Positive control of tylosin biosynthesis: pivotal role of TylR
Summary Control of tylosin production in Streptomyces fradiae features interplay between a repressor, TylQ, and an activator, TylS, during regulation of tylR. The latter encodes a pathway‐specific activator that controls most of the tylosin‐biosynthetic (tyl) genes that are subject to regulation. Th...
Saved in:
Published in | Molecular microbiology Vol. 54; no. 5; pp. 1326 - 1334 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.12.2004
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Control of tylosin production in Streptomyces fradiae features interplay between a repressor, TylQ, and an activator, TylS, during regulation of tylR. The latter encodes a pathway‐specific activator that controls most of the tylosin‐biosynthetic (tyl) genes that are subject to regulation. This was established by targeted gene disruption applied separately to tylR and tylS together with transcript analysis involving reverse transcription polymerase chain reaction (RT‐PCR). TylR controls multiple genes that encode the synthesis or addition of all three tylosin sugars, plus polyketide ring oxidation, and at least one of the polyketide synthase (PKS) megagenes, tylGI. (Expression of a few tyl genes, plus the resistance determinants tlrB and tlrD, together with some ancillary or unassigned genes, is not apparently regulated during fermentation, consistent with constitutive expression.) In contrast, the only gene known for sure to be directly controlled by TylS is tylR, and there are very few additional candidates. These include the mycinose‐biosynthetic gene, tylJ, and two previously unassigned genes, ORF12* (tylU) plus ORF11* (tylV). TylS also controls the PKS genes [tylGIII‐tylGIV‐tylGV] although not in obligatory fashion. These genes can be transcribed (i.e. tylosin can be produced) in a tylS‐KO strain by forcing overexpression of tylR using a foreign promoter. We therefore suspect that TylS might control the PKS genes indirectly, although this remains to be established unequivocally. Conceivably, the direct effects of TylS are exerted exclusively on other regulators. Tylosin production levels were elevated when tylS or (especially) tylR was overexpressed in S. fradiae wild‐type and yield increments of industrial significance were generated by similar manipulation of an enhanced production strain. |
---|---|
AbstractList | Control of tylosin production in Streptomyces fradiae features interplay between a repressor, TylQ, and an activator, TylS, during regulation of tylR. The latter encodes a pathway-specific activator that controls most of the tylosin-biosynthetic (tyl) genes that are subject to regulation. This was established by targeted gene disruption applied separately to tylR and tylS together with transcript analysis involving reverse transcription polymerase chain reaction (RT-PCR). TylR controls multiple genes that encode the synthesis or addition of all three tylosin sugars, plus polyketide ring oxidation, and at least one of the polyketide synthase (PKS) megagenes, tylGI. (Expression of a few tyl genes, plus the resistance determinants tlrB and tlrD, together with some ancillary or unassigned genes, is not apparently regulated during fermentation, consistent with constitutive expression.) In contrast, the only gene known for sure to be directly controlled by TylS is tylR, and there are very few additional candidates. These include the mycinose-biosynthetic gene, tylJ, and two previously unassigned genes, ORF12* (tylU) plus ORF11* (tylV). TylS also controls the PKS genes [tylGIII-tylGIV-tylGV] although not in obligatory fashion. These genes can be transcribed (i.e. tylosin can be produced) in a tylS-KO strain by forcing overexpression of tylR using a foreign promoter. We therefore suspect that TylS might control the PKS genes indirectly, although this remains to be established unequivocally. Conceivably, the direct effects of TylS are exerted exclusively on other regulators. Tylosin production levels were elevated when tylS or (especially) tylR was overexpressed in S. fradiae wild-type and yield increments of industrial significance were generated by similar manipulation of an enhanced production strain. Summary Control of tylosin production in Streptomyces fradiae features interplay between a repressor, TylQ, and an activator, TylS, during regulation of tylR. The latter encodes a pathway‐specific activator that controls most of the tylosin‐biosynthetic (tyl) genes that are subject to regulation. This was established by targeted gene disruption applied separately to tylR and tylS together with transcript analysis involving reverse transcription polymerase chain reaction (RT‐PCR). TylR controls multiple genes that encode the synthesis or addition of all three tylosin sugars, plus polyketide ring oxidation, and at least one of the polyketide synthase (PKS) megagenes, tylGI. (Expression of a few tyl genes, plus the resistance determinants tlrB and tlrD, together with some ancillary or unassigned genes, is not apparently regulated during fermentation, consistent with constitutive expression.) In contrast, the only gene known for sure to be directly controlled by TylS is tylR, and there are very few additional candidates. These include the mycinose‐biosynthetic gene, tylJ, and two previously unassigned genes, ORF12* (tylU) plus ORF11* (tylV). TylS also controls the PKS genes [tylGIII‐tylGIV‐tylGV] although not in obligatory fashion. These genes can be transcribed (i.e. tylosin can be produced) in a tylS‐KO strain by forcing overexpression of tylR using a foreign promoter. We therefore suspect that TylS might control the PKS genes indirectly, although this remains to be established unequivocally. Conceivably, the direct effects of TylS are exerted exclusively on other regulators. Tylosin production levels were elevated when tylS or (especially) tylR was overexpressed in S. fradiae wild‐type and yield increments of industrial significance were generated by similar manipulation of an enhanced production strain. Control of tylosin production in Streptomyces fradiae features interplay between a repressor, TylQ, and an activator, TylS, during regulation of tylR. The latter encodes a pathway-specific activator that controls most of the tylosin-biosynthetic (tyl) genes that are subject to regulation. This was established by targeted gene disruption applied separately to tylR and tylS together with transcript analysis involving reverse transcription polymerase chain reaction (RT-PCR). TylR controls multiple genes that encode the synthesis or addition of all three tylosin sugars, plus polyketide ring oxidation, and at least one of the polyketide synthase (PKS) megagenes, tylGI. (Expression of a few tyl genes, plus the resistance determinants tlrB and tlrD, together with some ancillary or unassigned genes, is not apparently regulated during fermentation, consistent with constitutive expression.) In contrast, the only gene known for sure to be directly controlled by TylS is tylR, and there are very few additional candidates. These include the mycinose-biosynthetic gene, tylJ, and two previously unassigned genes, ORF12* (tylU) plus ORF11* (tylV). TylS also controls the PKS genes [tylGIII-tylGIV-tylGV] although not in obligatory fashion. These genes can be transcribed (i.e. tylosin can be produced) in a tylS-KO strain by forcing overexpression of tylR using a foreign promoter. We therefore suspect that TylS might control the PKS genes indirectly, although this remains to be established unequivocally. Conceivably, the direct effects of TylS are exerted exclusively on other regulators. Tylosin production levels were elevated when tylS or (especially) tylR was overexpressed in S. fradiae wild-type and yield increments of industrial significance were generated by similar manipulation of an enhanced production strain.Control of tylosin production in Streptomyces fradiae features interplay between a repressor, TylQ, and an activator, TylS, during regulation of tylR. The latter encodes a pathway-specific activator that controls most of the tylosin-biosynthetic (tyl) genes that are subject to regulation. This was established by targeted gene disruption applied separately to tylR and tylS together with transcript analysis involving reverse transcription polymerase chain reaction (RT-PCR). TylR controls multiple genes that encode the synthesis or addition of all three tylosin sugars, plus polyketide ring oxidation, and at least one of the polyketide synthase (PKS) megagenes, tylGI. (Expression of a few tyl genes, plus the resistance determinants tlrB and tlrD, together with some ancillary or unassigned genes, is not apparently regulated during fermentation, consistent with constitutive expression.) In contrast, the only gene known for sure to be directly controlled by TylS is tylR, and there are very few additional candidates. These include the mycinose-biosynthetic gene, tylJ, and two previously unassigned genes, ORF12* (tylU) plus ORF11* (tylV). TylS also controls the PKS genes [tylGIII-tylGIV-tylGV] although not in obligatory fashion. These genes can be transcribed (i.e. tylosin can be produced) in a tylS-KO strain by forcing overexpression of tylR using a foreign promoter. We therefore suspect that TylS might control the PKS genes indirectly, although this remains to be established unequivocally. Conceivably, the direct effects of TylS are exerted exclusively on other regulators. Tylosin production levels were elevated when tylS or (especially) tylR was overexpressed in S. fradiae wild-type and yield increments of industrial significance were generated by similar manipulation of an enhanced production strain. Control of tylosin production in Streptomyces fradiae features interplay between a repressor, TylQ, and an activator, TylS, during regulation of tylR . The latter encodes a pathway‐specific activator that controls most of the tylosin‐biosynthetic ( tyl ) genes that are subject to regulation. This was established by targeted gene disruption applied separately to tylR and tylS together with transcript analysis involving reverse transcription polymerase chain reaction (RT‐PCR). TylR controls multiple genes that encode the synthesis or addition of all three tylosin sugars, plus polyketide ring oxidation, and at least one of the polyketide synthase (PKS) megagenes, tylGI . (Expression of a few tyl genes, plus the resistance determinants tlrB and tlrD , together with some ancillary or unassigned genes, is not apparently regulated during fermentation, consistent with constitutive expression.) In contrast, the only gene known for sure to be directly controlled by TylS is tylR , and there are very few additional candidates. These include the mycinose‐biosynthetic gene, tylJ , and two previously unassigned genes, ORF12* ( tylU ) plus ORF11* ( tylV ). TylS also controls the PKS genes [ tylGIII‐tylGIV‐tylGV ] although not in obligatory fashion. These genes can be transcribed (i.e. tylosin can be produced) in a tylS ‐KO strain by forcing overexpression of tylR using a foreign promoter. We therefore suspect that TylS might control the PKS genes indirectly, although this remains to be established unequivocally. Conceivably, the direct effects of TylS are exerted exclusively on other regulators. Tylosin production levels were elevated when tylS or (especially) tylR was overexpressed in S. fradiae wild‐type and yield increments of industrial significance were generated by similar manipulation of an enhanced production strain. |
Author | Bate, Neil Cundliffe, Eric Stratigopoulos, George |
Author_xml | – sequence: 1 givenname: George surname: Stratigopoulos fullname: Stratigopoulos, George – sequence: 2 givenname: Neil surname: Bate fullname: Bate, Neil – sequence: 3 givenname: Eric surname: Cundliffe fullname: Cundliffe, Eric |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15554972$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctKxDAUhoMoOl5eQYoLd625NomgIOINHBRRcBfSNsUMmWZsOqN9e1PHC7hxsklO8p0_JN82WG98YwBIEMxQHEeTDJGcpVgykWEIaQYpoTx7XwOjn4N1MIKSwZQI_LwFtkOYQIgIzMkm2EKMMSo5HoHTex9sZxcmKX3Ttd4lvk663sXdJimsD33TvZhgw3EyswvfaZdEyAzUY-8edsFGrV0we1_zDni6vHg8v05v765uzs9u05IyylNscC1qQZEuc15XlGNhYmU0grwioqiIzik30BR1lRdCMlZJVrKKSEmqAtVkBxwuc2etf52b0KmpDaVxTjfGz4PKOZRESPoviCHGGKH_QcQZQZKjCB78ASd-3jbxtQrJnEGRIxGh_S9oXkxNpWatneq2V98fHQGxBMrWh9Ca-heBanCqJmpQpwZ1anCqPp2q99h6-qe1tJ3u7OBLW7dKwMky4M060698sRqPb4YV-QBSE7kz |
CitedBy_id | crossref_primary_10_1007_s10295_013_1370_7 crossref_primary_10_1016_j_synbio_2017_08_005 crossref_primary_10_1016_j_ymben_2008_07_001 crossref_primary_10_1016_j_ymben_2018_09_010 crossref_primary_10_3389_fmicb_2024_1368809 crossref_primary_10_1007_s00253_011_3145_2 crossref_primary_10_1007_s10295_015_1682_x crossref_primary_10_1007_s12275_009_0014_0 crossref_primary_10_1099_mic_0_2006_002170_0 crossref_primary_10_1007_s41745_017_0025_5 crossref_primary_10_1128_JB_01383_07 crossref_primary_10_1128_JB_00712_10 crossref_primary_10_1039_c3np70060g crossref_primary_10_1099_mic_0_047795_0 crossref_primary_10_1099_mic_0_2007_009746_0 crossref_primary_10_1039_C6NP00017G crossref_primary_10_1128_JB_00055_07 crossref_primary_10_1186_1475_2859_12_126 crossref_primary_10_1016_j_mib_2005_02_016 crossref_primary_10_1007_s10295_006_0083_6 crossref_primary_10_1016_j_synbio_2023_07_002 crossref_primary_10_1007_s10295_017_1913_4 crossref_primary_10_1111_j_1365_2958_2006_05541_x crossref_primary_10_1111_j_1365_2958_2006_05338_x crossref_primary_10_1007_s10295_016_1845_4 crossref_primary_10_1016_j_jbiotec_2008_12_013 crossref_primary_10_1186_s12934_019_1184_z crossref_primary_10_1038_nrmicro1287 crossref_primary_10_1039_c1np00003a crossref_primary_10_1186_1471_2180_9_14 crossref_primary_10_1016_j_talanta_2012_12_008 crossref_primary_10_1186_s13036_021_00267_4 crossref_primary_10_1371_journal_pone_0081064 crossref_primary_10_1007_s10295_010_0934_z crossref_primary_10_1007_BF02932090 crossref_primary_10_4014_jmb_2210_10023 crossref_primary_10_1007_s00253_024_13396_9 crossref_primary_10_1111_mmi_13004 crossref_primary_10_1016_j_mib_2010_02_008 crossref_primary_10_3390_antibiotics11070938 crossref_primary_10_1007_s00253_013_5317_8 crossref_primary_10_1111_1751_7915_13909 crossref_primary_10_1099_mic_0_28019_0 crossref_primary_10_1128_JB_00129_07 |
Cites_doi | 10.1016/S1097-2765(02)00570-1 10.1038/sj.jim.7000234 10.1099/00221287-146-1-139 10.1111/j.1365-2958.1994.tb00428.x 10.1046/j.1365-2958.2002.03044.x 10.1111/j.1365-2958.1992.tb01459.x 10.1073/pnas.94.11.5544 10.1016/S1074-5521(99)80074-X 10.1074/jbc.270.20.12319 10.1146/annurev.mi.42.100188.002555 10.1038/sj.jim.7000160 10.1046/j.1365-2958.1999.01579.x 10.1016/S0378-1119(97)00014-0 10.1128/jb.177.21.6111-6117.1995 10.1074/jbc.M300858200 10.1271/bbb.57.2020 10.1128/jb.177.5.1208-1215.1995 10.1128/JB.164.1.85-94.1985 10.1111/j.1365-2958.1994.tb02187.x 10.1016/0378-1119(92)90627-2 10.1128/jb.172.1.326-333.1990 10.1111/j.1365-2958.1993.tb01174.x 10.1128/jb.179.22.6986-6993.1997 10.1038/nbt1183-784 10.1016/0092-8674(91)90120-N 10.1099/13500872-142-6-1335 10.1046/j.1365-2958.1997.5421903.x 10.1128/jb.174.1.144-154.1992 10.1002/bit.260220903 10.1016/S1074-5521(01)00095-3 10.7164/antibiotics.54.642 10.1128/AAC.21.5.758 10.1128/jb.177.21.6083-6092.1995 10.1038/sj.jim.2900707 10.1073/pnas.85.21.7882 10.1046/j.1365-2958.2002.02756.x 10.3209/saj.13_68 10.1073/pnas.90.22.10866 10.1128/JB.181.22.7098-7106.1999 10.1016/S0378-1119(98)00210-8 10.1016/S1074-5521(99)80113-6 |
ContentType | Journal Article |
Copyright | Copyright Blackwell Scientific Publications Ltd. Dec 2004 |
Copyright_xml | – notice: Copyright Blackwell Scientific Publications Ltd. Dec 2004 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7QO 7X8 |
DOI | 10.1111/j.1365-2958.2004.04347.x |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Biotechnology Research Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Biotechnology Research Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Biotechnology Research Abstracts CrossRef Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1365-2958 |
EndPage | 1334 |
ExternalDocumentID | 757937201 15554972 10_1111_j_1365_2958_2004_04347_x MMI4347 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ .3N .55 .GA .GJ .HR .Y3 05W 0R~ 10A 123 1OB 1OC 24P 29M 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAKAS AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZCM ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRSTM E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FIJ FSRTE FZ0 G-S G.N GODZA GX1 H.T H.X HF~ HGLYW HH5 HVGLF HZI HZ~ IH2 IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBC OBS OEB OIG OK1 OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TR2 UB1 V8K W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WOW WQJ WRC WUP WXSBR WYISQ X7M XG1 Y6R YFH YUY ZGI ZXP ZY4 ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 H94 M7N P64 RC3 7QO 7X8 |
ID | FETCH-LOGICAL-c4547-2e2f8f841ac67fd4728e841ea107d38bd3a647e0ebfd6b8955d95c5d3993db1f3 |
IEDL.DBID | DR2 |
ISSN | 0950-382X |
IngestDate | Fri Jul 11 09:15:35 EDT 2025 Fri Jul 11 11:37:30 EDT 2025 Fri Jul 11 13:03:45 EDT 2025 Fri Jul 25 10:46:34 EDT 2025 Wed Feb 19 01:38:06 EST 2025 Tue Jul 01 00:47:15 EDT 2025 Thu Apr 24 22:53:59 EDT 2025 Wed Jan 22 16:58:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4547-2e2f8f841ac67fd4728e841ea107d38bd3a647e0ebfd6b8955d95c5d3993db1f3 |
Notes | Present address: Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA. ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 ObjectType-Feature-2 |
PMID | 15554972 |
PQID | 196508618 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_67093894 proquest_miscellaneous_20222114 proquest_miscellaneous_17531971 proquest_journals_196508618 pubmed_primary_15554972 crossref_primary_10_1111_j_1365_2958_2004_04347_x crossref_citationtrail_10_1111_j_1365_2958_2004_04347_x wiley_primary_10_1111_j_1365_2958_2004_04347_x_MMI4347 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2004 |
PublicationDateYYYYMMDD | 2004-12-01 |
PublicationDate_xml | – month: 12 year: 2004 text: December 2004 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: Oxford |
PublicationTitle | Molecular microbiology |
PublicationTitleAlternate | Mol Microbiol |
PublicationYear | 2004 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 1993; 7 1997; 179 1983; 1 1997; 25 2002; 10 1999; 23 1998; 214 2001; 27 1993; 90 1996; 142 1995; 177 1980; XXII 1999; 6 2003; 278 1985; 164 1995; 270 1997; 7 1992; 6 1993; 57 1997; 94 2000; 146 1992; 174 1991; 66 2002; 45 2002; 43 1982; 21 1999; 181 2002a; 9 1992; 116 1999; 13 1986 1999; 34 1994; 14 1985 1994; 13 1997; 190 1988; 85 1988; 42 1990; 172 1989 2002b; 28 2001; 54 Sambrook J. (e_1_2_6_36_1) 1989 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 Hopwood D.A. (e_1_2_6_23_1) 1986 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_43_1 e_1_2_6_21_1 Okamoto S. (e_1_2_6_32_1) 1995; 270 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 Reeves A.R. (e_1_2_6_35_1) 1999; 181 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_2_1 e_1_2_6_22_1 Chater K.F. (e_1_2_6_15_1) 1997 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_26_1 |
References_xml | – year: 1985 – volume: 6 start-page: 287 year: 1999 end-page: 292 article-title: Impact of thioesterase activity on tylosin biosynthesis in publication-title: Chem Biol – volume: 9 start-page: 71 year: 2002a end-page: 78 article-title: Expression analysis of the tylosin‐biosynthetic gene cluster: pivotal regulatory role of the product publication-title: Chem Biol – volume: 23 start-page: 118 year: 1999 end-page: 122 article-title: The mycinose‐biosynthetic genes of , producer of tylosin publication-title: J Ind Microbiol Biotechnol – volume: 116 start-page: 43 year: 1992 end-page: 49 article-title: Plasmid cloning vectors for the conjugal transfer of DNA from to spp publication-title: Gene – volume: 6 start-page: 2797 year: 1992 end-page: 2804 article-title: Transcriptional regulation of the transcriptional activator gene accounts for growth‐phase‐dependent production of the antibiotic undecylprodigiosin in A3(2) publication-title: Mol Microbiol – volume: 146 start-page: 139 year: 2000 end-page: 146 article-title: The mycarose‐biosynthetic genes of , producer of tylosin publication-title: Microbiology – volume: 1 start-page: 784 year: 1983 end-page: 791 article-title: A broad host range mobilisation system for genetic engineering: transposon mutagenesis in Gram‐negative bacteria publication-title: Bio/Technology – volume: 214 start-page: 95 year: 1998 end-page: 100 article-title: Characterization and targeted disruption of a glycosyltransferase gene in the tylosin producer, publication-title: Gene – volume: 164 start-page: 85 year: 1985 end-page: 94 article-title: Self‐cloning in of an gene cluster for streptomycin biosynthesis and streptomycin resistance publication-title: J Bacteriol – volume: 43 start-page: 449 year: 2002 end-page: 458 article-title: Differential roles of two SARP‐encoding regulatory genes during tylosin biosynthesis publication-title: Mol Microbiol – volume: 85 start-page: 7882 year: 1988 end-page: 7886 article-title: Cleavage of the cII protein of phage lambda by purified HflA protease; control of the switch between lysis and lysogeny publication-title: Proc Natl Acad Sci USA – year: 1989 – volume: 54 start-page: 642 year: 2001 end-page: 649 article-title: Influence of ancillary genes, encoding aspects of methionine metabolism, on tylosin biosynthesis in publication-title: J Antibiot – volume: 7 start-page: 59 year: 1997 end-page: 105 – volume: 66 start-page: 769 year: 1991 end-page: 780 article-title: The cluster contains regulatory and antibiotic export genes, direct targets for translational control by the tRNA gene of publication-title: Cell – volume: 174 start-page: 144 year: 1992 end-page: 154 article-title: Regulation of secondary metabolism in spp. and overproduction of daunorubicin in publication-title: J Bacteriol – volume: 42 start-page: 547 year: 1988 end-page: 574 article-title: Genetics of and tylosin biosynthesis publication-title: Annu Rev Microbiol – volume: 21 start-page: 758 year: 1982 end-page: 763 article-title: ‐adenosyl‐ l‐methionine: macrocin ‐methyltransferase activities in a series of mutants that produce different levels of the macrolide antibiotic tylosin publication-title: Antimicrob Agents Chemother – volume: 142 start-page: 1335 year: 1996 end-page: 1344 article-title: The regulation of antibiotic production in A3(2) publication-title: Microbiology – volume: 34 start-page: 102 year: 1999 end-page: 111 article-title: The A‐factor regulatory cascade leading to streptomycin biosynthesis in : identification of a target gene of the A‐factor receptor publication-title: Mol Microbiol – volume: 28 start-page: 219 year: 2002b end-page: 224 article-title: Inactivation of a transcriptional repressor during empirical improvement of the tylosin producer, publication-title: J Ind Microbiol Biotechnol – volume: 179 start-page: 6986 year: 1997 end-page: 6993 article-title: Butyrolactone autoregulator receptor protein (BarA) as a transcriptional regulator in publication-title: J Bacteriol – volume: 7 start-page: 837 year: 1993 end-page: 845 article-title: Stationary phase production of the antibiotic actinorhodin in A3(2) is transcriptionally regulated publication-title: Mol Microbiol – volume: 13 start-page: 68 year: 1999 end-page: 75 article-title: Organisation and control of the tylosin‐biosynthetic genes of publication-title: Actinomycetologica – start-page: 251 year: 1986 end-page: 276 – volume: 13 start-page: 349 year: 1994 end-page: 355 article-title: Analysis of five tylosin biosynthetic genes from the region of the genome publication-title: Mol Microbiol – volume: 10 start-page: 117 year: 2002 end-page: 128 article-title: The structures of four macrolide antibiotics bound to the large ribosomal subunit publication-title: Mol Cell – volume: 94 start-page: 5544 year: 1997 end-page: 5549 article-title: Host regulation of lysogenic decision in bacteriophage λ; transmembrane modulation of FtsH (HflB), the cII degrading protease, by HflKC (HflA) publication-title: Proc Natl Acad Sci USA – volume: 177 start-page: 1208 year: 1995 end-page: 1215 article-title: Functional characterization and transcriptional analysis of the locus, which controls daunorubicin biosynthesis in publication-title: J Bacteriol – volume: 27 start-page: 46 year: 2001 end-page: 51 article-title: Influence of dimethylsulfoxide on tylosin production in publication-title: J Ind Microbiol Biotechnol – volume: 190 start-page: 315 year: 1997 end-page: 317 article-title: Antibiotic resistance cassettes derived from the Ω interposon for use in and publication-title: Gene – volume: 181 start-page: 7098 year: 1999 end-page: 7106 article-title: Transcriptional organization of the erythromycin biosynthetic gene cluster of publication-title: J Bacteriol – volume: 278 start-page: 26410 year: 2003 end-page: 26417 article-title: Biosynthesis of dTDP‐3‐acetamido‐3,6‐dideoxy‐α‐ d‐galactose in L420–91 publication-title: J Biol Chem – volume: 6 start-page: 617 year: 1999 end-page: 624 article-title: Multiple regulatory genes in the tylosin‐biosynthetic cluster of publication-title: Chem Biol – volume: 14 start-page: 533 year: 1994 end-page: 545 article-title: The mRNA for the 23S rRNA methylase encoded by the gene of is translated in the absence of a conventional ribosome‐binding site publication-title: Mol Microbiol – volume: 270 start-page: 12319 year: 1995 end-page: 12326 article-title: Virginiae butanolide binding protein from publication-title: J Biol Chem – volume: 45 start-page: 735 year: 2002 end-page: 744 article-title: Regulation of tylosin production and morphological differentiation in by TylP, a deduced γ‐butyrolactone receptor publication-title: Mol Microbiol – volume: XXII start-page: 1785 year: 1980 end-page: 1804 article-title: Production of the macrolide antibiotic tylosin in batch and chemostat cultures publication-title: Biotechnol Bioeng – volume: 172 start-page: 326 year: 1990 end-page: 333 article-title: Nucleotide sequence and transcriptional analysis of the locus of A3(2) publication-title: J Bacteriol – volume: 25 start-page: 1177 year: 1997 end-page: 1184 article-title: A novel family of proteins that regulates antibiotic production in streptomycetes appears to contain an OmpR‐like DNA‐binding fold publication-title: Mol Microbiol – volume: 90 start-page: 10866 year: 1993 end-page: 10870 article-title: The locus encodes a putative GTP‐binding protein and two membrane proteins, one of which contains a protease‐like domain publication-title: Proc Natl Acad Sci USA – volume: 57 start-page: 2020 year: 1993 end-page: 2025 article-title: Cloning and nucleotide sequences of two genes involved in the 4″‐ ‐acylation of macrolide antibiotics from publication-title: Biosci Biotechnol Biochem – volume: 177 start-page: 6083 year: 1995 end-page: 6092 article-title: Cloning and characterization of the A‐factor receptor gene from publication-title: J Bacteriol – volume: 177 start-page: 6111 year: 1995 end-page: 6117 article-title: Regulation of jadomycin B production in ISP5230: involvement of a repressor gene, jadR publication-title: J Bacteriol – start-page: 251 volume-title: Regulation of Gene Expression – 25 Years On year: 1986 ident: e_1_2_6_23_1 – ident: e_1_2_6_21_1 doi: 10.1016/S1097-2765(02)00570-1 – ident: e_1_2_6_40_1 doi: 10.1038/sj.jim.7000234 – ident: e_1_2_6_6_1 doi: 10.1099/00221287-146-1-139 – ident: e_1_2_6_27_1 doi: 10.1111/j.1365-2958.1994.tb00428.x – ident: e_1_2_6_41_1 doi: 10.1046/j.1365-2958.2002.03044.x – ident: e_1_2_6_43_1 doi: 10.1111/j.1365-2958.1992.tb01459.x – ident: e_1_2_6_24_1 doi: 10.1073/pnas.94.11.5544 – ident: e_1_2_6_13_1 doi: 10.1016/S1074-5521(99)80074-X – volume: 270 start-page: 12319 year: 1995 ident: e_1_2_6_32_1 article-title: Virginiae butanolide binding protein from Streptomyces virginiae publication-title: J Biol Chem doi: 10.1074/jbc.270.20.12319 – ident: e_1_2_6_3_1 doi: 10.1146/annurev.mi.42.100188.002555 – ident: e_1_2_6_12_1 doi: 10.1038/sj.jim.7000160 – ident: e_1_2_6_22_1 – ident: e_1_2_6_30_1 doi: 10.1046/j.1365-2958.1999.01579.x – ident: e_1_2_6_11_1 doi: 10.1016/S0378-1119(97)00014-0 – volume-title: Molecular Cloning. A Laboratory Manual year: 1989 ident: e_1_2_6_36_1 – ident: e_1_2_6_46_1 doi: 10.1128/jb.177.21.6111-6117.1995 – ident: e_1_2_6_34_1 doi: 10.1074/jbc.M300858200 – ident: e_1_2_6_2_1 doi: 10.1271/bbb.57.2020 – ident: e_1_2_6_26_1 doi: 10.1128/jb.177.5.1208-1215.1995 – ident: e_1_2_6_31_1 doi: 10.1128/JB.164.1.85-94.1985 – ident: e_1_2_6_9_1 doi: 10.1111/j.1365-2958.1994.tb02187.x – ident: e_1_2_6_10_1 doi: 10.1016/0378-1119(92)90627-2 – ident: e_1_2_6_28_1 doi: 10.1128/jb.172.1.326-333.1990 – ident: e_1_2_6_19_1 doi: 10.1111/j.1365-2958.1993.tb01174.x – ident: e_1_2_6_25_1 doi: 10.1128/jb.179.22.6986-6993.1997 – ident: e_1_2_6_38_1 doi: 10.1038/nbt1183-784 – ident: e_1_2_6_18_1 doi: 10.1016/0092-8674(91)90120-N – ident: e_1_2_6_8_1 doi: 10.1099/13500872-142-6-1335 – start-page: 59 volume-title: Biotechnology year: 1997 ident: e_1_2_6_15_1 – ident: e_1_2_6_44_1 doi: 10.1046/j.1365-2958.1997.5421903.x – ident: e_1_2_6_42_1 doi: 10.1128/jb.174.1.144-154.1992 – ident: e_1_2_6_20_1 doi: 10.1002/bit.260220903 – ident: e_1_2_6_39_1 doi: 10.1016/S1074-5521(01)00095-3 – ident: e_1_2_6_14_1 doi: 10.7164/antibiotics.54.642 – ident: e_1_2_6_37_1 doi: 10.1128/AAC.21.5.758 – ident: e_1_2_6_33_1 doi: 10.1128/jb.177.21.6083-6092.1995 – ident: e_1_2_6_4_1 doi: 10.1038/sj.jim.2900707 – ident: e_1_2_6_16_1 doi: 10.1073/pnas.85.21.7882 – ident: e_1_2_6_7_1 doi: 10.1046/j.1365-2958.2002.02756.x – ident: e_1_2_6_17_1 doi: 10.3209/saj.13_68 – ident: e_1_2_6_29_1 doi: 10.1073/pnas.90.22.10866 – volume: 181 start-page: 7098 year: 1999 ident: e_1_2_6_35_1 article-title: Transcriptional organization of the erythromycin biosynthetic gene cluster of Saccharopolyspoa erythraea publication-title: J Bacteriol doi: 10.1128/JB.181.22.7098-7106.1999 – ident: e_1_2_6_45_1 doi: 10.1016/S0378-1119(98)00210-8 – ident: e_1_2_6_5_1 doi: 10.1016/S1074-5521(99)80113-6 |
SSID | ssj0013063 |
Score | 2.0014234 |
Snippet | Summary
Control of tylosin production in Streptomyces fradiae features interplay between a repressor, TylQ, and an activator, TylS, during regulation of tylR.... Control of tylosin production in Streptomyces fradiae features interplay between a repressor, TylQ, and an activator, TylS, during regulation of tylR . The... Control of tylosin production in Streptomyces fradiae features interplay between a repressor, TylQ, and an activator, TylS, during regulation of tylR. The... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1326 |
SubjectTerms | Bacterial Proteins - genetics Bacterial Proteins - physiology Biosynthesis Fermentation Gene Expression Regulation, Bacterial Genes, Bacterial Genes, Regulator Mutagenesis, Insertional Mutation Polyketide Synthases - genetics Polyketide Synthases - physiology Reverse Transcriptase Polymerase Chain Reaction RNA, Bacterial - analysis RNA, Messenger - analysis Streptomyces - genetics Streptomyces - metabolism Streptomyces fradiae Time Factors Transcription, Genetic Tylosin - analysis Tylosin - biosynthesis |
Title | Positive control of tylosin biosynthesis: pivotal role of TylR |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2958.2004.04347.x https://www.ncbi.nlm.nih.gov/pubmed/15554972 https://www.proquest.com/docview/196508618 https://www.proquest.com/docview/17531971 https://www.proquest.com/docview/20222114 https://www.proquest.com/docview/67093894 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFA4iCL54v8zL7IOvHUubtIkPgojDCxMRhb2VpElgOFqxmzh_vee03XReQMSHQtuclNy-5DvNyTmEHGqJe2MAJMV06jPnqC9dqvyUcZEyaUIa4AHn7nV0fs8ue7xX2z_hWZjKP8T0hxsio5yvEeBKF7MgLy20JBelmtdqs5DFLeSTmID86DZ431Cog6pB0fxQBL1Zo55vPzS7Un2hn7NstlyOOsvkYVKRygrloTUa6lb6-snH4__UdIUs1azVO6mG2SqZs9kaWajiWI7XyfFNafr1bL3a8t3LnTccD-Bt5ul-Xowz4JlFvzjyHvvPOfB9D60aUepuPLjdIPeds7vTc78OzIBdiJ4dbOCEE4yqNIqdYXEgLDxZBbqkCYU2oYpYbNtWOxNpITk3kqfcIBkymrpwk8xneWa3iaedkEbbNtMGFEVGpVUKROBiYWi5bpB40glJWnstx-AZg-SD9gKtk2DrYExNlpStk7w0CJ3mfKw8d_wiz-6kn5May0WCPhdB8aOiQQ6mqQBC3FlRmc1HIBLjVBbTnyUCVKxB9_xZAh3pAXsEia1qgL2XmgPnk3HQIFE5TH5dnaTbvcC7nb9m3CWLE8eWbbpH5odPI7sPJGyomwCvi6tmCbI3eXkjCw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED9KS9letnWfWbvWD3t1iGzJlvZQKKUl7ZoySgp5E5YlQWiwy5KUZX_97mQnbbYVytiDwR8no6-Tfiedfgfw2SjaG0NFKrgpY-49i5Uvi7jkQpZc2ZQldMB5cJn1r_n5SIzacEB0Fqbhh1gtuJFmhPGaFJwWpNe1PLhoKSGDndft8ZTnXQSUWxTgO9hXV8n9lkIbVg0zF6cyGa279fz1T-tz1R8AdB3Phgnp9CVMlkVp_FBuuvOZ6ZY_f2N5_E9lfQUvWuAaHTU9bQc2XPUatptQlos3cPgteH_duah1fo9qH80WE3xbRWZcTxcVQs3pePoluh3f1Qj5I3JsJKnhYnL1Fq5PT4bH_biNzUCtSOQOLvHSS86KMsu95XkiHT65As1Jm0pj0yLjues5421mpBLCKlEKS3jIGubTd7BZ1ZX7AJHxUlnjetxYtBU5U64oUAQvnqZOmA7ky1bQZUtcTvEzJvqBAYO1o6l2KKwm16F29I8OsFXK24a84wlpdpcNrVt1nmqiXUTbj8kOHKy-oh7S5kpRuXqOIjmNZjl7XCIh2xrNz8cliEsPASRKvG962H2uBcI-lScdyEI_eXJx9GBwRncf_zXhATzrDwcX-uLs8usuPF_yXPbYHmzOvs_dJ8RkM7MfdO0X0OwmLQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swED8hJqa9sLEvOjbIw15TxYmd2HuYNA0qYCtCCKS-WXFsSxVVUq0tovz1u0vSQhlICO0hUj7OkT_u4t_F598BfDWK1sbQkHJuipB7z0LlizwsuJAFVzZhMW1w7p-khxf8eCAGbfwT7YVp-CGWP9zIMurvNRn42PpVI68jtJSQtZvXjXjCsy7iyRc8jSRp-P5ZfLui0GZVw7qFiYwHq1E9D75pdar6B3-uwtl6Puq9hstFS5owlMvubGq6xc09ksf_09Q3sNnC1uBHo2dbsObKt7DRJLKcv4Pvp3Xs15UL2tD3oPLBdD7Cu2VghtVkXiLQnAwn34Lx8KpCwB9QWCNJnc9HZ-_hondw_vMwbDMz0BgStYOLvfSSs7xIM295FkuHVy5HZ9Im0tgkT3nmIme8TY1UQlglCmEJDVnDfPIB1suqdNsQGC-VNS7ixqKnyJlyeY4iePAkccJ0IFsMgi5a2nLKnjHSd9wX7B1NvUNJNbmue0dfd4AtS44b6o4nlNlZjLNujXmiiXQRPT8mO7C3fIpWSEsreemqGYpk9C3L2OMSMXnW6Hw-LkFMeggfUeJjo2C3tRYI-lQWdyCt1eTJzdH9_hGdfXpuwT14ebrf07-PTn7twKsFyWXEPsP69M_MfUFANjW7taX9BUoeJOU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Positive+control+of+tylosin+biosynthesis%3A+pivotal+role+of+TylR&rft.jtitle=Molecular+microbiology&rft.au=Stratigopoulos%2C+George&rft.au=Bate%2C+Neil&rft.au=Cundliffe%2C+Eric&rft.date=2004-12-01&rft.issn=0950-382X&rft.volume=54&rft.issue=5&rft.spage=1326&rft_id=info:doi/10.1111%2Fj.1365-2958.2004.04347.x&rft_id=info%3Apmid%2F15554972&rft.externalDocID=15554972 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-382X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-382X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-382X&client=summon |