Ability of leaf mesophyll to retain potassium correlates with salinity tolerance in wheat and barley

This work investigated the importance of the ability of leaf mesophyll cells to control K+ flux across the plasma membrane as a trait conferring tissue tolerance mechanism in plants grown under saline conditions. Four wheat (Triticum aestivum and Triticum turgidum) and four barley (Hordeum vulgare)...

Full description

Saved in:
Bibliographic Details
Published inPhysiologia plantarum Vol. 149; no. 4; pp. 515 - 527
Main Authors Wu, Honghong, Shabala, Lana, Barry, Karen, Zhou, Meixue, Shabala, Sergey
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.12.2013
Blackwell
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This work investigated the importance of the ability of leaf mesophyll cells to control K+ flux across the plasma membrane as a trait conferring tissue tolerance mechanism in plants grown under saline conditions. Four wheat (Triticum aestivum and Triticum turgidum) and four barley (Hordeum vulgare) genotypes contrasting in their salinity tolerance were grown under glasshouse conditions. Seven to 10‐day‐old leaves were excised, and net K+ and H+ fluxes were measured from either epidermal or mesophyll cells upon acute 100 mM treatment (mimicking plant failure to restrict Na+ delivery to the shoot) using non‐invasive microelectrode ion flux estimation (the MIFE) system. To enable net ion flux measurements from leaf epidermal cells, removal of epicuticular waxes was trialed with organic solvents. A series of methodological experiments was conducted to test the efficiency of different methods of wax removal, and the impact of experimental procedures on cell viability, in order to optimize the method. A strong positive correlation was found between plants' ability to retain K+ in salt‐treated leaves and their salinity tolerance, in both wheat and especially barley. The observed effects were related to the ionic but not osmotic component of salt stress. Pharmacological experiments have suggested that voltage‐gated K+‐permeable channels mediate K+ retention in leaf mesophyll upon elevated NaCl levels in the apoplast. It is concluded that MIFE measurements of NaCl‐induced K+ fluxes from leaf mesophyll may be used as an efficient screening tool for breeding in cereals for salinity tissue tolerance.
AbstractList This work investigated the importance of the ability of leaf mesophyll cells to control K(+) flux across the plasma membrane as a trait conferring tissue tolerance mechanism in plants grown under saline conditions. Four wheat (Triticum aestivum and Triticum turgidum) and four barley (Hordeum vulgare) genotypes contrasting in their salinity tolerance were grown under glasshouse conditions. Seven to 10-day-old leaves were excised, and net K(+) and H(+) fluxes were measured from either epidermal or mesophyll cells upon acute 100 mM treatment (mimicking plant failure to restrict Na(+) delivery to the shoot) using non-invasive microelectrode ion flux estimation (the MIFE) system. To enable net ion flux measurements from leaf epidermal cells, removal of epicuticular waxes was trialed with organic solvents. A series of methodological experiments was conducted to test the efficiency of different methods of wax removal, and the impact of experimental procedures on cell viability, in order to optimize the method. A strong positive correlation was found between plants' ability to retain K(+) in salt-treated leaves and their salinity tolerance, in both wheat and especially barley. The observed effects were related to the ionic but not osmotic component of salt stress. Pharmacological experiments have suggested that voltage-gated K(+) -permeable channels mediate K(+) retention in leaf mesophyll upon elevated NaCl levels in the apoplast. It is concluded that MIFE measurements of NaCl-induced K(+) fluxes from leaf mesophyll may be used as an efficient screening tool for breeding in cereals for salinity tissue tolerance.This work investigated the importance of the ability of leaf mesophyll cells to control K(+) flux across the plasma membrane as a trait conferring tissue tolerance mechanism in plants grown under saline conditions. Four wheat (Triticum aestivum and Triticum turgidum) and four barley (Hordeum vulgare) genotypes contrasting in their salinity tolerance were grown under glasshouse conditions. Seven to 10-day-old leaves were excised, and net K(+) and H(+) fluxes were measured from either epidermal or mesophyll cells upon acute 100 mM treatment (mimicking plant failure to restrict Na(+) delivery to the shoot) using non-invasive microelectrode ion flux estimation (the MIFE) system. To enable net ion flux measurements from leaf epidermal cells, removal of epicuticular waxes was trialed with organic solvents. A series of methodological experiments was conducted to test the efficiency of different methods of wax removal, and the impact of experimental procedures on cell viability, in order to optimize the method. A strong positive correlation was found between plants' ability to retain K(+) in salt-treated leaves and their salinity tolerance, in both wheat and especially barley. The observed effects were related to the ionic but not osmotic component of salt stress. Pharmacological experiments have suggested that voltage-gated K(+) -permeable channels mediate K(+) retention in leaf mesophyll upon elevated NaCl levels in the apoplast. It is concluded that MIFE measurements of NaCl-induced K(+) fluxes from leaf mesophyll may be used as an efficient screening tool for breeding in cereals for salinity tissue tolerance.
This work investigated the importance of the ability of leaf mesophyll cells to control K⁺ flux across the plasma membrane as a trait conferring tissue tolerance mechanism in plants grown under saline conditions. Four wheat (Triticum aestivum and Triticum turgidum) and four barley (Hordeum vulgare) genotypes contrasting in their salinity tolerance were grown under glasshouse conditions. Seven to 10‐day‐old leaves were excised, and net K⁺ and H⁺ fluxes were measured from either epidermal or mesophyll cells upon acute 100 mM treatment (mimicking plant failure to restrict Na⁺ delivery to the shoot) using non‐invasive microelectrode ion flux estimation (the MIFE) system. To enable net ion flux measurements from leaf epidermal cells, removal of epicuticular waxes was trialed with organic solvents. A series of methodological experiments was conducted to test the efficiency of different methods of wax removal, and the impact of experimental procedures on cell viability, in order to optimize the method. A strong positive correlation was found between plants' ability to retain K⁺ in salt‐treated leaves and their salinity tolerance, in both wheat and especially barley. The observed effects were related to the ionic but not osmotic component of salt stress. Pharmacological experiments have suggested that voltage‐gated K⁺‐permeable channels mediate K⁺ retention in leaf mesophyll upon elevated NaCl levels in the apoplast. It is concluded that MIFE measurements of NaCl‐induced K⁺ fluxes from leaf mesophyll may be used as an efficient screening tool for breeding in cereals for salinity tissue tolerance.
This work investigated the importance of the ability of leaf mesophyll cells to control K+ flux across the plasma membrane as a trait conferring tissue tolerance mechanism in plants grown under saline conditions. Four wheat (Triticum aestivum and Triticum turgidum) and four barley (Hordeum vulgare) genotypes contrasting in their salinity tolerance were grown under glasshouse conditions. Seven to 10-day-old leaves were excised, and net K+ and H+ fluxes were measured from either epidermal or mesophyll cells upon acute 100mM treatment (mimicking plant failure to restrict Na+ delivery to the shoot) using non-invasive microelectrode ion flux estimation (the MIFE) system. To enable net ion flux measurements from leaf epidermal cells, removal of epicuticular waxes was trialed with organic solvents. A series of methodological experiments was conducted to test the efficiency of different methods of wax removal, and the impact of experimental procedures on cell viability, in order to optimize the method. A strong positive correlation was found between plants' ability to retain K+ in salt-treated leaves and their salinity tolerance, in both wheat and especially barley. The observed effects were related to the ionic but not osmotic component of salt stress. Pharmacological experiments have suggested that voltage-gated K+-permeable channels mediate K+ retention in leaf mesophyll upon elevated NaCl levels in the apoplast. It is concluded that MIFE measurements of NaCl-induced K+ fluxes from leaf mesophyll may be used as an efficient screening tool for breeding in cereals for salinity tissue tolerance. [PUBLICATION ABSTRACT]
This work investigated the importance of the ability of leaf mesophyll cells to control K + flux across the plasma membrane as a trait conferring tissue tolerance mechanism in plants grown under saline conditions. Four wheat ( Triticum aestivum and Triticum turgidum ) and four barley ( Hordeum vulgare ) genotypes contrasting in their salinity tolerance were grown under glasshouse conditions. Seven to 10‐day‐old leaves were excised, and net K + and H + fluxes were measured from either epidermal or mesophyll cells upon acute 100  m M treatment (mimicking plant failure to restrict Na + delivery to the shoot) using non‐invasive microelectrode ion flux estimation (the MIFE ) system. To enable net ion flux measurements from leaf epidermal cells, removal of epicuticular waxes was trialed with organic solvents. A series of methodological experiments was conducted to test the efficiency of different methods of wax removal, and the impact of experimental procedures on cell viability, in order to optimize the method. A strong positive correlation was found between plants' ability to retain K + in salt‐treated leaves and their salinity tolerance, in both wheat and especially barley. The observed effects were related to the ionic but not osmotic component of salt stress. Pharmacological experiments have suggested that voltage‐gated K + ‐permeable channels mediate K + retention in leaf mesophyll upon elevated NaCl levels in the apoplast. It is concluded that MIFE measurements of NaCl ‐induced K + fluxes from leaf mesophyll may be used as an efficient screening tool for breeding in cereals for salinity tissue tolerance.
This work investigated the importance of the ability of leaf mesophyll cells to control K+ flux across the plasma membrane as a trait conferring tissue tolerance mechanism in plants grown under saline conditions. Four wheat (Triticum aestivum and Triticum turgidum) and four barley (Hordeum vulgare) genotypes contrasting in their salinity tolerance were grown under glasshouse conditions. Seven to 10‐day‐old leaves were excised, and net K+ and H+ fluxes were measured from either epidermal or mesophyll cells upon acute 100 mM treatment (mimicking plant failure to restrict Na+ delivery to the shoot) using non‐invasive microelectrode ion flux estimation (the MIFE) system. To enable net ion flux measurements from leaf epidermal cells, removal of epicuticular waxes was trialed with organic solvents. A series of methodological experiments was conducted to test the efficiency of different methods of wax removal, and the impact of experimental procedures on cell viability, in order to optimize the method. A strong positive correlation was found between plants' ability to retain K+ in salt‐treated leaves and their salinity tolerance, in both wheat and especially barley. The observed effects were related to the ionic but not osmotic component of salt stress. Pharmacological experiments have suggested that voltage‐gated K+‐permeable channels mediate K+ retention in leaf mesophyll upon elevated NaCl levels in the apoplast. It is concluded that MIFE measurements of NaCl‐induced K+ fluxes from leaf mesophyll may be used as an efficient screening tool for breeding in cereals for salinity tissue tolerance.
Author Shabala, Sergey
Zhou, Meixue
Barry, Karen
Shabala, Lana
Wu, Honghong
Author_xml – sequence: 1
  givenname: Honghong
  surname: Wu
  fullname: Wu, Honghong
  organization: School of Agricultural Science and Tasmanian Institute of Agriculture, University of Tasmania, Tasmania, 7001, Hobart, Australia
– sequence: 2
  givenname: Lana
  surname: Shabala
  fullname: Shabala, Lana
  organization: School of Agricultural Science and Tasmanian Institute of Agriculture, University of Tasmania, Tasmania, 7001, Hobart, Australia
– sequence: 3
  givenname: Karen
  surname: Barry
  fullname: Barry, Karen
  organization: School of Agricultural Science and Tasmanian Institute of Agriculture, University of Tasmania, Tasmania, 7001, Hobart, Australia
– sequence: 4
  givenname: Meixue
  surname: Zhou
  fullname: Zhou, Meixue
  organization: School of Agricultural Science and Tasmanian Institute of Agriculture, University of Tasmania, Tasmania, 7001, Hobart, Australia
– sequence: 5
  givenname: Sergey
  surname: Shabala
  fullname: Shabala, Sergey
  email: Sergey.Shabala@utas.edu.au
  organization: School of Agricultural Science and Tasmanian Institute of Agriculture, University of Tasmania, Tasmania, 7001, Hobart, Australia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27947882$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23611560$$D View this record in MEDLINE/PubMed
BookMark eNqF0V1rFDEUBuAgFbutXvgHJCCCXkybj8nHXJZit8KiKypehjOzGTY1O5kmWdb99812txUKanKRXDzvITnnBB0NYbAIvabkjJZ1Po7-jDIi5DM0obxpKk5EfYQmhHBaNZyqY3SS0g0hVErKXqBjxiWlQpIJWly0zru8xaHH3kKPVzaFcbn1HueAo83gBjyGDCm59Qp3IUbrIduENy4vcQLvhl08B28jDJ3FxW-WFjKGYYFbiN5uX6LnPfhkXx3OU_Tj6uP3y-tq9mX66fJiVnW1qGXFtWWUQU80k4yphrRMt23NNO-lANUtdNktLxdCpJSKqlpIrjhAw3WjJD9F7_d1xxhu1zZls3Kps97DYMM6Gaop07qpNfs_FYRyoUq7Cn37hN6EdRzKRwythRZSK06LenNQ63ZlF2aMbgVxax5aXcC7A4DUge933XLpj1NNrfT9yz7sXRdDStH2j4QSsxu3KeM29-Mu9vyJ7VyG7MKQIzj_r8TGlcH8vbSZz2cPiWqfcCnb348JiL-MVFwJ8_Pz1DTzKz399rUxmt8BBqHHxA
CODEN PHPLAI
CitedBy_id crossref_primary_10_1007_s13199_019_00621_7
crossref_primary_10_1016_j_cj_2018_06_001
crossref_primary_10_1016_j_plaphy_2020_11_044
crossref_primary_10_1016_j_sajb_2022_09_036
crossref_primary_10_1016_j_scienta_2018_04_023
crossref_primary_10_1007_s13562_021_00741_6
crossref_primary_10_1002_jpln_202000007
crossref_primary_10_1093_pcp_pcu105
crossref_primary_10_1111_jac_12739
crossref_primary_10_1016_j_plaphy_2019_01_020
crossref_primary_10_1007_s11738_015_1897_5
crossref_primary_10_1080_15592324_2015_1013793
crossref_primary_10_1007_s12298_017_0462_7
crossref_primary_10_1007_s00344_019_10048_5
crossref_primary_10_1007_s11240_018_1476_8
crossref_primary_10_3389_fpls_2020_01130
crossref_primary_10_1016_j_plaphy_2017_08_002
crossref_primary_10_1071_FP17133
crossref_primary_10_1371_journal_pone_0134822
crossref_primary_10_32604_biocell_2023_025740
crossref_primary_10_1007_s44154_022_00065_y
crossref_primary_10_1016_j_envexpbot_2019_01_014
crossref_primary_10_1016_j_plaphy_2016_10_011
crossref_primary_10_1016_j_envexpbot_2020_104136
crossref_primary_10_3390_plants9081025
crossref_primary_10_1007_s11104_018_3770_y
crossref_primary_10_3390_agriculture12020211
crossref_primary_10_3390_agriculture9090205
crossref_primary_10_1007_s13562_022_00775_4
crossref_primary_10_1590_0103_8478cr20180351
crossref_primary_10_1111_jipb_12238
crossref_primary_10_1039_C8EN00323H
crossref_primary_10_3390_agriculture13112051
crossref_primary_10_1007_s11099_017_0763_7
crossref_primary_10_1007_s00122_021_03996_8
crossref_primary_10_1071_FP16135
crossref_primary_10_1186_s12870_024_06033_0
crossref_primary_10_2478_s11756_014_0412_6
crossref_primary_10_1007_s00425_015_2317_1
crossref_primary_10_1111_ppl_13449
crossref_primary_10_3389_fpls_2024_1378738
crossref_primary_10_1007_s11103_014_0278_6
crossref_primary_10_3389_fpls_2014_00605
crossref_primary_10_1093_aobpla_plab034
crossref_primary_10_1007_s00425_019_03253_9
crossref_primary_10_1007_s00344_022_10594_5
crossref_primary_10_1016_j_plaphy_2020_11_025
crossref_primary_10_3390_agronomy12040973
crossref_primary_10_1007_s11738_018_2616_9
crossref_primary_10_1016_j_jplph_2014_08_016
crossref_primary_10_1016_j_jplph_2016_06_010
crossref_primary_10_3390_plants8100360
crossref_primary_10_1111_pce_12503
crossref_primary_10_3390_plants8100364
crossref_primary_10_1007_s10725_018_0440_2
crossref_primary_10_1016_j_sajb_2021_04_036
crossref_primary_10_3389_fpls_2019_00080
crossref_primary_10_3390_agronomy13071843
crossref_primary_10_3389_fphys_2017_00509
crossref_primary_10_3389_fpls_2019_01407
crossref_primary_10_1111_ppl_12447
crossref_primary_10_3390_plants9060786
crossref_primary_10_3389_fpls_2023_1127311
crossref_primary_10_1071_FP16187
crossref_primary_10_1016_j_fcr_2017_05_018
crossref_primary_10_1007_s00572_016_0704_5
crossref_primary_10_1016_j_cj_2018_01_003
crossref_primary_10_1186_s12870_017_1054_y
crossref_primary_10_1111_ppl_12320
crossref_primary_10_1186_s12864_020_06986_0
crossref_primary_10_3389_fpls_2022_1072171
crossref_primary_10_3389_fpls_2022_772948
crossref_primary_10_4236_ajps_2020_1111127
crossref_primary_10_1371_journal_pone_0253228
crossref_primary_10_1016_j_scienta_2023_112053
crossref_primary_10_3389_fpls_2017_00155
crossref_primary_10_1016_j_cj_2024_03_001
crossref_primary_10_1080_01904167_2021_1927092
crossref_primary_10_3389_fmicb_2021_650771
crossref_primary_10_1111_ppl_12217
crossref_primary_10_3389_fpls_2017_00593
crossref_primary_10_1016_j_envexpbot_2022_105131
crossref_primary_10_1021_acsnano_3c05182
crossref_primary_10_3389_fpls_2022_843994
crossref_primary_10_3390_biotech12040066
crossref_primary_10_1186_1471_2229_14_113
crossref_primary_10_1016_j_xplc_2022_100346
crossref_primary_10_3390_agriculture10080317
crossref_primary_10_1371_journal_pone_0206248
Cites_doi 10.1111/j.1742-4658.2011.08371.x
10.1126/science.168.3933.789
10.1104/pp.126.4.1646
10.1111/j.1365-3040.2011.02296.x
10.1111/j.1438-8677.2011.00526.x
10.1242/jcs.064352
10.1146/annurev.arplant.59.032607.092911
10.1007/s00425-007-0606-z
10.1093/pcp/pci069
10.1104/pp.111.4.1051
10.1073/pnas.89.24.11701
10.1007/s00425-005-0081-3
10.1093/jxb/erm284
10.1016/S0065-2571(98)00010-7
10.1046/j.0031-9317.2001.1140108.x
10.1104/pp.020005
10.1104/pp.108.4.1725
10.1104/pp.107.110262
10.1111/j.1365-3040.2005.01270.x
10.1111/j.1469-8137.2007.02128.x
10.1146/annurev.pp.31.060180.001053
10.1146/annurev.arplant.54.031902.134831
10.1093/jxb/ern128
10.1111/j.1744-7909.2008.00670.x
10.1016/j.jplph.2006.03.004
10.1071/FP09051
10.1093/jxb/47.Special_Issue.1255
10.1242/jcs.00201
10.1371/journal.pone.0012571
10.1080/00380768.1993.10419782
10.1016/S0005-2736(00)00135-8
10.1017/S0890037X00037581
10.1046/j.1365-3040.2001.00661.x
10.1071/FP02192
10.1002/biot.200600169
10.1146/annurev.pp.40.060189.002543
10.1071/FP09249
10.1111/j.1365-3040.2005.01364.x
10.1023/A:1002968207362
10.1104/pp.119.3.1115
10.1371/journal.pone.0043079
10.1046/j.1365-3040.2000.00606.x
10.1146/annurev.pp.17.060166.000403
10.1046/j.1365-313X.1999.00626.x
10.1073/pnas.0733970100
10.1093/jxb/erj100
10.1007/s11032-011-9559-9
10.1104/pp.106.082388
10.1111/j.1365-313X.2006.02971.x
10.1006/anbo.1999.0912
10.1071/FP02069
10.1093/aob/mcg191
10.1104/pp.104.046664
10.1111/j.1399-3054.2007.01008.x
10.1104/pp.116.3.901
ContentType Journal Article
Copyright 2013 Scandinavian Plant Physiology Society
2015 INIST-CNRS
2013 Scandinavian Plant Physiology Society.
Copyright_xml – notice: 2013 Scandinavian Plant Physiology Society
– notice: 2015 INIST-CNRS
– notice: 2013 Scandinavian Plant Physiology Society.
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7ST
8FD
C1K
FR3
P64
RC3
SOI
7S9
L.6
7X8
DOI 10.1111/ppl.12056
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
Engineering Research Database
Ecology Abstracts
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
Genetics Abstracts
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1399-3054
EndPage 527
ExternalDocumentID 3127221451
23611560
27947882
10_1111_ppl_12056
PPL12056
ark_67375_WNG_9PF8GSQ9_8
Genre article
Journal Article
GrantInformation_xml – fundername: Australian Research Council Discovery
– fundername: Grain Research and Development Corporation
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29O
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBTR
ACBWZ
ACCFJ
ACCZN
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
H~9
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
TWZ
UB1
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
YNT
ZCG
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7ST
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
RC3
SOI
7S9
L.6
7X8
ID FETCH-LOGICAL-c4546-38e212af082622790b28bb4283f65a7cd8d8db37cd00666717456373aa9389763
IEDL.DBID DR2
ISSN 0031-9317
1399-3054
IngestDate Fri Jul 11 05:54:42 EDT 2025
Fri Jul 11 18:31:21 EDT 2025
Sun Jul 13 04:33:55 EDT 2025
Thu Apr 03 06:56:57 EDT 2025
Wed Apr 02 07:26:07 EDT 2025
Tue Jul 01 03:00:40 EDT 2025
Thu Apr 24 23:03:26 EDT 2025
Wed Jan 22 16:58:30 EST 2025
Wed Oct 30 09:55:22 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Ability
Halotolerance
Monocotyledones
Hordeum vulgare
Plant leaf
Cereal crop
Salinity
Triticum
Mesophyll
Plant physiology
Gramineae
Angiospermae
Spermatophyta
Potassium
Language English
License CC BY 4.0
2013 Scandinavian Plant Physiology Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4546-38e212af082622790b28bb4283f65a7cd8d8db37cd00666717456373aa9389763
Notes ArticleID:PPL12056
ark:/67375/WNG-9PF8GSQ9-8
Australian Research Council Discovery
istex:1C61818D954DB74272FFC14AEDCDEBEFB3FFB451
Grain Research and Development Corporation
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 23611560
PQID 1458568731
PQPubID 1096353
PageCount 13
ParticipantIDs proquest_miscellaneous_1812889482
proquest_miscellaneous_1501357612
proquest_journals_1458568731
pubmed_primary_23611560
pascalfrancis_primary_27947882
crossref_primary_10_1111_ppl_12056
crossref_citationtrail_10_1111_ppl_12056
wiley_primary_10_1111_ppl_12056_PPL12056
istex_primary_ark_67375_WNG_9PF8GSQ9_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2013
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: December 2013
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: Denmark
– name: Malden
PublicationTitle Physiologia plantarum
PublicationTitleAlternate Physiol Plantarum
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Blackwell
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
– name: Wiley Subscription Services, Inc
References Cuin TA, Zhou M, Parsons D, Shabala S (2012) Genetic behaviour of physiological traits conferring K+/Na+ homeostasis in wheat. Plant Biol 14: 438-446
Demidchik V, Shabala SN, Davies JM (2007) Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels. Plant J 49: 377-386
Agrawal PB, Nierstrasz VA, Klug-Santner BG, Gübitz GM, Lenting HBM, Warmoeskerken MMCG (2007) Wax removal for accelerated cotton scouring with alkaline pectinase. Biotechnol J 2: 306-315
Shabala S (2003) Regulation of potassium transport in leaves: from molecular to tissue level. Ann Bot 92: 627-634
Suelter CH (1970) Enzymes activated by monovalent cations. Science 168: 789-795
Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133: 651-669
Fang Z, Mi F, Berkowitz GA (1995) Molecular and physiological analysis of a thylakoid K+ channel protein. Plant Physiol 108: 1725-1734
Maathuis F, Amtmann A (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann Bot 84: 123-133
Horie T, Schroeder JI (2004) Sodium transporters in plants. Diverse genes and physiological functions. Plant Physiol 136: 2457-2462
Bewick TA, Shilling DG, Querns R (1993) Evaluation of epicuticular wax removal from whole leaves with chloroform. Weed Technol 7: 706-716
Chen Z, Pottosin II, Cuin TA, Fuglsang AT, Tester M, Jha D, Zepeda-Jazo I, Zhou MX, Palmgren MG, Newman IA, Shabala S (2007b) Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley. Plant Physiol 145: 1714-1725
Demidchik V, Shabala SN, Coutts KB, Tester MA, Davies JM (2003) Free oxygen radicals regulate plasma membrane Ca2+- and K+-permeable channels in plant root cells. J Cell Sci 116: 81-88
Talbott LD, Zeiger E (1996) Central roles for potassium and sucrose in guard-cell osmoregulation. Plant Physiol 111: 1051-1057
Shabala S, Shabala L (2002) Kinetics of net H+, Ca2+, K+, Na+, NH4+, and Cl- fluxes associated with post-chilling recovery of plasma membrane transporters in Zea mays leaf and root tissues. Physiol Plant 114: 47-56
Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57: 1025-1043
Koch K, Barthlott W, Koch S, Hommes A, Wandelt K, Mamdouh W, De-Feyter S, Broekmann P (2006) Structural analysis of wheat wax (Triticum aestivum, c.v. 'Naturastar' L.): from the molecular level to three dimensional crystals. Planta 223: 258-270
Shabala S (2000) Ionic and osmotic components of salt stress specifically modulate net ion fluxes from bean mesophyll. Plant Cell Environ 23: 825-837
Hedrich R, Schroeder JI (1989) The physiology of ion channels and electrogenic pumps in higher plants. Annu Rev Plant Physiol 40: 539-569
Osaki M, Shinano T, Tadano T (1993) Effect of nitrogen, phosphorus, or potassium deficiency on the accumulation of ribulose-1,5-bisphosphate carboxylase/oxygenase and chlorophyll in several field crops. Soil Sci Plant Nutr 39: 417-425
Rengasamy P (2010) Soil processes affecting crop production in salt-affected soils. Funct Plant Biol 37: 613-620
Rhee Y, Hlousek-Radojcic A, Ponsamuel J, Liu D, Post-Beittenmiller D (1998) Epicuticular wax accumulation and fatty acid elongation activities are induced during leaf development of leeks. Plant Physiol 116: 901-911
Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V (2010) Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: signal-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci 123: 1468-1479
Hughes FM, Cidlowski JA (1999) Potassium is a critical regulator of apoptotic enzymes in vitro and in vivo. Adv Enzyme Regul 39: 157-171
Shabala S, Newman I (1999) Light-induced changes in hydrogen, calcium, potassium, and chloride ion fluxes and concentrations from mesophyll and epidermal tissues of bean leaves. Understanding the ionic basis of light-induced bioelectrogenesis. Plant Physiol 119: 1115-1124
Chen Z, Cuin TA, Zhou M, Twomey A, Naidu BP, Shabala S (2007a) Compatible solute accumulation and stress-mitigating effects in barley genotype contrasting in their genotype. J Exp Bot 58: 4245-4255
Chen Z, Newman I, Zhou M, Mendham N, Zhang G, Shabala S (2005) Screening plants for salt tolerance by measuring K+ flux: a case study for barley. Plant Cell Environ 28: 1230-1246
Plett D, Safwat G, Gilliham M, Møller IS, Roy S, Shirley N, Jacobs A, Johnson A, Tester M (2010) Improved salinity tolerance of rice through cell type-specific expression of AtHKT1;1. PLoS One 5: e12571
Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31: 149-190
Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, Davies JM, Newman IA (2006) Extracellular Ca2+ ameliorate NaCl induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiol 141: 1653-1665
Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJM, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126: 1646-1667
Davies MJ, Poole RJ, Rea PA, Sanders D (1992) Potassium transport into plant vacuoles energized directly by a proton-pumping inorganic pyrophosphatase. Proc Natl Acad Sci USA 89: 11701-11705
Hosy E, Vavasseur A, Mouline K, Dreyer I, Gaymard F, Porée F, Boucherez J, Lebaudy A, Bouchez D, Véry A, Simonneau T, Thibaud J, Sentenac H (2003) The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc Natl Acad Sci USA 100: 5549-5554
Marschner H, Kirkby EA, Cakmak I (1996) Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. J Exp Bot 47: 1255-1263
Cavalcanti FR, Lima JPMS, Ferreira-Silva SL, Viégas RA, Silveria JAG (2007) Roots and leaves display contrasting oxidative response during salt stress and recovery in cowpea. J Plant Physiol 164: 591-600
Zhou G, Johnson P, Ryan PR, Delhaize E, Zhou M (2012) Quantitative trait loci for salinity tolerance in barley (Hordeum vulgare L.). Mol Breed 29: 427-436
Cuin TA, Betts SA, Chalmandrier R, Shabala S (2008) A root's ability to retain K+ correlates with salt tolerance in wheat. J Exp Bot 59: 2697-2706
Eleuch L, Jilal A, Grando S, Ceccarelli S, von Korff SM, Tsujimoto H, Hajer A, Daaloul A, Baum M (2008) Genetic diversity and association analysis for salinity tolerance, heading date and plant height of barley germplasm using simple sequence repeat markers. J Integr Plant Biol 50: 1004-1014
Demidchik V, Davenport RJ, Tester M (2002) Nonselective cation channels in plants. Annu Rev Plant Biol 53: 67-107
Véry A, Sentenac H (2003) Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Biol 54: 575-603
Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochim Biophys Acta 1465: 140-151
Cuin TA, Bose J, Stefano G, Jha D, Tester M, Mancuso S, Shabala S (2011) Assessing of root plasma membrane and tonoplast Na+/H+ exchangers in salinity tolerance in wheat: in planta quantification methods. Plant Cell Environ 34: 947-961
Shabala S, Cuin TA, Prismall L, Nemchinov LG (2007) Expression of animal CED-9 anti-apoptotic gene in tobacco modifies plasma membrane ion fluxes in response to salinity and oxidative stress. Planta 227: 189-197
Sze H, Li X, Palmgren MG (1999) Energization of plant cell membranes by H+-pumping ATPase: regulation and biosynthesis. Plant Cell 11: 677-689
Xu R, Wang J, Li C, Johnson P, Lu C, Zhou M (2012) A single locus is responsible for salinity tolerance in a Chinese landrace barley (Hordeum vulgare L.). PLoS One 7: e43079
Shabala S, Lew RR (2002) Turgor regulation in osmotically stressed Arabidopsis epidermal root cells. Direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements. Plant Physiol 129: 290-299
Živanović BD, Pang J, Shabala S (2005) Light-induced transient ion flux response from maize leaves and their association with leaf growth and photosynthesis. Plant Cell Environ 28: 340-352
James RA, Rivelli AR, Munns R, von Caemmerer S (2002) Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. Funct Plant Biol 29: 1393-1403
Tegg R, Melian L, Wilson CR, Shabala S (2005) Plant cell growth and ion flux responses to the streptomycete phytotoxin thaxtomin A: calcium and hydrogen flux patterns revealed by the non-invasive MIFE technique. Plant Cell Physiol 46: 638-648
Dreyer I, Uozum N (2011) Potassium channels in plant cells. FEBS J 278: 4293-4303
Demidchik V, Maathuis JM (2007) Physiological roles of nonselective cation channels in plant: from salt stress to signalling and development. New Phytol 175: 387-404
Chen Z, Zhou M, Newman IA, Mendham NJ, Zhang GP, Shabala S (2007c) Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance. Funct Plant Biol 34: 150-162
Mano Y, Takeda K (1997) Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.). Euphytica 94: 263-272
Newman IA (2001) Ion transport in plants: measurement of fluxes using ion-selective microelectrodes to characterize transporter function. Plant Cell Environ 24: 1-14
Smethurst CF, Shabala S (2003) Screening methods for waterlogging tolerance in lucerne: comparative analysis of waterlogging effects on chlorophyll fluorescence, photosynthesis, biomass and chlorophyll content. Funct Plant Biol 30: 335-343
Evans HJ, Sorger GJ (1966) Role of mineral elements with emphasis on the univalent cations. Annu Rev Plant Physiol 17: 47-76
Cuin TA, Tian Y, Betts SA, Chalmandrier R, Shabala S (2009) Ionic relations and osmotic adjustment in durum and bread wheat under saline conditions. Funct Plant Biol 36: 1110-1119
Flowers TJ (2004) Improving cro
1993; 7
1989; 40
2011; 278
1966; 17
2003; 116
2007; 227
1970; 168
2002; 53
2002; 114
2007c; 34
2007b; 145
1999; 84
1998; 116
2012; 14
2005; 28
2003; 54
1997; 94
2004; 136
1993; 39
2003; 92
1980; 31
2007; 175
1999; 11
2012; 29
2007; 2
2010; 5
1992; 89
2000; 1465
2010; 37
2006; 57
2000; 23
2010; 123
2007; 164
2008; 59
2011; 34
2008; 50
2001; 24
2003; 30
2001; 126
2005; 46
2004; 55
2009; 36
2002; 29
2007a; 58
1999; 39
1995; 108
2006; 141
2002; 129
1996; 111
1996; 47
2008; 133
2012; 7
2003; 100
1999; 119
2007; 49
2006; 223
e_1_2_7_5_1
Sze H (e_1_2_7_53_1) 1999; 11
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
Fang Z (e_1_2_7_23_1) 1995; 108
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – reference: Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V (2010) Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: signal-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci 123: 1468-1479
– reference: Chen Z, Cuin TA, Zhou M, Twomey A, Naidu BP, Shabala S (2007a) Compatible solute accumulation and stress-mitigating effects in barley genotype contrasting in their genotype. J Exp Bot 58: 4245-4255
– reference: Shabala S (2003) Regulation of potassium transport in leaves: from molecular to tissue level. Ann Bot 92: 627-634
– reference: Cuin TA, Zhou M, Parsons D, Shabala S (2012) Genetic behaviour of physiological traits conferring K+/Na+ homeostasis in wheat. Plant Biol 14: 438-446
– reference: Eleuch L, Jilal A, Grando S, Ceccarelli S, von Korff SM, Tsujimoto H, Hajer A, Daaloul A, Baum M (2008) Genetic diversity and association analysis for salinity tolerance, heading date and plant height of barley germplasm using simple sequence repeat markers. J Integr Plant Biol 50: 1004-1014
– reference: Bewick TA, Shilling DG, Querns R (1993) Evaluation of epicuticular wax removal from whole leaves with chloroform. Weed Technol 7: 706-716
– reference: Hedrich R, Schroeder JI (1989) The physiology of ion channels and electrogenic pumps in higher plants. Annu Rev Plant Physiol 40: 539-569
– reference: Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, Davies JM, Newman IA (2006) Extracellular Ca2+ ameliorate NaCl induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiol 141: 1653-1665
– reference: Véry A, Sentenac H (2003) Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Biol 54: 575-603
– reference: Fang Z, Mi F, Berkowitz GA (1995) Molecular and physiological analysis of a thylakoid K+ channel protein. Plant Physiol 108: 1725-1734
– reference: Demidchik V, Maathuis JM (2007) Physiological roles of nonselective cation channels in plant: from salt stress to signalling and development. New Phytol 175: 387-404
– reference: Plett D, Safwat G, Gilliham M, Møller IS, Roy S, Shirley N, Jacobs A, Johnson A, Tester M (2010) Improved salinity tolerance of rice through cell type-specific expression of AtHKT1;1. PLoS One 5: e12571
– reference: Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57: 1025-1043
– reference: Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133: 651-669
– reference: Demidchik V, Davenport RJ, Tester M (2002) Nonselective cation channels in plants. Annu Rev Plant Biol 53: 67-107
– reference: Chen Z, Zhou M, Newman IA, Mendham NJ, Zhang GP, Shabala S (2007c) Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance. Funct Plant Biol 34: 150-162
– reference: Talbott LD, Zeiger E (1996) Central roles for potassium and sucrose in guard-cell osmoregulation. Plant Physiol 111: 1051-1057
– reference: Xu R, Wang J, Li C, Johnson P, Lu C, Zhou M (2012) A single locus is responsible for salinity tolerance in a Chinese landrace barley (Hordeum vulgare L.). PLoS One 7: e43079
– reference: Shabala S (2000) Ionic and osmotic components of salt stress specifically modulate net ion fluxes from bean mesophyll. Plant Cell Environ 23: 825-837
– reference: Evans HJ, Sorger GJ (1966) Role of mineral elements with emphasis on the univalent cations. Annu Rev Plant Physiol 17: 47-76
– reference: Shabala S, Shabala L (2002) Kinetics of net H+, Ca2+, K+, Na+, NH4+, and Cl- fluxes associated with post-chilling recovery of plasma membrane transporters in Zea mays leaf and root tissues. Physiol Plant 114: 47-56
– reference: Koch K, Barthlott W, Koch S, Hommes A, Wandelt K, Mamdouh W, De-Feyter S, Broekmann P (2006) Structural analysis of wheat wax (Triticum aestivum, c.v. 'Naturastar' L.): from the molecular level to three dimensional crystals. Planta 223: 258-270
– reference: Rengasamy P (2010) Soil processes affecting crop production in salt-affected soils. Funct Plant Biol 37: 613-620
– reference: Suelter CH (1970) Enzymes activated by monovalent cations. Science 168: 789-795
– reference: Sze H, Li X, Palmgren MG (1999) Energization of plant cell membranes by H+-pumping ATPase: regulation and biosynthesis. Plant Cell 11: 677-689
– reference: Tegg R, Melian L, Wilson CR, Shabala S (2005) Plant cell growth and ion flux responses to the streptomycete phytotoxin thaxtomin A: calcium and hydrogen flux patterns revealed by the non-invasive MIFE technique. Plant Cell Physiol 46: 638-648
– reference: Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55: 307-319
– reference: Chen Z, Newman I, Zhou M, Mendham N, Zhang G, Shabala S (2005) Screening plants for salt tolerance by measuring K+ flux: a case study for barley. Plant Cell Environ 28: 1230-1246
– reference: Newman IA (2001) Ion transport in plants: measurement of fluxes using ion-selective microelectrodes to characterize transporter function. Plant Cell Environ 24: 1-14
– reference: Shabala S, Lew RR (2002) Turgor regulation in osmotically stressed Arabidopsis epidermal root cells. Direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements. Plant Physiol 129: 290-299
– reference: Cavalcanti FR, Lima JPMS, Ferreira-Silva SL, Viégas RA, Silveria JAG (2007) Roots and leaves display contrasting oxidative response during salt stress and recovery in cowpea. J Plant Physiol 164: 591-600
– reference: Davies MJ, Poole RJ, Rea PA, Sanders D (1992) Potassium transport into plant vacuoles energized directly by a proton-pumping inorganic pyrophosphatase. Proc Natl Acad Sci USA 89: 11701-11705
– reference: Hughes FM, Cidlowski JA (1999) Potassium is a critical regulator of apoptotic enzymes in vitro and in vivo. Adv Enzyme Regul 39: 157-171
– reference: Osaki M, Shinano T, Tadano T (1993) Effect of nitrogen, phosphorus, or potassium deficiency on the accumulation of ribulose-1,5-bisphosphate carboxylase/oxygenase and chlorophyll in several field crops. Soil Sci Plant Nutr 39: 417-425
– reference: Zhou G, Johnson P, Ryan PR, Delhaize E, Zhou M (2012) Quantitative trait loci for salinity tolerance in barley (Hordeum vulgare L.). Mol Breed 29: 427-436
– reference: Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochim Biophys Acta 1465: 140-151
– reference: Munns R, Tester M (2008) Mechanism of salinity tolerance. Annu Rev Plant Biol 59: 651-681
– reference: Chen Z, Pottosin II, Cuin TA, Fuglsang AT, Tester M, Jha D, Zepeda-Jazo I, Zhou MX, Palmgren MG, Newman IA, Shabala S (2007b) Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley. Plant Physiol 145: 1714-1725
– reference: Maathuis F, Amtmann A (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann Bot 84: 123-133
– reference: Shabala S, Cuin TA, Prismall L, Nemchinov LG (2007) Expression of animal CED-9 anti-apoptotic gene in tobacco modifies plasma membrane ion fluxes in response to salinity and oxidative stress. Planta 227: 189-197
– reference: Cuin TA, Betts SA, Chalmandrier R, Shabala S (2008) A root's ability to retain K+ correlates with salt tolerance in wheat. J Exp Bot 59: 2697-2706
– reference: Smethurst CF, Shabala S (2003) Screening methods for waterlogging tolerance in lucerne: comparative analysis of waterlogging effects on chlorophyll fluorescence, photosynthesis, biomass and chlorophyll content. Funct Plant Biol 30: 335-343
– reference: Dreyer I, Uozum N (2011) Potassium channels in plant cells. FEBS J 278: 4293-4303
– reference: Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJM, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126: 1646-1667
– reference: James RA, Rivelli AR, Munns R, von Caemmerer S (2002) Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. Funct Plant Biol 29: 1393-1403
– reference: Demidchik V, Shabala SN, Coutts KB, Tester MA, Davies JM (2003) Free oxygen radicals regulate plasma membrane Ca2+- and K+-permeable channels in plant root cells. J Cell Sci 116: 81-88
– reference: Shabala S, Newman I (1999) Light-induced changes in hydrogen, calcium, potassium, and chloride ion fluxes and concentrations from mesophyll and epidermal tissues of bean leaves. Understanding the ionic basis of light-induced bioelectrogenesis. Plant Physiol 119: 1115-1124
– reference: Hosy E, Vavasseur A, Mouline K, Dreyer I, Gaymard F, Porée F, Boucherez J, Lebaudy A, Bouchez D, Véry A, Simonneau T, Thibaud J, Sentenac H (2003) The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc Natl Acad Sci USA 100: 5549-5554
– reference: Živanović BD, Pang J, Shabala S (2005) Light-induced transient ion flux response from maize leaves and their association with leaf growth and photosynthesis. Plant Cell Environ 28: 340-352
– reference: Marschner H, Kirkby EA, Cakmak I (1996) Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. J Exp Bot 47: 1255-1263
– reference: Agrawal PB, Nierstrasz VA, Klug-Santner BG, Gübitz GM, Lenting HBM, Warmoeskerken MMCG (2007) Wax removal for accelerated cotton scouring with alkaline pectinase. Biotechnol J 2: 306-315
– reference: Demidchik V, Shabala SN, Davies JM (2007) Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels. Plant J 49: 377-386
– reference: Cuin TA, Tian Y, Betts SA, Chalmandrier R, Shabala S (2009) Ionic relations and osmotic adjustment in durum and bread wheat under saline conditions. Funct Plant Biol 36: 1110-1119
– reference: Horie T, Schroeder JI (2004) Sodium transporters in plants. Diverse genes and physiological functions. Plant Physiol 136: 2457-2462
– reference: Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31: 149-190
– reference: Rhee Y, Hlousek-Radojcic A, Ponsamuel J, Liu D, Post-Beittenmiller D (1998) Epicuticular wax accumulation and fatty acid elongation activities are induced during leaf development of leeks. Plant Physiol 116: 901-911
– reference: Cuin TA, Bose J, Stefano G, Jha D, Tester M, Mancuso S, Shabala S (2011) Assessing of root plasma membrane and tonoplast Na+/H+ exchangers in salinity tolerance in wheat: in planta quantification methods. Plant Cell Environ 34: 947-961
– reference: Mano Y, Takeda K (1997) Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.). Euphytica 94: 263-272
– volume: 1465
  start-page: 140
  year: 2000
  end-page: 151
  article-title: Sodium transport in plant cells
  publication-title: Biochim Biophys Acta
– volume: 28
  start-page: 1230
  year: 2005
  end-page: 1246
  article-title: Screening plants for salt tolerance by measuring K flux: a case study for barley
  publication-title: Plant Cell Environ
– volume: 49
  start-page: 377
  year: 2007
  end-page: 386
  article-title: Spatial variation in H O response of root epidermal Ca flux and plasma membrane Ca channels
  publication-title: Plant J
– volume: 164
  start-page: 591
  year: 2007
  end-page: 600
  article-title: Roots and leaves display contrasting oxidative response during salt stress and recovery in cowpea
  publication-title: J Plant Physiol
– volume: 34
  start-page: 947
  year: 2011
  end-page: 961
  article-title: Assessing of root plasma membrane and tonoplast Na /H exchangers in salinity tolerance in wheat: in planta quantification methods
  publication-title: Plant Cell Environ
– volume: 53
  start-page: 67
  year: 2002
  end-page: 107
  article-title: Nonselective cation channels in plants
  publication-title: Annu Rev Plant Biol
– volume: 58
  start-page: 4245
  year: 2007a
  end-page: 4255
  article-title: Compatible solute accumulation and stress‐mitigating effects in barley genotype contrasting in their genotype
  publication-title: J Exp Bot
– volume: 175
  start-page: 387
  year: 2007
  end-page: 404
  article-title: Physiological roles of nonselective cation channels in plant: from salt stress to signalling and development
  publication-title: New Phytol
– volume: 39
  start-page: 157
  year: 1999
  end-page: 171
  article-title: Potassium is a critical regulator of apoptotic enzymes and
  publication-title: Adv Enzyme Regul
– volume: 114
  start-page: 47
  year: 2002
  end-page: 56
  article-title: Kinetics of net H , Ca , K , Na , NH , and Cl fluxes associated with post‐chilling recovery of plasma membrane transporters in leaf and root tissues
  publication-title: Physiol Plant
– volume: 123
  start-page: 1468
  year: 2010
  end-page: 1479
  article-title: Arabidopsis root K ‐efflux conductance activated by hydroxyl radicals: signal‐channel properties, genetic basis and involvement in stress‐induced cell death
  publication-title: J Cell Sci
– volume: 145
  start-page: 1714
  year: 2007b
  end-page: 1725
  article-title: Root plasma membrane transporters controlling K /Na homeostasis in salt‐stressed barley
  publication-title: Plant Physiol
– volume: 223
  start-page: 258
  year: 2006
  end-page: 270
  article-title: Structural analysis of wheat wax (Triticum aestivum, c.v. ‘Naturastar’ L.): from the molecular level to three dimensional crystals
  publication-title: Planta
– volume: 34
  start-page: 150
  year: 2007c
  end-page: 162
  article-title: Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance
  publication-title: Funct Plant Biol
– volume: 29
  start-page: 1393
  year: 2002
  end-page: 1403
  article-title: Factors affecting CO assimilation, leaf injury and growth in salt‐stressed durum wheat
  publication-title: Funct Plant Biol
– volume: 29
  start-page: 427
  year: 2012
  end-page: 436
  article-title: Quantitative trait loci for salinity tolerance in barley ( L.)
  publication-title: Mol Breed
– volume: 84
  start-page: 123
  year: 1999
  end-page: 133
  article-title: K nutrition and Na toxicity: the basis of cellular K /Na ratios
  publication-title: Ann Bot
– volume: 141
  start-page: 1653
  year: 2006
  end-page: 1665
  article-title: Extracellular Ca ameliorate NaCl induced K loss from Arabidopsis root and leaf cells by controlling plasma membrane K ‐permeable channels
  publication-title: Plant Physiol
– volume: 23
  start-page: 825
  year: 2000
  end-page: 837
  article-title: Ionic and osmotic components of salt stress specifically modulate net ion fluxes from bean mesophyll
  publication-title: Plant Cell Environ
– volume: 5
  start-page: e12571
  year: 2010
  article-title: Improved salinity tolerance of rice through cell type‐specific expression of
  publication-title: PLoS One
– volume: 30
  start-page: 335
  year: 2003
  end-page: 343
  article-title: Screening methods for waterlogging tolerance in lucerne: comparative analysis of waterlogging effects on chlorophyll fluorescence, photosynthesis, biomass and chlorophyll content
  publication-title: Funct Plant Biol
– volume: 136
  start-page: 2457
  year: 2004
  end-page: 2462
  article-title: Sodium transporters in plants. Diverse genes and physiological functions
  publication-title: Plant Physiol
– volume: 50
  start-page: 1004
  year: 2008
  end-page: 1014
  article-title: Genetic diversity and association analysis for salinity tolerance, heading date and plant height of barley germplasm using simple sequence repeat markers
  publication-title: J Integr Plant Biol
– volume: 227
  start-page: 189
  year: 2007
  end-page: 197
  article-title: Expression of animal CED‐9 anti‐apoptotic gene in tobacco modifies plasma membrane ion fluxes in response to salinity and oxidative stress
  publication-title: Planta
– volume: 14
  start-page: 438
  year: 2012
  end-page: 446
  article-title: Genetic behaviour of physiological traits conferring K /Na homeostasis in wheat
  publication-title: Plant Biol
– volume: 54
  start-page: 575
  year: 2003
  end-page: 603
  article-title: Molecular mechanisms and regulation of K transport in higher plants
  publication-title: Annu Rev Plant Biol
– volume: 7
  start-page: e43079
  year: 2012
  article-title: A single locus is responsible for salinity tolerance in a Chinese landrace barley ( L.)
  publication-title: PLoS One
– volume: 116
  start-page: 81
  year: 2003
  end-page: 88
  article-title: Free oxygen radicals regulate plasma membrane Ca ‐ and K ‐permeable channels in plant root cells
  publication-title: J Cell Sci
– volume: 47
  start-page: 1255
  year: 1996
  end-page: 1263
  article-title: Effect of mineral nutritional status on shoot‐root partitioning of photoassimilates and cycling of mineral nutrients
  publication-title: J Exp Bot
– volume: 133
  start-page: 651
  year: 2008
  end-page: 669
  article-title: Potassium transport and plant salt tolerance
  publication-title: Physiol Plant
– volume: 37
  start-page: 613
  year: 2010
  end-page: 620
  article-title: Soil processes affecting crop production in salt‐affected soils
  publication-title: Funct Plant Biol
– volume: 2
  start-page: 306
  year: 2007
  end-page: 315
  article-title: Wax removal for accelerated cotton scouring with alkaline pectinase
  publication-title: Biotechnol J
– volume: 7
  start-page: 706
  year: 1993
  end-page: 716
  article-title: Evaluation of epicuticular wax removal from whole leaves with chloroform
  publication-title: Weed Technol
– volume: 89
  start-page: 11701
  year: 1992
  end-page: 11705
  article-title: Potassium transport into plant vacuoles energized directly by a proton‐pumping inorganic pyrophosphatase
  publication-title: Proc Natl Acad Sci USA
– volume: 100
  start-page: 5549
  year: 2003
  end-page: 5554
  article-title: The outward K channel is involved in regulation of stomatal movements and plant transpiration
  publication-title: Proc Natl Acad Sci USA
– volume: 129
  start-page: 290
  year: 2002
  end-page: 299
  article-title: Turgor regulation in osmotically stressed Arabidopsis epidermal root cells. Direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements
  publication-title: Plant Physiol
– volume: 94
  start-page: 263
  year: 1997
  end-page: 272
  article-title: Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley ( L.)
  publication-title: Euphytica
– volume: 46
  start-page: 638
  year: 2005
  end-page: 648
  article-title: Plant cell growth and ion flux responses to the streptomycete phytotoxin thaxtomin A: calcium and hydrogen flux patterns revealed by the non‐invasive MIFE technique
  publication-title: Plant Cell Physiol
– volume: 111
  start-page: 1051
  year: 1996
  end-page: 1057
  article-title: Central roles for potassium and sucrose in guard‐cell osmoregulation
  publication-title: Plant Physiol
– volume: 59
  start-page: 2697
  year: 2008
  end-page: 2706
  article-title: A root's ability to retain K correlates with salt tolerance in wheat
  publication-title: J Exp Bot
– volume: 39
  start-page: 417
  year: 1993
  end-page: 425
  article-title: Effect of nitrogen, phosphorus, or potassium deficiency on the accumulation of ribulose‐1,5‐bisphosphate carboxylase/oxygenase and chlorophyll in several field crops
  publication-title: Soil Sci Plant Nutr
– volume: 119
  start-page: 1115
  year: 1999
  end-page: 1124
  article-title: Light‐induced changes in hydrogen, calcium, potassium, and chloride ion fluxes and concentrations from mesophyll and epidermal tissues of bean leaves. Understanding the ionic basis of light‐induced bioelectrogenesis
  publication-title: Plant Physiol
– volume: 36
  start-page: 1110
  year: 2009
  end-page: 1119
  article-title: Ionic relations and osmotic adjustment in durum and bread wheat under saline conditions
  publication-title: Funct Plant Biol
– volume: 57
  start-page: 1025
  year: 2006
  end-page: 1043
  article-title: Approaches to increasing the salt tolerance of wheat and other cereals
  publication-title: J Exp Bot
– volume: 168
  start-page: 789
  year: 1970
  end-page: 795
  article-title: Enzymes activated by monovalent cations
  publication-title: Science
– volume: 278
  start-page: 4293
  year: 2011
  end-page: 4303
  article-title: Potassium channels in plant cells
  publication-title: FEBS J
– volume: 40
  start-page: 539
  year: 1989
  end-page: 569
  article-title: The physiology of ion channels and electrogenic pumps in higher plants
  publication-title: Annu Rev Plant Physiol
– volume: 59
  start-page: 651
  year: 2008
  end-page: 681
  article-title: Mechanism of salinity tolerance
  publication-title: Annu Rev Plant Biol
– volume: 55
  start-page: 307
  year: 2004
  end-page: 319
  article-title: Improving crop salt tolerance
  publication-title: J Exp Bot
– volume: 28
  start-page: 340
  year: 2005
  end-page: 352
  article-title: Light‐induced transient ion flux response from maize leaves and their association with leaf growth and photosynthesis
  publication-title: Plant Cell Environ
– volume: 24
  start-page: 1
  year: 2001
  end-page: 14
  article-title: Ion transport in plants: measurement of fluxes using ion‐selective microelectrodes to characterize transporter function
  publication-title: Plant Cell Environ
– volume: 126
  start-page: 1646
  year: 2001
  end-page: 1667
  article-title: Phylogenetic relationships within cation transporter families of Arabidopsis
  publication-title: Plant Physiol
– volume: 92
  start-page: 627
  year: 2003
  end-page: 634
  article-title: Regulation of potassium transport in leaves: from molecular to tissue level
  publication-title: Ann Bot
– volume: 17
  start-page: 47
  year: 1966
  end-page: 76
  article-title: Role of mineral elements with emphasis on the univalent cations
  publication-title: Annu Rev Plant Physiol
– volume: 11
  start-page: 677
  year: 1999
  end-page: 689
  article-title: Energization of plant cell membranes by H ‐pumping ATPase: regulation and biosynthesis
  publication-title: Plant Cell
– volume: 116
  start-page: 901
  year: 1998
  end-page: 911
  article-title: Epicuticular wax accumulation and fatty acid elongation activities are induced during leaf development of leeks
  publication-title: Plant Physiol
– volume: 108
  start-page: 1725
  year: 1995
  end-page: 1734
  article-title: Molecular and physiological analysis of a thylakoid K channel protein
  publication-title: Plant Physiol
– volume: 31
  start-page: 149
  year: 1980
  end-page: 190
  article-title: Mechanisms of salt tolerance in nonhalophytes
  publication-title: Annu Rev Plant Physiol
– ident: e_1_2_7_20_1
  doi: 10.1111/j.1742-4658.2011.08371.x
– ident: e_1_2_7_52_1
  doi: 10.1126/science.168.3933.789
– ident: e_1_2_7_32_1
  doi: 10.1104/pp.126.4.1646
– ident: e_1_2_7_11_1
  doi: 10.1111/j.1365-3040.2011.02296.x
– ident: e_1_2_7_13_1
  doi: 10.1111/j.1438-8677.2011.00526.x
– ident: e_1_2_7_15_1
  doi: 10.1242/jcs.064352
– ident: e_1_2_7_37_1
  doi: 10.1146/annurev.arplant.59.032607.092911
– ident: e_1_2_7_46_1
  doi: 10.1007/s00425-007-0606-z
– ident: e_1_2_7_55_1
  doi: 10.1093/pcp/pci069
– ident: e_1_2_7_54_1
  doi: 10.1104/pp.111.4.1051
– ident: e_1_2_7_14_1
  doi: 10.1073/pnas.89.24.11701
– ident: e_1_2_7_31_1
  doi: 10.1007/s00425-005-0081-3
– ident: e_1_2_7_6_1
  doi: 10.1093/jxb/erm284
– ident: e_1_2_7_29_1
  doi: 10.1016/S0065-2571(98)00010-7
– ident: e_1_2_7_50_1
  doi: 10.1046/j.0031-9317.2001.1140108.x
– ident: e_1_2_7_48_1
  doi: 10.1104/pp.020005
– volume: 108
  start-page: 1725
  year: 1995
  ident: e_1_2_7_23_1
  article-title: Molecular and physiological analysis of a thylakoid K+ channel protein
  publication-title: Plant Physiol
  doi: 10.1104/pp.108.4.1725
– ident: e_1_2_7_7_1
  doi: 10.1104/pp.107.110262
– ident: e_1_2_7_59_1
  doi: 10.1111/j.1365-3040.2005.01270.x
– ident: e_1_2_7_19_1
  doi: 10.1111/j.1469-8137.2007.02128.x
– ident: e_1_2_7_25_1
  doi: 10.1146/annurev.pp.31.060180.001053
– volume: 11
  start-page: 677
  year: 1999
  ident: e_1_2_7_53_1
  article-title: Energization of plant cell membranes by H+‐pumping ATPase: regulation and biosynthesis
  publication-title: Plant Cell
– ident: e_1_2_7_56_1
  doi: 10.1146/annurev.arplant.54.031902.134831
– ident: e_1_2_7_10_1
  doi: 10.1093/jxb/ern128
– ident: e_1_2_7_21_1
  doi: 10.1111/j.1744-7909.2008.00670.x
– ident: e_1_2_7_5_1
  doi: 10.1016/j.jplph.2006.03.004
– ident: e_1_2_7_12_1
  doi: 10.1071/FP09051
– ident: e_1_2_7_35_1
  doi: 10.1093/jxb/47.Special_Issue.1255
– ident: e_1_2_7_17_1
  doi: 10.1242/jcs.00201
– ident: e_1_2_7_40_1
  doi: 10.1371/journal.pone.0012571
– ident: e_1_2_7_39_1
  doi: 10.1080/00380768.1993.10419782
– ident: e_1_2_7_4_1
  doi: 10.1016/S0005-2736(00)00135-8
– ident: e_1_2_7_3_1
  doi: 10.1017/S0890037X00037581
– ident: e_1_2_7_38_1
  doi: 10.1046/j.1365-3040.2001.00661.x
– ident: e_1_2_7_51_1
  doi: 10.1071/FP02192
– ident: e_1_2_7_2_1
  doi: 10.1002/biot.200600169
– ident: e_1_2_7_26_1
  doi: 10.1146/annurev.pp.40.060189.002543
– ident: e_1_2_7_41_1
  doi: 10.1071/FP09249
– ident: e_1_2_7_8_1
  doi: 10.1111/j.1365-3040.2005.01364.x
– ident: e_1_2_7_34_1
  doi: 10.1023/A:1002968207362
– ident: e_1_2_7_49_1
  doi: 10.1104/pp.119.3.1115
– ident: e_1_2_7_16_1
  doi: 10.1111/j.1469-8137.2007.02128.x
– ident: e_1_2_7_57_1
  doi: 10.1371/journal.pone.0043079
– ident: e_1_2_7_43_1
  doi: 10.1046/j.1365-3040.2000.00606.x
– ident: e_1_2_7_22_1
  doi: 10.1146/annurev.pp.17.060166.000403
– ident: e_1_2_7_24_1
  doi: 10.1046/j.1365-313X.1999.00626.x
– ident: e_1_2_7_28_1
  doi: 10.1073/pnas.0733970100
– ident: e_1_2_7_36_1
  doi: 10.1093/jxb/erj100
– ident: e_1_2_7_58_1
  doi: 10.1007/s11032-011-9559-9
– ident: e_1_2_7_47_1
  doi: 10.1104/pp.106.082388
– ident: e_1_2_7_18_1
  doi: 10.1111/j.1365-313X.2006.02971.x
– ident: e_1_2_7_33_1
  doi: 10.1006/anbo.1999.0912
– ident: e_1_2_7_9_1
  doi: 10.1111/j.1365-3040.2005.01364.x
– ident: e_1_2_7_30_1
  doi: 10.1071/FP02069
– ident: e_1_2_7_44_1
  doi: 10.1093/aob/mcg191
– ident: e_1_2_7_27_1
  doi: 10.1104/pp.104.046664
– ident: e_1_2_7_45_1
  doi: 10.1111/j.1399-3054.2007.01008.x
– ident: e_1_2_7_42_1
  doi: 10.1104/pp.116.3.901
SSID ssj0016612
Score 2.4050386
Snippet This work investigated the importance of the ability of leaf mesophyll cells to control K+ flux across the plasma membrane as a trait conferring tissue...
This work investigated the importance of the ability of leaf mesophyll cells to control K + flux across the plasma membrane as a trait conferring tissue...
This work investigated the importance of the ability of leaf mesophyll cells to control K(+) flux across the plasma membrane as a trait conferring tissue...
This work investigated the importance of the ability of leaf mesophyll cells to control K⁺ flux across the plasma membrane as a trait conferring tissue...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 515
SubjectTerms apoplast
Barley
Biological and medical sciences
breeding
cell viability
correlation
epicuticular wax
epidermis (plant)
Fluctuations
Fundamental and applied biological sciences. Psychology
Genotype
Genotypes
greenhouse experimentation
Hordeum - drug effects
Hordeum - genetics
Hordeum - physiology
Hordeum vulgare
hydrogen ions
ion transport
Leaves
mesophyll
Mesophyll Cells - metabolism
Organic solvents
osmosis
pharmacology
Phenotype
Plant Leaves - drug effects
Plant Leaves - genetics
Plant Leaves - physiology
Plant physiology and development
plasma membrane
potassium
Potassium - metabolism
potassium channels
Salinity
Salinity tolerance
salt stress
Salt-Tolerance
screening
shoots
sodium
Sodium - metabolism
Sodium chloride
Sodium Chloride - pharmacology
solvents
Triticum - drug effects
Triticum - genetics
Triticum - physiology
Triticum aestivum
Triticum turgidum
waxes
Wheat
Title Ability of leaf mesophyll to retain potassium correlates with salinity tolerance in wheat and barley
URI https://api.istex.fr/ark:/67375/WNG-9PF8GSQ9-8/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fppl.12056
https://www.ncbi.nlm.nih.gov/pubmed/23611560
https://www.proquest.com/docview/1458568731
https://www.proquest.com/docview/1501357612
https://www.proquest.com/docview/1812889482
Volume 149
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9K64MvWr9jP1hFxJcc3XxsdvGpFa9FtJwfxT4IYTfZBWmalF6Oev71zmw-9KSKyL0Ebpa7nczs_CaZ-Q3AMxG5ck8nmJtYm4aJtDY0QhehUXEhM-cK4fu43x2Lo5PkzWl6ugYvh16Yjh9ifOBGnuHPa3Jwbea_ODmCtAmPMH7j-Uu1WgSIPozUURzjTscUHvNQYZDsWYWoimdcuRKLNkit36g2Us9RPa6ba3Ed8FzFsT4QTW_Dl2ELXf3J2WTRmknx_Td2x__c4ybc6gEq2-8s6g6s2fou3DhoEEQu70G574tpl6xxrLLasXNLcxCWVcXahlHt4teaXaAwutrinBU0-6MiOMvogS-ba2rExOVtU1naumUof0UBgem6ZIbe_S_vw8n09adXR2E_qCEskjQRYSwtRkDtEE4IYiTcM5E0hqjcnEh1VpQSPybGC0I4AjNIhG1xFmutEC_hCfcA1uumto-AZSITRhHLWFYmWkvNReE0LxW12HKnAngx3LK86FnMaZhGlQ_ZDOos9zoL4OkoetFRd1wn9Nzf91FCX55RrVuW5p-PD3M1m8rDj-9VLgPYXTGMcQHul0YQRAFsD5aS9-fAHBMrTMeEzGIewJPxa_Rgei2ja9ssUCZFGI5pH4_-IoM4TEqV0M887Kzw5x-IBad-eFSNt6U_bzafzd76i8f_LroFNyOaAOIreLZhvb1c2B3EYa3Z9Q73A3dGLHk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qK-iL9buxta4i4kuO5muzAV-qeD31epza0r5I2E12oTRNSi9He_71zmw-9KSKyL0EbpZkJjM7v9nMB8BL7pt8R4YYm2gduaHQ2lVcZq5KgkzExmTc1nHvT_joMPx4HB2vwJuuFqbpD9EfuJFl2P2aDJwOpH-xckRpA89HB34D1miitw2ovvTNozz0PE2v8MBzE3STbV8hyuPply55ozUS7BVlR8oZCsg0ky2ug57LSNa6ouE6fOuYaDJQTgfzWg2y77_1d_xfLu_CnRajst1Gqe7Bii7vw823FeLIxQPId20-7YJVhhVaGnamaRTCoihYXTFKXzwp2TkSo7XNz1hG4z8KQrSMznzZTFItJi6vq0IT75oh_SX5BCbLnCn6_L94CIfD9wfvRm47q8HNwijkbiA0OkFpEFFwakq4o3yhFHVzMzyScZYL_KkALwjkcAwiEbkFcSBlgpAJN7lHsFpWpd4AFvOYq4QajcV5KKWQHs-M9PKEqmw9kzjwuntnadY2Mqd5GkXaBTQos9TKzIEXPel5073jOqJX9sX3FPLilNLd4ig9muylyXQo9r5-TlLhwPaSZvQLkF-aQuA7sNWpStpuBTOMrTAi4yIOPAee93-jEdOXGVnqao40ESJxjPw8_y80CMWESEK6zeNGDX8-QMA9KolH0Vhl-jOz6XQ6thdP_p30GdwaHeyP0_GHyadNuO3TQBCb0LMFq_XFXD9FWFarbWt9PwAkxTCU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VFiEuvKGGUhaEEBdH8Wu9Vk8tJS1QovCo2gOStWvvSlVdO2ocQfrrO7N-QFBBCOViKbNKdjyz84098w3AS-6bfChDzE20jtxQaO0qLjNXJUEmYmMybvu4P475_mH4_jg6XoGtrhem4YfoH7iRZ9jzmhx8mptfnBxB2sDzMX5fg7WQDwWZ9O7nnjvKw8DTUIUHnptglGxphaiMp1-6FIzWSK8_qDhSzlA_phlscRXyXAayNhKNbsO3bg9NAcrpYF6rQXbxG73jf27yDtxqESrbbkzqLqzo8h5c36kQRS7uQ75tq2kXrDKs0NKwM02DEBZFweqKUfHiScmmKIy-Nj9jGQ3_KAjPMnriy2aSOjFxeV0VmrauGcp_p4jAZJkzRS__Fw_gcPT265t9t53U4GZhFHI3EBpDoDSIJzhREg6VL5QiLjfDIxlnucCPCvCCIA7HFBJxWxAHUiYImPCIewirZVXqdWAxj7lKiGYszkMphfR4ZqSXJ9Rj65nEgdfdLUuzlsacpmkUaZfOoM5SqzMHXvSi04a74yqhV_a-9xLy_JSK3eIoPRrvpclkJPa-fEpS4cDmkmH0C3C_NIPAd2Cjs5S0PQhmmFlhPsZFHHgOPO-_Rhem9zKy1NUcZSLE4Zj3ef5fZBCICZGE9DOPGiv8-QcC7lFDPKrG2tKfN5tOJgf24vG_iz6DG5PdUXrwbvzhCdz0aRqIrebZgNX6fK6fIiar1ab1vUuLtC9M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ability+of+leaf+mesophyll+to+retain+potassium+correlates+with+salinity+tolerance+in+wheat+and+barley&rft.jtitle=Physiologia+plantarum&rft.au=Wu%2C+Honghong&rft.au=Shabala%2C+Lana&rft.au=Barry%2C+Karen&rft.au=Zhou%2C+Meixue&rft.date=2013-12-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0031-9317&rft.eissn=1399-3054&rft.volume=149&rft.issue=4&rft.spage=515&rft.epage=527&rft_id=info:doi/10.1111%2Fppl.12056&rft.externalDBID=10.1111%252Fppl.12056&rft.externalDocID=PPL12056
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9317&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9317&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9317&client=summon