SIRPα maintains macrophage homeostasis by interacting with PTK2B kinase in Mycobacterium tuberculosis infection and through autophagy and necroptosis

To determine whether SIRPα can be a diagnostic marker of pulmonary tuberculosis (PTB) and the molecular mechanism of SIRPα regulating macrophages to kill Mycobacterium tuberculosis (MTB). Meta-analysis combined with subsequent qRT-PCR, western-blotting and flow cytometry assay were used to detect SI...

Full description

Saved in:
Bibliographic Details
Published inEBioMedicine Vol. 85; p. 104278
Main Authors Wang, Di, Lin, Yunkai, Xu, Feihong, Zhang, Hui, Zhu, Xiaoyan, Liu, Zhen, Hu, Yuan, Dong, Guanjun, Sun, Bingqi, Yu, Yanhong, Ma, Guoren, Tang, Zhigang, Legarda, Diana, Ting, Adrian, Liu, Yuan, Hou, Jia, Dong, Liwei, Xiong, Huabao
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To determine whether SIRPα can be a diagnostic marker of pulmonary tuberculosis (PTB) and the molecular mechanism of SIRPα regulating macrophages to kill Mycobacterium tuberculosis (MTB). Meta-analysis combined with subsequent qRT-PCR, western-blotting and flow cytometry assay were used to detect SIRPα expression in PTB patients. Cell-based assays were used to explore the regulation of macrophage function by SIRPα. SIRPα−/- and wide type macrophages transplanted C57BL/6J mice were used to determine the function of SIRPα on MTB infection in vivo. SIRPα levels are closely correlated with the treatment outcomes among PTB patients. Cell-based assay demonstrated that MTB significantly induces the expression of SIRPα on macrophages. SIRPα deficiency enhances the killing ability of macrophages against MTB through processes that involve enhanced autophagy and reduced necroptosis of macrophages. Mechanistically, SIRPα forms a direct interaction with PTK2B through its intracellular C-terminal domain, thus inhibiting PTK2B activation in macrophages. Necroptosis inhibition due to SIRPα deficiency requires PTK2B activity. The transfer of SIRPα-deficient bone marrow-derived macrophages (BMDMs) into wild type mice resulted in a drop of bacterial load in the lungs but an enhancement of inflammatory lung damage, and the combination of ulinastatin and SIRPα−/−→WT treatment could decrease the inflammation and maintain the bactericidal capacity. Our data define SIRPα a novel biomarker for tuberculosis infection and underlying mechanisms for maintaining macrophage homeostasis. This work was financially supported by the Chinese National Natural Science Foundation project (No.81401635). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
AbstractList To determine whether SIRPα can be a diagnostic marker of pulmonary tuberculosis (PTB) and the molecular mechanism of SIRPα regulating macrophages to kill Mycobacterium tuberculosis (MTB). Meta-analysis combined with subsequent qRT-PCR, western-blotting and flow cytometry assay were used to detect SIRPα expression in PTB patients. Cell-based assays were used to explore the regulation of macrophage function by SIRPα. SIRPα−/- and wide type macrophages transplanted C57BL/6J mice were used to determine the function of SIRPα on MTB infection in vivo. SIRPα levels are closely correlated with the treatment outcomes among PTB patients. Cell-based assay demonstrated that MTB significantly induces the expression of SIRPα on macrophages. SIRPα deficiency enhances the killing ability of macrophages against MTB through processes that involve enhanced autophagy and reduced necroptosis of macrophages. Mechanistically, SIRPα forms a direct interaction with PTK2B through its intracellular C-terminal domain, thus inhibiting PTK2B activation in macrophages. Necroptosis inhibition due to SIRPα deficiency requires PTK2B activity. The transfer of SIRPα-deficient bone marrow-derived macrophages (BMDMs) into wild type mice resulted in a drop of bacterial load in the lungs but an enhancement of inflammatory lung damage, and the combination of ulinastatin and SIRPα−/−→WT treatment could decrease the inflammation and maintain the bactericidal capacity. Our data define SIRPα a novel biomarker for tuberculosis infection and underlying mechanisms for maintaining macrophage homeostasis. This work was financially supported by the Chinese National Natural Science Foundation project (No.81401635). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
SummaryBackgroundTo determine whether SIRPα can be a diagnostic marker of pulmonary tuberculosis (PTB) and the molecular mechanism of SIRPα regulating macrophages to kill Mycobacterium tuberculosis (MTB). MethodsMeta-analysis combined with subsequent qRT-PCR, western-blotting and flow cytometry assay were used to detect SIRPα expression in PTB patients. Cell-based assays were used to explore the regulation of macrophage function by SIRPα. SIRPα −/- and wide type macrophages transplanted C57BL/6J mice were used to determine the function of SIRPα on MTB infection in vivo. FindingsSIRPα levels are closely correlated with the treatment outcomes among PTB patients. Cell-based assay demonstrated that MTB significantly induces the expression of SIRPα on macrophages. SIRPα deficiency enhances the killing ability of macrophages against MTB through processes that involve enhanced autophagy and reduced necroptosis of macrophages. Mechanistically, SIRPα forms a direct interaction with PTK2B through its intracellular C-terminal domain, thus inhibiting PTK2B activation in macrophages. Necroptosis inhibition due to SIRPα deficiency requires PTK2B activity. The transfer of SIRPα-deficient bone marrow-derived macrophages (BMDMs) into wild type mice resulted in a drop of bacterial load in the lungs but an enhancement of inflammatory lung damage, and the combination of ulinastatin and SIRPα −/−→WT treatment could decrease the inflammation and maintain the bactericidal capacity. InterpretationOur data define SIRPα a novel biomarker for tuberculosis infection and underlying mechanisms for maintaining macrophage homeostasis. FundingThis work was financially supported by the Chinese National Natural Science Foundation project (No.81401635). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
To determine whether SIRPα can be a diagnostic marker of pulmonary tuberculosis (PTB) and the molecular mechanism of SIRPα regulating macrophages to kill Mycobacterium tuberculosis (MTB).BACKGROUNDTo determine whether SIRPα can be a diagnostic marker of pulmonary tuberculosis (PTB) and the molecular mechanism of SIRPα regulating macrophages to kill Mycobacterium tuberculosis (MTB).Meta-analysis combined with subsequent qRT-PCR, western-blotting and flow cytometry assay were used to detect SIRPα expression in PTB patients. Cell-based assays were used to explore the regulation of macrophage function by SIRPα. SIRPα-/- and wide type macrophages transplanted C57BL/6J mice were used to determine the function of SIRPα on MTB infection in vivo.METHODSMeta-analysis combined with subsequent qRT-PCR, western-blotting and flow cytometry assay were used to detect SIRPα expression in PTB patients. Cell-based assays were used to explore the regulation of macrophage function by SIRPα. SIRPα-/- and wide type macrophages transplanted C57BL/6J mice were used to determine the function of SIRPα on MTB infection in vivo.SIRPα levels are closely correlated with the treatment outcomes among PTB patients. Cell-based assay demonstrated that MTB significantly induces the expression of SIRPα on macrophages. SIRPα deficiency enhances the killing ability of macrophages against MTB through processes that involve enhanced autophagy and reduced necroptosis of macrophages. Mechanistically, SIRPα forms a direct interaction with PTK2B through its intracellular C-terminal domain, thus inhibiting PTK2B activation in macrophages. Necroptosis inhibition due to SIRPα deficiency requires PTK2B activity. The transfer of SIRPα-deficient bone marrow-derived macrophages (BMDMs) into wild type mice resulted in a drop of bacterial load in the lungs but an enhancement of inflammatory lung damage, and the combination of ulinastatin and SIRPα-/-→WT treatment could decrease the inflammation and maintain the bactericidal capacity.FINDINGSSIRPα levels are closely correlated with the treatment outcomes among PTB patients. Cell-based assay demonstrated that MTB significantly induces the expression of SIRPα on macrophages. SIRPα deficiency enhances the killing ability of macrophages against MTB through processes that involve enhanced autophagy and reduced necroptosis of macrophages. Mechanistically, SIRPα forms a direct interaction with PTK2B through its intracellular C-terminal domain, thus inhibiting PTK2B activation in macrophages. Necroptosis inhibition due to SIRPα deficiency requires PTK2B activity. The transfer of SIRPα-deficient bone marrow-derived macrophages (BMDMs) into wild type mice resulted in a drop of bacterial load in the lungs but an enhancement of inflammatory lung damage, and the combination of ulinastatin and SIRPα-/-→WT treatment could decrease the inflammation and maintain the bactericidal capacity.Our data define SIRPα a novel biomarker for tuberculosis infection and underlying mechanisms for maintaining macrophage homeostasis.INTERPRETATIONOur data define SIRPα a novel biomarker for tuberculosis infection and underlying mechanisms for maintaining macrophage homeostasis.This work was financially supported by the Chinese National Natural Science Foundation project (No.81401635). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.FUNDINGThis work was financially supported by the Chinese National Natural Science Foundation project (No.81401635). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Background: To determine whether SIRPα can be a diagnostic marker of pulmonary tuberculosis (PTB) and the molecular mechanism of SIRPα regulating macrophages to kill Mycobacterium tuberculosis (MTB). Methods: Meta-analysis combined with subsequent qRT-PCR, western-blotting and flow cytometry assay were used to detect SIRPα expression in PTB patients. Cell-based assays were used to explore the regulation of macrophage function by SIRPα. SIRPα−/- and wide type macrophages transplanted C57BL/6J mice were used to determine the function of SIRPα on MTB infection in vivo. Findings: SIRPα levels are closely correlated with the treatment outcomes among PTB patients. Cell-based assay demonstrated that MTB significantly induces the expression of SIRPα on macrophages. SIRPα deficiency enhances the killing ability of macrophages against MTB through processes that involve enhanced autophagy and reduced necroptosis of macrophages. Mechanistically, SIRPα forms a direct interaction with PTK2B through its intracellular C-terminal domain, thus inhibiting PTK2B activation in macrophages. Necroptosis inhibition due to SIRPα deficiency requires PTK2B activity. The transfer of SIRPα-deficient bone marrow-derived macrophages (BMDMs) into wild type mice resulted in a drop of bacterial load in the lungs but an enhancement of inflammatory lung damage, and the combination of ulinastatin and SIRPα−/−→WT treatment could decrease the inflammation and maintain the bactericidal capacity. Interpretation: Our data define SIRPα a novel biomarker for tuberculosis infection and underlying mechanisms for maintaining macrophage homeostasis. Funding: This work was financially supported by the Chinese National Natural Science Foundation project (No.81401635). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
ArticleNumber 104278
Author Dong, Liwei
Zhang, Hui
Ting, Adrian
Xu, Feihong
Dong, Guanjun
Wang, Di
Liu, Zhen
Hou, Jia
Lin, Yunkai
Sun, Bingqi
Ma, Guoren
Liu, Yuan
Legarda, Diana
Xiong, Huabao
Hu, Yuan
Tang, Zhigang
Yu, Yanhong
Zhu, Xiaoyan
Author_xml – sequence: 1
  givenname: Di
  surname: Wang
  fullname: Wang, Di
  organization: International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Second Military Medical University, Shanghai, National Center for Liver Cancer, Shanghai, China
– sequence: 2
  givenname: Yunkai
  surname: Lin
  fullname: Lin, Yunkai
  organization: International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Second Military Medical University, Shanghai, National Center for Liver Cancer, Shanghai, China
– sequence: 3
  givenname: Feihong
  surname: Xu
  fullname: Xu, Feihong
  organization: Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, America
– sequence: 4
  givenname: Hui
  surname: Zhang
  fullname: Zhang, Hui
  organization: Institute of Immunology and Molecular Medicine, Jining Medical University, Jining Shandong, China
– sequence: 5
  givenname: Xiaoyan
  surname: Zhu
  fullname: Zhu, Xiaoyan
  organization: The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
– sequence: 6
  givenname: Zhen
  surname: Liu
  fullname: Liu, Zhen
  organization: The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
– sequence: 7
  givenname: Yuan
  surname: Hu
  fullname: Hu, Yuan
  organization: Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, America
– sequence: 8
  givenname: Guanjun
  surname: Dong
  fullname: Dong, Guanjun
  organization: Institute of Immunology and Molecular Medicine, Jining Medical University, Jining Shandong, China
– sequence: 9
  givenname: Bingqi
  surname: Sun
  fullname: Sun, Bingqi
  organization: Department of Clinical Laboratory, Shenyang Thoracic Hospital, Shenyang Liaoning, China
– sequence: 10
  givenname: Yanhong
  surname: Yu
  fullname: Yu, Yanhong
  organization: Department of Clinical Laboratory, Shenyang Tenth People's Hospital, Shenyang Liaoning, China
– sequence: 11
  givenname: Guoren
  surname: Ma
  fullname: Ma, Guoren
  organization: Ningxia No. 4 People's Hospital, Yinchuan Ningxia, China
– sequence: 12
  givenname: Zhigang
  surname: Tang
  fullname: Tang, Zhigang
  organization: Hunan Chest Hospital, Changsha Hunan, China
– sequence: 13
  givenname: Diana
  surname: Legarda
  fullname: Legarda, Diana
  organization: Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, America
– sequence: 14
  givenname: Adrian
  surname: Ting
  fullname: Ting, Adrian
  organization: Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, America
– sequence: 15
  givenname: Yuan
  surname: Liu
  fullname: Liu, Yuan
  organization: Program of Immunology and Cell Biology, Department of Biology, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, America
– sequence: 16
  givenname: Jia
  surname: Hou
  fullname: Hou, Jia
  email: houj@live.com
  organization: Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan Ningxia, China
– sequence: 17
  givenname: Liwei
  surname: Dong
  fullname: Dong, Liwei
  email: donliwei@126.com
  organization: International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Second Military Medical University, Shanghai, National Center for Liver Cancer, Shanghai, China
– sequence: 18
  givenname: Huabao
  surname: Xiong
  fullname: Xiong, Huabao
  email: xionghbl@yahoo.com
  organization: Institute of Immunology and Molecular Medicine, Jining Medical University, Jining Shandong, China
BookMark eNqFUstuEzEUHaEiUUq_gI2XbBJsz1uISlDxiCiiomVt-XGTcTpjB9tTlB_hP_gRvok7SYVoJZTFaKzr87DuOU-zI-cdZNlzRueMsurleg7K-mHOKec4KXjdPMqOeV7yWd5WxdE_5yfZaYxrSikrCxw2x9nPq8XXy9-_yCCtS_hFPOngN51cAen8AD4mGW0kaksQAUHqZN2K_LCpI5fXn_hbcmOdjIC35PNWe4UACHYcSBoVBD32fqJbtwRkekekMyR1wY-rjsgx7ay2u6mDyTlN-GfZ46XsI5ze_U-yb-_fXZ9_nF18-bA4f3Mx00VZNLMGeEUbzXWroC6ZKmhNZSVpU4IxOQDQSknDmGxwL1XDDeNGqZwvmZaSl5CfZIu9rvFyLTbBDjJshZdW7AY-rIQMyeoeREOBtlzxHGpVyMq0iqGJyWWhDb5hiVpne63NqAYwGlwKsr8nev_G2U6s_K1oyxzjqFHgxZ1A8N9HiEkMNmroe-nAj1HwmuesrGjFEZrvobixGAMs_9owKqZWiLXYtUJMrRD7ViCrfcDSNskpFXyP7Q9wX--5gHHcWggiagtOg7EBk8V92QP8swd83VtntexvYAtx7cfgMGnBROSCiqups1NlOacYHWUo8Or_Agft_wBQmQS2
CitedBy_id crossref_primary_10_1111_cpr_13702
crossref_primary_10_61186_ijrr_22_2_481
crossref_primary_10_1016_j_ejphar_2025_177271
crossref_primary_10_3389_fimmu_2024_1394857
crossref_primary_10_1186_s12964_024_01804_6
crossref_primary_10_1016_j_lfs_2024_123311
crossref_primary_10_1016_j_carbpol_2024_122659
crossref_primary_10_1016_j_intimp_2023_110291
crossref_primary_10_1186_s10020_024_00886_9
crossref_primary_10_1093_labmed_lmae059
crossref_primary_10_1155_ancp_6648632
crossref_primary_10_61186_ijrr_21_4_699
crossref_primary_10_1016_j_micpath_2023_106132
crossref_primary_10_1007_s12088_024_01227_4
crossref_primary_10_1002_jcp_31073
crossref_primary_10_1016_j_bioorg_2024_107937
crossref_primary_10_1016_j_jbc_2023_105219
Cites_doi 10.1038/cr.2014.17
10.1016/j.celrep.2012.08.027
10.1128/IAI.00718-12
10.1080/15548627.2016.1241922
10.1038/ncomms7379
10.1111/imr.12273
10.1080/15548627.2016.1147670
10.1038/nature16451
10.1073/pnas.1722013115
10.3390/microarrays4030389
10.1016/S1473-3099(13)70034-3
10.4049/jimmunol.1200429
10.1074/jbc.M111.297952
10.1084/jem.20062611
10.1371/journal.pone.0006414
10.1084/jem.20181776
10.1016/j.bbamcr.2013.06.001
10.1038/nri.2016.147
10.1111/1348-0421.12839
10.1016/j.cell.2013.03.022
10.1016/j.chom.2015.06.008
10.1073/pnas.1521069113
10.1016/j.celrep.2016.05.032
10.1128/MCB.24.10.4361-4371.2004
10.1038/nm.4017
10.1146/annurev-immunol-032713-120142
10.1016/j.ebiom.2016.10.041
10.1158/0008-5472.CAN-10-3431
10.1111/imr.12254
10.1097/MCO.0b013e328347970b
10.1002/hep.26391
10.1038/s41418-017-0031-1
10.1164/rccm.201703-0446ED
10.3389/fcimb.2019.00065
10.3389/fmicb.2017.02284
10.1016/S1473-3099(09)70256-7
10.1038/nrmicro2387
10.1016/j.canlet.2016.05.003
10.1111/j.2517-6161.1995.tb02031.x
10.4049/jimmunol.1300466
10.1038/ni.3434
10.1371/journal.pone.0027362
10.1016/j.coi.2009.01.008
ContentType Journal Article
Copyright 2022 The Author(s)
The Author(s)
Copyright © 2022 The Author(s). Published by Elsevier B.V. All rights reserved.
2022 The Author(s) 2022
Copyright_xml – notice: 2022 The Author(s)
– notice: The Author(s)
– notice: Copyright © 2022 The Author(s). Published by Elsevier B.V. All rights reserved.
– notice: 2022 The Author(s) 2022
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.ebiom.2022.104278
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2352-3964
EndPage 104278
ExternalDocumentID oai_doaj_org_article_80e092b23e7b4a6d9b1eddd3a4cd08cf
PMC9535427
10_1016_j_ebiom_2022_104278
S2352396422004601
1_s2_0_S2352396422004601
GroupedDBID .1-
.FO
0R~
4.4
457
53G
5VS
AAEDT
AAEDW
AAIKJ
AALRI
AAMRU
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADRAZ
ADVLN
AEUPX
AEXQZ
AFPUW
AFRHN
AFTJW
AGHFR
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
KQ8
M41
M48
O9-
OK1
RIG
ROL
RPM
SSZ
Z5R
0SF
6I.
AACTN
AAFTH
AFCTW
NCXOZ
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c4548-8e2608c2c9be751b4070a6a085edd3eee06bad11a8104682d12dbb32f1caa25e3
IEDL.DBID M48
ISSN 2352-3964
IngestDate Wed Aug 27 01:09:52 EDT 2025
Thu Aug 21 18:39:51 EDT 2025
Fri Jul 11 07:00:48 EDT 2025
Thu Apr 24 22:56:25 EDT 2025
Tue Jul 01 00:39:04 EDT 2025
Tue Jul 25 20:57:05 EDT 2023
Tue Feb 25 20:10:11 EST 2025
Tue Aug 26 16:33:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Biomarker
Immune response
Necroptosis
Autophagy
Macrophage
Language English
License This is an open access article under the CC BY-NC-ND license.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4548-8e2608c2c9be751b4070a6a085edd3eee06bad11a8104682d12dbb32f1caa25e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
These three authors contribute equal to this work.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.ebiom.2022.104278
PQID 2723156062
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_80e092b23e7b4a6d9b1eddd3a4cd08cf
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9535427
proquest_miscellaneous_2723156062
crossref_primary_10_1016_j_ebiom_2022_104278
crossref_citationtrail_10_1016_j_ebiom_2022_104278
elsevier_sciencedirect_doi_10_1016_j_ebiom_2022_104278
elsevier_clinicalkeyesjournals_1_s2_0_S2352396422004601
elsevier_clinicalkey_doi_10_1016_j_ebiom_2022_104278
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 20221101
  day: 01
PublicationDecade 2020
PublicationTitle EBioMedicine
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Zhang, Zhang, Cui (bib0039) 2016; 22
Legarda, Justus, Ang (bib0019) 2016; 15
Baral, Utaisincharoen (bib0012) 2012; 80
Waters, Palmer, Nonnecke (bib0009) 2009; 4
Ouimet, Koster, Sakowski (bib0031) 2016; 17
Geng, Ng, Sun (bib0035) 2011; 6
Matty, Roca, Cronan, Tobin (bib0033) 2015; 264
Li, Chen, Liang (bib0038) 2014; 24
Kurenova, Xu, Yang (bib0040) 2004; 24
Barclay (bib0004) 2009; 21
Wallis, Kim, Cole (bib0007) 2013; 13
Hara, Senga, Biswas (bib0027) 2011; 71
Morris, Singer, Lumeng (bib0029) 2011; 14
Jorgensen, Rayamajhi, Miao (bib0042) 2017; 17
Pagan, Yang, Cameron (bib0032) 2015; 18
Peng, Zhang, Hao (bib0028) 2016; 14
Paroha, Chourasia, Rai (bib0015) 2020; 64
Amaral, Costa, Namasivayam (bib0016) 2019; 216
Li, Atif, Schmiel, Lee, McSorley (bib0013) 2012; 189
Okenwa, Kumar, Rego (bib0036) 2013; 191
Walsh, Hu, Batt, Santos (bib0025) 2015; 4
Pan, Tan, Wang (bib0026) 2013; 58
Cao, Lyu, Jia (bib0003) 2019; 9
Kimmey, Huynh, Weiss (bib0017) 2015; 528
Queval, Brosch, Simeone (bib0005) 2017; 8
Benjamini, Hochberg (bib0014) 1995; 57
Stutz, Ojaimi, Allison (bib0043) 2018; 25
Barclay, Van den Berg (bib0008) 2014; 32
Kim, Lee, Park (bib0030) 2017; 13
Bian, Shi, Guo (bib0010) 2016; 113
Behar, Divangahi, Remold (bib0041) 2010; 8
Roca, Ramakrishnan (bib0018) 2013; 153
Sarma, Yaseen (bib0021) 2011; 286
Meng, Liu, Li (bib0023) 2018; 115
Dey, Mustafi, Saha, Kumar Dhar Dwivedi, Mukherjee, Bhattacharya (bib0034) 2016; 12
Phillips, Davies, Mitchison (bib0002) 2010; 10
Schluger (bib0001) 2017; 195
Gupta, Shin, Ramakrishna (bib0020) 2015; 6
Kong, Yan, Chen (bib0024) 2007; 204
van Beek, Zarate, van Bruggen (bib0011) 2012; 2
Tan, Russell (bib0006) 2015; 264
Nikoletopoulou, Markaki, Palikaras, Tavernarakis (bib0022) 2013; 1833
Diao, Ma, Min (bib0037) 2016; 379
Paroha (10.1016/j.ebiom.2022.104278_bib0015) 2020; 64
Walsh (10.1016/j.ebiom.2022.104278_bib0025) 2015; 4
Legarda (10.1016/j.ebiom.2022.104278_bib0019) 2016; 15
Schluger (10.1016/j.ebiom.2022.104278_bib0001) 2017; 195
Barclay (10.1016/j.ebiom.2022.104278_bib0008) 2014; 32
Bian (10.1016/j.ebiom.2022.104278_bib0010) 2016; 113
Kimmey (10.1016/j.ebiom.2022.104278_bib0017) 2015; 528
Wallis (10.1016/j.ebiom.2022.104278_bib0007) 2013; 13
Geng (10.1016/j.ebiom.2022.104278_bib0035) 2011; 6
Benjamini (10.1016/j.ebiom.2022.104278_bib0014) 1995; 57
Hara (10.1016/j.ebiom.2022.104278_bib0027) 2011; 71
Stutz (10.1016/j.ebiom.2022.104278_bib0043) 2018; 25
Cao (10.1016/j.ebiom.2022.104278_bib0003) 2019; 9
Li (10.1016/j.ebiom.2022.104278_bib0013) 2012; 189
Kim (10.1016/j.ebiom.2022.104278_bib0030) 2017; 13
Barclay (10.1016/j.ebiom.2022.104278_bib0004) 2009; 21
Queval (10.1016/j.ebiom.2022.104278_bib0005) 2017; 8
van Beek (10.1016/j.ebiom.2022.104278_bib0011) 2012; 2
Roca (10.1016/j.ebiom.2022.104278_bib0018) 2013; 153
Matty (10.1016/j.ebiom.2022.104278_bib0033) 2015; 264
Kurenova (10.1016/j.ebiom.2022.104278_bib0040) 2004; 24
Peng (10.1016/j.ebiom.2022.104278_bib0028) 2016; 14
Baral (10.1016/j.ebiom.2022.104278_bib0012) 2012; 80
Tan (10.1016/j.ebiom.2022.104278_bib0006) 2015; 264
Kong (10.1016/j.ebiom.2022.104278_bib0024) 2007; 204
Gupta (10.1016/j.ebiom.2022.104278_bib0020) 2015; 6
Li (10.1016/j.ebiom.2022.104278_bib0038) 2014; 24
Pagan (10.1016/j.ebiom.2022.104278_bib0032) 2015; 18
Phillips (10.1016/j.ebiom.2022.104278_bib0002) 2010; 10
Morris (10.1016/j.ebiom.2022.104278_bib0029) 2011; 14
Ouimet (10.1016/j.ebiom.2022.104278_bib0031) 2016; 17
Jorgensen (10.1016/j.ebiom.2022.104278_bib0042) 2017; 17
Waters (10.1016/j.ebiom.2022.104278_bib0009) 2009; 4
Zhang (10.1016/j.ebiom.2022.104278_bib0039) 2016; 22
Dey (10.1016/j.ebiom.2022.104278_bib0034) 2016; 12
Amaral (10.1016/j.ebiom.2022.104278_bib0016) 2019; 216
Behar (10.1016/j.ebiom.2022.104278_bib0041) 2010; 8
Sarma (10.1016/j.ebiom.2022.104278_bib0021) 2011; 286
Meng (10.1016/j.ebiom.2022.104278_bib0023) 2018; 115
Okenwa (10.1016/j.ebiom.2022.104278_bib0036) 2013; 191
Nikoletopoulou (10.1016/j.ebiom.2022.104278_bib0022) 2013; 1833
Diao (10.1016/j.ebiom.2022.104278_bib0037) 2016; 379
Pan (10.1016/j.ebiom.2022.104278_bib0026) 2013; 58
References_xml – volume: 71
  start-page: 1229
  year: 2011
  end-page: 1234
  ident: bib0027
  article-title: Recovery of anoikis in Src-transformed cells and human breast carcinoma cells by restoration of the SIRP alpha1/SHP-2 signaling system
  publication-title: Cancer Res
– volume: 8
  start-page: 668
  year: 2010
  end-page: 674
  ident: bib0041
  article-title: Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy?
  publication-title: Nat Rev Microbiol
– volume: 189
  start-page: 2537
  year: 2012
  end-page: 2544
  ident: bib0013
  article-title: Increased susceptibility to Salmonella infection in signal regulatory protein alpha-deficient mice
  publication-title: J Immunol
– volume: 64
  start-page: 694
  year: 2020
  end-page: 702
  ident: bib0015
  article-title: Host phospholipase C-γ1 impairs phagocytosis and killing of mycobacteria by J774A.1 murine macrophages
  publication-title: Microbiol Immunol
– volume: 58
  start-page: 680
  year: 2013
  end-page: 691
  ident: bib0026
  article-title: Signal regulatory protein alpha is associated with tumor-polarized macrophages phenotype switch and plays a pivotal role in tumor progression
  publication-title: Hepatology
– volume: 17
  start-page: 677
  year: 2016
  end-page: 686
  ident: bib0031
  article-title: Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism
  publication-title: Nat Immunol
– volume: 21
  start-page: 47
  year: 2009
  end-page: 52
  ident: bib0004
  article-title: Signal regulatory protein alpha (SIRPalpha)/CD47 interaction and function
  publication-title: Curr Opin Immunol
– volume: 153
  start-page: 521
  year: 2013
  end-page: 534
  ident: bib0018
  article-title: TNF dually mediates resistance and susceptibility to mycobacteria via mitochondrial reactive oxygen species
  publication-title: Cell
– volume: 6
  start-page: 6379
  year: 2015
  ident: bib0020
  article-title: IRF8 directs stress-induced autophagy in macrophages and promotes clearance of Listeria monocytogenes
  publication-title: Nat Commun
– volume: 15
  start-page: 2449
  year: 2016
  end-page: 2461
  ident: bib0019
  article-title: CYLD proteolysis protects macrophages from TNF-mediated auto-necroptosis induced by LPS and licensed by type I IFN
  publication-title: Cell Rep
– volume: 286
  start-page: 38989
  year: 2011
  end-page: 39001
  ident: bib0021
  article-title: Amino-terminal enhancer of split (AES) interacts with the oncoprotein NUP98-HOXA9 and enhances its transforming ability
  publication-title: J Biol Chem
– volume: 14
  start-page: 83
  year: 2016
  end-page: 96
  ident: bib0028
  article-title: Reprogramming macrophage orientation by microRNA 146b targeting transcription factor IRF5
  publication-title: EBioMedicine
– volume: 24
  start-page: 4361
  year: 2004
  end-page: 4371
  ident: bib0040
  article-title: Focal adhesion kinase suppresses apoptosis by binding to the death domain of receptor-interacting protein
  publication-title: Mol Cell Biol
– volume: 113
  start-page: E5434
  year: 2016
  end-page: E5443
  ident: bib0010
  article-title: Cd47-Sirpalpha interaction and IL-10 constrain inflammation-induced macrophage phagocytosis of healthy self-cells
  publication-title: Proc Natl Acad Sci U S A
– volume: 13
  start-page: 362
  year: 2013
  end-page: 372
  ident: bib0007
  article-title: Tuberculosis biomarkers discovery: developments, needs, and challenges
  publication-title: Lancet Infect Dis
– volume: 12
  start-page: 659
  year: 2016
  end-page: 670
  ident: bib0034
  article-title: Inhibition of BMI1 induces autophagy-mediated necroptosis
  publication-title: Autophagy
– volume: 4
  start-page: e6414
  year: 2009
  ident: bib0009
  article-title: Signal regulatory protein alpha (SIRPalpha) cells in the adaptive response to ESAT-6/CFP-10 protein of tuberculous mycobacteria
  publication-title: PLoS One
– volume: 80
  start-page: 4223
  year: 2012
  end-page: 4231
  ident: bib0012
  article-title: Involvement of signal regulatory protein alpha, a negative regulator of Toll-like receptor signaling, in impairing the MyD88-independent pathway and intracellular killing of Burkholderia pseudomallei-infected mouse macrophages
  publication-title: Infect Immun
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  ident: bib0014
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J R Statis Soc Ser B
– volume: 32
  start-page: 25
  year: 2014
  end-page: 50
  ident: bib0008
  article-title: The interaction between signal regulatory protein alpha (SIRPalpha) and CD47: structure, function, and therapeutic target
  publication-title: Annu Rev Immunol
– volume: 8
  start-page: 2284
  year: 2017
  ident: bib0005
  article-title: The macrophage: a disputed fortress in the battle against mycobacterium tuberculosis
  publication-title: Front Microbiol
– volume: 191
  start-page: 2589
  year: 2013
  end-page: 2603
  ident: bib0036
  article-title: SHP-1-Pyk2-Src protein complex and p38 MAPK pathways independently regulate IL-10 production in lipopolysaccharide-stimulated macrophages
  publication-title: J Immunol
– volume: 115
  start-page: E2001
  year: 2018
  end-page: E2009
  ident: bib0023
  article-title: Death-domain dimerization-mediated activation of RIPK1 controls necroptosis and RIPK1-dependent apoptosis
  publication-title: Proc Natl Acad Sci U S A
– volume: 17
  start-page: 151
  year: 2017
  end-page: 164
  ident: bib0042
  article-title: Programmed cell death as a defence against infection
  publication-title: Nat Rev Immunol
– volume: 216
  start-page: 556
  year: 2019
  end-page: 570
  ident: bib0016
  article-title: A major role for ferroptosis in Mycobacterium tuberculosis-induced cell death and tissue necrosis
  publication-title: J Exp Med
– volume: 4
  start-page: 389
  year: 2015
  end-page: 406
  ident: bib0025
  article-title: Microarray meta-analysis and cross-platform normalization: integrative genomics for robust biomarker discovery
  publication-title: Microarrays (Basel)
– volume: 9
  start-page: 65
  year: 2019
  ident: bib0003
  article-title: A two-way proteome microarray strategy to identify novel mycobacterium tuberculosis-human interactors
  publication-title: Front Cell Infect Microbiol
– volume: 22
  start-page: 175
  year: 2016
  end-page: 182
  ident: bib0039
  article-title: CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis
  publication-title: Nat Med
– volume: 10
  start-page: 69
  year: 2010
  end-page: 70
  ident: bib0002
  article-title: Biomarkers for tuberculosis disease activity, cure, and relapse
  publication-title: Lancet Infect Dis
– volume: 379
  start-page: 12
  year: 2016
  end-page: 23
  ident: bib0037
  article-title: Dasatinib promotes paclitaxel-induced necroptosis in lung adenocarcinoma with phosphorylated caspase-8 by c-Src
  publication-title: Cancer Lett
– volume: 264
  start-page: 276
  year: 2015
  end-page: 287
  ident: bib0033
  article-title: Adventures within the speckled band: heterogeneity, angiogenesis, and balanced inflammation in the tuberculous granuloma
  publication-title: Immunol Rev
– volume: 24
  start-page: 417
  year: 2014
  end-page: 432
  ident: bib0038
  article-title: The Gbetagamma-Src signaling pathway regulates TNF-induced necroptosis via control of necrosome translocation
  publication-title: Cell Res
– volume: 1833
  start-page: 3448
  year: 2013
  end-page: 3459
  ident: bib0022
  article-title: Crosstalk between apoptosis, necrosis and autophagy
  publication-title: Biochim Biophys Acta
– volume: 14
  start-page: 341
  year: 2011
  end-page: 346
  ident: bib0029
  article-title: Adipose tissue macrophages: phenotypic plasticity and diversity in lean and obese states
  publication-title: Curr Opin Clin Nutr Metab Care
– volume: 264
  start-page: 233
  year: 2015
  end-page: 248
  ident: bib0006
  article-title: Trans-species communication in the Mycobacterium tuberculosis-infected macrophage
  publication-title: Immunol Rev
– volume: 528
  start-page: 565
  year: 2015
  end-page: 569
  ident: bib0017
  article-title: Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection
  publication-title: Nature
– volume: 18
  start-page: 15
  year: 2015
  end-page: 26
  ident: bib0032
  article-title: Myeloid growth factors promote resistance to mycobacterial infection by curtailing granuloma necrosis through macrophage replenishment
  publication-title: Cell Host Microbe
– volume: 195
  start-page: 1112
  year: 2017
  end-page: 1114
  ident: bib0001
  article-title: AJRCCM: 100-year anniversary. Focus on tuberculosis
  publication-title: Am J Respir Crit Care Med
– volume: 2
  start-page: 748
  year: 2012
  end-page: 755
  ident: bib0011
  article-title: SIRPalpha controls the activity of the phagocyte NADPH oxidase by restricting the expression of gp91(phox)
  publication-title: Cell Rep
– volume: 6
  start-page: e27362
  year: 2011
  ident: bib0035
  article-title: The role of proline rich tyrosine kinase 2 (Pyk2) on cisplatin resistance in hepatocellular carcinoma
  publication-title: PLoS One
– volume: 204
  start-page: 2719
  year: 2007
  end-page: 2731
  ident: bib0024
  article-title: LPS-induced down-regulation of signal regulatory protein {alpha} contributes to innate immune activation in macrophages
  publication-title: J Exp Med
– volume: 25
  start-page: 951
  year: 2018
  end-page: 965
  ident: bib0043
  article-title: Necroptotic signaling is primed in Mycobacterium tuberculosis-infected macrophages, but its pathophysiological consequence in disease is restricted
  publication-title: Cell Death Differ
– volume: 13
  start-page: 423
  year: 2017
  end-page: 441
  ident: bib0030
  article-title: MIR144* inhibits antimicrobial responses against Mycobacterium tuberculosis in human monocytes and macrophages by targeting the autophagy protein DRAM2
  publication-title: Autophagy
– volume: 24
  start-page: 417
  year: 2014
  ident: 10.1016/j.ebiom.2022.104278_bib0038
  article-title: The Gbetagamma-Src signaling pathway regulates TNF-induced necroptosis via control of necrosome translocation
  publication-title: Cell Res
  doi: 10.1038/cr.2014.17
– volume: 2
  start-page: 748
  year: 2012
  ident: 10.1016/j.ebiom.2022.104278_bib0011
  article-title: SIRPalpha controls the activity of the phagocyte NADPH oxidase by restricting the expression of gp91(phox)
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2012.08.027
– volume: 80
  start-page: 4223
  year: 2012
  ident: 10.1016/j.ebiom.2022.104278_bib0012
  article-title: Involvement of signal regulatory protein alpha, a negative regulator of Toll-like receptor signaling, in impairing the MyD88-independent pathway and intracellular killing of Burkholderia pseudomallei-infected mouse macrophages
  publication-title: Infect Immun
  doi: 10.1128/IAI.00718-12
– volume: 13
  start-page: 423
  year: 2017
  ident: 10.1016/j.ebiom.2022.104278_bib0030
  article-title: MIR144* inhibits antimicrobial responses against Mycobacterium tuberculosis in human monocytes and macrophages by targeting the autophagy protein DRAM2
  publication-title: Autophagy
  doi: 10.1080/15548627.2016.1241922
– volume: 6
  start-page: 6379
  year: 2015
  ident: 10.1016/j.ebiom.2022.104278_bib0020
  article-title: IRF8 directs stress-induced autophagy in macrophages and promotes clearance of Listeria monocytogenes
  publication-title: Nat Commun
  doi: 10.1038/ncomms7379
– volume: 264
  start-page: 276
  year: 2015
  ident: 10.1016/j.ebiom.2022.104278_bib0033
  article-title: Adventures within the speckled band: heterogeneity, angiogenesis, and balanced inflammation in the tuberculous granuloma
  publication-title: Immunol Rev
  doi: 10.1111/imr.12273
– volume: 12
  start-page: 659
  year: 2016
  ident: 10.1016/j.ebiom.2022.104278_bib0034
  article-title: Inhibition of BMI1 induces autophagy-mediated necroptosis
  publication-title: Autophagy
  doi: 10.1080/15548627.2016.1147670
– volume: 528
  start-page: 565
  year: 2015
  ident: 10.1016/j.ebiom.2022.104278_bib0017
  article-title: Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection
  publication-title: Nature
  doi: 10.1038/nature16451
– volume: 115
  start-page: E2001
  year: 2018
  ident: 10.1016/j.ebiom.2022.104278_bib0023
  article-title: Death-domain dimerization-mediated activation of RIPK1 controls necroptosis and RIPK1-dependent apoptosis
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1722013115
– volume: 4
  start-page: 389
  year: 2015
  ident: 10.1016/j.ebiom.2022.104278_bib0025
  article-title: Microarray meta-analysis and cross-platform normalization: integrative genomics for robust biomarker discovery
  publication-title: Microarrays (Basel)
  doi: 10.3390/microarrays4030389
– volume: 13
  start-page: 362
  year: 2013
  ident: 10.1016/j.ebiom.2022.104278_bib0007
  article-title: Tuberculosis biomarkers discovery: developments, needs, and challenges
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(13)70034-3
– volume: 189
  start-page: 2537
  year: 2012
  ident: 10.1016/j.ebiom.2022.104278_bib0013
  article-title: Increased susceptibility to Salmonella infection in signal regulatory protein alpha-deficient mice
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1200429
– volume: 286
  start-page: 38989
  year: 2011
  ident: 10.1016/j.ebiom.2022.104278_bib0021
  article-title: Amino-terminal enhancer of split (AES) interacts with the oncoprotein NUP98-HOXA9 and enhances its transforming ability
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.297952
– volume: 204
  start-page: 2719
  year: 2007
  ident: 10.1016/j.ebiom.2022.104278_bib0024
  article-title: LPS-induced down-regulation of signal regulatory protein {alpha} contributes to innate immune activation in macrophages
  publication-title: J Exp Med
  doi: 10.1084/jem.20062611
– volume: 4
  start-page: e6414
  year: 2009
  ident: 10.1016/j.ebiom.2022.104278_bib0009
  article-title: Signal regulatory protein alpha (SIRPalpha) cells in the adaptive response to ESAT-6/CFP-10 protein of tuberculous mycobacteria
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0006414
– volume: 216
  start-page: 556
  year: 2019
  ident: 10.1016/j.ebiom.2022.104278_bib0016
  article-title: A major role for ferroptosis in Mycobacterium tuberculosis-induced cell death and tissue necrosis
  publication-title: J Exp Med
  doi: 10.1084/jem.20181776
– volume: 1833
  start-page: 3448
  year: 2013
  ident: 10.1016/j.ebiom.2022.104278_bib0022
  article-title: Crosstalk between apoptosis, necrosis and autophagy
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbamcr.2013.06.001
– volume: 17
  start-page: 151
  year: 2017
  ident: 10.1016/j.ebiom.2022.104278_bib0042
  article-title: Programmed cell death as a defence against infection
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri.2016.147
– volume: 64
  start-page: 694
  year: 2020
  ident: 10.1016/j.ebiom.2022.104278_bib0015
  article-title: Host phospholipase C-γ1 impairs phagocytosis and killing of mycobacteria by J774A.1 murine macrophages
  publication-title: Microbiol Immunol
  doi: 10.1111/1348-0421.12839
– volume: 153
  start-page: 521
  year: 2013
  ident: 10.1016/j.ebiom.2022.104278_bib0018
  article-title: TNF dually mediates resistance and susceptibility to mycobacteria via mitochondrial reactive oxygen species
  publication-title: Cell
  doi: 10.1016/j.cell.2013.03.022
– volume: 18
  start-page: 15
  year: 2015
  ident: 10.1016/j.ebiom.2022.104278_bib0032
  article-title: Myeloid growth factors promote resistance to mycobacterial infection by curtailing granuloma necrosis through macrophage replenishment
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2015.06.008
– volume: 113
  start-page: E5434
  year: 2016
  ident: 10.1016/j.ebiom.2022.104278_bib0010
  article-title: Cd47-Sirpalpha interaction and IL-10 constrain inflammation-induced macrophage phagocytosis of healthy self-cells
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1521069113
– volume: 15
  start-page: 2449
  year: 2016
  ident: 10.1016/j.ebiom.2022.104278_bib0019
  article-title: CYLD proteolysis protects macrophages from TNF-mediated auto-necroptosis induced by LPS and licensed by type I IFN
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2016.05.032
– volume: 24
  start-page: 4361
  year: 2004
  ident: 10.1016/j.ebiom.2022.104278_bib0040
  article-title: Focal adhesion kinase suppresses apoptosis by binding to the death domain of receptor-interacting protein
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.24.10.4361-4371.2004
– volume: 22
  start-page: 175
  year: 2016
  ident: 10.1016/j.ebiom.2022.104278_bib0039
  article-title: CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis
  publication-title: Nat Med
  doi: 10.1038/nm.4017
– volume: 32
  start-page: 25
  year: 2014
  ident: 10.1016/j.ebiom.2022.104278_bib0008
  article-title: The interaction between signal regulatory protein alpha (SIRPalpha) and CD47: structure, function, and therapeutic target
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev-immunol-032713-120142
– volume: 14
  start-page: 83
  year: 2016
  ident: 10.1016/j.ebiom.2022.104278_bib0028
  article-title: Reprogramming macrophage orientation by microRNA 146b targeting transcription factor IRF5
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2016.10.041
– volume: 71
  start-page: 1229
  year: 2011
  ident: 10.1016/j.ebiom.2022.104278_bib0027
  article-title: Recovery of anoikis in Src-transformed cells and human breast carcinoma cells by restoration of the SIRP alpha1/SHP-2 signaling system
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-10-3431
– volume: 264
  start-page: 233
  year: 2015
  ident: 10.1016/j.ebiom.2022.104278_bib0006
  article-title: Trans-species communication in the Mycobacterium tuberculosis-infected macrophage
  publication-title: Immunol Rev
  doi: 10.1111/imr.12254
– volume: 14
  start-page: 341
  year: 2011
  ident: 10.1016/j.ebiom.2022.104278_bib0029
  article-title: Adipose tissue macrophages: phenotypic plasticity and diversity in lean and obese states
  publication-title: Curr Opin Clin Nutr Metab Care
  doi: 10.1097/MCO.0b013e328347970b
– volume: 58
  start-page: 680
  year: 2013
  ident: 10.1016/j.ebiom.2022.104278_bib0026
  article-title: Signal regulatory protein alpha is associated with tumor-polarized macrophages phenotype switch and plays a pivotal role in tumor progression
  publication-title: Hepatology
  doi: 10.1002/hep.26391
– volume: 25
  start-page: 951
  year: 2018
  ident: 10.1016/j.ebiom.2022.104278_bib0043
  article-title: Necroptotic signaling is primed in Mycobacterium tuberculosis-infected macrophages, but its pathophysiological consequence in disease is restricted
  publication-title: Cell Death Differ
  doi: 10.1038/s41418-017-0031-1
– volume: 195
  start-page: 1112
  year: 2017
  ident: 10.1016/j.ebiom.2022.104278_bib0001
  article-title: AJRCCM: 100-year anniversary. Focus on tuberculosis
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.201703-0446ED
– volume: 9
  start-page: 65
  year: 2019
  ident: 10.1016/j.ebiom.2022.104278_bib0003
  article-title: A two-way proteome microarray strategy to identify novel mycobacterium tuberculosis-human interactors
  publication-title: Front Cell Infect Microbiol
  doi: 10.3389/fcimb.2019.00065
– volume: 8
  start-page: 2284
  year: 2017
  ident: 10.1016/j.ebiom.2022.104278_bib0005
  article-title: The macrophage: a disputed fortress in the battle against mycobacterium tuberculosis
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2017.02284
– volume: 10
  start-page: 69
  year: 2010
  ident: 10.1016/j.ebiom.2022.104278_bib0002
  article-title: Biomarkers for tuberculosis disease activity, cure, and relapse
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(09)70256-7
– volume: 8
  start-page: 668
  year: 2010
  ident: 10.1016/j.ebiom.2022.104278_bib0041
  article-title: Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy?
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro2387
– volume: 379
  start-page: 12
  year: 2016
  ident: 10.1016/j.ebiom.2022.104278_bib0037
  article-title: Dasatinib promotes paclitaxel-induced necroptosis in lung adenocarcinoma with phosphorylated caspase-8 by c-Src
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2016.05.003
– volume: 57
  start-page: 289
  year: 1995
  ident: 10.1016/j.ebiom.2022.104278_bib0014
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J R Statis Soc Ser B
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 191
  start-page: 2589
  year: 2013
  ident: 10.1016/j.ebiom.2022.104278_bib0036
  article-title: SHP-1-Pyk2-Src protein complex and p38 MAPK pathways independently regulate IL-10 production in lipopolysaccharide-stimulated macrophages
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1300466
– volume: 17
  start-page: 677
  year: 2016
  ident: 10.1016/j.ebiom.2022.104278_bib0031
  article-title: Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism
  publication-title: Nat Immunol
  doi: 10.1038/ni.3434
– volume: 6
  start-page: e27362
  year: 2011
  ident: 10.1016/j.ebiom.2022.104278_bib0035
  article-title: The role of proline rich tyrosine kinase 2 (Pyk2) on cisplatin resistance in hepatocellular carcinoma
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0027362
– volume: 21
  start-page: 47
  year: 2009
  ident: 10.1016/j.ebiom.2022.104278_bib0004
  article-title: Signal regulatory protein alpha (SIRPalpha)/CD47 interaction and function
  publication-title: Curr Opin Immunol
  doi: 10.1016/j.coi.2009.01.008
SSID ssj0001542358
Score 2.2412088
Snippet To determine whether SIRPα can be a diagnostic marker of pulmonary tuberculosis (PTB) and the molecular mechanism of SIRPα regulating macrophages to kill...
SummaryBackgroundTo determine whether SIRPα can be a diagnostic marker of pulmonary tuberculosis (PTB) and the molecular mechanism of SIRPα regulating...
Background: To determine whether SIRPα can be a diagnostic marker of pulmonary tuberculosis (PTB) and the molecular mechanism of SIRPα regulating macrophages...
SourceID doaj
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104278
SubjectTerms Advanced Basic Science
Autophagy
Biomarker
Immune response
Internal Medicine
Macrophage
Necroptosis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPIQy0tG4khE_Mjr2CKqAiqqaCv1ZtnOhF3oJqjZHPaP8D_4I_wmZpxklUiovXBbJfba8ow938Qz3zD2RieVT5yrohStcaSrgrZUhkDOlgUkFpR1dKN78iU9vtCfLpPLSakvignr6YH7hXuXxxAX0kkFmdM2LQsnoCxLZbUv49xXdPqizZs4U31-sKYc0FBZLpGRKlI9Ug6F4C6g5Hb0DqWkS05JRdYmZimw98-s0wR9zmMnJ8bo6AG7P6BIftDPfp_dgfohu9vXldw-Yr_OPn49_fObr9HtJ9e_xV9UqmuJhwdfNmtoEBO2q5a7LSe-iJApVX_j9FGWn55_lof8x6pG-4Zv-cnW454PnM7dmm86B9e-u2qo-xjJVXNbl3wo-cNttwlDbcPTGmjkDbV_zC6OPpy_P46GAgyR1-jJRDmgt5N76QsHWSIcOn-xTS2iNBSBAoA4dbYUwuZ0U5zLUsjSOSUr4a2VCagnbK9uanjKONGG6dyCUC7WQnhX6CqRqVJV6sElesHkuP7GD-zkVCTjyoxhaN9NEJohoZleaAv2dtfpZ0_OcXPzQxLsrikxa4cHqG9m0Ddzm74tmB7VwozJq3jc4h-tbh47-1c3aIcjozXCtNLE5owUlvRVhm8XsViwdNdzQEU92rl9yNej1ho8M-giyNbQdK2RGaJ6hLqpxGnN1Hm2NvM39WoZ2MeLROHmyp79j8V8zu7RhPvczhdsb3PdwUsEeRv3Kuznv0cRVLU
  priority: 102
  providerName: Directory of Open Access Journals
Title SIRPα maintains macrophage homeostasis by interacting with PTK2B kinase in Mycobacterium tuberculosis infection and through autophagy and necroptosis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2352396422004601
https://www.clinicalkey.es/playcontent/1-s2.0-S2352396422004601
https://dx.doi.org/10.1016/j.ebiom.2022.104278
https://www.proquest.com/docview/2723156062
https://pubmed.ncbi.nlm.nih.gov/PMC9535427
https://doaj.org/article/80e092b23e7b4a6d9b1eddd3a4cd08cf
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZKERIXxK9YfiojcSQodpy_A0IUURXQoop2pd4s23G6C7sObBKJfRHegxfhmZhxkqWRVkXcktiOk_GM5xvbM0PIcxGXJta6DBLQxoEocxSpFICcKnIbKxspjTu600_J8Ux8OI_P98iQFbUnYL3TtMN8UrP18uWP75vXIPCv_p7VsuirDsYe57hnydPsGrkOqinFlAbTHu93bsMCXUN9wrmYB1GeiCES0e73jLSVD-o_UlqXQOn4SOUlHXV0m9zqwSV903HDHbJn3V1yo0s3ublHfp6-_3zy-xddqYXDFYEarjCD1xzmFDqvVrYCqFgvaqo3FMNIeAcqd0FxrZaenH3kh_TrwoHag1I63RiYCnyo53ZFm1bbtWmXFTYfDng5qlxB-0xAVLWN72rjnzqLPTdY_z6ZHb07e3sc9HkZAiPAwAkyC0ZQZrjJtU1jpsEmDFWiALzZooistWGiVcGYynADOeMF44XWES-ZUYrHNnpA9l3l7ENCMZqYyJRlkQ4FY0bnoox5EkVlYqyOxYTwgf7S9EHLMXfGUg6n075IP2gSB012gzYhL7aNvnUxO66ufogDu62KAbf9g2p9IXv5lVlow5xrHtlUC5UUuWbws0WkhCmAFuWEiIEt5ODTCrMwvGhxdd_prma2HgRBMllzGcpTZFjkV-6XNEI2Icm2ZQ-WOhD07y6fDVwrYSrB_SHlbNXWkqcA9gEBJxw-a8TOI9qMS9xi7oOS53EEwpU--j_aPyY38a5z7nxC9pt1a58Cymv0gV8dOfDy-wc7S1Tz
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SIRP%CE%B1+maintains+macrophage+homeostasis+by+interacting+with+PTK2B+kinase+in+Mycobacterium+tuberculosis+infection+and+through+autophagy+and+necroptosis&rft.jtitle=EBioMedicine&rft.au=Wang%2C+Di&rft.au=Lin%2C+Yunkai&rft.au=Xu%2C+Feihong&rft.au=Zhang%2C+Hui&rft.date=2022-11-01&rft.issn=2352-3964&rft.eissn=2352-3964&rft.volume=85&rft.spage=104278&rft_id=info:doi/10.1016%2Fj.ebiom.2022.104278&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ebiom_2022_104278
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F23523964%2Fcov200h.gif