The Chinese wild grapevine (Vitis pseudoreticulata) E3 ubiquitin ligase Erysiphe necator-induced RING finger protein 1 (EIRP1) activates plant defense responses by inducing proteolysis of the VpWRKY11 transcription factor

Ubiquitin-mediated regulation responds rapidly to specific stimuli; this rapidity is particularly important for defense responses to pathogen attack. Here, we investigated the role of the E3 ubiquitin ligase Erysiphe necator-induced RING finger protein 1 (EIRP1) in the defense response of Chinese wi...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 200; no. 3; pp. 834 - 846
Main Authors Yu, Yihe, Xu, Weirong, Wang, Jie, Wang, Lei, Yao, Wenkong, Yang, Yazhou, Xu, Yan, Ma, Fuli, Du, Yangjian, Wang, Yuejin
Format Journal Article
LanguageEnglish
Published England New Phytologist Trust 01.11.2013
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ubiquitin-mediated regulation responds rapidly to specific stimuli; this rapidity is particularly important for defense responses to pathogen attack. Here, we investigated the role of the E3 ubiquitin ligase Erysiphe necator-induced RING finger protein 1 (EIRP1) in the defense response of Chinese wild grapevine Vitis pseudoreticulata. The regulatory function of E3 ubiquitin ligase EIRP1 was investigated using molecular, genetic and biochemical approaches. EIRP1 encodes a C3HC4-type Really Interesting New Gene (RING) finger protein that harbors E3 ligase activity. This activity requires the conserved RING domain, and VpWRKY11 also interacts with EIRP1 through the RING domain. VpWRKY11 localizes to the nucleus and activates W-box-dependent transcription in planta. EIRP1 targeted VpWRKY11 in vivo, resulting in VpWRKY11 degradation. The expression of EIRP1 and VpWRKY11 responds rapidly to powdery mildew in Vitis pseudoreticulata grapevine; also, overexpression of EIRP1 in Arabidopsis confers enhanced resistance to the pathogens Golovinomyces cichoracearum and Pseudomonas syringae pv tomato DC3000. Our data suggest that the EIRP1 E3 ligase positively regulates plant disease resistance by mediating proteolysis of the negative regulator VpWRKY11 via degradation by the 26S proteasome.
AbstractList Ubiquitin-mediated regulation responds rapidly to specific stimuli; this rapidity is particularly important for defense responses to pathogen attack. Here, we investigated the role of the E3 ubiquitin ligase Erysiphe necator-induced RING finger protein 1 (EIRP1) in the defense response of Chinese wild grapevine Vitis pseudoreticulata. The regulatory function of E3 ubiquitin ligase EIRP1 was investigated using molecular, genetic and biochemical approaches. EIRP1 encodes a C3HC4-type Really Interesting New Gene (RING) finger protein that harbors E3 ligase activity. This activity requires the conserved RING domain, and VpWRKY11 also interacts with EIRP1 through the RING domain. VpWRKY11 localizes to the nucleus and activates W-box-dependent transcription in planta. EIRP1 targeted VpWRKY11 in vivo, resulting in VpWRKY11 degradation. The expression of EIRP1 and VpWRKY11 responds rapidly to powdery mildew in Vitis pseudoreticulata grapevine; also, overexpression of EIRP1 in Arabidopsis confers enhanced resistance to the pathogens Golovinomyces cichoracearum and Pseudomonas syringae pv tomato DC3000. Our data suggest that the EIRP1 E3 ligase positively regulates plant disease resistance by mediating proteolysis of the negative regulator VpWRKY11 via degradation by the 26S proteasome.
Summary Ubiquitin‐mediated regulation responds rapidly to specific stimuli; this rapidity is particularly important for defense responses to pathogen attack. Here, we investigated the role of the E3 ubiquitin ligase Erysiphe necator‐induced RING finger protein 1 (EIRP1) in the defense response of Chinese wild grapevine Vitis pseudoreticulata. The regulatory function of E3 ubiquitin ligase EIRP1 was investigated using molecular, genetic and biochemical approaches. EIRP1 encodes a C3HC4‐type Really Interesting New Gene (RING) finger protein that harbors E3 ligase activity. This activity requires the conserved RING domain, and VpWRKY11 also interacts with EIRP1 through the RING domain. VpWRKY11 localizes to the nucleus and activates W‐box‐dependent transcription in planta. EIRP1 targeted VpWRKY11 in vivo, resulting in VpWRKY11 degradation. The expression of EIRP1 and VpWRKY11 responds rapidly to powdery mildew in Vitis pseudoreticulata grapevine; also, overexpression of EIRP1 in Arabidopsis confers enhanced resistance to the pathogens Golovinomyces cichoracearum and Pseudomonas syringae pv tomato DC3000. Our data suggest that the EIRP1 E3 ligase positively regulates plant disease resistance by mediating proteolysis of the negative regulator VpWRKY11 via degradation by the 26S proteasome.
Ubiquitin-mediated regulation responds rapidly to specific stimuli; this rapidity is particularly important for defense responses to pathogen attack. Here, we investigated the role of the E3 ubiquitin ligase Erysiphe necator-induced RING finger protein 1 (EIRP1) in the defense response of Chinese wild grapevine Vitis pseudoreticulata. The regulatory function of E3 ubiquitin ligase EIRP1 was investigated using molecular, genetic and biochemical approaches. EIRP1 encodes a C3HC4-type Really Interesting New Gene (RING) finger protein that harbors E3 ligase activity. This activity requires the conserved RING domain, and VpWRKY11 also interacts with EIRP1 through the RING domain. VpWRKY11 localizes to the nucleus and activates W-box-dependent transcription in planta. EIRP1 targeted VpWRKY11 in vivo, resulting in VpWRKY11 degradation. The expression of EIRP1 and VpWRKY11 responds rapidly to powdery mildew in Vitis pseudoreticulata grapevine; also, overexpression of EIRP1 in Arabidopsis confers enhanced resistance to the pathogens Golovinomyces cichoracearum and Pseudomonas syringae pv tomato DC3000. Our data suggest that the EIRP1 E3 ligase positively regulates plant disease resistance by mediating proteolysis of the negative regulator VpWRKY11 via degradation by the 26S proteasome.
Summary Ubiquitin-mediated regulation responds rapidly to specific stimuli; this rapidity is particularly important for defense responses to pathogen attack. Here, we investigated the role of the E3 ubiquitin ligase Erysiphe necator-induced RING finger protein 1 (EIRP1) in the defense response of Chinese wild grapevine Vitis pseudoreticulata. The regulatory function of E3 ubiquitin ligase EIRP1 was investigated using molecular, genetic and biochemical approaches. EIRP1 encodes a C3HC4-type Really Interesting New Gene (RING) finger protein that harbors E3 ligase activity. This activity requires the conserved RING domain, and VpWRKY11 also interacts with EIRP1 through the RING domain. VpWRKY11 localizes to the nucleus and activates W-box-dependent transcription in planta. EIRP1 targeted VpWRKY11 in vivo, resulting in VpWRKY11 degradation. The expression of EIRP1 and VpWRKY11 responds rapidly to powdery mildew in Vitis pseudoreticulata grapevine; also, overexpression of EIRP1 in Arabidopsis confers enhanced resistance to the pathogens Golovinomyces cichoracearum and Pseudomonas syringae pv tomato DC3000. Our data suggest that the EIRP1 E3 ligase positively regulates plant disease resistance by mediating proteolysis of the negative regulator VpWRKY11 via degradation by the 26S proteasome. [PUBLICATION ABSTRACT]
Summary Ubiquitin‐mediated regulation responds rapidly to specific stimuli; this rapidity is particularly important for defense responses to pathogen attack. Here, we investigated the role of the E3 ubiquitin ligase Erysiphe necator ‐induced RING finger protein 1 (EIRP1) in the defense response of Chinese wild grapevine Vitis pseudoreticulata . The regulatory function of E3 ubiquitin ligase EIRP1 was investigated using molecular, genetic and biochemical approaches. EIRP1 encodes a C3HC4‐type Really Interesting New Gene (RING) finger protein that harbors E3 ligase activity. This activity requires the conserved RING domain, and VpWRKY11 also interacts with EIRP1 through the RING domain. VpWRKY11 localizes to the nucleus and activates W‐box‐dependent transcription in planta . EIRP1 targeted VpWRKY11 in vivo , resulting in VpWRKY11 degradation. The expression of EIRP1 and VpWRKY11 responds rapidly to powdery mildew in Vitis pseudoreticulata grapevine; also, overexpression of EIRP1 in Arabidopsis confers enhanced resistance to the pathogens Golovinomyces cichoracearum and Pseudomonas syringae pv tomato DC3000. Our data suggest that the EIRP1 E3 ligase positively regulates plant disease resistance by mediating proteolysis of the negative regulator VpWRKY11 via degradation by the 26S proteasome.
Author Yihe Yu
Yazhou Yang
Weirong Xu
Yuejin Wang
Lei Wang
Fuli Ma
Yangjian Du
Jie Wang
Wenkong Yao
Yan Xu
Author_xml – sequence: 1
  givenname: Yihe
  surname: Yu
  fullname: Yu, Yihe
  organization: Northwest A&F University
– sequence: 2
  givenname: Weirong
  surname: Xu
  fullname: Xu, Weirong
  organization: Northwest A&F University
– sequence: 3
  givenname: Jie
  surname: Wang
  fullname: Wang, Jie
  organization: Northwest A&F University
– sequence: 4
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
  organization: Northwest A&F University
– sequence: 5
  givenname: Wenkong
  surname: Yao
  fullname: Yao, Wenkong
  organization: Northwest A&F University
– sequence: 6
  givenname: Yazhou
  surname: Yang
  fullname: Yang, Yazhou
  organization: Northwest A&F University
– sequence: 7
  givenname: Yan
  surname: Xu
  fullname: Xu, Yan
  organization: Northwest A&F University
– sequence: 8
  givenname: Fuli
  surname: Ma
  fullname: Ma, Fuli
  organization: Northwest A&F University
– sequence: 9
  givenname: Yangjian
  surname: Du
  fullname: Du, Yangjian
  organization: Northwest A&F University
– sequence: 10
  givenname: Yuejin
  surname: Wang
  fullname: Wang, Yuejin
  organization: Northwest A&F University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23905547$$D View this record in MEDLINE/PubMed
BookMark eNp9ktFu0zAUhiM0xLrBBS-ALHHTXmSzEyd1LlFVtoppTNUYcBU5znHrKrUz29nUh-VdOLTbLpAgN4mS7__OSfKfJEfWWUiS94yeMTzObb8-Yxln4lUyYrysUsHy6VEyojQTacnLH8fJSQgbSmlVlNmb5DjLK1oUfDpKft2ugczWxkIA8mi6lqy87OEBb5DxnYkmkD7A0DoP0aihk1FOyDwnQ2PuB3xsSWdWErNzvwumR5kFJaPzqbHtoKAly8X1BdHGrsCT3rsImGFkPF8sb9iESBXNg4yAYzppI2lBg0Wdh9A7vAik2ZG9Cg2HvOtwUiBOk4jj7vrvyy8_GSPRSxuUN300zhKNYuffJq-17AK8ezqfJt8-z29nl-nV14vF7NNVqnjBRdroTLMiA65ZqapWVKKivGQZFYxOVU5lJfiUVm2pdCt4WepM8YYqXuW8UZrl-WkyPnhxwfsBQqy3Jijo8JXADaHGn4JUWfEpoh__Qjdu8Ba3q7MCISEKWv2PYpyzcprle2pyoJR3IXjQde_NVvpdzWj9pxk1NqPeNwPZD0_GodlC-0I-VwGB8wOALYDdv0319c3lszI9JDYBv_VLwsJjv95F17mVwcUzSuu8FjnPfwN6VdY6
CitedBy_id crossref_primary_10_1016_j_plantsci_2018_08_008
crossref_primary_10_1016_j_plaphy_2019_09_010
crossref_primary_10_3390_ijms21175967
crossref_primary_10_3389_fpls_2022_877011
crossref_primary_10_1016_j_plantsci_2020_110588
crossref_primary_10_1111_pce_13856
crossref_primary_10_3390_ijms22020940
crossref_primary_10_1007_s00299_019_02456_4
crossref_primary_10_1111_nph_13707
crossref_primary_10_1038_hortres_2015_20
crossref_primary_10_1093_hr_uhab064
crossref_primary_10_1186_1471_2229_14_103
crossref_primary_10_1016_j_plantsci_2019_110202
crossref_primary_10_1016_j_plantsci_2022_111274
crossref_primary_10_1080_07352689_2018_1441103
crossref_primary_10_1111_pbi_14240
crossref_primary_10_3390_plants11091218
crossref_primary_10_1186_s41065_019_0089_5
crossref_primary_10_1111_tpj_16417
crossref_primary_10_3389_fpls_2023_1303667
crossref_primary_10_3389_fpls_2017_00097
crossref_primary_10_1093_hr_uhad116
crossref_primary_10_3389_fpls_2023_1135240
crossref_primary_10_1007_s00425_023_04269_y
crossref_primary_10_1021_acs_jafc_0c05334
crossref_primary_10_1093_jxb_erx136
crossref_primary_10_1007_s11103_019_00868_0
crossref_primary_10_3390_ijms21165701
crossref_primary_10_1007_s10725_023_01095_w
crossref_primary_10_1111_pce_13600
crossref_primary_10_1007_s11033_018_4159_y
crossref_primary_10_1016_j_plaphy_2015_06_016
crossref_primary_10_1016_j_pmpp_2023_101963
crossref_primary_10_1007_s11103_017_0620_x
crossref_primary_10_1038_srep38260
crossref_primary_10_1007_s00299_015_1893_7
crossref_primary_10_1016_j_devcel_2024_05_003
crossref_primary_10_1080_07352689_2021_1951491
crossref_primary_10_1093_jxb_erx029
crossref_primary_10_1016_j_scienta_2021_110479
crossref_primary_10_1016_j_jgg_2015_03_010
crossref_primary_10_1016_j_plantsci_2020_110494
crossref_primary_10_1016_j_plantsci_2016_04_006
crossref_primary_10_3389_fpls_2016_00760
crossref_primary_10_1093_jxb_erx033
crossref_primary_10_1016_j_scienta_2022_110980
crossref_primary_10_3389_fpls_2019_01394
crossref_primary_10_1111_mpp_13057
crossref_primary_10_3233_JBR_210709
crossref_primary_10_1007_s10535_016_0598_2
crossref_primary_10_1186_s12870_019_2079_1
crossref_primary_10_3390_plants13030448
crossref_primary_10_1016_j_plaphy_2015_11_020
crossref_primary_10_1111_mpp_12521
crossref_primary_10_1016_j_plantsci_2017_07_004
crossref_primary_10_1094_PHYTO_09_19_0347_R
crossref_primary_10_1016_j_foodres_2020_109443
crossref_primary_10_1104_pp_114_251769
crossref_primary_10_1016_j_postharvbio_2019_111029
crossref_primary_10_1016_j_plaphy_2017_01_017
crossref_primary_10_1093_jxb_ery216
crossref_primary_10_1371_journal_pone_0112533
crossref_primary_10_1111_mpp_13223
crossref_primary_10_1038_s41598_018_21377_y
crossref_primary_10_1038_srep35858
crossref_primary_10_3389_fpls_2016_01305
crossref_primary_10_1146_annurev_phyto_021622_110443
crossref_primary_10_3390_ijms242216388
crossref_primary_10_3390_genes10120973
crossref_primary_10_1007_s11240_017_1260_1
crossref_primary_10_1016_j_plantsci_2015_02_016
crossref_primary_10_3390_ijms23105678
crossref_primary_10_1007_s13237_018_0255_6
crossref_primary_10_1093_pcp_pcaa118
crossref_primary_10_1134_S1021443716050186
crossref_primary_10_3390_proteomes9040041
crossref_primary_10_1007_s11240_019_01622_6
crossref_primary_10_1016_S2095_3119_21_63870_4
crossref_primary_10_1007_s00425_020_03382_6
crossref_primary_10_3390_ijms20174286
crossref_primary_10_3389_fpls_2017_01109
crossref_primary_10_3390_antiox11050997
crossref_primary_10_1080_01140671_2015_1010547
crossref_primary_10_1186_s12870_021_03162_8
crossref_primary_10_1186_s12864_019_6085_3
crossref_primary_10_1093_hr_uhad148
crossref_primary_10_3389_fpls_2016_00695
crossref_primary_10_1186_s12870_019_1993_6
crossref_primary_10_1111_nph_18688
crossref_primary_10_1111_nph_13551
crossref_primary_10_1007_s11033_020_05363_0
crossref_primary_10_3389_fpls_2021_760520
crossref_primary_10_3389_fpls_2020_634819
crossref_primary_10_1186_s13213_020_01574_9
crossref_primary_10_1016_j_postharvbio_2014_07_003
crossref_primary_10_3389_fpls_2018_00139
crossref_primary_10_1007_s00438_016_1190_3
crossref_primary_10_1111_pbi_12294
crossref_primary_10_1016_j_plaphy_2023_108322
Cites_doi 10.1105/tpc.111.090571
10.1093/jxb/erm062
10.1007/s00299-012-1321-1
10.1093/jxb/erq447
10.1126/science.1067554
10.1038/nature05999
10.1007/s00425-010-1258-y
10.1105/tpc.108.058891
10.1016/j.pbi.2011.06.004
10.1016/j.pbi.2008.06.001
10.1016/j.cell.2006.02.008
10.1126/science.1204903
10.1038/nrm2688
10.1046/j.1365-313X.2002.01299.x
10.1007/s11033-010-0124-0
10.1002/elps.200500722
10.1104/pp.104.052423
10.1007/BF02667740
10.1111/j.1365-3059.2010.02395.x
10.1146/annurev.arplant.55.031903.141801
10.1371/journal.pone.0054185
10.1104/pp.104.041566
10.1111/j.1365-313X.2012.04965.x
10.1016/0003-2697(76)90527-3
10.1105/tpc.106.046250
10.1038/nrm2468
10.1105/tpc.105.039198
10.1038/emboj.2008.147
10.1094/MPMI-20-8-0966
10.1093/jxb/erp305
10.1002/elps.200305500
10.1038/ni1459
10.1111/j.1399-3054.2007.00975.x
10.1006/meth.2001.1262
10.1105/tpc.106.046730
10.1046/j.1365-313x.1998.00343.x
10.1104/pp.109.138990
10.1105/tpc.110.081794
10.1046/j.1365-313x.1998.00245.x
10.1105/tpc.009159
10.1073/pnas.0914408107
10.1186/1471-2164-10-227
10.1073/pnas.92.19.8675
10.1007/s00425-012-1624-z
10.1111/j.1364-3703.2011.00732.x
10.1105/tpc.107.050427
10.1126/science.1067747
10.1105/tpc.107.055517
10.1146/annurev.arplant.48.1.355
10.1105/tpc.106.044149
10.1007/s11515-011-1171-1
10.1016/j.pbi.2010.04.002
10.1093/jxb/err253
10.1094/MPMI-20-0072
10.1016/j.pbi.2012.03.014
10.1046/j.1365-313X.1999.00437.x
10.1046/j.1365-313x.2000.00760.x
10.1186/1471-2148-10-268
10.1104/pp.107.111286
10.1007/s00425-009-1062-8
10.1038/nature05286
10.1093/jxb/erp059
10.1038/sj.emboj.7600737
10.1094/PDIS-02-10-0092
10.1094/MPMI-20-4-0420
10.1146/annurev.biochem.78.101807.093809
ContentType Journal Article
Copyright 2013 New Phytologist Trust
2013 College of Horticulture. New Phytologist © 2013 New Phytologist Trust
2013 College of Horticulture. New Phytologist © 2013 New Phytologist Trust.
Copyright © 2013 New Phytologist Trust
Copyright_xml – notice: 2013 New Phytologist Trust
– notice: 2013 College of Horticulture. New Phytologist © 2013 New Phytologist Trust
– notice: 2013 College of Horticulture. New Phytologist © 2013 New Phytologist Trust.
– notice: Copyright © 2013 New Phytologist Trust
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
DOI 10.1111/nph.12418
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList

MEDLINE
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 846
ExternalDocumentID 3097703441
10_1111_nph_12418
23905547
NPH12418
newphytologist.200.3.834
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: the National Natural Science Foundation of China
  funderid: 31171924
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABHUG
ABLJU
ABPLY
ABPVW
ABTLG
ABWRO
ABXSQ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZLD
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AESBF
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AGUYK
AHBTC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
CWIXF
D-E
D-F
DCZOG
DEVKO
DIK
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DWIUU
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
H.T
H.X
HZI
HZ~
IHE
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LW7
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
31~
AAHBH
AASVR
ABEFU
ABEML
ACQPF
ADACV
AITYG
AS~
CAG
COF
GTFYD
HF~
HGD
HGLYW
HQ2
HTVGU
IPNFZ
IPSME
LPU
MVM
NEJ
OIG
RCA
WHG
WIN
XOL
YXE
ZCG
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7SN
8FD
AHXOZ
AILXY
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c4548-bf2f152e4f16c9d89890461208107c30a984709d6cfd8466f2c4b0c4934bcf133
IEDL.DBID DR2
ISSN 0028-646X
IngestDate Fri Aug 16 12:14:40 EDT 2024
Fri Sep 13 02:43:03 EDT 2024
Mon Oct 07 11:12:04 EDT 2024
Fri Aug 23 02:50:38 EDT 2024
Sat Sep 28 08:27:25 EDT 2024
Sat Aug 24 00:51:45 EDT 2024
Fri Feb 02 08:16:51 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords transcription factor
E3 ubiquitin ligase
Vitis pseudoreticulata
defense response
grapevine
proteolysis
Language English
License 2013 College of Horticulture. New Phytologist © 2013 New Phytologist Trust.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4548-bf2f152e4f16c9d89890461208107c30a984709d6cfd8466f2c4b0c4934bcf133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.12418
PMID 23905547
PQID 1441672309
PQPubID 2026848
PageCount 13
ParticipantIDs proquest_miscellaneous_1461336947
proquest_journals_2513388509
proquest_journals_1441672309
crossref_primary_10_1111_nph_12418
pubmed_primary_23905547
wiley_primary_10_1111_nph_12418_NPH12418
jstor_primary_newphytologist_200_3_834
PublicationCentury 2000
PublicationDate 20131101
November 2013
2013-Nov
2013-11-00
PublicationDateYYYYMMDD 2013-11-01
PublicationDate_xml – month: 11
  year: 2013
  text: 20131101
  day: 1
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2013
Publisher New Phytologist Trust
Wiley Subscription Services, Inc
Publisher_xml – name: New Phytologist Trust
– name: Wiley Subscription Services, Inc
References 2010; 10
2002; 15
2010; 13
2010; 107
2011; 60
1997; 48
1987; 5
2005; 137
1995; 34
2011; 62
2008; 9
2003; 15
2009; 150
2011; 14
2012; 15
2008; 146
2013; 8
2012; 13
2005; 24
2010; 61
1998; 16
2009; 10
2004; 135
1999; 18
1976; 72
2006b; 18
2008; 27
2007; 131
2007; 8
2010; 231
2010; 232
2011; 23
2008; 20
2007; 20
2006; 444
2006a; 27
2006; 124
2007; 19
2007; 448
1995; 92
2002; 30
2002; 295
2009; 60
2000; 22
2006; 18
2008; 11
2011; 38
2001; 25
2011; 332
2007; 58
2012; 31
2009; 78
2004; 55
2012; 1
2011; 95
2003; 24
2012; 7
2012; 236
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_54_1
Wang Y (e_1_2_6_58_1) 1995; 34
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 27
  start-page: 2782
  year: 2006a
  end-page: 2786
  article-title: A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis
  publication-title: Electrophoresis
– volume: 131
  start-page: 434
  year: 2007
  end-page: 447
  article-title: Overexpression of VvWRKY2 in tobacco enhances broad resistance to necrotrophic fungal pathogens
  publication-title: Physiologia Plantarum
– volume: 8
  start-page: 497
  year: 2007
  end-page: 503
  article-title: A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses
  publication-title: Nature Immunology
– volume: 13
  start-page: 83
  year: 2012
  end-page: 94
  article-title: Rice WRKY45 plays important roles in fungal and bacterial disease resistance
  publication-title: Molecular Plant Pathology
– volume: 15
  start-page: 392
  year: 2012
  end-page: 399
  article-title: Ubiquitination in NB‐LRR‐mediated immunity
  publication-title: Current Opinion in Plant Biology
– volume: 444
  start-page: 323
  year: 2006
  end-page: 329
  article-title: The plant immune system
  publication-title: Nature
– volume: 16
  start-page: 735
  year: 1998
  end-page: 743
  article-title: Floral dip: a simplified method for ‐mediated transformation of
  publication-title: Plant Journal
– volume: 61
  start-page: 297
  year: 2010
  end-page: 310
  article-title: Ectopic expression of PtaRHE1, encoding a poplar RING‐H2 protein with E3 ligase activity, alters plant development and induces defence‐related responses
  publication-title: Journal of Experimental Botany
– volume: 24
  start-page: 2369
  year: 2003
  end-page: 2375
  article-title: Protein extraction for two‐dimensional electrophoresis from olive leaf, a plant tissue containing high levels of interfering compounds
  publication-title: Electrophoresis
– volume: 14
  start-page: 547
  year: 2011
  end-page: 553
  article-title: News on ABA transport, protein degradation, and ABFs/WRKYs in ABA signaling
  publication-title: Current Opinion in Plant Biology
– volume: 9
  start-page: 679
  year: 2008
  end-page: 689
  article-title: Diversity of degradation signals in the ubiquitin–proteasome system
  publication-title: Nature Reviews Molecular Cell Biology
– volume: 30
  start-page: 447
  year: 2002
  end-page: 455
  article-title: EL5, a rice N‐acetylchitooligosaccharide elicitor‐responsive RING‐H2 finger protein, is a ubiquitin ligase which functions in co‐operation with an elicitor‐responsive ubiquitin‐conjugating enzyme, OsUBC5b
  publication-title: Plant Journal
– volume: 18
  start-page: 3635
  year: 2006b
  end-page: 3646
  article-title: Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21‐mediated disease resistance
  publication-title: Plant Cell
– volume: 448
  start-page: 497
  year: 2007
  end-page: 500
  article-title: A flagellin‐induced complex of the receptor FLS2 and BAK1 initiates plant defence
  publication-title: Nature
– volume: 20
  start-page: 420
  year: 2007
  end-page: 429
  article-title: Expression of AtWRKY33 encoding a pathogen‐or PAMP‐responsive WRKY transcription factor is regulated by a composite DNA motif containing W box elements
  publication-title: Molecular Plant‐Microbe Interactions
– volume: 10
  start-page: 385
  year: 2009
  end-page: 397
  article-title: The ubiquitin‐26S proteasome system at the nexus of plant biology
  publication-title: Nature Reviews Molecular Cell Biology
– volume: 15
  start-page: 675
  year: 2002
  end-page: 684
  article-title: Allene oxide synthase: a major control point in octadecanoid signalling
  publication-title: Plant Journal
– volume: 24
  start-page: 2579
  year: 2005
  end-page: 2589
  article-title: The MAP kinase substrate MKS1 is a regulator of plant defense responses
  publication-title: EMBO Journal
– volume: 62
  start-page: 2745
  year: 2011
  end-page: 2761
  article-title: Expression pattern, genomic structure, and promoter analysis of the gene encoding stilbene synthase from Chinese wild
  publication-title: Journal of Experimental Botany
– volume: 10
  start-page: 227
  year: 2009
  end-page: 233
  article-title: plantsUPS: a database of plants' Ubiquitin Proteasome System
  publication-title: BMC Genomics
– volume: 78
  start-page: 399
  year: 2009
  end-page: 434
  article-title: RING domain E3 ubiquitin ligases
  publication-title: Annual Review of Biochemistry
– volume: 25
  start-page: 402
  year: 2001
  end-page: 408
  article-title: Analysis of relative gene expression data using real‐time quantitative PCR and the 2 method
  publication-title: Methods
– volume: 332
  start-page: 1439
  year: 2011
  end-page: 1442
  article-title: Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity
  publication-title: Science
– volume: 1
  start-page: 23
  year: 2012
  end-page: 34
  article-title: The Arabidopsis RING‐type E3 ligase XBAT32 mediates the proteasomal degradation of ethylene biosynthetic enzyme, 1‐aminocyclopropane‐1‐carboxylate synthase 7
  publication-title: Plant Journal
– volume: 124
  start-page: 803
  year: 2006
  end-page: 814
  article-title: Host–microbe interactions: shaping the evolution of the plant immune response
  publication-title: Cell
– volume: 60
  start-page: 1123
  year: 2009
  end-page: 1132
  article-title: E3 ubiquitin ligases and plant innate immunity
  publication-title: Journal of Experimental Botany
– volume: 20
  start-page: 1437
  year: 2008
  end-page: 1455
  article-title: Arabidopsis DDB1‐CUL4 ASSOCIATED FACTOR1 forms a nuclear E3 ubiquitin ligase with DDB1 and CUL4 that is involved in multiple plant developmental processes
  publication-title: Plant Cell
– volume: 19
  start-page: 3791
  year: 2007
  end-page: 3804
  article-title: Structural and functional analysis of SGT1 reveals that its interaction with HSP90 is required for the accumulation of Rx, an R protein involved in plant immunity
  publication-title: Plant Cell
– volume: 135
  start-page: 530
  year: 2004
  end-page: 538
  article-title: The role of the jasmonate response in plant susceptibility to diverse pathogens with a range of lifestyles
  publication-title: Plant Physiology
– volume: 72
  start-page: 248
  year: 1976
  end-page: 254
  article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding
  publication-title: Analytical Biochemistry
– volume: 20
  start-page: 966
  year: 2007
  end-page: 976
  article-title: Expression of the membrane‐associated resistance protein RPW8 enhances basal defense against biotrophic pathogens
  publication-title: Molecular Plant‐Microbe Interactions
– volume: 92
  start-page: 8675
  year: 1995
  end-page: 8679
  article-title: A chloroplast lipoxygenase is required for wound‐induced jasmonic acid accumulation in
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 236
  start-page: 525
  year: 2012
  end-page: 539
  article-title: Ectopic expression of VpALDH2B4, a novel gene from Chinese wild grapevine ( ), enhances resistance to mildew pathogens and salt stress in
  publication-title: Planta
– volume: 10
  start-page: 268
  year: 2010
  end-page: 291
  article-title: Phylogeography and population structure of the grape powdery mildew fungus, , from diverse species
  publication-title: BMC Evolutionary Biology
– volume: 19
  start-page: 2064
  year: 2007
  end-page: 2076
  article-title: Rice WRKY45 plays a crucial role in benzothiadiazole‐inducible blast resistance
  publication-title: Plant Cell
– volume: 146
  start-page: 1421
  year: 2008
  end-page: 1439
  article-title: Genome‐wide expression profiling at the stage of haustorium formation
  publication-title: Plant Physiology
– volume: 18
  start-page: 3289
  year: 2006
  end-page: 3302
  article-title: The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in
  publication-title: Plant Cell
– volume: 18
  start-page: 1084
  year: 2006
  end-page: 1098
  article-title: The E3 ubiquitin ligase activity of PLANT U‐BOX17 and its functional tobacco homolog ACRE276 are required for cell death and defense
  publication-title: Plant Cell
– volume: 7
  start-page: 48
  year: 2012
  end-page: 56
  article-title: Insights into the role of jasmonic acid‐mediated defenses against necrotrophic and biotrophic fungal pathogens
  publication-title: Frontiers in Biology
– volume: 19
  start-page: 4035
  year: 2007
  end-page: 4045
  article-title: RAR1 and HSP90 form a complex with Rac/Rop GTPase and function in innate‐immune responses in rice
  publication-title: Plant Cell
– volume: 38
  start-page: 417
  year: 2011
  end-page: 427
  article-title: Ectopic expression of a grapevine transcription factor VvWRKY11 contributes to osmotic stress tolerance in
  publication-title: Molecular Biology Reports
– volume: 22
  start-page: 543
  year: 2000
  end-page: 551
  article-title: analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves
  publication-title: Plant Journal
– volume: 20
  start-page: 72
  year: 2007
  end-page: 81
  article-title: The LeATL6‐associated ubiquitin/proteasome system may contribute to fungal elicitor‐activated defense response via the jasmonic acid‐dependent signaling pathway in tomato
  publication-title: Molecular Plant‐Microbe Interactions
– volume: 31
  start-page: 2109
  year: 2012
  end-page: 2120
  article-title: VpWRKY3, a biotic and abiotic stress‐related transcription factor from the Chinese wild
  publication-title: Plant Cell Reports
– volume: 231
  start-page: 475
  year: 2010
  end-page: 487
  article-title: Characterization of a novel stilbene synthase promoter involved in pathogen‐and stress‐inducible expression from Chinese wild
  publication-title: Planta
– volume: 95
  start-page: 202
  year: 2011
  end-page: 211
  article-title: Variation within and among spp. for foliar resistance to the powdery mildew pathogen
  publication-title: Plant Disease
– volume: 48
  start-page: 355
  year: 1997
  end-page: 381
  article-title: Biosynthesis and action of jasmonates in plants
  publication-title: Annual Review of Plant Biology
– volume: 55
  start-page: 555
  year: 2004
  end-page: 590
  article-title: The ubiquitin 26S proteasome proteolytic pathway
  publication-title: Annual Review of Plant Biology
– volume: 34
  start-page: 159
  year: 1995
  end-page: 164
  article-title: Evaluation of foliar resistance to Uncinula necator in Chinese wild species
  publication-title: Vitis
– volume: 23
  start-page: 3824
  year: 2011
  end-page: 3841
  article-title: Arabidopsis sigma factor binding proteins are activators of the WRKY33 transcription factor in plant defense
  publication-title: Plant Cell
– volume: 11
  start-page: 389
  year: 2008
  end-page: 395
  article-title: News from the frontline: recent insights into PAMP‐triggered immunity in plants
  publication-title: Current Opinion in Plant Biology
– volume: 232
  start-page: 1325
  year: 2010
  end-page: 1337
  article-title: Expression and functional analysis of two genes encoding transcription factors, VpWRKY1 and VpWRKY2, isolated from Chinese wild
  publication-title: Planta
– volume: 60
  start-page: 522
  year: 2011
  end-page: 531
  article-title: A mechanistic model simulating ascosporic infections by , the powdery mildew fungus of grapevine
  publication-title: Plant Pathology
– volume: 18
  start-page: 141
  year: 1999
  end-page: 149
  article-title: A pathogen‐ and salicylic acid‐induced WRKY DNA‐binding activity recognizes the elicitor response element of the tobacco class I chitinase gene promoter
  publication-title: Plant Journal
– volume: 295
  start-page: 2077
  year: 2002
  end-page: 2080
  article-title: Regulatory role of SGT1 in early R gene‐mediated plant defenses
  publication-title: Science
– volume: 137
  start-page: 13
  year: 2005
  end-page: 30
  article-title: Functional analysis of the RING‐type ubiquitin ligase family of
  publication-title: Plant Physiology
– volume: 295
  start-page: 2073
  year: 2002
  end-page: 2076
  article-title: The RAR1 interactor SGT1, an essential component of R gene‐triggered disease resistance
  publication-title: Science
– volume: 150
  start-page: 1648
  year: 2009
  end-page: 1655
  article-title: The role of WRKY transcription factors in plant immunity
  publication-title: Plant Physiology
– volume: 8
  start-page: e54185
  year: 2013
  article-title: Over‐expression of VvWRKY1 in grapevines induces expression of jasmonic acid pathway‐related genes and confers higher tolerance to the downy mildew
  publication-title: PLoS ONE
– volume: 58
  start-page: 1999
  year: 2007
  end-page: 2010
  article-title: Isolation and characterization of a transcription factor, VvWRKY1, and its effect on responses to fungal pathogens in transgenic tobacco plants
  publication-title: Journal of Experimental Botany
– volume: 5
  start-page: 387
  year: 1987
  end-page: 405
  article-title: Assaying chimeric genes in plants: the GUS gene fusion system
  publication-title: Plant Molecular Biology Reporter
– volume: 62
  start-page: 5671
  year: 2011
  end-page: 5682
  article-title: VpRFP1, a novel C4C4‐type RING finger protein gene from Chinese wild , functions as a transcriptional activator in defence response of grapevine
  publication-title: Journal of Experimental Botany
– volume: 107
  start-page: 9909
  year: 2010
  end-page: 9914
  article-title: Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 23
  start-page: 1153
  year: 2011
  end-page: 1170
  article-title: Phosphorylation of the WRKY8 transcription factor by MAPK functions in the defense response
  publication-title: Plant Cell
– volume: 27
  start-page: 2214
  year: 2008
  end-page: 2221
  article-title: Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus
  publication-title: EMBO Journal
– volume: 15
  start-page: 760
  year: 2003
  end-page: 770
  article-title: NPR1 modulates cross‐talk between salicylate‐and jasmonate‐dependent defense pathways through a novel function in the cytosol
  publication-title: Plant Cell
– volume: 13
  start-page: 402
  year: 2010
  end-page: 408
  article-title: Ubiquitination in plant immunity
  publication-title: Current Opinion in Plant Biology
– ident: e_1_2_6_29_1
  doi: 10.1105/tpc.111.090571
– ident: e_1_2_6_38_1
  doi: 10.1093/jxb/erm062
– ident: e_1_2_6_68_1
  doi: 10.1007/s00299-012-1321-1
– ident: e_1_2_6_62_1
  doi: 10.1093/jxb/erq447
– ident: e_1_2_6_6_1
  doi: 10.1126/science.1067554
– ident: e_1_2_6_16_1
  doi: 10.1038/nature05999
– ident: e_1_2_6_31_1
  doi: 10.1007/s00425-010-1258-y
– ident: e_1_2_6_67_1
  doi: 10.1105/tpc.108.058891
– ident: e_1_2_6_4_1
  doi: 10.1016/j.pbi.2011.06.004
– ident: e_1_2_6_44_1
  doi: 10.1016/j.pbi.2008.06.001
– ident: e_1_2_6_17_1
  doi: 10.1016/j.cell.2006.02.008
– ident: e_1_2_6_35_1
  doi: 10.1126/science.1204903
– ident: e_1_2_6_54_1
  doi: 10.1038/nrm2688
– ident: e_1_2_6_50_1
  doi: 10.1046/j.1365-313X.2002.01299.x
– ident: e_1_2_6_33_1
  doi: 10.1007/s11033-010-0124-0
– ident: e_1_2_6_57_1
  doi: 10.1002/elps.200500722
– ident: e_1_2_6_49_1
  doi: 10.1104/pp.104.052423
– ident: e_1_2_6_26_1
  doi: 10.1007/BF02667740
– ident: e_1_2_6_14_1
  doi: 10.1111/j.1365-3059.2010.02395.x
– ident: e_1_2_6_47_1
  doi: 10.1146/annurev.arplant.55.031903.141801
– ident: e_1_2_6_37_1
  doi: 10.1371/journal.pone.0054185
– ident: e_1_2_6_51_1
  doi: 10.1104/pp.104.041566
– volume: 34
  start-page: 159
  year: 1995
  ident: e_1_2_6_58_1
  article-title: Evaluation of foliar resistance to Uncinula necator in Chinese wild Vitis species
  publication-title: Vitis
  contributor:
    fullname: Wang Y
– ident: e_1_2_6_36_1
  doi: 10.1111/j.1365-313X.2012.04965.x
– ident: e_1_2_6_11_1
  doi: 10.1016/0003-2697(76)90527-3
– ident: e_1_2_6_45_1
  doi: 10.1105/tpc.106.046250
– ident: e_1_2_6_43_1
  doi: 10.1038/nrm2468
– ident: e_1_2_6_63_1
  doi: 10.1105/tpc.105.039198
– ident: e_1_2_6_42_1
  doi: 10.1038/emboj.2008.147
– ident: e_1_2_6_55_1
  doi: 10.1094/MPMI-20-8-0966
– ident: e_1_2_6_8_1
  doi: 10.1093/jxb/erp305
– ident: e_1_2_6_56_1
  doi: 10.1002/elps.200305500
– ident: e_1_2_6_39_1
  doi: 10.1038/ni1459
– ident: e_1_2_6_40_1
  doi: 10.1111/j.1399-3054.2007.00975.x
– ident: e_1_2_6_34_1
  doi: 10.1006/meth.2001.1262
– ident: e_1_2_6_59_1
  doi: 10.1105/tpc.106.046730
– ident: e_1_2_6_18_1
  doi: 10.1046/j.1365-313x.1998.00343.x
– ident: e_1_2_6_41_1
  doi: 10.1104/pp.109.138990
– ident: e_1_2_6_25_1
  doi: 10.1105/tpc.110.081794
– ident: e_1_2_6_30_1
  doi: 10.1046/j.1365-313x.1998.00245.x
– ident: e_1_2_6_48_1
  doi: 10.1105/tpc.009159
– ident: e_1_2_6_9_1
  doi: 10.1073/pnas.0914408107
– ident: e_1_2_6_22_1
  doi: 10.1186/1471-2164-10-227
– ident: e_1_2_6_7_1
  doi: 10.1073/pnas.92.19.8675
– ident: e_1_2_6_60_1
  doi: 10.1007/s00425-012-1624-z
– ident: e_1_2_6_46_1
  doi: 10.1111/j.1364-3703.2011.00732.x
– ident: e_1_2_6_10_1
  doi: 10.1105/tpc.107.050427
– ident: e_1_2_6_5_1
  doi: 10.1126/science.1067747
– ident: e_1_2_6_52_1
  doi: 10.1105/tpc.107.055517
– ident: e_1_2_6_20_1
  doi: 10.1146/annurev.arplant.48.1.355
– ident: e_1_2_6_28_1
  doi: 10.1105/tpc.106.044149
– ident: e_1_2_6_3_1
  doi: 10.1007/s11515-011-1171-1
– ident: e_1_2_6_53_1
  doi: 10.1016/j.pbi.2010.04.002
– ident: e_1_2_6_66_1
  doi: 10.1093/jxb/err253
– ident: e_1_2_6_24_1
  doi: 10.1094/MPMI-20-0072
– ident: e_1_2_6_15_1
  doi: 10.1016/j.pbi.2012.03.014
– ident: e_1_2_6_65_1
  doi: 10.1046/j.1365-313X.1999.00437.x
– ident: e_1_2_6_64_1
  doi: 10.1046/j.1365-313x.2000.00760.x
– ident: e_1_2_6_12_1
  doi: 10.1186/1471-2148-10-268
– ident: e_1_2_6_23_1
  doi: 10.1104/pp.107.111286
– ident: e_1_2_6_61_1
  doi: 10.1007/s00425-009-1062-8
– ident: e_1_2_6_27_1
  doi: 10.1038/nature05286
– ident: e_1_2_6_19_1
  doi: 10.1093/jxb/erp059
– ident: e_1_2_6_2_1
  doi: 10.1038/sj.emboj.7600737
– ident: e_1_2_6_13_1
  doi: 10.1094/PDIS-02-10-0092
– ident: e_1_2_6_32_1
  doi: 10.1094/MPMI-20-4-0420
– ident: e_1_2_6_21_1
  doi: 10.1146/annurev.biochem.78.101807.093809
SSID ssj0009562
Score 2.4935498
Snippet Ubiquitin-mediated regulation responds rapidly to specific stimuli; this rapidity is particularly important for defense responses to pathogen attack. Here, we...
Summary Ubiquitin‐mediated regulation responds rapidly to specific stimuli; this rapidity is particularly important for defense responses to pathogen attack....
Summary Ubiquitin-mediated regulation responds rapidly to specific stimuli; this rapidity is particularly important for defense responses to pathogen attack....
Ubiquitin‐mediated regulation responds rapidly to specific stimuli; this rapidity is particularly important for defense responses to pathogen attack. Here, we...
SourceID proquest
crossref
pubmed
wiley
jstor
SourceType Aggregation Database
Index Database
Publisher
StartPage 834
SubjectTerms Airborne microorganisms
Amino Acid Sequence
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis - microbiology
Defense mechanisms
defense response
Degradation
Disease resistance
Disease Resistance - genetics
Domains
E3 ubiquitin ligase
Erysiphe necator
Gene Expression Regulation, Plant
Gene regulation
Genes
Genes, Plant
grapevine
Leaves
Molecular Sequence Data
Pathogens
Plant cells
Plant diseases
Plant Diseases - genetics
Plant Diseases - microbiology
Plant immunity
Plant Proteins - genetics
Plant Proteins - metabolism
Plants
Powdery mildew
Proteasome 26S
Proteins
Proteolysis
Pseudomonas syringae
RING Finger Domains
Tomatoes
Transcription
transcription factor
Transcription factors
Transcription Factors - metabolism
Transcription, Genetic
Transgenic plants
Ubiquitin
Ubiquitin-protein ligase
Ubiquitin-Protein Ligases - metabolism
Ubiquitins
Vitis - genetics
Vitis - metabolism
Vitis - microbiology
Vitis pseudoreticulata
Yeasts
Title The Chinese wild grapevine (Vitis pseudoreticulata) E3 ubiquitin ligase Erysiphe necator-induced RING finger protein 1 (EIRP1) activates plant defense responses by inducing proteolysis of the VpWRKY11 transcription factor
URI https://www.jstor.org/stable/newphytologist.200.3.834
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.12418
https://www.ncbi.nlm.nih.gov/pubmed/23905547
https://www.proquest.com/docview/1441672309/abstract/
https://www.proquest.com/docview/2513388509/abstract/
https://search.proquest.com/docview/1461336947
Volume 200
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEF5K8cEXtf48rWUUketDjmST21zwSeXK1WIph60nCGF_6mFJ0ruLUJ_8E_wPBf8SZzaX0EoF8e24yQ4b8s3ON8nuN4w9k5InOlQmSIUwWKAIGcjMKgw8l4aSZ6nxvQHfHorJcfJmNpxtsBftWZhGH6J74UaR4ddrCnCplheCvKg-DzA5RXTQl4T0iBBN-QXBXcFbBWaRiNlaVYh28XQjL-WiZjviVUTzMm_1iWfvJvvYTrnZb_JlUK_UQH_7Q83xP-_pFruxJqTwskHQFtuwxW127VWJpPH8DvuJMALqsW2XFtCnAVK4xmRaWOifkB4SVEtbm-YwJLUCk7swjqFW87MazQWczj9hooTxAvFQobPCaqrzf33_MS8M4soA7ccA518vgpeNwFER9Mf706NoF-jgxVcixFCdIgrAWIeVt4VFs7kX_1fn4F2hh2Z86WVWoHSA7BZOqvfTgw9RBCtKy-0iCU2jobvseG_87vUkWPeECHSCxVWgHHdIOWziIqEzQ80vSTKeI7MJUx2HMsN0G2ZGaGeQWgnHdaJCnWRxorTDgvwe2yzKwj5gON9QG4MUJYwcpnKtMsQnydnHXOLQYY89bdGRV430R96WTPigcv-geuy5x013BRZDGB--9zDGKXX5zON8FCc9tt0CK18vE8ucqlmRYhWYXWnm1HxnNBqS-UlnxvinjzqysGVNLpCQxSJL0h673-C1mwuPsxDpIlr6HnV_v4388Gjifzz890sfseuceoP4g5nbbHO1qO1jZGgrtYOhuH-w4wPyN028Oxs
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB5qFfTF-2W16lFEtg9Zkkl2sgFfVLZsbbuUpa3bBwmZmy6WJO5uhPrkT_AfCv4Sz5lsQisVxLeQyRwm5DtzvjOZ-Q5jL7KMR8qX2ouF0JigiMzLEiPR8WzsZzyJtasNuDcWo8Po3bQ_XWOvmrMwtT5Eu-BGnuHma3JwWpA-4-V5-amH0SkYXGKX0d37LqGa8DOSu4I3GswiEtOVrhDt42m7notG9YbEi6jmeebqQs_WDfahGXS94-Rzr1rKnvr2h57j_77VTXZ9xUnhdQ2iW2zN5LfZlTcF8sbTO-wnIgmozLZZGECjGkjkGuNpbqB7RJJIUC5MpevzkFQNLNuEYQiVnH2psDmHk9lHjJUwnCMkSjSWG0Wp_q_vP2a5RmhpoC0ZYN0KIzjlCOwVQHe4PdkPNoHOXnwlTgzlCQIBtLGYfBuY1_t78b48BWcKLdT9C6e0AoUFJLhwVL6f7BwHASwpMjfzJNS1hu6yw63hwduRtyoL4akI8ytPWm6RdZjIBkIlmupfkmo8R3Ljxyr0swQjrp9ooaxGdiUsV5H0VZSEkVQWc_J7bD0vcvOA4Xh9pTWyFD-wGM2VTBCipGgf8gy79jvseQOPtKzVP9Ima8IPlboP1WEvHXDaJzAfQhdx5YfRVanQZxqmgzDqsI0GWelqpliklNCKGBPB5MJmTvV3BoM-NT9rm3EKoP86WW6KikwgJwtFEsUddr8GbDsWHiY-MkZs6TrY_f010vH-yF08_PdHn7Kro4O93XR3e7zziF3jVCrEndPcYOvLeWUeI2FbyifOL38DeSU-RA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ti9NAEF7OU-S--O5ZPXUUkd6HlmSz3TT4Sb2WnqelFO-sIIRkX7R4JLFthPOTP8F_KPhLnNk04U5OEL-VbnbYkGd2nklmn2HsSZJwobxUd0IpNSYoMukkkUnR8WzoJTwKtesN-GYsR4fi1aw322DP6rMwlT5E88KNPMPt1-TghbannDwrPnUxOPn9C-yikAEnSO9N-SnFXclrCWYp5GwtK0RlPM3UM8Goqkc8j2meJa4u8gyvsg_1mquCk8_dcpV21bc_5Bz_86ausStrRgrPKwhdZxsmu8EuvciRNZ7cZD8RR0BNts3SANrUQBLXGE0zA-0jEkSCYmlKXZ2GpF5gyS4MAijT-ZcShzM4nn_ESAmDBQKiQGOZUZTo__r-Y55pBJYGKsgA694vgtONwFk-tAf704m_C3Ty4isxYiiOEQagjcXU28Ciqu7F_9MTcKbQQjU_dzorkFtAegtHxbvpwXvfhxXF5XqXhKrT0C12OBy8fTnqrJtCdJTA7KqTWm6RcxhhfakiTd0vSTOeI7XxQhV4SYTx1ou0VFYjt5KWK5F6SkSBSJXFjPw228zyzNxhuF5PaY0cxfMtxnKVRghQ0rMPeIJTey32uEZHXFTaH3GdM-GDit2DarGnDjfNFZgNoYO45sPoqNTmMw7ifiBabKcGVrzeJ5YxpbMyxDQwOneYU_edfr9Hw4-aYdwA6KtOkpm8JBPIyAIZibDFtiu8NmvhQeQhX8SRtkPd328jHk9G7sfdf7_0Ibs82RvGr_fHB_fYFqc-Ie6Q5g7bXC1Kcx_Z2ip94LzyN5hjPPM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Chinese+wild+grapevine+%28Vitis+pseudoreticulata%29+E3+ubiquitin+ligase+Erysiphe+necator%E2%80%90induced+RING+finger+protein+1+%28EIRP1%29+activates+plant+defense+responses+by+inducing+proteolysis+of+the+VpWRKY11+transcription+factor&rft.jtitle=The+New+phytologist&rft.au=Yu%2C+Yihe&rft.au=Xu%2C+Weirong&rft.au=Wang%2C+Jie&rft.au=Wang%2C+Lei&rft.date=2013-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1469-8137&rft.volume=200&rft.issue=3&rft.spage=834&rft.epage=846&rft_id=info:doi/10.1111%2Fnph.12418&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon