crossref_primary_10_3389_fnins_2022_1031163
crossref_primary_10_1016_j_yebeh_2021_107841
crossref_primary_10_1016_j_eplepsyres_2024_107312
crossref_primary_10_1016_j_jocn_2022_07_003
crossref_primary_10_1093_cercor_bhae419
crossref_primary_10_1007_s10548_021_00875_9
crossref_primary_10_1111_epi_13133
crossref_primary_10_1212_WNL_0000000000004035
crossref_primary_10_1007_s11682_019_00243_z
crossref_primary_10_1016_j_yebeh_2018_10_025
crossref_primary_10_1016_j_nic_2020_02_003
crossref_primary_10_1080_00207454_2020_1837802
crossref_primary_10_1007_s12264_025_01348_w
crossref_primary_10_1007_s12572_024_00381_8
crossref_primary_10_1007_s41105_022_00440_2
crossref_primary_10_1016_j_neuroscience_2023_08_017
crossref_primary_10_1007_s00415_022_11263_z
crossref_primary_10_1007_s11571_019_09551_y
crossref_primary_10_1016_j_clinph_2022_12_011
crossref_primary_10_1016_j_eplepsyres_2016_04_001
crossref_primary_10_1016_j_nicl_2016_10_017
crossref_primary_10_1016_j_nbd_2023_106053
crossref_primary_10_1162_netn_a_00395
crossref_primary_10_3389_fnins_2022_952940
crossref_primary_10_1371_journal_pone_0141186
crossref_primary_10_1016_j_neuroimage_2019_116144
Cites_doi 10.1073/pnas.1208933109
10.1371/journal.pcbi.0010042
10.3389/fnsys.2010.00147
10.1371/journal.pcbi.1000381
10.1016/j.clinph.2013.12.120
10.1016/j.seizure.2014.07.004
10.1093/cercor/bhq291
10.1155/2013/935154
10.1007/s10548-014-0366-6
10.1016/j.neuron.2011.09.006
10.1016/j.neuroimage.2009.07.051
10.1111/epi.12581
10.1016/j.neuroimage.2011.12.063
10.1002/jmri.23572
10.1371/journal.pone.0049847
10.1016/j.neuroimage.2013.05.099
10.1006/cbmr.1996.0014
10.1093/brain/awr223
10.1016/j.neuroimage.2011.12.052
10.1371/journal.pcbi.0030017
10.1016/j.neuroimage.2008.09.037
10.1212/WNL.0b013e31822cfc2f
10.1089/brain.2014.0286
10.1111/j.0013-9580.2005.66104.x
10.1016/j.neuroimage.2004.07.051
10.1016/j.neuroimage.2011.07.044
10.1371/journal.pone.0021976
10.1016/j.neuroimage.2009.10.003
ContentType Journal Article
Copyright (©) Copyright 2015, Mary Ann Liebert, Inc.
Copyright 2015, Mary Ann Liebert, Inc. 2015
Copyright_xml – notice: (©) Copyright 2015, Mary Ann Liebert, Inc.
– notice: Copyright 2015, Mary Ann Liebert, Inc. 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7RV
7TK
7X7
7XB
88E
88G
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
K9.
KB0
M0S
M1P
M2M
NAPCQ
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
DOI 10.1089/brain.2014.0308
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Nursing & Allied Health Database
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Animal Behavior Abstracts
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Psychology
MEDLINE - Academic
MEDLINE
Neurosciences Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2158-0022
EndPage 283
ExternalDocumentID PMC4490776
3745618591
25647011
10_1089_brain_2014_0308
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCATS NIH HHS
  grantid: UL1 TR000427
– fundername: NINDS NIH HHS
  grantid: K23NS086852
– fundername: NIMH NIH HHS
  grantid: RC1MH090912-01
– fundername: NIBIB NIH HHS
  grantid: T32EB011434
– fundername: NCATS NIH HHS
  grantid: UL1TR000427
– fundername: NIGMS NIH HHS
  grantid: T32GM008692
GroupedDBID ---
0R~
4.4
53G
7RV
7X7
88E
8FI
8FJ
AAYXX
ABBKN
ABJNI
ABUWG
ACGFS
ACPRK
ADBBV
AFKRA
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BKEYQ
BNQNF
BPHCQ
BVXVI
CCPQU
CITATION
DWQXO
EBS
EJD
FYUFA
GNUQQ
HMCUK
IM4
M1P
M2M
NAPCQ
O9-
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
PSYQQ
RML
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7TK
7XB
8FD
8FK
FR3
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
SCNPE
5PM
ID FETCH-LOGICAL-c454t-27cec46d1de5d238d3e69f7fd9789f416e479a321d8396345599458cf67ac2ef3
IEDL.DBID BENPR
ISSN 2158-0014
2158-0022
IngestDate Thu Aug 21 14:30:29 EDT 2025
Fri Sep 05 13:18:42 EDT 2025
Sun Aug 24 03:05:38 EDT 2025
Fri Jul 25 08:09:57 EDT 2025
Thu Apr 03 07:02:42 EDT 2025
Thu Apr 24 23:09:11 EDT 2025
Tue Jul 01 03:51:48 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords epilepsy
network analysis
functional networks
graph theory
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c454t-27cec46d1de5d238d3e69f7fd9789f416e479a321d8396345599458cf67ac2ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://doi.org/10.1089/brain.2014.0308
PMID 25647011
PQID 1696889981
PQPubID 2029230
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4490776
proquest_miscellaneous_1701483722
proquest_miscellaneous_1689624187
proquest_journals_1696889981
pubmed_primary_25647011
crossref_primary_10_1089_brain_2014_0308
crossref_citationtrail_10_1089_brain_2014_0308
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-06-01
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New Rochelle
– name: 140 Huguenot Street, 3rd FloorNew Rochelle, NY 10801USA
PublicationTitle Brain connectivity
PublicationTitleAlternate Brain Connect
PublicationYear 2015
Publisher Mary Ann Liebert, Inc
Publisher_xml – name: Mary Ann Liebert, Inc
References B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B10
B11
Holm S (B12) 1979; 6
B13
B14
B15
B16
B17
B18
B19
B1
B2
B3
B4
B5
B6
B7
B8
B9
8812068 - Comput Biomed Res. 1996 Jun;29(3):162-73
19646533 - Neuroimage. 2010 Jan 1;49(1):401-14
25127370 - Seizure. 2014 Nov;23(10):809-18
22233733 - Neuroimage. 2012 Mar;60(1):623-32
21031030 - Front Syst Neurosci. 2010 Oct 08;4:147
21975588 - Brain. 2011 Oct;134(Pt 10):2912-28
18976717 - Neuroimage. 2009 Feb 1;44(3):839-48
15501092 - Neuroimage. 2004;23 Suppl 1:S208-19
19819337 - Neuroimage. 2010 Sep;52(3):1059-69
21810475 - Neuroimage. 2012 Jan 2;59(1):431-8
25183440 - Brain Connect. 2014 Nov;4(9):662-76
24686109 - Clin Neurophysiol. 2014 Sep;125(9):1744-56
15816939 - Epilepsia. 2005 Apr;46(4):470-2
22314879 - J Magn Reson Imaging. 2012 Jul;36(1):39-54
23227153 - PLoS One. 2012;7(12):e49847
24415902 - J Appl Math. 2013 May 21;2013:null
21818285 - PLoS One. 2011;6(7):e21976
17274684 - PLoS Comput Biol. 2007 Feb 2;3(2):e17
19412534 - PLoS Comput Biol. 2009 May;5(5):e1000381
22099467 - Neuron. 2011 Nov 17;72(4):665-78
16201007 - PLoS Comput Biol. 2005 Sep;1(4):e42
21330467 - Cereb Cortex. 2011 Sep;21(9):2147-57
22227886 - Neuroimage. 2012 Mar;60(1):601-13
23747458 - Neuroimage. 2013 Dec;83:550-8
24650167 - Epilepsia. 2014 May;55(5):674-82
21832213 - Neurology. 2011 Sep 6;77(10):938-44
23185007 - Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20608-13
24881003 - Brain Topogr. 2015 Jan;28(1):113-26
References_xml – ident: B2
  doi: 10.1073/pnas.1208933109
– ident: B24
  doi: 10.1371/journal.pcbi.0010042
– ident: B3
  doi: 10.3389/fnsys.2010.00147
– ident: B8
  doi: 10.1371/journal.pcbi.1000381
– ident: B27
  doi: 10.1016/j.clinph.2013.12.120
– ident: B11
  doi: 10.1016/j.seizure.2014.07.004
– ident: B4
  doi: 10.1093/cercor/bhq291
– ident: B13
  doi: 10.1155/2013/935154
– ident: B7
  doi: 10.1007/s10548-014-0366-6
– ident: B17
  doi: 10.1016/j.neuron.2011.09.006
– ident: B14
  doi: 10.1016/j.neuroimage.2009.07.051
– ident: B15
  doi: 10.1111/epi.12581
– ident: B20
  doi: 10.1016/j.neuroimage.2011.12.063
– ident: B10
  doi: 10.1002/jmri.23572
– ident: B23
  doi: 10.1371/journal.pone.0049847
– ident: B5
  doi: 10.1016/j.neuroimage.2013.05.099
– ident: B6
  doi: 10.1006/cbmr.1996.0014
– volume: 6
  start-page: 65
  year: 1979
  ident: B12
  publication-title: Scand J Stat
– ident: B29
  doi: 10.1093/brain/awr223
– ident: B16
  doi: 10.1016/j.neuroimage.2011.12.052
– ident: B1
  doi: 10.1371/journal.pcbi.0030017
– ident: B19
  doi: 10.1016/j.neuroimage.2008.09.037
– ident: B26
  doi: 10.1212/WNL.0b013e31822cfc2f
– ident: B22
  doi: 10.1089/brain.2014.0286
– ident: B9
  doi: 10.1111/j.0013-9580.2005.66104.x
– ident: B21
  doi: 10.1016/j.neuroimage.2004.07.051
– ident: B25
  doi: 10.1016/j.neuroimage.2011.07.044
– ident: B28
  doi: 10.1371/journal.pone.0021976
– ident: B18
  doi: 10.1016/j.neuroimage.2009.10.003
– reference: 25127370 - Seizure. 2014 Nov;23(10):809-18
– reference: 19819337 - Neuroimage. 2010 Sep;52(3):1059-69
– reference: 16201007 - PLoS Comput Biol. 2005 Sep;1(4):e42
– reference: 24415902 - J Appl Math. 2013 May 21;2013:null
– reference: 21330467 - Cereb Cortex. 2011 Sep;21(9):2147-57
– reference: 15816939 - Epilepsia. 2005 Apr;46(4):470-2
– reference: 17274684 - PLoS Comput Biol. 2007 Feb 2;3(2):e17
– reference: 25183440 - Brain Connect. 2014 Nov;4(9):662-76
– reference: 18976717 - Neuroimage. 2009 Feb 1;44(3):839-48
– reference: 24881003 - Brain Topogr. 2015 Jan;28(1):113-26
– reference: 22233733 - Neuroimage. 2012 Mar;60(1):623-32
– reference: 21810475 - Neuroimage. 2012 Jan 2;59(1):431-8
– reference: 8812068 - Comput Biomed Res. 1996 Jun;29(3):162-73
– reference: 21832213 - Neurology. 2011 Sep 6;77(10):938-44
– reference: 19412534 - PLoS Comput Biol. 2009 May;5(5):e1000381
– reference: 24686109 - Clin Neurophysiol. 2014 Sep;125(9):1744-56
– reference: 21031030 - Front Syst Neurosci. 2010 Oct 08;4:147
– reference: 23227153 - PLoS One. 2012;7(12):e49847
– reference: 23185007 - Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20608-13
– reference: 19646533 - Neuroimage. 2010 Jan 1;49(1):401-14
– reference: 21818285 - PLoS One. 2011;6(7):e21976
– reference: 22314879 - J Magn Reson Imaging. 2012 Jul;36(1):39-54
– reference: 24650167 - Epilepsia. 2014 May;55(5):674-82
– reference: 22099467 - Neuron. 2011 Nov 17;72(4):665-78
– reference: 21975588 - Brain. 2011 Oct;134(Pt 10):2912-28
– reference: 22227886 - Neuroimage. 2012 Mar;60(1):601-13
– reference: 23747458 - Neuroimage. 2013 Dec;83:550-8
– reference: 15501092 - Neuroimage. 2004;23 Suppl 1:S208-19
SSID ssj0000548004
Score 2.1947577
Snippet The human brain is a complex and dynamic system that can be modeled as a large-scale brain network to better understand the reorganizational changes secondary...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 276
SubjectTerms Adult
Brain - physiopathology
Brain Mapping
Case-Control Studies
Epilepsy - pathology
Female
Humans
Imaging, Three-Dimensional
Magnetic Resonance Imaging
Male
Nerve Net - physiopathology
Neural Pathways - physiopathology
Original
Statistics, Nonparametric
Young Adult
Title Disrupted Brain Functional Organization in Epilepsy Revealed by Graph Theory Analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/25647011
https://www.proquest.com/docview/1696889981
https://www.proquest.com/docview/1689624187
https://www.proquest.com/docview/1701483722
https://pubmed.ncbi.nlm.nih.gov/PMC4490776
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZS8NAEB48XnwRb-vFCiK-RE2yyWafxKNVBEXEQt9CsgcWNI22FfrvncmlVfR5N2SzszvzzZFvAA546ib2lPKDgqcOasnUSTzuO4H1hdUW75glR_HuPrzp8tte0KsCbsOqrLLWiYWi1gNFMfITl1hcyDlwz_I3h7pGUXa1aqExC_OogiM85_MX7fuHxybKckp0ZkUPQTRtkUMOQc3vE8mTlLowUHkXPybalmnT9Atv_iyb_GaHOkuwWAFIdl5KfBlmTLYCq-cZOs-vE3bIipLOIla-Ct2r_vB9nCOoZBe0CNZBK1YG_9j3nzAZDrVz1A_5cMIezQeBR83SCbsmOmtW_r_Pav6SNeh22k-XN07VR8FRPOAjxxPKKB5qV5tAo4nWvgmlRVGgByktIjLDhUx8z9WIlkKfEwkZDyJlQ5Eoz1h_HeayQWY2gclAaz8UrkqM5AolS-6LZw2CAvRMPNuC43oLY1WRjFOvi5e4SHZHMi72PKY9j2nPW3DUPJCX_Bp_T92pZRJXF20Yfx2LFuw3w3hFKO-RZGYwpjmRDBGpROKfOYJCq77wvBZslGJu1oOokOMwvkFMHYBmAlF0T49k_eeCqptzSXxJW_8vfRsW8CuDsgJtB-ZG72Ozi1hnlO7BrOiJvepYfwIWHf-6
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ_A8QAvRgX1FHVNlPBSoNttt_tgDMidh8CFEC7hrbb7EUm0V7k7zf1T_o3O9EtOIm8877bdzs7u_GZ29jcAb0Xmp26PzgelyDzcJTMv5SLwQhdIZxyuMUeO4ukwGozE58vwcgl-N3dhKK2y2RPLjdqMNcXId31icSHnwP9Q_PCoahSdrjYlNCq1OLbzX-iyTd4fHeL8vuO837v4OPDqqgKeFqGYelxqq0VkfGNDgwbLBDZSDgeG_pRyiE-skCoNuG8QO0SBIEouEcbaRTLV3LoA37sMK4JutHZg5aA3PDtvozp7RJ9W1ixEUxp75IA0fEKx2s2o6gOlk4kdoolZNIW38O2_aZo37F7_ITyoASvbrzTsESzZ_DGs7-forH-fsy1WppCWsfl1GB1eTa5nBYJYdkCDYH20mlWwkd289MmwqVfgflRM5uzc_iSwalg2Z5-IPptVfAGs4UvZgNG9SPgJdPJxbp8BU6ExQSR9nVolNGoSuUvcWQQh6Alx14WdRoSJrknNqbbGt6Q8XI9VUso8IZknJPMubLcPFBWfx_-7bjZzktQLe5L8VcMuvGmbcUnSOUua2_GM-sQqQmQUyzv6SArlBpLzLjytprkdD6JQgc34BbmgAG0HogRfbMmvvpbU4EIo4md6fvfQX8Pq4OL0JDk5Gh6_gDX847DKftuEzvR6Zl8izppmr2rlZvDlvtfTHx57O0s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJcEFBKAwW2UkG9uKnXa6_3UKGWJLQUoqoiUm-uvQ9RCRzTJKD8tf46ZvyiAdFbz7tO1rMzO9_Mjr8B2BaZn7o9uh-UIvPwlMy8lIvAC10gnXFoY44Cxc-j6GgsPp6H5ytw3XwLQ2WVzZlYHtRmoilH3vOJxYWCA7_n6rKI0_7wXfHDow5SdNPatNOoVOTELn5h-DbdP-7jXr_hfDj48v7IqzsMeFqEYuZxqa0WkfGNDQ06LxPYSDlcJMZWyiFWsUKqNOC-QRwRBYLouUQYaxfJVHPrAvzde7Aq0SuKDqweDkanZ22GZ4-o1Mr-hehWY4-CkYZbKFa9jDpAUGmZ2CXKmGW3-A_W_btk84YPHD6ChzV4ZQeVtj2GFZs_gbWDHAP37wv2lpXlpGWefg3G_cvp1bxAQMsOaRFsiB60Sjyymx-AMhwaFHg2FdMFO7M_Cbgali3YB6LSZhV3AGu4U57C-E4kvA6dfJLbDWAqNCaIpK9Tq4RGraLQiTuLgASjIu66sNuIMNE1wTn12fiWlBftsUpKmSck84Rk3oWd9oGi4vb4_9TNZk-S2sinyR-V7MJWO4zmSXcuaW4nc5oTqwhRUixvmSMprRtIzrvwrNrmdj2ISAUO4z_IJQVoJxA9-PJIfvm1pAkXQhFX0_Pbl_4a7qMdJZ-ORycv4AG-cFgVwm1CZ3Y1ty8Rcs2yV7VuM7i4a3P6DZLlP3c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disrupted+Brain+Functional+Organization+in+Epilepsy+Revealed+by+Graph+Theory+Analysis&rft.jtitle=Brain+connectivity&rft.au=Song%2C+Jie&rft.au=Nair%2C+Veena+A&rft.au=Gaggl%2C+Wolfgang&rft.au=Prabhakaran%2C+Vivek&rft.date=2015-06-01&rft.eissn=2158-0022&rft.volume=5&rft.issue=5&rft.spage=276&rft_id=info:doi/10.1089%2Fbrain.2014.0308&rft_id=info%3Apmid%2F25647011&rft.externalDocID=25647011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-0014&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-0014&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-0014&client=summon