Positive control of tylosin biosynthesis: pivotal role of TylR

Summary Control of tylosin production in Streptomyces fradiae features interplay between a repressor, TylQ, and an activator, TylS, during regulation of tylR. The latter encodes a pathway‐specific activator that controls most of the tylosin‐biosynthetic (tyl) genes that are subject to regulation. Th...

Full description

Saved in:
Bibliographic Details
Published inMolecular microbiology Vol. 54; no. 5; pp. 1326 - 1334
Main Authors Stratigopoulos, George, Bate, Neil, Cundliffe, Eric
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.12.2004
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Control of tylosin production in Streptomyces fradiae features interplay between a repressor, TylQ, and an activator, TylS, during regulation of tylR. The latter encodes a pathway‐specific activator that controls most of the tylosin‐biosynthetic (tyl) genes that are subject to regulation. This was established by targeted gene disruption applied separately to tylR and tylS together with transcript analysis involving reverse transcription polymerase chain reaction (RT‐PCR). TylR controls multiple genes that encode the synthesis or addition of all three tylosin sugars, plus polyketide  ring  oxidation,  and  at  least  one  of the polyketide synthase (PKS) megagenes, tylGI. (Expression of a few tyl genes, plus the resistance determinants tlrB and tlrD, together with some ancillary or unassigned genes, is not apparently regulated during fermentation, consistent with constitutive expression.) In contrast, the only gene known for sure to be directly controlled by TylS is tylR, and there are very few additional candidates. These include the mycinose‐biosynthetic gene, tylJ, and two previously unassigned genes, ORF12* (tylU) plus ORF11* (tylV). TylS also controls the PKS genes [tylGIII‐tylGIV‐tylGV] although not in obligatory fashion. These genes can be transcribed (i.e. tylosin can be produced) in a tylS‐KO strain by forcing overexpression of tylR using a foreign promoter. We therefore suspect that TylS might control the PKS genes indirectly, although this remains to be established unequivocally. Conceivably, the direct effects of TylS are exerted exclusively on other regulators. Tylosin production levels were elevated when tylS or (especially) tylR was overexpressed in S. fradiae wild‐type and yield increments of industrial significance were generated by similar manipulation of an enhanced production strain.
AbstractList Control of tylosin production in Streptomyces fradiae features interplay between a repressor, TylQ, and an activator, TylS, during regulation of tylR. The latter encodes a pathway-specific activator that controls most of the tylosin-biosynthetic (tyl) genes that are subject to regulation. This was established by targeted gene disruption applied separately to tylR and tylS together with transcript analysis involving reverse transcription polymerase chain reaction (RT-PCR). TylR controls multiple genes that encode the synthesis or addition of all three tylosin sugars, plus polyketide ring oxidation, and at least one of the polyketide synthase (PKS) megagenes, tylGI. (Expression of a few tyl genes, plus the resistance determinants tlrB and tlrD, together with some ancillary or unassigned genes, is not apparently regulated during fermentation, consistent with constitutive expression.) In contrast, the only gene known for sure to be directly controlled by TylS is tylR, and there are very few additional candidates. These include the mycinose-biosynthetic gene, tylJ, and two previously unassigned genes, ORF12* (tylU) plus ORF11* (tylV). TylS also controls the PKS genes [tylGIII-tylGIV-tylGV] although not in obligatory fashion. These genes can be transcribed (i.e. tylosin can be produced) in a tylS-KO strain by forcing overexpression of tylR using a foreign promoter. We therefore suspect that TylS might control the PKS genes indirectly, although this remains to be established unequivocally. Conceivably, the direct effects of TylS are exerted exclusively on other regulators. Tylosin production levels were elevated when tylS or (especially) tylR was overexpressed in S. fradiae wild-type and yield increments of industrial significance were generated by similar manipulation of an enhanced production strain.
Summary Control of tylosin production in Streptomyces fradiae features interplay between a repressor, TylQ, and an activator, TylS, during regulation of tylR. The latter encodes a pathway‐specific activator that controls most of the tylosin‐biosynthetic (tyl) genes that are subject to regulation. This was established by targeted gene disruption applied separately to tylR and tylS together with transcript analysis involving reverse transcription polymerase chain reaction (RT‐PCR). TylR controls multiple genes that encode the synthesis or addition of all three tylosin sugars, plus polyketide  ring  oxidation,  and  at  least  one  of the polyketide synthase (PKS) megagenes, tylGI. (Expression of a few tyl genes, plus the resistance determinants tlrB and tlrD, together with some ancillary or unassigned genes, is not apparently regulated during fermentation, consistent with constitutive expression.) In contrast, the only gene known for sure to be directly controlled by TylS is tylR, and there are very few additional candidates. These include the mycinose‐biosynthetic gene, tylJ, and two previously unassigned genes, ORF12* (tylU) plus ORF11* (tylV). TylS also controls the PKS genes [tylGIII‐tylGIV‐tylGV] although not in obligatory fashion. These genes can be transcribed (i.e. tylosin can be produced) in a tylS‐KO strain by forcing overexpression of tylR using a foreign promoter. We therefore suspect that TylS might control the PKS genes indirectly, although this remains to be established unequivocally. Conceivably, the direct effects of TylS are exerted exclusively on other regulators. Tylosin production levels were elevated when tylS or (especially) tylR was overexpressed in S. fradiae wild‐type and yield increments of industrial significance were generated by similar manipulation of an enhanced production strain.
Control of tylosin production in Streptomyces fradiae features interplay between a repressor, TylQ, and an activator, TylS, during regulation of tylR. The latter encodes a pathway-specific activator that controls most of the tylosin-biosynthetic (tyl) genes that are subject to regulation. This was established by targeted gene disruption applied separately to tylR and tylS together with transcript analysis involving reverse transcription polymerase chain reaction (RT-PCR). TylR controls multiple genes that encode the synthesis or addition of all three tylosin sugars, plus polyketide ring oxidation, and at least one of the polyketide synthase (PKS) megagenes, tylGI. (Expression of a few tyl genes, plus the resistance determinants tlrB and tlrD, together with some ancillary or unassigned genes, is not apparently regulated during fermentation, consistent with constitutive expression.) In contrast, the only gene known for sure to be directly controlled by TylS is tylR, and there are very few additional candidates. These include the mycinose-biosynthetic gene, tylJ, and two previously unassigned genes, ORF12* (tylU) plus ORF11* (tylV). TylS also controls the PKS genes [tylGIII-tylGIV-tylGV] although not in obligatory fashion. These genes can be transcribed (i.e. tylosin can be produced) in a tylS-KO strain by forcing overexpression of tylR using a foreign promoter. We therefore suspect that TylS might control the PKS genes indirectly, although this remains to be established unequivocally. Conceivably, the direct effects of TylS are exerted exclusively on other regulators. Tylosin production levels were elevated when tylS or (especially) tylR was overexpressed in S. fradiae wild-type and yield increments of industrial significance were generated by similar manipulation of an enhanced production strain.Control of tylosin production in Streptomyces fradiae features interplay between a repressor, TylQ, and an activator, TylS, during regulation of tylR. The latter encodes a pathway-specific activator that controls most of the tylosin-biosynthetic (tyl) genes that are subject to regulation. This was established by targeted gene disruption applied separately to tylR and tylS together with transcript analysis involving reverse transcription polymerase chain reaction (RT-PCR). TylR controls multiple genes that encode the synthesis or addition of all three tylosin sugars, plus polyketide ring oxidation, and at least one of the polyketide synthase (PKS) megagenes, tylGI. (Expression of a few tyl genes, plus the resistance determinants tlrB and tlrD, together with some ancillary or unassigned genes, is not apparently regulated during fermentation, consistent with constitutive expression.) In contrast, the only gene known for sure to be directly controlled by TylS is tylR, and there are very few additional candidates. These include the mycinose-biosynthetic gene, tylJ, and two previously unassigned genes, ORF12* (tylU) plus ORF11* (tylV). TylS also controls the PKS genes [tylGIII-tylGIV-tylGV] although not in obligatory fashion. These genes can be transcribed (i.e. tylosin can be produced) in a tylS-KO strain by forcing overexpression of tylR using a foreign promoter. We therefore suspect that TylS might control the PKS genes indirectly, although this remains to be established unequivocally. Conceivably, the direct effects of TylS are exerted exclusively on other regulators. Tylosin production levels were elevated when tylS or (especially) tylR was overexpressed in S. fradiae wild-type and yield increments of industrial significance were generated by similar manipulation of an enhanced production strain.
Control of tylosin production in Streptomyces fradiae features interplay between a repressor, TylQ, and an activator, TylS, during regulation of tylR . The latter encodes a pathway‐specific activator that controls most of the tylosin‐biosynthetic ( tyl ) genes that are subject to regulation. This was established by targeted gene disruption applied separately to tylR and tylS together with transcript analysis involving reverse transcription polymerase chain reaction (RT‐PCR). TylR controls multiple genes that encode the synthesis or addition of all three tylosin sugars, plus polyketide  ring  oxidation,  and  at  least  one  of the polyketide synthase (PKS) megagenes, tylGI . (Expression of a few tyl genes, plus the resistance determinants tlrB and tlrD , together with some ancillary or unassigned genes, is not apparently regulated during fermentation, consistent with constitutive expression.) In contrast, the only gene known for sure to be directly controlled by TylS is tylR , and there are very few additional candidates. These include the mycinose‐biosynthetic gene, tylJ , and two previously unassigned genes, ORF12* ( tylU ) plus ORF11* ( tylV ). TylS also controls the PKS genes [ tylGIII‐tylGIV‐tylGV ] although not in obligatory fashion. These genes can be transcribed (i.e. tylosin can be produced) in a tylS ‐KO strain by forcing overexpression of tylR using a foreign promoter. We therefore suspect that TylS might control the PKS genes indirectly, although this remains to be established unequivocally. Conceivably, the direct effects of TylS are exerted exclusively on other regulators. Tylosin production levels were elevated when tylS or (especially) tylR was overexpressed in S. fradiae wild‐type and yield increments of industrial significance were generated by similar manipulation of an enhanced production strain.
Author Bate, Neil
Cundliffe, Eric
Stratigopoulos, George
Author_xml – sequence: 1
  givenname: George
  surname: Stratigopoulos
  fullname: Stratigopoulos, George
– sequence: 2
  givenname: Neil
  surname: Bate
  fullname: Bate, Neil
– sequence: 3
  givenname: Eric
  surname: Cundliffe
  fullname: Cundliffe, Eric
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15554972$$D View this record in MEDLINE/PubMed
BookMark eNqNkctKxDAUhoMoOl5eQYoLd625NomgIOINHBRRcBfSNsUMmWZsOqN9e1PHC7hxsklO8p0_JN82WG98YwBIEMxQHEeTDJGcpVgykWEIaQYpoTx7XwOjn4N1MIKSwZQI_LwFtkOYQIgIzMkm2EKMMSo5HoHTex9sZxcmKX3Ttd4lvk663sXdJimsD33TvZhgw3EyswvfaZdEyAzUY-8edsFGrV0we1_zDni6vHg8v05v765uzs9u05IyylNscC1qQZEuc15XlGNhYmU0grwioqiIzik30BR1lRdCMlZJVrKKSEmqAtVkBxwuc2etf52b0KmpDaVxTjfGz4PKOZRESPoviCHGGKH_QcQZQZKjCB78ASd-3jbxtQrJnEGRIxGh_S9oXkxNpWatneq2V98fHQGxBMrWh9Ca-heBanCqJmpQpwZ1anCqPp2q99h6-qe1tJ3u7OBLW7dKwMky4M060698sRqPb4YV-QBSE7kz
CitedBy_id crossref_primary_10_1007_s10295_013_1370_7
crossref_primary_10_1016_j_synbio_2017_08_005
crossref_primary_10_1016_j_ymben_2008_07_001
crossref_primary_10_1016_j_ymben_2018_09_010
crossref_primary_10_3389_fmicb_2024_1368809
crossref_primary_10_1007_s00253_011_3145_2
crossref_primary_10_1007_s10295_015_1682_x
crossref_primary_10_1007_s12275_009_0014_0
crossref_primary_10_1099_mic_0_2006_002170_0
crossref_primary_10_1007_s41745_017_0025_5
crossref_primary_10_1128_JB_01383_07
crossref_primary_10_1128_JB_00712_10
crossref_primary_10_1039_c3np70060g
crossref_primary_10_1099_mic_0_047795_0
crossref_primary_10_1099_mic_0_2007_009746_0
crossref_primary_10_1039_C6NP00017G
crossref_primary_10_1128_JB_00055_07
crossref_primary_10_1186_1475_2859_12_126
crossref_primary_10_1016_j_mib_2005_02_016
crossref_primary_10_1007_s10295_006_0083_6
crossref_primary_10_1016_j_synbio_2023_07_002
crossref_primary_10_1007_s10295_017_1913_4
crossref_primary_10_1111_j_1365_2958_2006_05541_x
crossref_primary_10_1111_j_1365_2958_2006_05338_x
crossref_primary_10_1007_s10295_016_1845_4
crossref_primary_10_1016_j_jbiotec_2008_12_013
crossref_primary_10_1186_s12934_019_1184_z
crossref_primary_10_1038_nrmicro1287
crossref_primary_10_1039_c1np00003a
crossref_primary_10_1186_1471_2180_9_14
crossref_primary_10_1016_j_talanta_2012_12_008
crossref_primary_10_1186_s13036_021_00267_4
crossref_primary_10_1371_journal_pone_0081064
crossref_primary_10_1007_s10295_010_0934_z
crossref_primary_10_1007_BF02932090
crossref_primary_10_4014_jmb_2210_10023
crossref_primary_10_1007_s00253_024_13396_9
crossref_primary_10_1111_mmi_13004
crossref_primary_10_1016_j_mib_2010_02_008
crossref_primary_10_3390_antibiotics11070938
crossref_primary_10_1007_s00253_013_5317_8
crossref_primary_10_1111_1751_7915_13909
crossref_primary_10_1099_mic_0_28019_0
crossref_primary_10_1128_JB_00129_07
Cites_doi 10.1016/S1097-2765(02)00570-1
10.1038/sj.jim.7000234
10.1099/00221287-146-1-139
10.1111/j.1365-2958.1994.tb00428.x
10.1046/j.1365-2958.2002.03044.x
10.1111/j.1365-2958.1992.tb01459.x
10.1073/pnas.94.11.5544
10.1016/S1074-5521(99)80074-X
10.1074/jbc.270.20.12319
10.1146/annurev.mi.42.100188.002555
10.1038/sj.jim.7000160
10.1046/j.1365-2958.1999.01579.x
10.1016/S0378-1119(97)00014-0
10.1128/jb.177.21.6111-6117.1995
10.1074/jbc.M300858200
10.1271/bbb.57.2020
10.1128/jb.177.5.1208-1215.1995
10.1128/JB.164.1.85-94.1985
10.1111/j.1365-2958.1994.tb02187.x
10.1016/0378-1119(92)90627-2
10.1128/jb.172.1.326-333.1990
10.1111/j.1365-2958.1993.tb01174.x
10.1128/jb.179.22.6986-6993.1997
10.1038/nbt1183-784
10.1016/0092-8674(91)90120-N
10.1099/13500872-142-6-1335
10.1046/j.1365-2958.1997.5421903.x
10.1128/jb.174.1.144-154.1992
10.1002/bit.260220903
10.1016/S1074-5521(01)00095-3
10.7164/antibiotics.54.642
10.1128/AAC.21.5.758
10.1128/jb.177.21.6083-6092.1995
10.1038/sj.jim.2900707
10.1073/pnas.85.21.7882
10.1046/j.1365-2958.2002.02756.x
10.3209/saj.13_68
10.1073/pnas.90.22.10866
10.1128/JB.181.22.7098-7106.1999
10.1016/S0378-1119(98)00210-8
10.1016/S1074-5521(99)80113-6
ContentType Journal Article
Copyright Copyright Blackwell Scientific Publications Ltd. Dec 2004
Copyright_xml – notice: Copyright Blackwell Scientific Publications Ltd. Dec 2004
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7QO
7X8
DOI 10.1111/j.1365-2958.2004.04347.x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology Research Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Biotechnology Research Abstracts
CrossRef
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1365-2958
EndPage 1334
ExternalDocumentID 757937201
15554972
10_1111_j_1365_2958_2004_04347_x
MMI4347
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
.3N
.55
.GA
.GJ
.HR
.Y3
05W
0R~
10A
123
1OB
1OC
24P
29M
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAKAS
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZCM
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FIJ
FSRTE
FZ0
G-S
G.N
GODZA
GX1
H.T
H.X
HF~
HGLYW
HH5
HVGLF
HZI
HZ~
IH2
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBC
OBS
OEB
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TR2
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXSBR
WYISQ
X7M
XG1
Y6R
YFH
YUY
ZGI
ZXP
ZY4
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
H94
M7N
P64
RC3
7QO
7X8
ID FETCH-LOGICAL-c4547-2e2f8f841ac67fd4728e841ea107d38bd3a647e0ebfd6b8955d95c5d3993db1f3
IEDL.DBID DR2
ISSN 0950-382X
IngestDate Fri Jul 11 09:15:35 EDT 2025
Fri Jul 11 11:37:30 EDT 2025
Fri Jul 11 13:03:45 EDT 2025
Fri Jul 25 10:46:34 EDT 2025
Wed Feb 19 01:38:06 EST 2025
Tue Jul 01 00:47:15 EDT 2025
Thu Apr 24 22:53:59 EDT 2025
Wed Jan 22 16:58:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4547-2e2f8f841ac67fd4728e841ea107d38bd3a647e0ebfd6b8955d95c5d3993db1f3
Notes Present address: Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Feature-2
PMID 15554972
PQID 196508618
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_67093894
proquest_miscellaneous_20222114
proquest_miscellaneous_17531971
proquest_journals_196508618
pubmed_primary_15554972
crossref_primary_10_1111_j_1365_2958_2004_04347_x
crossref_citationtrail_10_1111_j_1365_2958_2004_04347_x
wiley_primary_10_1111_j_1365_2958_2004_04347_x_MMI4347
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2004
PublicationDateYYYYMMDD 2004-12-01
PublicationDate_xml – month: 12
  year: 2004
  text: December 2004
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: Oxford
PublicationTitle Molecular microbiology
PublicationTitleAlternate Mol Microbiol
PublicationYear 2004
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 1993; 7
1997; 179
1983; 1
1997; 25
2002; 10
1999; 23
1998; 214
2001; 27
1993; 90
1996; 142
1995; 177
1980; XXII
1999; 6
2003; 278
1985; 164
1995; 270
1997; 7
1992; 6
1993; 57
1997; 94
2000; 146
1992; 174
1991; 66
2002; 45
2002; 43
1982; 21
1999; 181
2002a; 9
1992; 116
1999; 13
1986
1999; 34
1994; 14
1985
1994; 13
1997; 190
1988; 85
1988; 42
1990; 172
1989
2002b; 28
2001; 54
Sambrook J. (e_1_2_6_36_1) 1989
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Hopwood D.A. (e_1_2_6_23_1) 1986
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
Okamoto S. (e_1_2_6_32_1) 1995; 270
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
Reeves A.R. (e_1_2_6_35_1) 1999; 181
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_2_1
e_1_2_6_22_1
Chater K.F. (e_1_2_6_15_1) 1997
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_26_1
References_xml – year: 1985
– volume: 6
  start-page: 287
  year: 1999
  end-page: 292
  article-title: Impact of thioesterase activity on tylosin biosynthesis in
  publication-title: Chem Biol
– volume: 9
  start-page: 71
  year: 2002a
  end-page: 78
  article-title: Expression analysis of the tylosin‐biosynthetic gene cluster: pivotal regulatory role of the product
  publication-title: Chem Biol
– volume: 23
  start-page: 118
  year: 1999
  end-page: 122
  article-title: The mycinose‐biosynthetic genes of , producer of tylosin
  publication-title: J Ind Microbiol Biotechnol
– volume: 116
  start-page: 43
  year: 1992
  end-page: 49
  article-title: Plasmid cloning vectors for the conjugal transfer of DNA from to spp
  publication-title: Gene
– volume: 6
  start-page: 2797
  year: 1992
  end-page: 2804
  article-title: Transcriptional regulation of the transcriptional activator gene accounts for growth‐phase‐dependent production of the antibiotic undecylprodigiosin in A3(2)
  publication-title: Mol Microbiol
– volume: 146
  start-page: 139
  year: 2000
  end-page: 146
  article-title: The mycarose‐biosynthetic genes of , producer of tylosin
  publication-title: Microbiology
– volume: 1
  start-page: 784
  year: 1983
  end-page: 791
  article-title: A broad host range mobilisation system for genetic engineering: transposon mutagenesis in Gram‐negative bacteria
  publication-title: Bio/Technology
– volume: 214
  start-page: 95
  year: 1998
  end-page: 100
  article-title: Characterization and targeted disruption of a glycosyltransferase gene in the tylosin producer,
  publication-title: Gene
– volume: 164
  start-page: 85
  year: 1985
  end-page: 94
  article-title: Self‐cloning in of an gene cluster for streptomycin biosynthesis and streptomycin resistance
  publication-title: J Bacteriol
– volume: 43
  start-page: 449
  year: 2002
  end-page: 458
  article-title: Differential roles of two SARP‐encoding regulatory genes during tylosin biosynthesis
  publication-title: Mol Microbiol
– volume: 85
  start-page: 7882
  year: 1988
  end-page: 7886
  article-title: Cleavage of the cII protein of phage lambda by purified HflA protease; control of the switch between lysis and lysogeny
  publication-title: Proc Natl Acad Sci USA
– year: 1989
– volume: 54
  start-page: 642
  year: 2001
  end-page: 649
  article-title: Influence of ancillary genes, encoding aspects of methionine metabolism, on tylosin biosynthesis in
  publication-title: J Antibiot
– volume: 7
  start-page: 59
  year: 1997
  end-page: 105
– volume: 66
  start-page: 769
  year: 1991
  end-page: 780
  article-title: The cluster contains regulatory and antibiotic export genes, direct targets for translational control by the tRNA gene of
  publication-title: Cell
– volume: 174
  start-page: 144
  year: 1992
  end-page: 154
  article-title: Regulation of secondary metabolism in spp. and overproduction of daunorubicin in
  publication-title: J Bacteriol
– volume: 42
  start-page: 547
  year: 1988
  end-page: 574
  article-title: Genetics of and tylosin biosynthesis
  publication-title: Annu Rev Microbiol
– volume: 21
  start-page: 758
  year: 1982
  end-page: 763
  article-title: ‐adenosyl‐ l‐methionine: macrocin ‐methyltransferase activities in a series of mutants that produce different levels of the macrolide antibiotic tylosin
  publication-title: Antimicrob Agents Chemother
– volume: 142
  start-page: 1335
  year: 1996
  end-page: 1344
  article-title: The regulation of antibiotic production in A3(2)
  publication-title: Microbiology
– volume: 34
  start-page: 102
  year: 1999
  end-page: 111
  article-title: The A‐factor regulatory cascade leading to streptomycin biosynthesis in : identification of a target gene of the A‐factor receptor
  publication-title: Mol Microbiol
– volume: 28
  start-page: 219
  year: 2002b
  end-page: 224
  article-title: Inactivation of a transcriptional repressor during empirical improvement of the tylosin producer,
  publication-title: J Ind Microbiol Biotechnol
– volume: 179
  start-page: 6986
  year: 1997
  end-page: 6993
  article-title: Butyrolactone autoregulator receptor protein (BarA) as a transcriptional regulator in
  publication-title: J Bacteriol
– volume: 7
  start-page: 837
  year: 1993
  end-page: 845
  article-title: Stationary phase production of the antibiotic actinorhodin in A3(2) is transcriptionally regulated
  publication-title: Mol Microbiol
– volume: 13
  start-page: 68
  year: 1999
  end-page: 75
  article-title: Organisation and control of the tylosin‐biosynthetic genes of
  publication-title: Actinomycetologica
– start-page: 251
  year: 1986
  end-page: 276
– volume: 13
  start-page: 349
  year: 1994
  end-page: 355
  article-title: Analysis of five tylosin biosynthetic genes from the region of the genome
  publication-title: Mol Microbiol
– volume: 10
  start-page: 117
  year: 2002
  end-page: 128
  article-title: The structures of four macrolide antibiotics bound to the large ribosomal subunit
  publication-title: Mol Cell
– volume: 94
  start-page: 5544
  year: 1997
  end-page: 5549
  article-title: Host regulation of lysogenic decision in bacteriophage λ; transmembrane modulation of FtsH (HflB), the cII degrading protease, by HflKC (HflA)
  publication-title: Proc Natl Acad Sci USA
– volume: 177
  start-page: 1208
  year: 1995
  end-page: 1215
  article-title: Functional characterization and transcriptional analysis of the locus, which controls daunorubicin biosynthesis in
  publication-title: J Bacteriol
– volume: 27
  start-page: 46
  year: 2001
  end-page: 51
  article-title: Influence of dimethylsulfoxide on tylosin production in
  publication-title: J Ind Microbiol Biotechnol
– volume: 190
  start-page: 315
  year: 1997
  end-page: 317
  article-title: Antibiotic resistance cassettes derived from the Ω interposon for use in and
  publication-title: Gene
– volume: 181
  start-page: 7098
  year: 1999
  end-page: 7106
  article-title: Transcriptional organization of the erythromycin biosynthetic gene cluster of
  publication-title: J Bacteriol
– volume: 278
  start-page: 26410
  year: 2003
  end-page: 26417
  article-title: Biosynthesis of dTDP‐3‐acetamido‐3,6‐dideoxy‐α‐ d‐galactose in L420–91
  publication-title: J Biol Chem
– volume: 6
  start-page: 617
  year: 1999
  end-page: 624
  article-title: Multiple regulatory genes in the tylosin‐biosynthetic cluster of
  publication-title: Chem Biol
– volume: 14
  start-page: 533
  year: 1994
  end-page: 545
  article-title: The mRNA for the 23S rRNA methylase encoded by the gene of is translated in the absence of a conventional ribosome‐binding site
  publication-title: Mol Microbiol
– volume: 270
  start-page: 12319
  year: 1995
  end-page: 12326
  article-title: Virginiae butanolide binding protein from
  publication-title: J Biol Chem
– volume: 45
  start-page: 735
  year: 2002
  end-page: 744
  article-title: Regulation of tylosin production and morphological differentiation in by TylP, a deduced γ‐butyrolactone receptor
  publication-title: Mol Microbiol
– volume: XXII
  start-page: 1785
  year: 1980
  end-page: 1804
  article-title: Production of the macrolide antibiotic tylosin in batch and chemostat cultures
  publication-title: Biotechnol Bioeng
– volume: 172
  start-page: 326
  year: 1990
  end-page: 333
  article-title: Nucleotide sequence and transcriptional analysis of the locus of A3(2)
  publication-title: J Bacteriol
– volume: 25
  start-page: 1177
  year: 1997
  end-page: 1184
  article-title: A novel family of proteins that regulates antibiotic production in streptomycetes appears to contain an OmpR‐like DNA‐binding fold
  publication-title: Mol Microbiol
– volume: 90
  start-page: 10866
  year: 1993
  end-page: 10870
  article-title: The locus encodes a putative GTP‐binding protein and two membrane proteins, one of which contains a protease‐like domain
  publication-title: Proc Natl Acad Sci USA
– volume: 57
  start-page: 2020
  year: 1993
  end-page: 2025
  article-title: Cloning and nucleotide sequences of two genes involved in the 4″‐ ‐acylation of macrolide antibiotics from
  publication-title: Biosci Biotechnol Biochem
– volume: 177
  start-page: 6083
  year: 1995
  end-page: 6092
  article-title: Cloning and characterization of the A‐factor receptor gene from
  publication-title: J Bacteriol
– volume: 177
  start-page: 6111
  year: 1995
  end-page: 6117
  article-title: Regulation of jadomycin B production in ISP5230: involvement of a repressor gene, jadR
  publication-title: J Bacteriol
– start-page: 251
  volume-title: Regulation of Gene Expression – 25 Years On
  year: 1986
  ident: e_1_2_6_23_1
– ident: e_1_2_6_21_1
  doi: 10.1016/S1097-2765(02)00570-1
– ident: e_1_2_6_40_1
  doi: 10.1038/sj.jim.7000234
– ident: e_1_2_6_6_1
  doi: 10.1099/00221287-146-1-139
– ident: e_1_2_6_27_1
  doi: 10.1111/j.1365-2958.1994.tb00428.x
– ident: e_1_2_6_41_1
  doi: 10.1046/j.1365-2958.2002.03044.x
– ident: e_1_2_6_43_1
  doi: 10.1111/j.1365-2958.1992.tb01459.x
– ident: e_1_2_6_24_1
  doi: 10.1073/pnas.94.11.5544
– ident: e_1_2_6_13_1
  doi: 10.1016/S1074-5521(99)80074-X
– volume: 270
  start-page: 12319
  year: 1995
  ident: e_1_2_6_32_1
  article-title: Virginiae butanolide binding protein from Streptomyces virginiae
  publication-title: J Biol Chem
  doi: 10.1074/jbc.270.20.12319
– ident: e_1_2_6_3_1
  doi: 10.1146/annurev.mi.42.100188.002555
– ident: e_1_2_6_12_1
  doi: 10.1038/sj.jim.7000160
– ident: e_1_2_6_22_1
– ident: e_1_2_6_30_1
  doi: 10.1046/j.1365-2958.1999.01579.x
– ident: e_1_2_6_11_1
  doi: 10.1016/S0378-1119(97)00014-0
– volume-title: Molecular Cloning. A Laboratory Manual
  year: 1989
  ident: e_1_2_6_36_1
– ident: e_1_2_6_46_1
  doi: 10.1128/jb.177.21.6111-6117.1995
– ident: e_1_2_6_34_1
  doi: 10.1074/jbc.M300858200
– ident: e_1_2_6_2_1
  doi: 10.1271/bbb.57.2020
– ident: e_1_2_6_26_1
  doi: 10.1128/jb.177.5.1208-1215.1995
– ident: e_1_2_6_31_1
  doi: 10.1128/JB.164.1.85-94.1985
– ident: e_1_2_6_9_1
  doi: 10.1111/j.1365-2958.1994.tb02187.x
– ident: e_1_2_6_10_1
  doi: 10.1016/0378-1119(92)90627-2
– ident: e_1_2_6_28_1
  doi: 10.1128/jb.172.1.326-333.1990
– ident: e_1_2_6_19_1
  doi: 10.1111/j.1365-2958.1993.tb01174.x
– ident: e_1_2_6_25_1
  doi: 10.1128/jb.179.22.6986-6993.1997
– ident: e_1_2_6_38_1
  doi: 10.1038/nbt1183-784
– ident: e_1_2_6_18_1
  doi: 10.1016/0092-8674(91)90120-N
– ident: e_1_2_6_8_1
  doi: 10.1099/13500872-142-6-1335
– start-page: 59
  volume-title: Biotechnology
  year: 1997
  ident: e_1_2_6_15_1
– ident: e_1_2_6_44_1
  doi: 10.1046/j.1365-2958.1997.5421903.x
– ident: e_1_2_6_42_1
  doi: 10.1128/jb.174.1.144-154.1992
– ident: e_1_2_6_20_1
  doi: 10.1002/bit.260220903
– ident: e_1_2_6_39_1
  doi: 10.1016/S1074-5521(01)00095-3
– ident: e_1_2_6_14_1
  doi: 10.7164/antibiotics.54.642
– ident: e_1_2_6_37_1
  doi: 10.1128/AAC.21.5.758
– ident: e_1_2_6_33_1
  doi: 10.1128/jb.177.21.6083-6092.1995
– ident: e_1_2_6_4_1
  doi: 10.1038/sj.jim.2900707
– ident: e_1_2_6_16_1
  doi: 10.1073/pnas.85.21.7882
– ident: e_1_2_6_7_1
  doi: 10.1046/j.1365-2958.2002.02756.x
– ident: e_1_2_6_17_1
  doi: 10.3209/saj.13_68
– ident: e_1_2_6_29_1
  doi: 10.1073/pnas.90.22.10866
– volume: 181
  start-page: 7098
  year: 1999
  ident: e_1_2_6_35_1
  article-title: Transcriptional organization of the erythromycin biosynthetic gene cluster of Saccharopolyspoa erythraea
  publication-title: J Bacteriol
  doi: 10.1128/JB.181.22.7098-7106.1999
– ident: e_1_2_6_45_1
  doi: 10.1016/S0378-1119(98)00210-8
– ident: e_1_2_6_5_1
  doi: 10.1016/S1074-5521(99)80113-6
SSID ssj0013063
Score 2.0014234
Snippet Summary Control of tylosin production in Streptomyces fradiae features interplay between a repressor, TylQ, and an activator, TylS, during regulation of tylR....
Control of tylosin production in Streptomyces fradiae features interplay between a repressor, TylQ, and an activator, TylS, during regulation of tylR . The...
Control of tylosin production in Streptomyces fradiae features interplay between a repressor, TylQ, and an activator, TylS, during regulation of tylR. The...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1326
SubjectTerms Bacterial Proteins - genetics
Bacterial Proteins - physiology
Biosynthesis
Fermentation
Gene Expression Regulation, Bacterial
Genes, Bacterial
Genes, Regulator
Mutagenesis, Insertional
Mutation
Polyketide Synthases - genetics
Polyketide Synthases - physiology
Reverse Transcriptase Polymerase Chain Reaction
RNA, Bacterial - analysis
RNA, Messenger - analysis
Streptomyces - genetics
Streptomyces - metabolism
Streptomyces fradiae
Time Factors
Transcription, Genetic
Tylosin - analysis
Tylosin - biosynthesis
Title Positive control of tylosin biosynthesis: pivotal role of TylR
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2958.2004.04347.x
https://www.ncbi.nlm.nih.gov/pubmed/15554972
https://www.proquest.com/docview/196508618
https://www.proquest.com/docview/17531971
https://www.proquest.com/docview/20222114
https://www.proquest.com/docview/67093894
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFA4iCL54v8zL7IOvHUubtIkPgojDCxMRhb2VpElgOFqxmzh_vee03XReQMSHQtuclNy-5DvNyTmEHGqJe2MAJMV06jPnqC9dqvyUcZEyaUIa4AHn7nV0fs8ue7xX2z_hWZjKP8T0hxsio5yvEeBKF7MgLy20JBelmtdqs5DFLeSTmID86DZ431Cog6pB0fxQBL1Zo55vPzS7Un2hn7NstlyOOsvkYVKRygrloTUa6lb6-snH4__UdIUs1azVO6mG2SqZs9kaWajiWI7XyfFNafr1bL3a8t3LnTccD-Bt5ul-Xowz4JlFvzjyHvvPOfB9D60aUepuPLjdIPeds7vTc78OzIBdiJ4dbOCEE4yqNIqdYXEgLDxZBbqkCYU2oYpYbNtWOxNpITk3kqfcIBkymrpwk8xneWa3iaedkEbbNtMGFEVGpVUKROBiYWi5bpB40glJWnstx-AZg-SD9gKtk2DrYExNlpStk7w0CJ3mfKw8d_wiz-6kn5May0WCPhdB8aOiQQ6mqQBC3FlRmc1HIBLjVBbTnyUCVKxB9_xZAh3pAXsEia1qgL2XmgPnk3HQIFE5TH5dnaTbvcC7nb9m3CWLE8eWbbpH5odPI7sPJGyomwCvi6tmCbI3eXkjCw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED9KS9letnWfWbvWD3t1iGzJlvZQKKUl7ZoySgp5E5YlQWiwy5KUZX_97mQnbbYVytiDwR8no6-Tfiedfgfw2SjaG0NFKrgpY-49i5Uvi7jkQpZc2ZQldMB5cJn1r_n5SIzacEB0Fqbhh1gtuJFmhPGaFJwWpNe1PLhoKSGDndft8ZTnXQSUWxTgO9hXV8n9lkIbVg0zF6cyGa279fz1T-tz1R8AdB3Phgnp9CVMlkVp_FBuuvOZ6ZY_f2N5_E9lfQUvWuAaHTU9bQc2XPUatptQlos3cPgteH_duah1fo9qH80WE3xbRWZcTxcVQs3pePoluh3f1Qj5I3JsJKnhYnL1Fq5PT4bH_biNzUCtSOQOLvHSS86KMsu95XkiHT65As1Jm0pj0yLjues5421mpBLCKlEKS3jIGubTd7BZ1ZX7AJHxUlnjetxYtBU5U64oUAQvnqZOmA7ky1bQZUtcTvEzJvqBAYO1o6l2KKwm16F29I8OsFXK24a84wlpdpcNrVt1nmqiXUTbj8kOHKy-oh7S5kpRuXqOIjmNZjl7XCIh2xrNz8cliEsPASRKvG962H2uBcI-lScdyEI_eXJx9GBwRncf_zXhATzrDwcX-uLs8usuPF_yXPbYHmzOvs_dJ8RkM7MfdO0X0OwmLQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swED8hJqa9sLEvOjbIw15TxYmd2HuYNA0qYCtCCKS-WXFsSxVVUq0tovz1u0vSQhlICO0hUj7OkT_u4t_F598BfDWK1sbQkHJuipB7z0LlizwsuJAFVzZhMW1w7p-khxf8eCAGbfwT7YVp-CGWP9zIMurvNRn42PpVI68jtJSQtZvXjXjCsy7iyRc8jSRp-P5ZfLui0GZVw7qFiYwHq1E9D75pdar6B3-uwtl6Puq9hstFS5owlMvubGq6xc09ksf_09Q3sNnC1uBHo2dbsObKt7DRJLKcv4Pvp3Xs15UL2tD3oPLBdD7Cu2VghtVkXiLQnAwn34Lx8KpCwB9QWCNJnc9HZ-_hondw_vMwbDMz0BgStYOLvfSSs7xIM295FkuHVy5HZ9Im0tgkT3nmIme8TY1UQlglCmEJDVnDfPIB1suqdNsQGC-VNS7ixqKnyJlyeY4iePAkccJ0IFsMgi5a2nLKnjHSd9wX7B1NvUNJNbmue0dfd4AtS44b6o4nlNlZjLNujXmiiXQRPT8mO7C3fIpWSEsreemqGYpk9C3L2OMSMXnW6Hw-LkFMeggfUeJjo2C3tRYI-lQWdyCt1eTJzdH9_hGdfXpuwT14ebrf07-PTn7twKsFyWXEPsP69M_MfUFANjW7taX9BUoeJOU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Positive+control+of+tylosin+biosynthesis%3A+pivotal+role+of+TylR&rft.jtitle=Molecular+microbiology&rft.au=Stratigopoulos%2C+George&rft.au=Bate%2C+Neil&rft.au=Cundliffe%2C+Eric&rft.date=2004-12-01&rft.issn=0950-382X&rft.volume=54&rft.issue=5&rft.spage=1326&rft_id=info:doi/10.1111%2Fj.1365-2958.2004.04347.x&rft_id=info%3Apmid%2F15554972&rft.externalDocID=15554972
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-382X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-382X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-382X&client=summon