Applications of induced pluripotent stem cell technologies in spinal cord injury
Numerous basic research studies have suggested the potential efficacy of neural precursor cell (NPC) transplantation in spinal cord injury (SCI). However, in most such studies, the origin of the cells used was mainly fetal tissue or embryonic stem cells, both of which carry potential ethical concern...
Saved in:
Published in | Journal of neurochemistry Vol. 141; no. 6; pp. 848 - 860 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.06.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Numerous basic research studies have suggested the potential efficacy of neural precursor cell (NPC) transplantation in spinal cord injury (SCI). However, in most such studies, the origin of the cells used was mainly fetal tissue or embryonic stem cells, both of which carry potential ethical concerns with respect to clinical use. The development of induced pluripotent stem cells (iPSCs) opened a new path toward regenerative medicine for SCI. iPSCs can be generated from somatic cells by induction of transcription factors, and induced to differentiate into NPCs with characteristics of cells of the central nervous system. The beneficial effect of iPSC‐derived NPC transplantation has been reported from our group and others working in rodent and non‐human primate models. These promising results facilitate the application of iPSCs for clinical applications in SCI patients. However, iPSCs also have issues, such as genetic/epigenetic abnormalities and tumorigenesis because of the artificial induction method, that must be addressed prior to clinical use. The selection of somatic cells, generation of integration‐free iPSCs, and characterization of differentiated NPCs with thorough quality management are all needed to address these potential risks. To enhance the efficacy of the transplanted iPSC‐NPCs, especially at chronic phase of SCI, administration of a chondroitinase or semaphorin3A inhibitor represents a potentially important means of promoting axonal regeneration through the lesion site. The combined use of rehabilitation with such cell therapy approaches is also important, as repetitive training enhances neurite outgrowth of transplanted cells and strengthens neural circuits at central pattern generators. Our group has already evaluated clinical grade iPSC‐derived NPCs, and we look forward to initiating clinical testing as the next step toward determining whether this approach is safe and effective for clinical use.
This article is part of the mini review series “60th Anniversary of the Japanese Society for Neurochemistry”.
Since the development of induced pluripotent stem cells (iPSCs), we have demonstrated the efficacy of iPSC‐derived neural precursor cells (NPCs) in animal models of spinal cord injury (SCI), and challenged safety issues such as tumorigenicity. Moreover, we have advocated importance of combinatory therapy to enhance regeneration in SCI, especially at chronic phase. We are developing and characterizing clinical grade iPSC‐derived NPCs, and the application for SCI patients will start shortly.
This article is part of the mini review series “60th Anniversary of the Japanese Society for Neurochemistry”. |
---|---|
AbstractList | Numerous basic research studies have suggested the potential efficacy of neural precursor cell (NPC) transplantation in spinal cord injury (SCI). However, in most such studies, the origin of the cells used was mainly fetal tissue or embryonic stem cells, both of which carry potential ethical concerns with respect to clinical use. The development of induced pluripotent stem cells (iPSCs) opened a new path toward regenerative medicine for SCI. iPSCs can be generated from somatic cells by induction of transcription factors, and induced to differentiate into NPCs with characteristics of cells of the central nervous system. The beneficial effect of iPSC-derived NPC transplantation has been reported from our group and others working in rodent and non-human primate models. These promising results facilitate the application of iPSCs for clinical applications in SCI patients. However, iPSCs also have issues, such as genetic/epigenetic abnormalities and tumorigenesis because of the artificial induction method, that must be addressed prior to clinical use. The selection of somatic cells, generation of integration-free iPSCs, and characterization of differentiated NPCs with thorough quality management are all needed to address these potential risks. To enhance the efficacy of the transplanted iPSC-NPCs, especially at chronic phase of SCI, administration of a chondroitinase or semaphorin3A inhibitor represents a potentially important means of promoting axonal regeneration through the lesion site. The combined use of rehabilitation with such cell therapy approaches is also important, as repetitive training enhances neurite outgrowth of transplanted cells and strengthens neural circuits at central pattern generators. Our group has already evaluated clinical grade iPSC-derived NPCs, and we look forward to initiating clinical testing as the next step toward determining whether this approach is safe and effective for clinical use. This article is part of the mini review series "60th Anniversary of the Japanese Society for Neurochemistry". Numerous basic research studies have suggested the potential efficacy of neural precursor cell (NPC) transplantation in spinal cord injury (SCI). However, in most such studies, the origin of the cells used was mainly fetal tissue or embryonic stem cells, both of which carry potential ethical concerns with respect to clinical use. The development of induced pluripotent stem cells (iPSCs) opened a new path toward regenerative medicine for SCI. iPSCs can be generated from somatic cells by induction of transcription factors, and induced to differentiate into NPCs with characteristics of cells of the central nervous system. The beneficial effect of iPSC‐derived NPC transplantation has been reported from our group and others working in rodent and non‐human primate models. These promising results facilitate the application of iPSCs for clinical applications in SCI patients. However, iPSCs also have issues, such as genetic/epigenetic abnormalities and tumorigenesis because of the artificial induction method, that must be addressed prior to clinical use. The selection of somatic cells, generation of integration‐free iPSCs, and characterization of differentiated NPCs with thorough quality management are all needed to address these potential risks. To enhance the efficacy of the transplanted iPSC‐NPCs, especially at chronic phase of SCI, administration of a chondroitinase or semaphorin3A inhibitor represents a potentially important means of promoting axonal regeneration through the lesion site. The combined use of rehabilitation with such cell therapy approaches is also important, as repetitive training enhances neurite outgrowth of transplanted cells and strengthens neural circuits at central pattern generators. Our group has already evaluated clinical grade iPSC‐derived NPCs, and we look forward to initiating clinical testing as the next step toward determining whether this approach is safe and effective for clinical use. This article is part of the mini review series “60th Anniversary of the Japanese Society for Neurochemistry”. Since the development of induced pluripotent stem cells (iPSCs), we have demonstrated the efficacy of iPSC‐derived neural precursor cells (NPCs) in animal models of spinal cord injury (SCI), and challenged safety issues such as tumorigenicity. Moreover, we have advocated importance of combinatory therapy to enhance regeneration in SCI, especially at chronic phase. We are developing and characterizing clinical grade iPSC‐derived NPCs, and the application for SCI patients will start shortly. This article is part of the mini review series “60th Anniversary of the Japanese Society for Neurochemistry”. |
Author | Nagoshi, Narihito Okano, Hideyuki |
Author_xml | – sequence: 1 givenname: Narihito surname: Nagoshi fullname: Nagoshi, Narihito organization: Keio University School of Medicine – sequence: 2 givenname: Hideyuki surname: Okano fullname: Okano, Hideyuki email: hidokano@a2.keio.jp organization: Keio University School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28199003$$D View this record in MEDLINE/PubMed |
BookMark | eNp90c9PwyAUB3BiZtycHvwHTBMveqjyWkrpcVn8mUU96LmhQJWFQYU2Zv-96NTDEuVCIJ_38vK--2hknVUIHQE-h3gullacQ14xuoMmQEpICRTVCE0wzrI0xyQbo_0QlhgDJRT20DhjUFUY5xP0OOs6owXvtbMhcW2irRyEkklnBq871yvbJ6FXq0QoY5JeiVfrjHvRKkSahE5bbhLhvIzP5eDXB2i35Saow-97ip6vLp_mN-ni4fp2PlukghSEpkrSMpMtpoDLDLDK25bgphJYFpTEf8ZJkbMcy6ZhBeWFzIVkTStzzGVD4uhTdLrp23n3NqjQ1ysdPmfkVrkh1MAooxUhQCI92aJLN_g4d1QVQAG0ZGVUx99qaFZK1p3XK-7X9c-uIjjbAOFdCF61vwRw_ZlDHXOov3KI9mLLCt1_Lbn3XJv_Kt61Ueu_W9d39_NNxQcog5ho |
CitedBy_id | crossref_primary_10_1155_2020_2853650 crossref_primary_10_1002_biot_201800195 crossref_primary_10_2174_1574888X14666190823144424 crossref_primary_10_3171_2019_8_SPINE19201 crossref_primary_10_1002_adbi_201800133 crossref_primary_10_1016_j_biopha_2019_108663 crossref_primary_10_2174_1574888X14666190329095638 crossref_primary_10_1186_s13287_019_1357_z crossref_primary_10_1111_joa_12880 crossref_primary_10_3389_fnint_2017_00028 crossref_primary_10_4103_1673_5374_235061 crossref_primary_10_3389_fphar_2023_1110008 crossref_primary_10_1016_j_ejphar_2023_176238 crossref_primary_10_1016_j_stemcr_2018_12_018 crossref_primary_10_1253_circj_CJ_21_0978 crossref_primary_10_2174_1574888X16666210810103838 crossref_primary_10_1111_jnc_14002 crossref_primary_10_3389_fphar_2022_819861 crossref_primary_10_1097_MED_0000000000000346 crossref_primary_10_3389_fphar_2022_1078761 crossref_primary_10_3389_fnmol_2018_00497 crossref_primary_10_4252_wjsc_v13_i6_521 crossref_primary_10_1016_j_brainresbull_2021_10_014 crossref_primary_10_3390_biology12050653 crossref_primary_10_3389_fnins_2023_1198041 crossref_primary_10_3390_ijms19041039 crossref_primary_10_1038_s41393_020_00571_8 crossref_primary_10_1002_sctm_18_0225 crossref_primary_10_1016_j_cej_2024_150404 crossref_primary_10_3390_biology14030314 crossref_primary_10_1111_jnc_13989 crossref_primary_10_3390_ijms20153838 crossref_primary_10_1016_j_expneurol_2019_113032 crossref_primary_10_2174_1570159X21666230220150010 crossref_primary_10_1186_s41232_019_0103_3 crossref_primary_10_1016_j_jcot_2018_04_009 crossref_primary_10_14245_ns_2040408_204 crossref_primary_10_5535_arm_2019_43_1_62 crossref_primary_10_5213_inj_2040150_075 crossref_primary_10_1016_j_ejphar_2024_176706 crossref_primary_10_3390_ph15050562 crossref_primary_10_1007_s00441_017_2656_2 crossref_primary_10_2174_1574888X15666200316164051 crossref_primary_10_1002_anbr_202000077 crossref_primary_10_4103_ijri_IJRI_385_19 crossref_primary_10_2174_1574362414666191018121658 |
Cites_doi | 10.1161/CIRCRESAHA.111.256149 10.1371/journal.pone.0012272 10.1097/TA.0b013e318228221f 10.1073/pnas.0507063102 10.1523/JNEUROSCI.1770-15.2016 10.1038/nm.4066 10.1002/jnr.10341 10.1097/00007632-200112151-00002 10.1002/stem.767 10.1523/JNEUROSCI.4184-05.2006 10.1371/journal.pone.0052787 10.1038/sc.2014.86 10.1002/stem.1083 10.1038/70986 10.1038/nmeth.1591 10.1227/NEU.0000000000000412 10.1038/cr.2012.171 10.1074/jbc.M302395200 10.1371/journal.pone.0037589 10.1006/mcne.1999.0738 10.1038/ncomms2132 10.3727/096368914X684042 10.1111/j.1471-4159.1985.tb12870.x 10.1186/1756-6606-6-3 10.5966/sctm.2014-0215 10.1186/1756-6606-7-14 10.1371/journal.pone.0116933 10.1002/stem.1404 10.1016/j.expneurol.2010.04.020 10.1016/j.stem.2009.09.012 10.1186/s13287-015-0118-x 10.1523/JNEUROSCI.3111-09.2010 10.1007/978-4-431-54502-6_2 10.1186/s13041-016-0265-8 10.1146/annurev.ne.14.030191.001221 10.1016/j.celrep.2014.08.014 10.1006/exnr.1996.0094 10.1136/jnnp-2013-307454 10.1002/stem.201 10.1523/JNEUROSCI.3354-07.2007 10.1523/JNEUROSCI.19-14-06213.1999 10.1073/pnas.1108077108 10.1038/srep30898 10.1002/jnr.20435 10.1038/nature07863 10.1038/nature05934 10.1007/s00198-016-3627-2 10.1097/BRS.0000000000000654 10.1136/jnnp-2015-311074 10.1016/j.pmr.2009.12.003 10.1016/j.stemcr.2015.01.006 10.1016/j.expneurol.2014.05.021 10.1016/0165-3806(87)90214-8 10.1002/jnr.21372 10.1038/nature08090 10.1002/jnr.20436 10.1016/j.stemcr.2015.11.013 10.1016/j.neuroimage.2012.08.040 10.1002/jnr.20044 10.1371/journal.pone.0116413 10.5966/sctm.2014-0236 10.1177/1545968314562110 10.1016/j.stem.2010.11.015 10.1016/j.cell.2012.08.020 10.1016/j.cell.2006.07.024 10.1073/pnas.0910106107 10.1111/j.1460-9568.2005.04492.x 10.1523/JNEUROSCI.0311-05.2005 10.1186/1756-6606-7-22 10.1016/j.expneurol.2015.07.020 10.1073/pnas.1103509108 10.1371/journal.pone.0027706 10.1038/nbt.1554 10.1227/NEU.0000000000000393 10.1006/exnr.2002.7884 10.3171/2012.5.AOSPINE12115 10.1038/nrn1326 10.1016/j.neures.2016.07.005 10.1016/j.cell.2007.11.019 10.1038/416636a 10.2217/17460751.1.4.469 10.1016/j.neures.2015.11.011 10.1016/0092-8674(83)90536-6 10.1038/nm1505 10.1038/sc.2014.26 10.1002/jnr.22322 10.1016/j.stem.2016.06.003 10.1016/j.stemcr.2016.08.015 10.3727/096368914X684079 10.1016/j.expneurol.2013.07.010 10.1016/j.neuron.2014.07.014 10.1634/stemcells.2008-0293 |
ContentType | Journal Article |
Copyright | 2017 International Society for Neurochemistry 2017 International Society for Neurochemistry. Copyright © 2017 International Society for Neurochemistry |
Copyright_xml | – notice: 2017 International Society for Neurochemistry – notice: 2017 International Society for Neurochemistry. – notice: Copyright © 2017 International Society for Neurochemistry |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 7U9 8FD C1K FR3 H94 P64 7X8 |
DOI | 10.1111/jnc.13986 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Toxicology Abstracts AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1471-4159 |
EndPage | 860 |
ExternalDocumentID | 28199003 10_1111_jnc_13986 JNC13986 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Japan Agency for Medical Research and Development (AMED) – fundername: SanBio Co. Ltd – fundername: Research Center Network for Realization of Regenerative Medicine – fundername: K Pharma Inc. |
GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 24P 29L 2WC 31~ 33P 36B 3SF 4.4 41~ 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYJJ AAZKR ABCQN ABCUV ABEML ABIVO ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FIJ FUBAC FZ0 G-S G.N GAKWD GODZA GX1 H.X HF~ HGLYW HH5 HVGLF HZI HZ~ IH2 IHE IPNFZ IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TWZ UB1 V8K VH1 W8V W99 WBKPD WIH WIJ WIK WIN WNSPC WOHZO WOW WQJ WRC WUP WXI WXSBR WYISQ X7M XG1 XJT YFH YNH YOC YUY ZGI ZXP ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM PKN 7QR 7TK 7U7 7U9 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 H94 P64 7X8 |
ID | FETCH-LOGICAL-c4546-ed672df06107210e3ff40b9c0d564df08a453830dbb856a5d3cd8bfd30adb4003 |
IEDL.DBID | DR2 |
ISSN | 0022-3042 |
IngestDate | Fri Jul 11 15:15:32 EDT 2025 Fri Jul 25 19:38:01 EDT 2025 Wed Feb 19 02:33:26 EST 2025 Thu Apr 24 23:08:07 EDT 2025 Tue Jul 01 04:39:09 EDT 2025 Wed Jan 22 16:52:02 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | clinical trial spinal cord injury cell transplantation induced pluripotent stem cells neural precursor cells |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 International Society for Neurochemistry. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4546-ed672df06107210e3ff40b9c0d564df08a453830dbb856a5d3cd8bfd30adb4003 |
Notes | This article is part of the mini review series “60th Anniversary of the Japanese Society for Neurochemistry” . ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jnc.13986 |
PMID | 28199003 |
PQID | 1911516787 |
PQPubID | 31528 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1868694414 proquest_journals_1911516787 pubmed_primary_28199003 crossref_primary_10_1111_jnc_13986 crossref_citationtrail_10_1111_jnc_13986 wiley_primary_10_1111_jnc_13986_JNC13986 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2017 |
PublicationDateYYYYMMDD | 2017-06-01 |
PublicationDate_xml | – month: 06 year: 2017 text: June 2017 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: New York |
PublicationTitle | Journal of neurochemistry |
PublicationTitleAlternate | J Neurochem |
PublicationYear | 2017 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 1991; 14 2010; 107 2013; 23 2016; 107 2010; 224 2013; 248 2004; 5 2012; 17 2014; 61 2003; 278 2013; 6 2016; 36 2005; 22 2005; 25 2004; 76 2010; 21 1987; 431 2015; 40 1999; 19 2005; 102 2015; 86 2011; 71 2006; 26 2007; 131 2016; 87 2013; 112 1999; 13 2016; 113 2008; 26 2014; 52 2014; 8 2006; 126 2014; 7 2010; 5 2011; 29 2010; 30 2010; 7 2012; 63 1996; 139 2007; 27 2015; 6 2007; 448 2015; 4 2016; 19 2002; 175 2006; 12 2005b; 80 2015; 10 2001; 26 2002; 416 2006; 1 1985; 44 2009; 459 2011; 6 2014; 83 1999; 5 2009; 27 2011; 8 2012; 30 2005a; 80 1983; 34 2009; 458 2012; 150 2015; 24 2010; 88 2016; 6 2015; 271 2002; 69 2016; 7 2011; 108 2012; 3 2015; 29 2013; 31 2014; 261 2009; 5 2014 2007; 85 2012; 7 2016; 27 2016; 9 2016; 22 e_1_2_11_70_1 e_1_2_11_93_1 e_1_2_11_72_1 e_1_2_11_91_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_13_1 e_1_2_11_53_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 e_1_2_11_83_1 e_1_2_11_60_1 e_1_2_11_81_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_68_1 e_1_2_11_89_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_62_1 e_1_2_11_87_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_64_1 e_1_2_11_85_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_59_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_50_1 e_1_2_11_71_1 e_1_2_11_92_1 Kim D. (e_1_2_11_34_1) 1999; 19 e_1_2_11_90_1 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_56_1 e_1_2_11_77_1 e_1_2_11_58_1 e_1_2_11_79_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_54_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_82_1 e_1_2_11_61_1 e_1_2_11_80_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_88_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_86_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_84_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 Saruhashi Y. (e_1_2_11_76_1) 1996; 139 |
References_xml | – volume: 7 start-page: 14 year: 2014 article-title: Rewiring of regenerated axons by combining treadmill training with semaphorin3A inhibition publication-title: Mol. Brain – volume: 88 start-page: 1394 year: 2010 end-page: 1405 article-title: Transplantation of galectin‐1‐expressing human neural stem cells into the injured spinal cord of adult common marmosets publication-title: J. Neurosci. Res. – volume: 9 start-page: 85 year: 2016 article-title: Pathological classification of human iPSC‐derived neural stem/progenitor cells towards safety assessment of transplantation therapy for CNS diseases publication-title: Mol. Brain – volume: 108 start-page: 14234 year: 2011 end-page: 14239 article-title: Efficient generation of transgene‐free human induced pluripotent stem cells (iPSCs) by temperature‐sensitive Sendai virus vectors publication-title: Proc. Natl Acad. Sci. USA – volume: 7 start-page: 651 year: 2010 end-page: 655 article-title: Reprogramming of human primary somatic cells by OCT4 and chemical compounds publication-title: Cell Stem Cell – volume: 29 start-page: 1983 year: 2011 end-page: 1994 article-title: Significance of remyelination by neural stem/progenitor cells transplanted into the injured spinal cord publication-title: Stem Cells – volume: 1 start-page: 469 year: 2006 end-page: 479 article-title: Transplantation of human embryonic stem cell‐derived oligodendrocyte progenitors into rat spinal cord injuries does not cause harm publication-title: Regen. Med. – volume: 22 start-page: 479 year: 2016 end-page: 487 article-title: Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration publication-title: Nat. Med. – volume: 83 start-page: 789 year: 2014 end-page: 796 article-title: Long‐distance axonal growth from human induced pluripotent stem cells after spinal cord injury publication-title: Neuron – volume: 8 start-page: 409 year: 2011 end-page: 412 article-title: A more efficient method to generate integration‐free human iPS cells publication-title: Nat. Methods – volume: 27 start-page: 2667 year: 2009 end-page: 2674 article-title: Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells publication-title: Stem Cells – volume: 22 start-page: 3036 year: 2005 end-page: 3046 article-title: Chondroitinase ABC combined with neural stem/progenitor cell transplantation enhances graft cell migration and outgrowth of growth‐associated protein‐43‐positive fibers after rat spinal cord injury publication-title: Eur. J. Neuorsci. – volume: 69 start-page: 925 year: 2002 end-page: 933 article-title: Transplantation of in vitro‐expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats publication-title: J. Neurosci. Res. – volume: 458 start-page: 766 year: 2009 end-page: 770 article-title: piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells publication-title: Nature – volume: 224 start-page: 403 year: 2010 end-page: 414 article-title: Anti‐IL‐6‐receptor antibody promotes repair of spinal cord injury by inducing microglia‐dominant inflammation publication-title: Exp. Neurol. – volume: 6 start-page: 3 year: 2013 article-title: Time‐dependent changes in the microenvironment of injured spinal cord affects the therapeutic potential of neural stem cell transplantation for spinal cord injury publication-title: Mol. Brain – volume: 261 start-page: 171 year: 2014 end-page: 179 article-title: Global gene expression analysis following spinal cord injury in non‐human primates publication-title: Exp. Neurol. – volume: 131 start-page: 861 year: 2007 end-page: 872 article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors publication-title: Cell – volume: 102 start-page: 14069 year: 2005 end-page: 14074 article-title: Human neural stem cells differentiate and promote locomotor recovery in spinal cord‐injured mice publication-title: Proc. Natl Acad. Sci. USA – volume: 6 start-page: 30898 year: 2016 article-title: Functional recovery from neural stem/progenitor cell transplantation combined with treadmill training in mice with chronic spinal cord injury publication-title: Sci. Rep. – volume: 10 start-page: e0116933 year: 2015 article-title: Early intervention for spinal cord injury with human induced pluripotent stem cells oligodendrocyte progenitors publication-title: PLoS ONE – volume: 431 start-page: 265 year: 1987 end-page: 279 article-title: Spinal cord transplants permit the growth of serotonergic axons across the site of neonatal spinal cord transection publication-title: Brain Res. – volume: 71 start-page: 380 year: 2011 end-page: 385 article-title: The mortality inflection point for age and acute cervical spinal cord injury publication-title: The Journal of trauma – volume: 459 start-page: 523 year: 2009 end-page: 527 article-title: Generation of transgenic non‐human primates with germline transmission publication-title: Nature – volume: 10 start-page: e0116413 year: 2015 article-title: Controlling immune rejection is a fail‐safe system against potential tumorigenicity after human iPSC‐derived neural stem cell transplantation publication-title: PLoS ONE – volume: 8 start-page: 1697 year: 2014 end-page: 1703 article-title: Origin‐dependent neural cell identities in differentiated human iPSCs in vitro and after transplantation into the mouse brain publication-title: Cell Rep. – volume: 27 start-page: 743 year: 2009 end-page: 745 article-title: Variation in the safety of induced pluripotent stem cell lines publication-title: Nat. Biotechnol. – volume: 248 start-page: 491 year: 2013 end-page: 503 article-title: Caudalized human iPSC‐derived neural progenitor cells produce neurons and glia but fail to restore function in an early chronic spinal cord injury model publication-title: Exp Neurol. – volume: 44 start-page: 692 year: 1985 end-page: 696 article-title: Molecular genetic analysis of myelin‐deficient mice: shiverer mutant mice show deletion in gene(s) coding for myelin basic protein publication-title: J. Neurochem. – volume: 27 start-page: 3011 year: 2016 end-page: 3021 article-title: Risk factors for osteoporotic fractures in persons with spinal cord injuries and disorders publication-title: Osteoporos. Int. – volume: 26 start-page: 3086 year: 2008 end-page: 3098 article-title: Spatiotemporal recapitulation of central nervous system development by murine embryonic stem cell‐derived neural stem/progenitor cells publication-title: Stem Cells – volume: 150 start-page: 1264 year: 2012 end-page: 1273 article-title: Long‐distance growth and connectivity of neural stem cells after severe spinal cord injury publication-title: Cell – volume: 5 start-page: e12272 year: 2010 article-title: Human neural stem cells differentiate and promote locomotor recovery in an early chronic spinal cord injury NOD‐scid mouse model publication-title: PLoS ONE – volume: 4 start-page: 743 year: 2015 end-page: 754 article-title: Transplantation of induced pluripotent stem cell‐derived neural stem cells mediate functional recovery following thoracic spinal cord injury through remyelination of axons publication-title: Stem Cells Transl. Med. – volume: 40 start-page: E823 year: 2015 end-page: E830 article-title: Diagnostic value of serum levels of GFAP, pNF‐H, and NSE compared with clinical findings in severity assessment of human traumatic spinal cord injury publication-title: Spine – volume: 80 start-page: 182 year: 2005a end-page: 190 article-title: Transplantation of human neural stem cells for spinal cord injury in primates publication-title: J. Neurosci. Res. – volume: 52 start-page: 428 year: 2014 end-page: 433 article-title: Structural biomarkers in the cerebrospinal fluid within 24 h after a traumatic spinal cord injury: a descriptive analysis of 16 subjects publication-title: Spinal Cord – volume: 25 start-page: 4694 year: 2005 end-page: 4705 article-title: Human embryonic stem cell‐derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury publication-title: J. Neurosci. – volume: 61 start-page: 32 issue: Suppl 1 year: 2014 end-page: 35 article-title: Methylprednisolone for the treatment of acute spinal cord injury: point publication-title: Neurosurgery – volume: 12 start-page: 1380 year: 2006 end-page: 1389 article-title: A selective Sema3A inhibitor enhances regenerative responses and functional recovery of the injured spinal cord publication-title: Nat. Med. – volume: 7 start-page: 22 year: 2014 article-title: iPS cell technologies: significance and applications to CNS regeneration and disease publication-title: Mol. Brain – volume: 30 start-page: 1163 year: 2012 end-page: 1173 article-title: Treatment of a mouse model of spinal cord injury by transplantation of human induced pluripotent stem cell‐derived long‐term self‐renewing neuroepithelial‐like stem cells publication-title: Stem Cells – volume: 6 start-page: e27706 year: 2011 article-title: Human hepatocyte growth factor promotes functional recovery in primates after spinal cord injury publication-title: PLoS ONE – volume: 7 start-page: e52787 year: 2012 article-title: Pre‐evaluated safe human iPSC‐derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity publication-title: PLoS ONE – volume: 107 start-page: 12704 year: 2010 end-page: 12709 article-title: Therapeutic potential of appropriately evaluated safe‐induced pluripotent stem cells for spinal cord injury publication-title: Proc. Natl Acad. Sci. USA – volume: 113 start-page: 37 year: 2016 end-page: 47 article-title: Combined treatment with chondroitinase ABC and treadmill rehabilitation for chronic severe spinal cord injury in adult rats publication-title: Neuroscience research – volume: 21 start-page: 357 year: 2010 end-page: 373 article-title: Falls, aging, and disability publication-title: Phys Med Rehabil Clin N Am – volume: 5 start-page: 1410 year: 1999 end-page: 1412 article-title: Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord publication-title: Nat. Med. – volume: 24 start-page: 1799 year: 2015 end-page: 1812 article-title: Transplanted Human Induced Pluripotent Stem Cell‐Derived Neural Progenitor Cells Do Not Promote Functional Recovery of Pharmacologically Immunosuppressed Mice With Contusion Spinal Cord Injury publication-title: Cell Transplant. – start-page: 11 year: 2014 end-page: 18 – volume: 76 start-page: 265 year: 2004 end-page: 276 article-title: Blockade of interleukin‐6 receptor suppresses reactive astrogliosis and ameliorates functional recovery in experimental spinal cord injury publication-title: J. Neurosci. Res. – volume: 107 start-page: 20 year: 2016 end-page: 29 article-title: Safe and efficient method for cryopreservation of human induced pluripotent stem cell‐derived neural stem and progenitor cells by a programmed freezer with a magnetic field publication-title: Neuroscience Res. – volume: 14 start-page: 201 year: 1991 end-page: 217 article-title: Structure and function of myelin protein genes publication-title: Annu. Rev. Neurosci. – volume: 27 start-page: 11991 year: 2007 end-page: 11998 article-title: In vivo tracing of neural tracts in the intact and injured spinal cord of marmosets by diffusion tensor tractography publication-title: J. Neurosci. – volume: 26 start-page: S2 year: 2001 end-page: S12 article-title: Epidemiology, demographics, and pathophysiology of acute spinal cord injury publication-title: Spine – volume: 126 start-page: 663 year: 2006 end-page: 676 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors publication-title: Cell – volume: 4 start-page: 360 year: 2015 end-page: 373 article-title: Long‐term safety issues of iPSC‐based cell therapy in a spinal cord injury model: oncogenic transformation with epithelial‐mesenchymal transition publication-title: Stem Cell Reports – volume: 108 start-page: 16825 year: 2011 end-page: 16830 article-title: Grafted human‐induced pluripotent stem‐cell‐derived neurospheres promote motor functional recovery after spinal cord injury in mice publication-title: Proc. Natl Acad. Sci. USA – volume: 7 start-page: e37589 year: 2012 article-title: Chondroitinase and growth factors enhance activation and oligodendrocyte differentiation of endogenous neural precursor cells after spinal cord injury publication-title: PLoS ONE – volume: 63 start-page: 1841 year: 2012 end-page: 1853 article-title: Conditions for quantitative evaluation of injured spinal cord by in vivo diffusion tensor imaging and tractography: preclinical longitudinal study in common marmosets publication-title: NeuroImage – volume: 86 start-page: 273 year: 2015 end-page: 279 article-title: Serum neurofilament light chain is a biomarker of human spinal cord injury severity and outcome publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 5 start-page: 146 year: 2004 end-page: 156 article-title: Regeneration beyond the glial scar publication-title: Nat. Rev. Neurosci. – volume: 52 start-page: 596 year: 2014 end-page: 600 article-title: Circulating microRNAs as biomarkers for evaluating the severity of acute spinal cord injury publication-title: Spinal Cord – volume: 278 start-page: 42985 year: 2003 end-page: 42991 article-title: In vitro and in vivo characterization of a novel semaphorin 3A inhibitor, SM‐216289 or xanthofulvin publication-title: J. Biol. Chem. – volume: 85 start-page: 2332 year: 2007 end-page: 2342 article-title: Hepatocyte growth factor promotes endogenous repair and functional recovery after spinal cord injury publication-title: J. Neurosci. Res. – volume: 7 start-page: 649 year: 2016 end-page: 663 article-title: Pretreatment with a gamma‐Secretase inhibitor prevents tumor‐like overgrowth in human iPSC‐derived transplants for spinal cord injury publication-title: Stem Cell Reports – volume: 416 start-page: 636 year: 2002 end-page: 640 article-title: Chondroitinase ABC promotes functional recovery after spinal cord injury publication-title: Nature – volume: 271 start-page: 479 year: 2015 end-page: 492 article-title: Human iPS cell‐derived astrocyte transplants preserve respiratory function after spinal cord injury publication-title: Exp Neurol. – volume: 29 start-page: 677 year: 2015 end-page: 689 article-title: BDNF induced by treadmill training contributes to the suppression of spasticity and allodynia after spinal cord injury via upregulation of KCC2 publication-title: Neurorehabil Neural Repair – volume: 448 start-page: 313 year: 2007 end-page: 317 article-title: Generation of germline‐competent induced pluripotent stem cells publication-title: Nature – volume: 61 start-page: 36 issue: Suppl 1 year: 2014 end-page: 42 article-title: Methylprednisolone for the treatment of acute spinal cord injury: counterpoint publication-title: Neurosurgery – volume: 26 start-page: 3377 year: 2006 end-page: 3389 article-title: Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury publication-title: J. Neurosci. – volume: 31 start-page: 1535 year: 2013 end-page: 1547 article-title: Therapeutic activities of engrafted neural stem/precursor cells are not dormant in the chronically injured spinal cord publication-title: Stem Cells – volume: 4 start-page: 708 year: 2015 end-page: 719 article-title: Allogeneic neural stem/progenitor cells derived from embryonic Stem cells promote functional recovery after transplantation into injured spinal cord of nonhuman primates publication-title: Stem Cells Transl. Med. – volume: 87 start-page: 734 year: 2016 end-page: 740 article-title: Does age affect surgical outcomes in patients with degenerative cervical myelopathy? Results from the prospective multicenter AOSpine International study on 479 patients publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 5 start-page: 491 year: 2009 end-page: 503 article-title: A small‐molecule inhibitor of tgf‐Beta signaling replaces sox2 in reprogramming by inducing nanog publication-title: Cell Stem Cell – volume: 112 start-page: 523 year: 2013 end-page: 533 article-title: Steps toward safe cell therapy using induced pluripotent stem cells publication-title: Circ. Res. – volume: 19 start-page: 6213 year: 1999 end-page: 6224 article-title: Direct agonists for serotonin receptors enhance locomotor function in rats that received neural transplants after neonatal spinal transection publication-title: J. Neurosci. – volume: 13 start-page: 143 year: 1999 end-page: 166 article-title: Expression of the gene encoding the chemorepellent semaphorin III is induced in the fibroblast component of neural scar tissue formed following injuries of adult but not neonatal CNS publication-title: Mol. Cell Neurosci. – volume: 34 start-page: 799 year: 1983 end-page: 806 article-title: Characterization of cloned cDNA representing rat myelin basic protein: absence of expression in brain of shiverer mutant mice publication-title: Cell – volume: 6 start-page: 125 year: 2015 article-title: Human‐induced pluripotent stem cells generated from intervertebral disc cells improve neurologic functions in spinal cord injury publication-title: Stem Cell Res Ther. – volume: 3 start-page: 1140 year: 2012 article-title: Direct isolation and RNA‐seq reveal environment‐dependent properties of engrafted neural stem/progenitor cells publication-title: Nat. Commun. – volume: 23 start-page: 70 year: 2013 end-page: 80 article-title: Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells publication-title: Cell Res. – volume: 139 start-page: 203 year: 1996 end-page: 213 article-title: The recovery of 5‐HT immunoreactivity in lumbosacral spinal cord and locomotor function after thoracic hemisection publication-title: Exp. Neurol. – volume: 24 start-page: 1781 year: 2015 end-page: 1797 article-title: Beneficial Effect of Human Induced Pluripotent Stem Cell‐Derived Neural Precursors in Spinal Cord Injury Repair publication-title: Cell Transplant. – volume: 30 start-page: 1657 year: 2010 end-page: 1676 article-title: Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord publication-title: J. Neurosci. – volume: 175 start-page: 61 year: 2002 end-page: 75 article-title: Injury‐induced class 3 semaphorin expression in the rat spinal cord publication-title: Exp. Neurol. – volume: 19 start-page: 127 year: 2016 end-page: 138 article-title: Generation of a nonhuman primate model of severe combined immunodeficiency using highly efficient genome editing publication-title: Cell Stem Cell – volume: 6 start-page: 1 year: 2016 end-page: 8 article-title: Grafted human iPS cell‐derived oligodendrocyte precursor cells contribute to robust remyelination of demyelinated axons after spinal cord injury publication-title: Stem Cell Reports – volume: 36 start-page: 2796 year: 2016 end-page: 2808 article-title: Application of q‐space diffusion MRI for the visualization of white matter publication-title: J. Neurosci. – volume: 80 start-page: 172 year: 2005b end-page: 181 article-title: Establishment of graded spinal cord injury model in a nonhuman primate: the common marmoset publication-title: J. Neurosci. Res. – volume: 17 start-page: 230 year: 2012 end-page: 246 article-title: Evaluation of clinical experience using cell‐based therapies in patients with spinal cord injury: a systematic review publication-title: J. Neurosurg. Spine – ident: e_1_2_11_65_1 doi: 10.1161/CIRCRESAHA.111.256149 – ident: e_1_2_11_74_1 doi: 10.1371/journal.pone.0012272 – ident: e_1_2_11_46_1 doi: 10.1097/TA.0b013e318228221f – ident: e_1_2_11_9_1 doi: 10.1073/pnas.0507063102 – ident: e_1_2_11_15_1 doi: 10.1523/JNEUROSCI.1770-15.2016 – ident: e_1_2_11_26_1 doi: 10.1038/nm.4066 – ident: e_1_2_11_60_1 doi: 10.1002/jnr.10341 – ident: e_1_2_11_79_1 doi: 10.1097/00007632-200112151-00002 – ident: e_1_2_11_90_1 doi: 10.1002/stem.767 – ident: e_1_2_11_28_1 doi: 10.1523/JNEUROSCI.4184-05.2006 – ident: e_1_2_11_38_1 doi: 10.1371/journal.pone.0052787 – ident: e_1_2_11_16_1 doi: 10.1038/sc.2014.86 – ident: e_1_2_11_13_1 doi: 10.1002/stem.1083 – ident: e_1_2_11_47_1 doi: 10.1038/70986 – ident: e_1_2_11_67_1 doi: 10.1038/nmeth.1591 – ident: e_1_2_11_11_1 doi: 10.1227/NEU.0000000000000412 – ident: e_1_2_11_52_1 doi: 10.1038/cr.2012.171 – ident: e_1_2_11_33_1 doi: 10.1074/jbc.M302395200 – ident: e_1_2_11_30_1 doi: 10.1371/journal.pone.0037589 – ident: e_1_2_11_69_1 doi: 10.1006/mcne.1999.0738 – ident: e_1_2_11_41_1 doi: 10.1038/ncomms2132 – ident: e_1_2_11_73_1 doi: 10.3727/096368914X684042 – ident: e_1_2_11_35_1 doi: 10.1111/j.1471-4159.1985.tb12870.x – ident: e_1_2_11_54_1 doi: 10.1186/1756-6606-6-3 – ident: e_1_2_11_23_1 doi: 10.5966/sctm.2014-0215 – ident: e_1_2_11_91_1 doi: 10.1186/1756-6606-7-14 – ident: e_1_2_11_3_1 doi: 10.1371/journal.pone.0116933 – ident: e_1_2_11_42_1 doi: 10.1002/stem.1404 – ident: e_1_2_11_50_1 doi: 10.1016/j.expneurol.2010.04.020 – ident: e_1_2_11_20_1 doi: 10.1016/j.stem.2009.09.012 – ident: e_1_2_11_61_1 doi: 10.1186/s13287-015-0118-x – ident: e_1_2_11_29_1 doi: 10.1523/JNEUROSCI.3111-09.2010 – ident: e_1_2_11_51_1 doi: 10.1007/978-4-431-54502-6_2 – ident: e_1_2_11_82_1 doi: 10.1186/s13041-016-0265-8 – ident: e_1_2_11_48_1 doi: 10.1146/annurev.ne.14.030191.001221 – ident: e_1_2_11_17_1 doi: 10.1016/j.celrep.2014.08.014 – volume: 139 start-page: 203 year: 1996 ident: e_1_2_11_76_1 article-title: The recovery of 5‐HT immunoreactivity in lumbosacral spinal cord and locomotor function after thoracic hemisection publication-title: Exp. Neurol. doi: 10.1006/exnr.1996.0094 – ident: e_1_2_11_40_1 doi: 10.1136/jnnp-2013-307454 – ident: e_1_2_11_92_1 doi: 10.1002/stem.201 – ident: e_1_2_11_14_1 doi: 10.1523/JNEUROSCI.3354-07.2007 – volume: 19 start-page: 6213 year: 1999 ident: e_1_2_11_34_1 article-title: Direct agonists for serotonin receptors enhance locomotor function in rats that received neural transplants after neonatal spinal transection publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.19-14-06213.1999 – ident: e_1_2_11_57_1 doi: 10.1073/pnas.1108077108 – ident: e_1_2_11_86_1 doi: 10.1038/srep30898 – ident: e_1_2_11_25_1 doi: 10.1002/jnr.20435 – ident: e_1_2_11_88_1 doi: 10.1038/nature07863 – ident: e_1_2_11_66_1 doi: 10.1038/nature05934 – ident: e_1_2_11_5_1 doi: 10.1007/s00198-016-3627-2 – ident: e_1_2_11_2_1 doi: 10.1097/BRS.0000000000000654 – ident: e_1_2_11_53_1 doi: 10.1136/jnnp-2015-311074 – ident: e_1_2_11_12_1 doi: 10.1016/j.pmr.2009.12.003 – ident: e_1_2_11_58_1 doi: 10.1016/j.stemcr.2015.01.006 – ident: e_1_2_11_55_1 doi: 10.1016/j.expneurol.2014.05.021 – ident: e_1_2_11_7_1 doi: 10.1016/0165-3806(87)90214-8 – ident: e_1_2_11_36_1 doi: 10.1002/jnr.21372 – ident: e_1_2_11_77_1 doi: 10.1038/nature08090 – ident: e_1_2_11_24_1 doi: 10.1002/jnr.20436 – ident: e_1_2_11_31_1 doi: 10.1016/j.stemcr.2015.11.013 – ident: e_1_2_11_39_1 doi: 10.1016/j.neuroimage.2012.08.040 – ident: e_1_2_11_62_1 doi: 10.1002/jnr.20044 – ident: e_1_2_11_22_1 doi: 10.1371/journal.pone.0116413 – ident: e_1_2_11_75_1 doi: 10.5966/sctm.2014-0236 – ident: e_1_2_11_85_1 doi: 10.1177/1545968314562110 – ident: e_1_2_11_93_1 doi: 10.1016/j.stem.2010.11.015 – ident: e_1_2_11_44_1 doi: 10.1016/j.cell.2012.08.020 – ident: e_1_2_11_83_1 doi: 10.1016/j.cell.2006.07.024 – ident: e_1_2_11_87_1 doi: 10.1073/pnas.0910106107 – ident: e_1_2_11_21_1 doi: 10.1111/j.1460-9568.2005.04492.x – ident: e_1_2_11_32_1 doi: 10.1523/JNEUROSCI.0311-05.2005 – ident: e_1_2_11_64_1 doi: 10.1186/1756-6606-7-22 – ident: e_1_2_11_43_1 doi: 10.1016/j.expneurol.2015.07.020 – ident: e_1_2_11_4_1 doi: 10.1073/pnas.1103509108 – ident: e_1_2_11_37_1 doi: 10.1371/journal.pone.0027706 – ident: e_1_2_11_49_1 doi: 10.1038/nbt.1554 – ident: e_1_2_11_19_1 doi: 10.1227/NEU.0000000000000393 – ident: e_1_2_11_10_1 doi: 10.1006/exnr.2002.7884 – ident: e_1_2_11_18_1 doi: 10.3171/2012.5.AOSPINE12115 – ident: e_1_2_11_81_1 doi: 10.1038/nrn1326 – ident: e_1_2_11_80_1 doi: 10.1016/j.neures.2016.07.005 – ident: e_1_2_11_84_1 doi: 10.1016/j.cell.2007.11.019 – ident: e_1_2_11_6_1 doi: 10.1038/416636a – ident: e_1_2_11_8_1 doi: 10.2217/17460751.1.4.469 – ident: e_1_2_11_56_1 doi: 10.1016/j.neures.2015.11.011 – ident: e_1_2_11_72_1 doi: 10.1016/0092-8674(83)90536-6 – ident: e_1_2_11_27_1 doi: 10.1038/nm1505 – ident: e_1_2_11_71_1 doi: 10.1038/sc.2014.26 – ident: e_1_2_11_89_1 doi: 10.1002/jnr.22322 – ident: e_1_2_11_78_1 doi: 10.1016/j.stem.2016.06.003 – ident: e_1_2_11_68_1 doi: 10.1016/j.stemcr.2016.08.015 – ident: e_1_2_11_70_1 doi: 10.3727/096368914X684079 – ident: e_1_2_11_59_1 doi: 10.1016/j.expneurol.2013.07.010 – ident: e_1_2_11_45_1 doi: 10.1016/j.neuron.2014.07.014 – ident: e_1_2_11_63_1 doi: 10.1634/stemcells.2008-0293 |
SSID | ssj0016461 |
Score | 2.441164 |
SecondaryResourceType | review_article |
Snippet | Numerous basic research studies have suggested the potential efficacy of neural precursor cell (NPC) transplantation in spinal cord injury (SCI). However, in... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 848 |
SubjectTerms | Abnormalities Animal models Animals Axonogenesis Cell Differentiation - physiology cell transplantation Cell- and Tissue-Based Therapy - methods Central nervous system clinical trial Effectiveness Embryo cells Ethics Fetuses Humans induced pluripotent stem cells Induced Pluripotent Stem Cells - cytology Inhibitors Inhibitory postsynaptic potentials Integration Nervous system Neural cell transplants Neural networks neural precursor cells Neural Stem Cells - cytology Neurochemistry Neurons - cytology Patients Pluripotency Regeneration (physiology) Regenerative medicine Rehabilitation Somatic cells Spinal cord injuries Spinal Cord Injuries - pathology Spinal Cord Injuries - therapy spinal cord injury Stem cell transplantation Stem cells Therapeutic applications Therapy Tissue engineering Transcription factors Tumorigenesis |
Title | Applications of induced pluripotent stem cell technologies in spinal cord injury |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjnc.13986 https://www.ncbi.nlm.nih.gov/pubmed/28199003 https://www.proquest.com/docview/1911516787 https://www.proquest.com/docview/1868694414 |
Volume | 141 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB7Ei1581Fe1yioiXiJpstlu8VSKUgRFRKEHIWQfOWhNi00P-uud2TyoLxBveUzIZndm9pvZybcAx4YnqVY68owNuh6P_NBTimuvEwildFsgxKd8x_WNGDzwq2E0XIDz6l-Ygh-iTriRZTh_TQaeqOm8kaP9IHyRRLdNtVoEiO5q6iiizWrXTOGomSWrkKviqZ78PBd9A5if8aqbcC5X4bFqalFn8nw2y9WZfv_C4vjPb1mDlRKIsl6hOeuwYLMGbPQyDMJf3tgJc6WhLufegKV-tS3cBtz25pa82ThlGNSjehg2Gc3QAY0Rg-eM2KEZrQmwvErdY0SOomw6oW24GMW8ePqEI7oJD5cX9_2BV27L4GkeceFZIzqBSREIELeab8M05b7qat9EguN1mXD0oqFvlJKRSCITaiNVakI_MQpdRrgFi9k4szvAEGygz_CNFGmXyySRbS0DqztWYexs2qoJp9UAxbrkLKetM0ZxHbtkOnY914SjWnRSEHX8JNSqRjkubXUaY8SKsAcn7U4TDuvb2KvUTUlmxzOUkUKKLkJH3oTtQjvqt9BSJOWDsbFujH9_fXx103cHu38X3YPlgJCES_y0YDF_ndl9xEG5OnAK_wFfbwN8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTtxAEC0ROJALEEjCBJJ0oiTKxchLu91zyGE0gIZtFEUgcXPciyUSYo8yHiH4Jn6Ff6KqvQiySLlwyM1LyUu7qvpVVfsVwDvDs1wrHXvGhn2Px37kKcW1l4RCKR0IhPiU7zgai9EJ3z-NT-fguv0XpuaH6BJuZBnOX5OBU0L6rpWjASF-kaJZUnlgLy8wYJt-2tvGr_s-DHd3jocjr-kp4Gkec-FZI5LQ5DiLETGYb6M8577qa9_EguNxmXF0AZFvlJKxyGITaSNVbiI_Mwr1PcLrPoIF6iBOTP3bXzqyKiLqCjpucrSFhsfIrRtqH_X-7PcbpL2PkN0Ut7sMN-3g1Ctbvm_NKrWlr37hjfxfRm8FlhqszQa1cTyBOVuswtqgyKryxyX7wNzqV1dWWIXFYdv5bg0-D-5U9VmZs7PCoAUYNjmfoY8tMcyoGBFgMyp7sKqtTpzZKYqy6YQ6jTEK63H3GyrtUzh5kPd8BvNFWdh1YIin0C36Roq8z2WWyUDL0OrEqiSITKB68LHViFQ3tOzUHeQ87cKzQqfuS_XgbSc6qblI_iS02apV2rijaYpBOSI7xCVJD950p3FUaZiywpYzlJFCij6iY96D57U6dnehaiulvPFhnVL9_fbp_njoNl78u-hrWBwdHx2mh3vjgw14HBJwcnmuTZivfs7sS4R9lXrlrI3B14dW0Fs662GI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RkNpeeBZYHq2LStVLUB6O4xw4rHZZ8WhXqAKJWxo_ItHSZMVmheAv8Vf4UYydh6ClUi8cuOUxShx7ZvyNx_kG4JOiaSaFDB2l_dihoRs4QlDpRD4TQnoMIb5Z7_g2ZPun9PAsPJuC2-ZfmIofol1wM5Zh_bUx8JHKHho52g_CF87qHZVH-voK47Xx7kEfB3fb9wd7J719py4p4EgaUuZoxSJfZTiJGV4wVwdZRl0RS1eFjOJ1nlL0AIGrhOAhS0MVSMVFpgI3VQLVPcDnvoIZytzY1Inof2-5qgxPl9dSk6Mp1DRGdttQ09THk99fiPYxQLYz3GAO7pq-qTa2_NqZlGJH3vxBG_lCOm8eZmukTbqVaSzAlM4XYambp2Xx-5p8Jnbvq00qLMKbXlP3bgmOuw9y-qTIyHmuUP8VGV1M0MMWGGSUxNBfE5P0IGWTmzjXYxQl45GpM0ZMUI-nP1Fl38Hps3znMkznRa5XgSCaQqfoKs6ymPI05Z7kvpaRFpEXKE904EujEImsSdlNbZCLpA3OcpnYkerAVis6qphInhLaaLQqqZ3ROMGQHHEdopKoAx_b29irppvSXBcTlOGMsxixMe3ASqWN7VtMrtUseGNjrU79-_XJ4bBnD9b-X_QDvD7uD5KvB8OjdXjrG9RkF7k2YLq8nOhNxHyleG9tjcCP59bPe56IYDc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applications+of+induced+pluripotent+stem+cell+technologies+in+spinal+cord+injury&rft.jtitle=Journal+of+neurochemistry&rft.au=Nagoshi%2C+Narihito&rft.au=Okano%2C+Hideyuki&rft.date=2017-06-01&rft.eissn=1471-4159&rft.volume=141&rft.issue=6&rft.spage=848&rft.epage=860&rft_id=info:doi/10.1111%2Fjnc.13986&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3042&client=summon |