Applications of induced pluripotent stem cell technologies in spinal cord injury

Numerous basic research studies have suggested the potential efficacy of neural precursor cell (NPC) transplantation in spinal cord injury (SCI). However, in most such studies, the origin of the cells used was mainly fetal tissue or embryonic stem cells, both of which carry potential ethical concern...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurochemistry Vol. 141; no. 6; pp. 848 - 860
Main Authors Nagoshi, Narihito, Okano, Hideyuki
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.06.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Numerous basic research studies have suggested the potential efficacy of neural precursor cell (NPC) transplantation in spinal cord injury (SCI). However, in most such studies, the origin of the cells used was mainly fetal tissue or embryonic stem cells, both of which carry potential ethical concerns with respect to clinical use. The development of induced pluripotent stem cells (iPSCs) opened a new path toward regenerative medicine for SCI. iPSCs can be generated from somatic cells by induction of transcription factors, and induced to differentiate into NPCs with characteristics of cells of the central nervous system. The beneficial effect of iPSC‐derived NPC transplantation has been reported from our group and others working in rodent and non‐human primate models. These promising results facilitate the application of iPSCs for clinical applications in SCI patients. However, iPSCs also have issues, such as genetic/epigenetic abnormalities and tumorigenesis because of the artificial induction method, that must be addressed prior to clinical use. The selection of somatic cells, generation of integration‐free iPSCs, and characterization of differentiated NPCs with thorough quality management are all needed to address these potential risks. To enhance the efficacy of the transplanted iPSC‐NPCs, especially at chronic phase of SCI, administration of a chondroitinase or semaphorin3A inhibitor represents a potentially important means of promoting axonal regeneration through the lesion site. The combined use of rehabilitation with such cell therapy approaches is also important, as repetitive training enhances neurite outgrowth of transplanted cells and strengthens neural circuits at central pattern generators. Our group has already evaluated clinical grade iPSC‐derived NPCs, and we look forward to initiating clinical testing as the next step toward determining whether this approach is safe and effective for clinical use. This article is part of the mini review series “60th Anniversary of the Japanese Society for Neurochemistry”. Since the development of induced pluripotent stem cells (iPSCs), we have demonstrated the efficacy of iPSC‐derived neural precursor cells (NPCs) in animal models of spinal cord injury (SCI), and challenged safety issues such as tumorigenicity. Moreover, we have advocated importance of combinatory therapy to enhance regeneration in SCI, especially at chronic phase. We are developing and characterizing clinical grade iPSC‐derived NPCs, and the application for SCI patients will start shortly. This article is part of the mini review series “60th Anniversary of the Japanese Society for Neurochemistry”.
AbstractList Numerous basic research studies have suggested the potential efficacy of neural precursor cell (NPC) transplantation in spinal cord injury (SCI). However, in most such studies, the origin of the cells used was mainly fetal tissue or embryonic stem cells, both of which carry potential ethical concerns with respect to clinical use. The development of induced pluripotent stem cells (iPSCs) opened a new path toward regenerative medicine for SCI. iPSCs can be generated from somatic cells by induction of transcription factors, and induced to differentiate into NPCs with characteristics of cells of the central nervous system. The beneficial effect of iPSC-derived NPC transplantation has been reported from our group and others working in rodent and non-human primate models. These promising results facilitate the application of iPSCs for clinical applications in SCI patients. However, iPSCs also have issues, such as genetic/epigenetic abnormalities and tumorigenesis because of the artificial induction method, that must be addressed prior to clinical use. The selection of somatic cells, generation of integration-free iPSCs, and characterization of differentiated NPCs with thorough quality management are all needed to address these potential risks. To enhance the efficacy of the transplanted iPSC-NPCs, especially at chronic phase of SCI, administration of a chondroitinase or semaphorin3A inhibitor represents a potentially important means of promoting axonal regeneration through the lesion site. The combined use of rehabilitation with such cell therapy approaches is also important, as repetitive training enhances neurite outgrowth of transplanted cells and strengthens neural circuits at central pattern generators. Our group has already evaluated clinical grade iPSC-derived NPCs, and we look forward to initiating clinical testing as the next step toward determining whether this approach is safe and effective for clinical use. This article is part of the mini review series "60th Anniversary of the Japanese Society for Neurochemistry".
Numerous basic research studies have suggested the potential efficacy of neural precursor cell (NPC) transplantation in spinal cord injury (SCI). However, in most such studies, the origin of the cells used was mainly fetal tissue or embryonic stem cells, both of which carry potential ethical concerns with respect to clinical use. The development of induced pluripotent stem cells (iPSCs) opened a new path toward regenerative medicine for SCI. iPSCs can be generated from somatic cells by induction of transcription factors, and induced to differentiate into NPCs with characteristics of cells of the central nervous system. The beneficial effect of iPSC‐derived NPC transplantation has been reported from our group and others working in rodent and non‐human primate models. These promising results facilitate the application of iPSCs for clinical applications in SCI patients. However, iPSCs also have issues, such as genetic/epigenetic abnormalities and tumorigenesis because of the artificial induction method, that must be addressed prior to clinical use. The selection of somatic cells, generation of integration‐free iPSCs, and characterization of differentiated NPCs with thorough quality management are all needed to address these potential risks. To enhance the efficacy of the transplanted iPSC‐NPCs, especially at chronic phase of SCI, administration of a chondroitinase or semaphorin3A inhibitor represents a potentially important means of promoting axonal regeneration through the lesion site. The combined use of rehabilitation with such cell therapy approaches is also important, as repetitive training enhances neurite outgrowth of transplanted cells and strengthens neural circuits at central pattern generators. Our group has already evaluated clinical grade iPSC‐derived NPCs, and we look forward to initiating clinical testing as the next step toward determining whether this approach is safe and effective for clinical use. This article is part of the mini review series “60th Anniversary of the Japanese Society for Neurochemistry”. Since the development of induced pluripotent stem cells (iPSCs), we have demonstrated the efficacy of iPSC‐derived neural precursor cells (NPCs) in animal models of spinal cord injury (SCI), and challenged safety issues such as tumorigenicity. Moreover, we have advocated importance of combinatory therapy to enhance regeneration in SCI, especially at chronic phase. We are developing and characterizing clinical grade iPSC‐derived NPCs, and the application for SCI patients will start shortly. This article is part of the mini review series “60th Anniversary of the Japanese Society for Neurochemistry”.
Author Nagoshi, Narihito
Okano, Hideyuki
Author_xml – sequence: 1
  givenname: Narihito
  surname: Nagoshi
  fullname: Nagoshi, Narihito
  organization: Keio University School of Medicine
– sequence: 2
  givenname: Hideyuki
  surname: Okano
  fullname: Okano, Hideyuki
  email: hidokano@a2.keio.jp
  organization: Keio University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28199003$$D View this record in MEDLINE/PubMed
BookMark eNp90c9PwyAUB3BiZtycHvwHTBMveqjyWkrpcVn8mUU96LmhQJWFQYU2Zv-96NTDEuVCIJ_38vK--2hknVUIHQE-h3gullacQ14xuoMmQEpICRTVCE0wzrI0xyQbo_0QlhgDJRT20DhjUFUY5xP0OOs6owXvtbMhcW2irRyEkklnBq871yvbJ6FXq0QoY5JeiVfrjHvRKkSahE5bbhLhvIzP5eDXB2i35Saow-97ip6vLp_mN-ni4fp2PlukghSEpkrSMpMtpoDLDLDK25bgphJYFpTEf8ZJkbMcy6ZhBeWFzIVkTStzzGVD4uhTdLrp23n3NqjQ1ysdPmfkVrkh1MAooxUhQCI92aJLN_g4d1QVQAG0ZGVUx99qaFZK1p3XK-7X9c-uIjjbAOFdCF61vwRw_ZlDHXOov3KI9mLLCt1_Lbn3XJv_Kt61Ueu_W9d39_NNxQcog5ho
CitedBy_id crossref_primary_10_1155_2020_2853650
crossref_primary_10_1002_biot_201800195
crossref_primary_10_2174_1574888X14666190823144424
crossref_primary_10_3171_2019_8_SPINE19201
crossref_primary_10_1002_adbi_201800133
crossref_primary_10_1016_j_biopha_2019_108663
crossref_primary_10_2174_1574888X14666190329095638
crossref_primary_10_1186_s13287_019_1357_z
crossref_primary_10_1111_joa_12880
crossref_primary_10_3389_fnint_2017_00028
crossref_primary_10_4103_1673_5374_235061
crossref_primary_10_3389_fphar_2023_1110008
crossref_primary_10_1016_j_ejphar_2023_176238
crossref_primary_10_1016_j_stemcr_2018_12_018
crossref_primary_10_1253_circj_CJ_21_0978
crossref_primary_10_2174_1574888X16666210810103838
crossref_primary_10_1111_jnc_14002
crossref_primary_10_3389_fphar_2022_819861
crossref_primary_10_1097_MED_0000000000000346
crossref_primary_10_3389_fphar_2022_1078761
crossref_primary_10_3389_fnmol_2018_00497
crossref_primary_10_4252_wjsc_v13_i6_521
crossref_primary_10_1016_j_brainresbull_2021_10_014
crossref_primary_10_3390_biology12050653
crossref_primary_10_3389_fnins_2023_1198041
crossref_primary_10_3390_ijms19041039
crossref_primary_10_1038_s41393_020_00571_8
crossref_primary_10_1002_sctm_18_0225
crossref_primary_10_1016_j_cej_2024_150404
crossref_primary_10_3390_biology14030314
crossref_primary_10_1111_jnc_13989
crossref_primary_10_3390_ijms20153838
crossref_primary_10_1016_j_expneurol_2019_113032
crossref_primary_10_2174_1570159X21666230220150010
crossref_primary_10_1186_s41232_019_0103_3
crossref_primary_10_1016_j_jcot_2018_04_009
crossref_primary_10_14245_ns_2040408_204
crossref_primary_10_5535_arm_2019_43_1_62
crossref_primary_10_5213_inj_2040150_075
crossref_primary_10_1016_j_ejphar_2024_176706
crossref_primary_10_3390_ph15050562
crossref_primary_10_1007_s00441_017_2656_2
crossref_primary_10_2174_1574888X15666200316164051
crossref_primary_10_1002_anbr_202000077
crossref_primary_10_4103_ijri_IJRI_385_19
crossref_primary_10_2174_1574362414666191018121658
Cites_doi 10.1161/CIRCRESAHA.111.256149
10.1371/journal.pone.0012272
10.1097/TA.0b013e318228221f
10.1073/pnas.0507063102
10.1523/JNEUROSCI.1770-15.2016
10.1038/nm.4066
10.1002/jnr.10341
10.1097/00007632-200112151-00002
10.1002/stem.767
10.1523/JNEUROSCI.4184-05.2006
10.1371/journal.pone.0052787
10.1038/sc.2014.86
10.1002/stem.1083
10.1038/70986
10.1038/nmeth.1591
10.1227/NEU.0000000000000412
10.1038/cr.2012.171
10.1074/jbc.M302395200
10.1371/journal.pone.0037589
10.1006/mcne.1999.0738
10.1038/ncomms2132
10.3727/096368914X684042
10.1111/j.1471-4159.1985.tb12870.x
10.1186/1756-6606-6-3
10.5966/sctm.2014-0215
10.1186/1756-6606-7-14
10.1371/journal.pone.0116933
10.1002/stem.1404
10.1016/j.expneurol.2010.04.020
10.1016/j.stem.2009.09.012
10.1186/s13287-015-0118-x
10.1523/JNEUROSCI.3111-09.2010
10.1007/978-4-431-54502-6_2
10.1186/s13041-016-0265-8
10.1146/annurev.ne.14.030191.001221
10.1016/j.celrep.2014.08.014
10.1006/exnr.1996.0094
10.1136/jnnp-2013-307454
10.1002/stem.201
10.1523/JNEUROSCI.3354-07.2007
10.1523/JNEUROSCI.19-14-06213.1999
10.1073/pnas.1108077108
10.1038/srep30898
10.1002/jnr.20435
10.1038/nature07863
10.1038/nature05934
10.1007/s00198-016-3627-2
10.1097/BRS.0000000000000654
10.1136/jnnp-2015-311074
10.1016/j.pmr.2009.12.003
10.1016/j.stemcr.2015.01.006
10.1016/j.expneurol.2014.05.021
10.1016/0165-3806(87)90214-8
10.1002/jnr.21372
10.1038/nature08090
10.1002/jnr.20436
10.1016/j.stemcr.2015.11.013
10.1016/j.neuroimage.2012.08.040
10.1002/jnr.20044
10.1371/journal.pone.0116413
10.5966/sctm.2014-0236
10.1177/1545968314562110
10.1016/j.stem.2010.11.015
10.1016/j.cell.2012.08.020
10.1016/j.cell.2006.07.024
10.1073/pnas.0910106107
10.1111/j.1460-9568.2005.04492.x
10.1523/JNEUROSCI.0311-05.2005
10.1186/1756-6606-7-22
10.1016/j.expneurol.2015.07.020
10.1073/pnas.1103509108
10.1371/journal.pone.0027706
10.1038/nbt.1554
10.1227/NEU.0000000000000393
10.1006/exnr.2002.7884
10.3171/2012.5.AOSPINE12115
10.1038/nrn1326
10.1016/j.neures.2016.07.005
10.1016/j.cell.2007.11.019
10.1038/416636a
10.2217/17460751.1.4.469
10.1016/j.neures.2015.11.011
10.1016/0092-8674(83)90536-6
10.1038/nm1505
10.1038/sc.2014.26
10.1002/jnr.22322
10.1016/j.stem.2016.06.003
10.1016/j.stemcr.2016.08.015
10.3727/096368914X684079
10.1016/j.expneurol.2013.07.010
10.1016/j.neuron.2014.07.014
10.1634/stemcells.2008-0293
ContentType Journal Article
Copyright 2017 International Society for Neurochemistry
2017 International Society for Neurochemistry.
Copyright © 2017 International Society for Neurochemistry
Copyright_xml – notice: 2017 International Society for Neurochemistry
– notice: 2017 International Society for Neurochemistry.
– notice: Copyright © 2017 International Society for Neurochemistry
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
7U9
8FD
C1K
FR3
H94
P64
7X8
DOI 10.1111/jnc.13986
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Toxicology Abstracts
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Virology and AIDS Abstracts

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1471-4159
EndPage 860
ExternalDocumentID 28199003
10_1111_jnc_13986
JNC13986
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Japan Agency for Medical Research and Development (AMED)
– fundername: SanBio Co. Ltd
– fundername: Research Center Network for Realization of Regenerative Medicine
– fundername: K Pharma Inc.
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
24P
29L
2WC
31~
33P
36B
3SF
4.4
41~
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYJJ
AAZKR
ABCQN
ABCUV
ABEML
ABIVO
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FIJ
FUBAC
FZ0
G-S
G.N
GAKWD
GODZA
GX1
H.X
HF~
HGLYW
HH5
HVGLF
HZI
HZ~
IH2
IHE
IPNFZ
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TWZ
UB1
V8K
VH1
W8V
W99
WBKPD
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
X7M
XG1
XJT
YFH
YNH
YOC
YUY
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QR
7TK
7U7
7U9
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
H94
P64
7X8
ID FETCH-LOGICAL-c4546-ed672df06107210e3ff40b9c0d564df08a453830dbb856a5d3cd8bfd30adb4003
IEDL.DBID DR2
ISSN 0022-3042
IngestDate Fri Jul 11 15:15:32 EDT 2025
Fri Jul 25 19:38:01 EDT 2025
Wed Feb 19 02:33:26 EST 2025
Thu Apr 24 23:08:07 EDT 2025
Tue Jul 01 04:39:09 EDT 2025
Wed Jan 22 16:52:02 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords clinical trial
spinal cord injury
cell transplantation
induced pluripotent stem cells
neural precursor cells
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 International Society for Neurochemistry.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4546-ed672df06107210e3ff40b9c0d564df08a453830dbb856a5d3cd8bfd30adb4003
Notes This article is part of the mini review series “60th Anniversary of the Japanese Society for Neurochemistry”
.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jnc.13986
PMID 28199003
PQID 1911516787
PQPubID 31528
PageCount 13
ParticipantIDs proquest_miscellaneous_1868694414
proquest_journals_1911516787
pubmed_primary_28199003
crossref_primary_10_1111_jnc_13986
crossref_citationtrail_10_1111_jnc_13986
wiley_primary_10_1111_jnc_13986_JNC13986
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2017
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: June 2017
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Journal of neurochemistry
PublicationTitleAlternate J Neurochem
PublicationYear 2017
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 1991; 14
2010; 107
2013; 23
2016; 107
2010; 224
2013; 248
2004; 5
2012; 17
2014; 61
2003; 278
2013; 6
2016; 36
2005; 22
2005; 25
2004; 76
2010; 21
1987; 431
2015; 40
1999; 19
2005; 102
2015; 86
2011; 71
2006; 26
2007; 131
2016; 87
2013; 112
1999; 13
2016; 113
2008; 26
2014; 52
2014; 8
2006; 126
2014; 7
2010; 5
2011; 29
2010; 30
2010; 7
2012; 63
1996; 139
2007; 27
2015; 6
2007; 448
2015; 4
2016; 19
2002; 175
2006; 12
2005b; 80
2015; 10
2001; 26
2002; 416
2006; 1
1985; 44
2009; 459
2011; 6
2014; 83
1999; 5
2009; 27
2011; 8
2012; 30
2005a; 80
1983; 34
2009; 458
2012; 150
2015; 24
2010; 88
2016; 6
2015; 271
2002; 69
2016; 7
2011; 108
2012; 3
2015; 29
2013; 31
2014; 261
2009; 5
2014
2007; 85
2012; 7
2016; 27
2016; 9
2016; 22
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_72_1
e_1_2_11_91_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_13_1
e_1_2_11_53_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
e_1_2_11_83_1
e_1_2_11_60_1
e_1_2_11_81_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_68_1
e_1_2_11_89_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_62_1
e_1_2_11_87_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_64_1
e_1_2_11_85_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_59_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_50_1
e_1_2_11_71_1
e_1_2_11_92_1
Kim D. (e_1_2_11_34_1) 1999; 19
e_1_2_11_90_1
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_56_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_82_1
e_1_2_11_61_1
e_1_2_11_80_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_88_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_84_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
Saruhashi Y. (e_1_2_11_76_1) 1996; 139
References_xml – volume: 7
  start-page: 14
  year: 2014
  article-title: Rewiring of regenerated axons by combining treadmill training with semaphorin3A inhibition
  publication-title: Mol. Brain
– volume: 88
  start-page: 1394
  year: 2010
  end-page: 1405
  article-title: Transplantation of galectin‐1‐expressing human neural stem cells into the injured spinal cord of adult common marmosets
  publication-title: J. Neurosci. Res.
– volume: 9
  start-page: 85
  year: 2016
  article-title: Pathological classification of human iPSC‐derived neural stem/progenitor cells towards safety assessment of transplantation therapy for CNS diseases
  publication-title: Mol. Brain
– volume: 108
  start-page: 14234
  year: 2011
  end-page: 14239
  article-title: Efficient generation of transgene‐free human induced pluripotent stem cells (iPSCs) by temperature‐sensitive Sendai virus vectors
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 7
  start-page: 651
  year: 2010
  end-page: 655
  article-title: Reprogramming of human primary somatic cells by OCT4 and chemical compounds
  publication-title: Cell Stem Cell
– volume: 29
  start-page: 1983
  year: 2011
  end-page: 1994
  article-title: Significance of remyelination by neural stem/progenitor cells transplanted into the injured spinal cord
  publication-title: Stem Cells
– volume: 1
  start-page: 469
  year: 2006
  end-page: 479
  article-title: Transplantation of human embryonic stem cell‐derived oligodendrocyte progenitors into rat spinal cord injuries does not cause harm
  publication-title: Regen. Med.
– volume: 22
  start-page: 479
  year: 2016
  end-page: 487
  article-title: Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration
  publication-title: Nat. Med.
– volume: 83
  start-page: 789
  year: 2014
  end-page: 796
  article-title: Long‐distance axonal growth from human induced pluripotent stem cells after spinal cord injury
  publication-title: Neuron
– volume: 8
  start-page: 409
  year: 2011
  end-page: 412
  article-title: A more efficient method to generate integration‐free human iPS cells
  publication-title: Nat. Methods
– volume: 27
  start-page: 2667
  year: 2009
  end-page: 2674
  article-title: Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells
  publication-title: Stem Cells
– volume: 22
  start-page: 3036
  year: 2005
  end-page: 3046
  article-title: Chondroitinase ABC combined with neural stem/progenitor cell transplantation enhances graft cell migration and outgrowth of growth‐associated protein‐43‐positive fibers after rat spinal cord injury
  publication-title: Eur. J. Neuorsci.
– volume: 69
  start-page: 925
  year: 2002
  end-page: 933
  article-title: Transplantation of in vitro‐expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats
  publication-title: J. Neurosci. Res.
– volume: 458
  start-page: 766
  year: 2009
  end-page: 770
  article-title: piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells
  publication-title: Nature
– volume: 224
  start-page: 403
  year: 2010
  end-page: 414
  article-title: Anti‐IL‐6‐receptor antibody promotes repair of spinal cord injury by inducing microglia‐dominant inflammation
  publication-title: Exp. Neurol.
– volume: 6
  start-page: 3
  year: 2013
  article-title: Time‐dependent changes in the microenvironment of injured spinal cord affects the therapeutic potential of neural stem cell transplantation for spinal cord injury
  publication-title: Mol. Brain
– volume: 261
  start-page: 171
  year: 2014
  end-page: 179
  article-title: Global gene expression analysis following spinal cord injury in non‐human primates
  publication-title: Exp. Neurol.
– volume: 131
  start-page: 861
  year: 2007
  end-page: 872
  article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors
  publication-title: Cell
– volume: 102
  start-page: 14069
  year: 2005
  end-page: 14074
  article-title: Human neural stem cells differentiate and promote locomotor recovery in spinal cord‐injured mice
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 6
  start-page: 30898
  year: 2016
  article-title: Functional recovery from neural stem/progenitor cell transplantation combined with treadmill training in mice with chronic spinal cord injury
  publication-title: Sci. Rep.
– volume: 10
  start-page: e0116933
  year: 2015
  article-title: Early intervention for spinal cord injury with human induced pluripotent stem cells oligodendrocyte progenitors
  publication-title: PLoS ONE
– volume: 431
  start-page: 265
  year: 1987
  end-page: 279
  article-title: Spinal cord transplants permit the growth of serotonergic axons across the site of neonatal spinal cord transection
  publication-title: Brain Res.
– volume: 71
  start-page: 380
  year: 2011
  end-page: 385
  article-title: The mortality inflection point for age and acute cervical spinal cord injury
  publication-title: The Journal of trauma
– volume: 459
  start-page: 523
  year: 2009
  end-page: 527
  article-title: Generation of transgenic non‐human primates with germline transmission
  publication-title: Nature
– volume: 10
  start-page: e0116413
  year: 2015
  article-title: Controlling immune rejection is a fail‐safe system against potential tumorigenicity after human iPSC‐derived neural stem cell transplantation
  publication-title: PLoS ONE
– volume: 8
  start-page: 1697
  year: 2014
  end-page: 1703
  article-title: Origin‐dependent neural cell identities in differentiated human iPSCs in vitro and after transplantation into the mouse brain
  publication-title: Cell Rep.
– volume: 27
  start-page: 743
  year: 2009
  end-page: 745
  article-title: Variation in the safety of induced pluripotent stem cell lines
  publication-title: Nat. Biotechnol.
– volume: 248
  start-page: 491
  year: 2013
  end-page: 503
  article-title: Caudalized human iPSC‐derived neural progenitor cells produce neurons and glia but fail to restore function in an early chronic spinal cord injury model
  publication-title: Exp Neurol.
– volume: 44
  start-page: 692
  year: 1985
  end-page: 696
  article-title: Molecular genetic analysis of myelin‐deficient mice: shiverer mutant mice show deletion in gene(s) coding for myelin basic protein
  publication-title: J. Neurochem.
– volume: 27
  start-page: 3011
  year: 2016
  end-page: 3021
  article-title: Risk factors for osteoporotic fractures in persons with spinal cord injuries and disorders
  publication-title: Osteoporos. Int.
– volume: 26
  start-page: 3086
  year: 2008
  end-page: 3098
  article-title: Spatiotemporal recapitulation of central nervous system development by murine embryonic stem cell‐derived neural stem/progenitor cells
  publication-title: Stem Cells
– volume: 150
  start-page: 1264
  year: 2012
  end-page: 1273
  article-title: Long‐distance growth and connectivity of neural stem cells after severe spinal cord injury
  publication-title: Cell
– volume: 5
  start-page: e12272
  year: 2010
  article-title: Human neural stem cells differentiate and promote locomotor recovery in an early chronic spinal cord injury NOD‐scid mouse model
  publication-title: PLoS ONE
– volume: 4
  start-page: 743
  year: 2015
  end-page: 754
  article-title: Transplantation of induced pluripotent stem cell‐derived neural stem cells mediate functional recovery following thoracic spinal cord injury through remyelination of axons
  publication-title: Stem Cells Transl. Med.
– volume: 40
  start-page: E823
  year: 2015
  end-page: E830
  article-title: Diagnostic value of serum levels of GFAP, pNF‐H, and NSE compared with clinical findings in severity assessment of human traumatic spinal cord injury
  publication-title: Spine
– volume: 80
  start-page: 182
  year: 2005a
  end-page: 190
  article-title: Transplantation of human neural stem cells for spinal cord injury in primates
  publication-title: J. Neurosci. Res.
– volume: 52
  start-page: 428
  year: 2014
  end-page: 433
  article-title: Structural biomarkers in the cerebrospinal fluid within 24 h after a traumatic spinal cord injury: a descriptive analysis of 16 subjects
  publication-title: Spinal Cord
– volume: 25
  start-page: 4694
  year: 2005
  end-page: 4705
  article-title: Human embryonic stem cell‐derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury
  publication-title: J. Neurosci.
– volume: 61
  start-page: 32
  issue: Suppl 1
  year: 2014
  end-page: 35
  article-title: Methylprednisolone for the treatment of acute spinal cord injury: point
  publication-title: Neurosurgery
– volume: 12
  start-page: 1380
  year: 2006
  end-page: 1389
  article-title: A selective Sema3A inhibitor enhances regenerative responses and functional recovery of the injured spinal cord
  publication-title: Nat. Med.
– volume: 7
  start-page: 22
  year: 2014
  article-title: iPS cell technologies: significance and applications to CNS regeneration and disease
  publication-title: Mol. Brain
– volume: 30
  start-page: 1163
  year: 2012
  end-page: 1173
  article-title: Treatment of a mouse model of spinal cord injury by transplantation of human induced pluripotent stem cell‐derived long‐term self‐renewing neuroepithelial‐like stem cells
  publication-title: Stem Cells
– volume: 6
  start-page: e27706
  year: 2011
  article-title: Human hepatocyte growth factor promotes functional recovery in primates after spinal cord injury
  publication-title: PLoS ONE
– volume: 7
  start-page: e52787
  year: 2012
  article-title: Pre‐evaluated safe human iPSC‐derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity
  publication-title: PLoS ONE
– volume: 107
  start-page: 12704
  year: 2010
  end-page: 12709
  article-title: Therapeutic potential of appropriately evaluated safe‐induced pluripotent stem cells for spinal cord injury
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 113
  start-page: 37
  year: 2016
  end-page: 47
  article-title: Combined treatment with chondroitinase ABC and treadmill rehabilitation for chronic severe spinal cord injury in adult rats
  publication-title: Neuroscience research
– volume: 21
  start-page: 357
  year: 2010
  end-page: 373
  article-title: Falls, aging, and disability
  publication-title: Phys Med Rehabil Clin N Am
– volume: 5
  start-page: 1410
  year: 1999
  end-page: 1412
  article-title: Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord
  publication-title: Nat. Med.
– volume: 24
  start-page: 1799
  year: 2015
  end-page: 1812
  article-title: Transplanted Human Induced Pluripotent Stem Cell‐Derived Neural Progenitor Cells Do Not Promote Functional Recovery of Pharmacologically Immunosuppressed Mice With Contusion Spinal Cord Injury
  publication-title: Cell Transplant.
– start-page: 11
  year: 2014
  end-page: 18
– volume: 76
  start-page: 265
  year: 2004
  end-page: 276
  article-title: Blockade of interleukin‐6 receptor suppresses reactive astrogliosis and ameliorates functional recovery in experimental spinal cord injury
  publication-title: J. Neurosci. Res.
– volume: 107
  start-page: 20
  year: 2016
  end-page: 29
  article-title: Safe and efficient method for cryopreservation of human induced pluripotent stem cell‐derived neural stem and progenitor cells by a programmed freezer with a magnetic field
  publication-title: Neuroscience Res.
– volume: 14
  start-page: 201
  year: 1991
  end-page: 217
  article-title: Structure and function of myelin protein genes
  publication-title: Annu. Rev. Neurosci.
– volume: 27
  start-page: 11991
  year: 2007
  end-page: 11998
  article-title: In vivo tracing of neural tracts in the intact and injured spinal cord of marmosets by diffusion tensor tractography
  publication-title: J. Neurosci.
– volume: 26
  start-page: S2
  year: 2001
  end-page: S12
  article-title: Epidemiology, demographics, and pathophysiology of acute spinal cord injury
  publication-title: Spine
– volume: 126
  start-page: 663
  year: 2006
  end-page: 676
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
– volume: 4
  start-page: 360
  year: 2015
  end-page: 373
  article-title: Long‐term safety issues of iPSC‐based cell therapy in a spinal cord injury model: oncogenic transformation with epithelial‐mesenchymal transition
  publication-title: Stem Cell Reports
– volume: 108
  start-page: 16825
  year: 2011
  end-page: 16830
  article-title: Grafted human‐induced pluripotent stem‐cell‐derived neurospheres promote motor functional recovery after spinal cord injury in mice
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 7
  start-page: e37589
  year: 2012
  article-title: Chondroitinase and growth factors enhance activation and oligodendrocyte differentiation of endogenous neural precursor cells after spinal cord injury
  publication-title: PLoS ONE
– volume: 63
  start-page: 1841
  year: 2012
  end-page: 1853
  article-title: Conditions for quantitative evaluation of injured spinal cord by in vivo diffusion tensor imaging and tractography: preclinical longitudinal study in common marmosets
  publication-title: NeuroImage
– volume: 86
  start-page: 273
  year: 2015
  end-page: 279
  article-title: Serum neurofilament light chain is a biomarker of human spinal cord injury severity and outcome
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 5
  start-page: 146
  year: 2004
  end-page: 156
  article-title: Regeneration beyond the glial scar
  publication-title: Nat. Rev. Neurosci.
– volume: 52
  start-page: 596
  year: 2014
  end-page: 600
  article-title: Circulating microRNAs as biomarkers for evaluating the severity of acute spinal cord injury
  publication-title: Spinal Cord
– volume: 278
  start-page: 42985
  year: 2003
  end-page: 42991
  article-title: In vitro and in vivo characterization of a novel semaphorin 3A inhibitor, SM‐216289 or xanthofulvin
  publication-title: J. Biol. Chem.
– volume: 85
  start-page: 2332
  year: 2007
  end-page: 2342
  article-title: Hepatocyte growth factor promotes endogenous repair and functional recovery after spinal cord injury
  publication-title: J. Neurosci. Res.
– volume: 7
  start-page: 649
  year: 2016
  end-page: 663
  article-title: Pretreatment with a gamma‐Secretase inhibitor prevents tumor‐like overgrowth in human iPSC‐derived transplants for spinal cord injury
  publication-title: Stem Cell Reports
– volume: 416
  start-page: 636
  year: 2002
  end-page: 640
  article-title: Chondroitinase ABC promotes functional recovery after spinal cord injury
  publication-title: Nature
– volume: 271
  start-page: 479
  year: 2015
  end-page: 492
  article-title: Human iPS cell‐derived astrocyte transplants preserve respiratory function after spinal cord injury
  publication-title: Exp Neurol.
– volume: 29
  start-page: 677
  year: 2015
  end-page: 689
  article-title: BDNF induced by treadmill training contributes to the suppression of spasticity and allodynia after spinal cord injury via upregulation of KCC2
  publication-title: Neurorehabil Neural Repair
– volume: 448
  start-page: 313
  year: 2007
  end-page: 317
  article-title: Generation of germline‐competent induced pluripotent stem cells
  publication-title: Nature
– volume: 61
  start-page: 36
  issue: Suppl 1
  year: 2014
  end-page: 42
  article-title: Methylprednisolone for the treatment of acute spinal cord injury: counterpoint
  publication-title: Neurosurgery
– volume: 26
  start-page: 3377
  year: 2006
  end-page: 3389
  article-title: Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury
  publication-title: J. Neurosci.
– volume: 31
  start-page: 1535
  year: 2013
  end-page: 1547
  article-title: Therapeutic activities of engrafted neural stem/precursor cells are not dormant in the chronically injured spinal cord
  publication-title: Stem Cells
– volume: 4
  start-page: 708
  year: 2015
  end-page: 719
  article-title: Allogeneic neural stem/progenitor cells derived from embryonic Stem cells promote functional recovery after transplantation into injured spinal cord of nonhuman primates
  publication-title: Stem Cells Transl. Med.
– volume: 87
  start-page: 734
  year: 2016
  end-page: 740
  article-title: Does age affect surgical outcomes in patients with degenerative cervical myelopathy? Results from the prospective multicenter AOSpine International study on 479 patients
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 5
  start-page: 491
  year: 2009
  end-page: 503
  article-title: A small‐molecule inhibitor of tgf‐Beta signaling replaces sox2 in reprogramming by inducing nanog
  publication-title: Cell Stem Cell
– volume: 112
  start-page: 523
  year: 2013
  end-page: 533
  article-title: Steps toward safe cell therapy using induced pluripotent stem cells
  publication-title: Circ. Res.
– volume: 19
  start-page: 6213
  year: 1999
  end-page: 6224
  article-title: Direct agonists for serotonin receptors enhance locomotor function in rats that received neural transplants after neonatal spinal transection
  publication-title: J. Neurosci.
– volume: 13
  start-page: 143
  year: 1999
  end-page: 166
  article-title: Expression of the gene encoding the chemorepellent semaphorin III is induced in the fibroblast component of neural scar tissue formed following injuries of adult but not neonatal CNS
  publication-title: Mol. Cell Neurosci.
– volume: 34
  start-page: 799
  year: 1983
  end-page: 806
  article-title: Characterization of cloned cDNA representing rat myelin basic protein: absence of expression in brain of shiverer mutant mice
  publication-title: Cell
– volume: 6
  start-page: 125
  year: 2015
  article-title: Human‐induced pluripotent stem cells generated from intervertebral disc cells improve neurologic functions in spinal cord injury
  publication-title: Stem Cell Res Ther.
– volume: 3
  start-page: 1140
  year: 2012
  article-title: Direct isolation and RNA‐seq reveal environment‐dependent properties of engrafted neural stem/progenitor cells
  publication-title: Nat. Commun.
– volume: 23
  start-page: 70
  year: 2013
  end-page: 80
  article-title: Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells
  publication-title: Cell Res.
– volume: 139
  start-page: 203
  year: 1996
  end-page: 213
  article-title: The recovery of 5‐HT immunoreactivity in lumbosacral spinal cord and locomotor function after thoracic hemisection
  publication-title: Exp. Neurol.
– volume: 24
  start-page: 1781
  year: 2015
  end-page: 1797
  article-title: Beneficial Effect of Human Induced Pluripotent Stem Cell‐Derived Neural Precursors in Spinal Cord Injury Repair
  publication-title: Cell Transplant.
– volume: 30
  start-page: 1657
  year: 2010
  end-page: 1676
  article-title: Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord
  publication-title: J. Neurosci.
– volume: 175
  start-page: 61
  year: 2002
  end-page: 75
  article-title: Injury‐induced class 3 semaphorin expression in the rat spinal cord
  publication-title: Exp. Neurol.
– volume: 19
  start-page: 127
  year: 2016
  end-page: 138
  article-title: Generation of a nonhuman primate model of severe combined immunodeficiency using highly efficient genome editing
  publication-title: Cell Stem Cell
– volume: 6
  start-page: 1
  year: 2016
  end-page: 8
  article-title: Grafted human iPS cell‐derived oligodendrocyte precursor cells contribute to robust remyelination of demyelinated axons after spinal cord injury
  publication-title: Stem Cell Reports
– volume: 36
  start-page: 2796
  year: 2016
  end-page: 2808
  article-title: Application of q‐space diffusion MRI for the visualization of white matter
  publication-title: J. Neurosci.
– volume: 80
  start-page: 172
  year: 2005b
  end-page: 181
  article-title: Establishment of graded spinal cord injury model in a nonhuman primate: the common marmoset
  publication-title: J. Neurosci. Res.
– volume: 17
  start-page: 230
  year: 2012
  end-page: 246
  article-title: Evaluation of clinical experience using cell‐based therapies in patients with spinal cord injury: a systematic review
  publication-title: J. Neurosurg. Spine
– ident: e_1_2_11_65_1
  doi: 10.1161/CIRCRESAHA.111.256149
– ident: e_1_2_11_74_1
  doi: 10.1371/journal.pone.0012272
– ident: e_1_2_11_46_1
  doi: 10.1097/TA.0b013e318228221f
– ident: e_1_2_11_9_1
  doi: 10.1073/pnas.0507063102
– ident: e_1_2_11_15_1
  doi: 10.1523/JNEUROSCI.1770-15.2016
– ident: e_1_2_11_26_1
  doi: 10.1038/nm.4066
– ident: e_1_2_11_60_1
  doi: 10.1002/jnr.10341
– ident: e_1_2_11_79_1
  doi: 10.1097/00007632-200112151-00002
– ident: e_1_2_11_90_1
  doi: 10.1002/stem.767
– ident: e_1_2_11_28_1
  doi: 10.1523/JNEUROSCI.4184-05.2006
– ident: e_1_2_11_38_1
  doi: 10.1371/journal.pone.0052787
– ident: e_1_2_11_16_1
  doi: 10.1038/sc.2014.86
– ident: e_1_2_11_13_1
  doi: 10.1002/stem.1083
– ident: e_1_2_11_47_1
  doi: 10.1038/70986
– ident: e_1_2_11_67_1
  doi: 10.1038/nmeth.1591
– ident: e_1_2_11_11_1
  doi: 10.1227/NEU.0000000000000412
– ident: e_1_2_11_52_1
  doi: 10.1038/cr.2012.171
– ident: e_1_2_11_33_1
  doi: 10.1074/jbc.M302395200
– ident: e_1_2_11_30_1
  doi: 10.1371/journal.pone.0037589
– ident: e_1_2_11_69_1
  doi: 10.1006/mcne.1999.0738
– ident: e_1_2_11_41_1
  doi: 10.1038/ncomms2132
– ident: e_1_2_11_73_1
  doi: 10.3727/096368914X684042
– ident: e_1_2_11_35_1
  doi: 10.1111/j.1471-4159.1985.tb12870.x
– ident: e_1_2_11_54_1
  doi: 10.1186/1756-6606-6-3
– ident: e_1_2_11_23_1
  doi: 10.5966/sctm.2014-0215
– ident: e_1_2_11_91_1
  doi: 10.1186/1756-6606-7-14
– ident: e_1_2_11_3_1
  doi: 10.1371/journal.pone.0116933
– ident: e_1_2_11_42_1
  doi: 10.1002/stem.1404
– ident: e_1_2_11_50_1
  doi: 10.1016/j.expneurol.2010.04.020
– ident: e_1_2_11_20_1
  doi: 10.1016/j.stem.2009.09.012
– ident: e_1_2_11_61_1
  doi: 10.1186/s13287-015-0118-x
– ident: e_1_2_11_29_1
  doi: 10.1523/JNEUROSCI.3111-09.2010
– ident: e_1_2_11_51_1
  doi: 10.1007/978-4-431-54502-6_2
– ident: e_1_2_11_82_1
  doi: 10.1186/s13041-016-0265-8
– ident: e_1_2_11_48_1
  doi: 10.1146/annurev.ne.14.030191.001221
– ident: e_1_2_11_17_1
  doi: 10.1016/j.celrep.2014.08.014
– volume: 139
  start-page: 203
  year: 1996
  ident: e_1_2_11_76_1
  article-title: The recovery of 5‐HT immunoreactivity in lumbosacral spinal cord and locomotor function after thoracic hemisection
  publication-title: Exp. Neurol.
  doi: 10.1006/exnr.1996.0094
– ident: e_1_2_11_40_1
  doi: 10.1136/jnnp-2013-307454
– ident: e_1_2_11_92_1
  doi: 10.1002/stem.201
– ident: e_1_2_11_14_1
  doi: 10.1523/JNEUROSCI.3354-07.2007
– volume: 19
  start-page: 6213
  year: 1999
  ident: e_1_2_11_34_1
  article-title: Direct agonists for serotonin receptors enhance locomotor function in rats that received neural transplants after neonatal spinal transection
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.19-14-06213.1999
– ident: e_1_2_11_57_1
  doi: 10.1073/pnas.1108077108
– ident: e_1_2_11_86_1
  doi: 10.1038/srep30898
– ident: e_1_2_11_25_1
  doi: 10.1002/jnr.20435
– ident: e_1_2_11_88_1
  doi: 10.1038/nature07863
– ident: e_1_2_11_66_1
  doi: 10.1038/nature05934
– ident: e_1_2_11_5_1
  doi: 10.1007/s00198-016-3627-2
– ident: e_1_2_11_2_1
  doi: 10.1097/BRS.0000000000000654
– ident: e_1_2_11_53_1
  doi: 10.1136/jnnp-2015-311074
– ident: e_1_2_11_12_1
  doi: 10.1016/j.pmr.2009.12.003
– ident: e_1_2_11_58_1
  doi: 10.1016/j.stemcr.2015.01.006
– ident: e_1_2_11_55_1
  doi: 10.1016/j.expneurol.2014.05.021
– ident: e_1_2_11_7_1
  doi: 10.1016/0165-3806(87)90214-8
– ident: e_1_2_11_36_1
  doi: 10.1002/jnr.21372
– ident: e_1_2_11_77_1
  doi: 10.1038/nature08090
– ident: e_1_2_11_24_1
  doi: 10.1002/jnr.20436
– ident: e_1_2_11_31_1
  doi: 10.1016/j.stemcr.2015.11.013
– ident: e_1_2_11_39_1
  doi: 10.1016/j.neuroimage.2012.08.040
– ident: e_1_2_11_62_1
  doi: 10.1002/jnr.20044
– ident: e_1_2_11_22_1
  doi: 10.1371/journal.pone.0116413
– ident: e_1_2_11_75_1
  doi: 10.5966/sctm.2014-0236
– ident: e_1_2_11_85_1
  doi: 10.1177/1545968314562110
– ident: e_1_2_11_93_1
  doi: 10.1016/j.stem.2010.11.015
– ident: e_1_2_11_44_1
  doi: 10.1016/j.cell.2012.08.020
– ident: e_1_2_11_83_1
  doi: 10.1016/j.cell.2006.07.024
– ident: e_1_2_11_87_1
  doi: 10.1073/pnas.0910106107
– ident: e_1_2_11_21_1
  doi: 10.1111/j.1460-9568.2005.04492.x
– ident: e_1_2_11_32_1
  doi: 10.1523/JNEUROSCI.0311-05.2005
– ident: e_1_2_11_64_1
  doi: 10.1186/1756-6606-7-22
– ident: e_1_2_11_43_1
  doi: 10.1016/j.expneurol.2015.07.020
– ident: e_1_2_11_4_1
  doi: 10.1073/pnas.1103509108
– ident: e_1_2_11_37_1
  doi: 10.1371/journal.pone.0027706
– ident: e_1_2_11_49_1
  doi: 10.1038/nbt.1554
– ident: e_1_2_11_19_1
  doi: 10.1227/NEU.0000000000000393
– ident: e_1_2_11_10_1
  doi: 10.1006/exnr.2002.7884
– ident: e_1_2_11_18_1
  doi: 10.3171/2012.5.AOSPINE12115
– ident: e_1_2_11_81_1
  doi: 10.1038/nrn1326
– ident: e_1_2_11_80_1
  doi: 10.1016/j.neures.2016.07.005
– ident: e_1_2_11_84_1
  doi: 10.1016/j.cell.2007.11.019
– ident: e_1_2_11_6_1
  doi: 10.1038/416636a
– ident: e_1_2_11_8_1
  doi: 10.2217/17460751.1.4.469
– ident: e_1_2_11_56_1
  doi: 10.1016/j.neures.2015.11.011
– ident: e_1_2_11_72_1
  doi: 10.1016/0092-8674(83)90536-6
– ident: e_1_2_11_27_1
  doi: 10.1038/nm1505
– ident: e_1_2_11_71_1
  doi: 10.1038/sc.2014.26
– ident: e_1_2_11_89_1
  doi: 10.1002/jnr.22322
– ident: e_1_2_11_78_1
  doi: 10.1016/j.stem.2016.06.003
– ident: e_1_2_11_68_1
  doi: 10.1016/j.stemcr.2016.08.015
– ident: e_1_2_11_70_1
  doi: 10.3727/096368914X684079
– ident: e_1_2_11_59_1
  doi: 10.1016/j.expneurol.2013.07.010
– ident: e_1_2_11_45_1
  doi: 10.1016/j.neuron.2014.07.014
– ident: e_1_2_11_63_1
  doi: 10.1634/stemcells.2008-0293
SSID ssj0016461
Score 2.441164
SecondaryResourceType review_article
Snippet Numerous basic research studies have suggested the potential efficacy of neural precursor cell (NPC) transplantation in spinal cord injury (SCI). However, in...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 848
SubjectTerms Abnormalities
Animal models
Animals
Axonogenesis
Cell Differentiation - physiology
cell transplantation
Cell- and Tissue-Based Therapy - methods
Central nervous system
clinical trial
Effectiveness
Embryo cells
Ethics
Fetuses
Humans
induced pluripotent stem cells
Induced Pluripotent Stem Cells - cytology
Inhibitors
Inhibitory postsynaptic potentials
Integration
Nervous system
Neural cell transplants
Neural networks
neural precursor cells
Neural Stem Cells - cytology
Neurochemistry
Neurons - cytology
Patients
Pluripotency
Regeneration (physiology)
Regenerative medicine
Rehabilitation
Somatic cells
Spinal cord injuries
Spinal Cord Injuries - pathology
Spinal Cord Injuries - therapy
spinal cord injury
Stem cell transplantation
Stem cells
Therapeutic applications
Therapy
Tissue engineering
Transcription factors
Tumorigenesis
Title Applications of induced pluripotent stem cell technologies in spinal cord injury
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjnc.13986
https://www.ncbi.nlm.nih.gov/pubmed/28199003
https://www.proquest.com/docview/1911516787
https://www.proquest.com/docview/1868694414
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB7Ei1581Fe1yioiXiJpstlu8VSKUgRFRKEHIWQfOWhNi00P-uud2TyoLxBveUzIZndm9pvZybcAx4YnqVY68owNuh6P_NBTimuvEwildFsgxKd8x_WNGDzwq2E0XIDz6l-Ygh-iTriRZTh_TQaeqOm8kaP9IHyRRLdNtVoEiO5q6iiizWrXTOGomSWrkKviqZ78PBd9A5if8aqbcC5X4bFqalFn8nw2y9WZfv_C4vjPb1mDlRKIsl6hOeuwYLMGbPQyDMJf3tgJc6WhLufegKV-tS3cBtz25pa82ThlGNSjehg2Gc3QAY0Rg-eM2KEZrQmwvErdY0SOomw6oW24GMW8ePqEI7oJD5cX9_2BV27L4GkeceFZIzqBSREIELeab8M05b7qat9EguN1mXD0oqFvlJKRSCITaiNVakI_MQpdRrgFi9k4szvAEGygz_CNFGmXyySRbS0DqztWYexs2qoJp9UAxbrkLKetM0ZxHbtkOnY914SjWnRSEHX8JNSqRjkubXUaY8SKsAcn7U4TDuvb2KvUTUlmxzOUkUKKLkJH3oTtQjvqt9BSJOWDsbFujH9_fXx103cHu38X3YPlgJCES_y0YDF_ndl9xEG5OnAK_wFfbwN8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTtxAEC0ROJALEEjCBJJ0oiTKxchLu91zyGE0gIZtFEUgcXPciyUSYo8yHiH4Jn6Ff6KqvQiySLlwyM1LyUu7qvpVVfsVwDvDs1wrHXvGhn2Px37kKcW1l4RCKR0IhPiU7zgai9EJ3z-NT-fguv0XpuaH6BJuZBnOX5OBU0L6rpWjASF-kaJZUnlgLy8wYJt-2tvGr_s-DHd3jocjr-kp4Gkec-FZI5LQ5DiLETGYb6M8577qa9_EguNxmXF0AZFvlJKxyGITaSNVbiI_Mwr1PcLrPoIF6iBOTP3bXzqyKiLqCjpucrSFhsfIrRtqH_X-7PcbpL2PkN0Ut7sMN-3g1Ctbvm_NKrWlr37hjfxfRm8FlhqszQa1cTyBOVuswtqgyKryxyX7wNzqV1dWWIXFYdv5bg0-D-5U9VmZs7PCoAUYNjmfoY8tMcyoGBFgMyp7sKqtTpzZKYqy6YQ6jTEK63H3GyrtUzh5kPd8BvNFWdh1YIin0C36Roq8z2WWyUDL0OrEqiSITKB68LHViFQ3tOzUHeQ87cKzQqfuS_XgbSc6qblI_iS02apV2rijaYpBOSI7xCVJD950p3FUaZiywpYzlJFCij6iY96D57U6dnehaiulvPFhnVL9_fbp_njoNl78u-hrWBwdHx2mh3vjgw14HBJwcnmuTZivfs7sS4R9lXrlrI3B14dW0Fs662GI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RkNpeeBZYHq2LStVLUB6O4xw4rHZZ8WhXqAKJWxo_ItHSZMVmheAv8Vf4UYydh6ClUi8cuOUxShx7ZvyNx_kG4JOiaSaFDB2l_dihoRs4QlDpRD4TQnoMIb5Z7_g2ZPun9PAsPJuC2-ZfmIofol1wM5Zh_bUx8JHKHho52g_CF87qHZVH-voK47Xx7kEfB3fb9wd7J719py4p4EgaUuZoxSJfZTiJGV4wVwdZRl0RS1eFjOJ1nlL0AIGrhOAhS0MVSMVFpgI3VQLVPcDnvoIZytzY1Inof2-5qgxPl9dSk6Mp1DRGdttQ09THk99fiPYxQLYz3GAO7pq-qTa2_NqZlGJH3vxBG_lCOm8eZmukTbqVaSzAlM4XYambp2Xx-5p8Jnbvq00qLMKbXlP3bgmOuw9y-qTIyHmuUP8VGV1M0MMWGGSUxNBfE5P0IGWTmzjXYxQl45GpM0ZMUI-nP1Fl38Hps3znMkznRa5XgSCaQqfoKs6ymPI05Z7kvpaRFpEXKE904EujEImsSdlNbZCLpA3OcpnYkerAVis6qphInhLaaLQqqZ3ROMGQHHEdopKoAx_b29irppvSXBcTlOGMsxixMe3ASqWN7VtMrtUseGNjrU79-_XJ4bBnD9b-X_QDvD7uD5KvB8OjdXjrG9RkF7k2YLq8nOhNxHyleG9tjcCP59bPe56IYDc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applications+of+induced+pluripotent+stem+cell+technologies+in+spinal+cord+injury&rft.jtitle=Journal+of+neurochemistry&rft.au=Nagoshi%2C+Narihito&rft.au=Okano%2C+Hideyuki&rft.date=2017-06-01&rft.eissn=1471-4159&rft.volume=141&rft.issue=6&rft.spage=848&rft.epage=860&rft_id=info:doi/10.1111%2Fjnc.13986&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3042&client=summon