UV‐Vis Spectroscopy Reveals a Correlation Between Y263 and BV Protonation States in Bacteriophytochromes
Red‐light photosensory proteins, phytochromes, link light activation to biological functions by interconverting between two conformational states. For this, they undergo large‐scale secondary and tertiary changes which follow small‐scale Z to E bond photoisomerization of the covalently bound bilin c...
Saved in:
Published in | Photochemistry and photobiology Vol. 95; no. 4; pp. 969 - 979 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Red‐light photosensory proteins, phytochromes, link light activation to biological functions by interconverting between two conformational states. For this, they undergo large‐scale secondary and tertiary changes which follow small‐scale Z to E bond photoisomerization of the covalently bound bilin chromophore. The complex network of amino acid interactions in the chromophore‐binding pocket plays a central role in this process. Highly conserved Y263 and H290 have been found to be important for the photoconversion yield, while H260 has been identified as important for bilin protonation and proton transfer steps. Here, we focus on the roles these amino acids are playing in preserving the chemical properties of bilin in the resting Pr state of the photosensory unit of a bacteriophytochrome from Deinococcus radiodurans. By using pH‐dependent UV‐Vis spectroscopy and spectral decomposition modeling, we confirm the importance of H260 for biliverdin protonation. Further, we demonstrate that in the canonical bacteriophytochromes, the pKa value of the phenol group of the Y263 is uncommonly low. This directly influences the protonation of the bilin molecule and likely the functional properties of the protein. Our study expands the understanding of the tight interplay between the nearby amino acids and bilin in the phytochrome family.
Biliverdin (grey) and Y263 (teal) undergo parallel deprotonation events, requiring a four‐pKa model to describe the pH‐induced transition. Biliverdin and tyrosine each have two pKas due to reciprocal stabilization of the charges (positive for biliverdin and negative for Y263) that occurs within a selective pH range. |
---|---|
AbstractList | Red-light photosensory proteins, phytochromes, link light activation to biological functions by interconverting between two conformational states. For this, they undergo large-scale secondary and tertiary changes which follow small-scale Z to E bond photoisomerization of the covalently bound bilin chromophore. The complex network of amino acid interactions in the chromophore-binding pocket plays a central role in this process. Highly conserved Y263 and H290 have been found to be important for the photoconversion yield, while H260 has been identified as important for bilin protonation and proton transfer steps. Here, we focus on the roles these amino acids are playing in preserving the chemical properties of bilin in the resting Pr state of the photosensory unit of a bacteriophytochrome from Deinococcus radiodurans. By using pH-dependent UV-Vis spectroscopy and spectral decomposition modeling, we confirm the importance of H260 for biliverdin protonation. Further, we demonstrate that in the canonical bacteriophytochromes, the pK
value of the phenol group of the Y263 is uncommonly low. This directly influences the protonation of the bilin molecule and likely the functional properties of the protein. Our study expands the understanding of the tight interplay between the nearby amino acids and bilin in the phytochrome family. Abstract Red‐light photosensory proteins, phytochromes, link light activation to biological functions by interconverting between two conformational states. For this, they undergo large‐scale secondary and tertiary changes which follow small‐scale Z to E bond photoisomerization of the covalently bound bilin chromophore. The complex network of amino acid interactions in the chromophore‐binding pocket plays a central role in this process. Highly conserved Y263 and H290 have been found to be important for the photoconversion yield, while H260 has been identified as important for bilin protonation and proton transfer steps. Here, we focus on the roles these amino acids are playing in preserving the chemical properties of bilin in the resting Pr state of the photosensory unit of a bacteriophytochrome from Deinococcus radiodurans . By using pH‐dependent UV‐Vis spectroscopy and spectral decomposition modeling, we confirm the importance of H260 for biliverdin protonation. Further, we demonstrate that in the canonical bacteriophytochromes, the p K a value of the phenol group of the Y263 is uncommonly low. This directly influences the protonation of the bilin molecule and likely the functional properties of the protein. Our study expands the understanding of the tight interplay between the nearby amino acids and bilin in the phytochrome family. Red‐light photosensory proteins, phytochromes, link light activation to biological functions by interconverting between two conformational states. For this, they undergo large‐scale secondary and tertiary changes which follow small‐scale Z to E bond photoisomerization of the covalently bound bilin chromophore. The complex network of amino acid interactions in the chromophore‐binding pocket plays a central role in this process. Highly conserved Y263 and H290 have been found to be important for the photoconversion yield, while H260 has been identified as important for bilin protonation and proton transfer steps. Here, we focus on the roles these amino acids are playing in preserving the chemical properties of bilin in the resting Pr state of the photosensory unit of a bacteriophytochrome from Deinococcus radiodurans. By using pH‐dependent UV‐Vis spectroscopy and spectral decomposition modeling, we confirm the importance of H260 for biliverdin protonation. Further, we demonstrate that in the canonical bacteriophytochromes, the pKa value of the phenol group of the Y263 is uncommonly low. This directly influences the protonation of the bilin molecule and likely the functional properties of the protein. Our study expands the understanding of the tight interplay between the nearby amino acids and bilin in the phytochrome family. Biliverdin (grey) and Y263 (teal) undergo parallel deprotonation events, requiring a four‐pKa model to describe the pH‐induced transition. Biliverdin and tyrosine each have two pKas due to reciprocal stabilization of the charges (positive for biliverdin and negative for Y263) that occurs within a selective pH range. Red‐light photosensory proteins, phytochromes, link light activation to biological functions by interconverting between two conformational states. For this, they undergo large‐scale secondary and tertiary changes which follow small‐scale Z to E bond photoisomerization of the covalently bound bilin chromophore. The complex network of amino acid interactions in the chromophore‐binding pocket plays a central role in this process. Highly conserved Y263 and H290 have been found to be important for the photoconversion yield, while H260 has been identified as important for bilin protonation and proton transfer steps. Here, we focus on the roles these amino acids are playing in preserving the chemical properties of bilin in the resting Pr state of the photosensory unit of a bacteriophytochrome from Deinococcus radiodurans. By using pH‐dependent UV‐Vis spectroscopy and spectral decomposition modeling, we confirm the importance of H260 for biliverdin protonation. Further, we demonstrate that in the canonical bacteriophytochromes, the pKa value of the phenol group of the Y263 is uncommonly low. This directly influences the protonation of the bilin molecule and likely the functional properties of the protein. Our study expands the understanding of the tight interplay between the nearby amino acids and bilin in the phytochrome family. |
Author | Rumfeldt, Jessica A. Liukkonen, Alli Takala, Heikki Ihalainen, Janne A. |
Author_xml | – sequence: 1 givenname: Jessica A. orcidid: 0000-0001-7861-377X surname: Rumfeldt fullname: Rumfeldt, Jessica A. organization: University of Jyväskylä – sequence: 2 givenname: Heikki orcidid: 0000-0003-2518-8583 surname: Takala fullname: Takala, Heikki organization: University of Helsinki – sequence: 3 givenname: Alli surname: Liukkonen fullname: Liukkonen, Alli organization: University of Jyväskylä – sequence: 4 givenname: Janne A. surname: Ihalainen fullname: Ihalainen, Janne A. email: janne.ihalainen@jyu.fi organization: University of Jyväskylä |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30843203$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1O3DAURi0EKgPtgheoLLGhi4B_4thewghKJSRGpYzUleU4dzQZZeLU9oBmxyP0GfskdRtggcTd3MU9Orr6vgO02_seEDqi5JTmORuWwynlRIsdNKFS0IISLXfRhBBOC1UJsY8OYlwRQkst6Qe0z4kqOSN8glb38z9Pv-dtxHcDuBR8dH7Y4u_wALaL2OKpDwE6m1rf4wtIjwA9_skqjm3f4Is5ngWffD_e75JNEHGbSesShNYPy23ybhn8GuJHtLfITvj0vA_R_dXlj-l1cXP79dv0_KZwpShFsbANV1pJ2TRQ18Qyp2onAARptJTcCa6ZquqS1KJyTNaaKqhBEqssYQ3n_BCdjN4h-F8biMms2-ig62wPfhMNoyr7y0qQjB6_QVd-E_r8nWFM6BwdoTpTX0bK5XhigIUZQru2YWsoMf8KMLkA87-AzH5-Nm7qNTSv5EviGTgbgce2g-37JjO7no3Kv183kb0 |
CitedBy_id | crossref_primary_10_1016_j_jmb_2021_167092 crossref_primary_10_1073_pnas_2025094118 crossref_primary_10_3389_fpls_2021_663751 crossref_primary_10_1111_php_13197 crossref_primary_10_1007_s43630_022_00272_6 crossref_primary_10_1063_5_0135268 crossref_primary_10_1007_s43630_022_00265_5 crossref_primary_10_1039_d0pp00117a crossref_primary_10_1126_sciadv_adn8386 crossref_primary_10_1007_s43630_022_00245_9 crossref_primary_10_1021_acs_jpcb_9b08938 crossref_primary_10_1007_s11120_023_01066_2 crossref_primary_10_3390_ijms221910690 crossref_primary_10_3390_cells11193136 crossref_primary_10_3390_ijms24098139 |
Cites_doi | 10.1039/b719190a 10.1021/bi100756x 10.1074/jbc.M608878200 10.1021/bi500108s 10.1073/pnas.0812056106 10.1074/jbc.M113.479535 10.1016/j.pbi.2010.07.002 10.1016/j.pbi.2017.04.003 10.1074/jbc.M505493200 10.1016/j.jmb.2011.08.023 10.1073/pnas.0911535107 10.1021/jacs.8b04659 10.1002/pro.19 10.1074/jbc.M114.589739 10.1039/c1cp00050k 10.1074/jbc.M611824200 10.3389/fpls.2018.00498 10.1562/2005-06-28-RA-592 10.1111/php.12029 10.1021/acs.jpcb.6b09600 10.1073/pnas.1013377108 10.1016/j.molp.2014.11.021 10.1021/ja209413d 10.1021/acs.chemrev.6b00700 10.1021/bi991688z 10.1021/jp312061b 10.1074/jbc.M114.571661 10.1021/acs.jpclett.8b01133 10.1074/jbc.M709355200 10.1016/S0022-2836(05)80154-8 10.1146/annurev.arplant.56.032604.144208 10.1021/bi002651d 10.1021/ar6000523 10.1042/BJ20050826 10.1111/j.1751-1097.2010.00740.x 10.1126/sciadv.1600920 10.1039/C8CP01696H 10.1021/bi970430a 10.1039/b603846h 10.1016/S0006-3495(02)75460-X 10.1073/pnas.45.12.1703 10.1016/j.pbi.2011.06.002 10.1038/nature13310 10.1073/pnas.0902370106 10.1021/jz502408n 10.1038/nchem.2225 10.1016/0003-9861(95)90017-9 10.1111/j.1751-1097.2008.00426.x 10.1016/S0076-6879(08)03809-3 10.1074/jbc.RA118.001794 10.3109/10409238.2010.546389 10.1073/pnas.1302909110 |
ContentType | Journal Article |
Copyright | 2019 American Society for Photobiology 2019 American Society for Photobiology. |
Copyright_xml | – notice: 2019 American Society for Photobiology – notice: 2019 American Society for Photobiology. |
DBID | NPM AAYXX CITATION 4T- 7TM 7U7 8FD C1K FR3 K9. NAPCQ P64 RC3 7X8 |
DOI | 10.1111/php.13095 |
DatabaseName | PubMed CrossRef Docstoc Nucleic Acids Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Nursing & Allied Health Premium Genetics Abstracts Technology Research Database Toxicology Abstracts Nucleic Acids Abstracts Docstoc ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Nursing & Allied Health Premium |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Biology |
EISSN | 1751-1097 |
EndPage | 979 |
ExternalDocumentID | 10_1111_php_13095 30843203 PHP13095 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Magnus Ehrnroothin Säätiö – fundername: Academy of Finland funderid: 285461; 296132 – fundername: Jane ja Aatos Erkon Säätiö |
GroupedDBID | --- -JH -~X .3N .GA .GJ .Y3 05W 0R~ 10A 123 1OB 1OC 29O 31~ 33P 3O- 3SF 3V. 4.4 41~ 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5RE 5VS 66C 702 7PT 7RV 7X2 7X7 8-0 8-1 8-3 8-4 8-5 88A 88E 88I 8AF 8AO 8FE 8FH 8FI 8FJ 8FW 8R4 8R5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AANLZ AAONW AAPSS AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABUWG ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADHSS ADIZJ ADKYN ADMGS ADOZA ADZMN AEEZP AEIGN AEIMD AENEX AEPYG AEQDE AEUQT AEUYR AFBPY AFFIJ AFFPM AFGKR AFKRA AFNWH AFPWT AFRAH AFZJQ AHBTC AHEFC AHMBA AIAGR AITYG AIURR AIWBW AJBDE AJXKR AKPMI ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BDRZF BENPR BFHJK BHBCM BHPHI BKEYQ BLYAC BMNLL BNHUX BPHCQ BROTX BRXPI BVXVI BY8 C1A CAG CCPQU COF CS3 D-E D-F DC7 DCZOG DPXWK DR2 DRFUL DRSTM DU5 DWQXO E3Z EBS ECGQY EJD ESX EX3 F00 F01 F04 F5P FEDTE FYUFA FZ0 G-S G.N G8K GNUQQ GODZA H.T H.X H13 HCIFZ HF~ HGLYW HMCUK HVGLF HZ~ H~9 IH2 IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M0K M0L M1P M2P M2Q M7P MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NAPCQ NDZJH NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQ0 PQQKQ PROAC PSQYO Q.N Q11 Q2X Q5J QB0 R.K RBO RIG RIWAO RJQFR ROL RWL RX1 S0X SAMSI SJN SUPJJ TAE UB1 UKHRP W8V W99 WBKPD WH7 WIH WIK WNSPC WOHZO WOW WQJ WRC WSB WXSBR WYISQ XG1 XOL YNT ZGI ZXP ZZTAW ~02 ~IA ~KM ~WT NPM AAYXX CITATION 4T- 7TM 7U7 8FD C1K FR3 K9. P64 RC3 7X8 |
ID | FETCH-LOGICAL-c4545-fad389877ddebb0a2c8bc5ee50d9773c539286b40b56c27b918ebe70a8a02d333 |
IEDL.DBID | DR2 |
ISSN | 0031-8655 |
IngestDate | Wed Jul 24 13:26:49 EDT 2024 Thu Oct 10 20:20:51 EDT 2024 Fri Aug 23 02:22:43 EDT 2024 Sat Sep 28 08:29:37 EDT 2024 Sat Aug 24 01:11:57 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | 2019 American Society for Photobiology. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4545-fad389877ddebb0a2c8bc5ee50d9773c539286b40b56c27b918ebe70a8a02d333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7861-377X 0000-0003-2518-8583 |
OpenAccessLink | https://jyx.jyu.fi/bitstream/123456789/65699/1/supportinginformationrefeb20finalsubmission.pdf |
PMID | 30843203 |
PQID | 2259865019 |
PQPubID | 30729 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2188984650 proquest_journals_2259865019 crossref_primary_10_1111_php_13095 pubmed_primary_30843203 wiley_primary_10_1111_php_13095_PHP13095 |
PublicationCentury | 2000 |
PublicationDate | July/August 2019 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: July/August 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Lawrence |
PublicationTitle | Photochemistry and photobiology |
PublicationTitleAlternate | Photochem Photobiol |
PublicationYear | 2019 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2009; 85 2010; 13 2010; 107 2013; 288 2011; 13 2011; 14 2001; 40 2017; 117 2018; 9 2012; 134 2018; 293 2017; 37 2013; 117 1995; 247 2013; 110 2017; 121 1995; 320 2009; 18 2014; 53 2014; 289 2011; 413 2005; 392 2015; 6 2018; 140 2012 2007; 282 2006; 57 2013; 89 2009 2006; 5 2008; 10 2005; 81 2002; 82 1996; 14 2015; 8 2015; 7 2018; 20 2008; 283 1959; 45 2005; 280 2010; 86 2010; 49 2011; 108 2016; 2 2000; 39 2014; 509 1997; 36 2011; 46 2007; 40 2009; 106 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 Gross R. (e_1_2_8_4_1) 2012 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 Humphrey W. (e_1_2_8_55_1) 1996; 14 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 282 start-page: 2116 year: 2007 end-page: 2123 article-title: Highly conserved residues asp‐197 and his‐250 in Agp1 phytochrome control the proton affinity of the chromophore and Pfr formation publication-title: J. Biol. Chem. – volume: 40 start-page: 11460 year: 2001 end-page: 11471 article-title: Light‐induced proton release and proton uptake reactions in the cyanobacterial phytochrome Cph1 publication-title: Biochemistry – volume: 392 start-page: 103 year: 2005 end-page: 116 article-title: Phylogenetic analysis of the phytochrome superfamily reveals distinct microbial subfamilies of photoreceptors publication-title: Biochem. J. – volume: 110 start-page: 4974 year: 2013 end-page: 4979 article-title: Green/red cyanobacteriochromes regulate complementary chromatic acclimation via a protochromic photocycle publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 40 start-page: 258 year: 2007 end-page: 266 article-title: The chromophore structural changes during the photocycle of phytochrome: A combined resonance Raman and quantum chemical approach publication-title: Acc. Chem. Res. – volume: 18 start-page: 247 year: 2009 end-page: 251 article-title: A summary of the measured pK values of the ionizable groups in folded proteins publication-title: Protein Sci. – volume: 106 start-page: 6123 year: 2009 end-page: 6127 article-title: Distinct classes of red/far‐red photochemistry within the phytochrome superfamily publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 280 start-page: 34358 year: 2005 end-page: 34364 article-title: Light‐induced proton release of phytochrome is coupled to the transient deprotonation of the tetrapyrrole chromophore publication-title: J. Biol. Chem. – volume: 89 start-page: 259 year: 2013 end-page: 273 article-title: Solid‐state NMR spectroscopy to probe photoactivation in canonical phytochromes publication-title: Photochem. Photobiol. – volume: 39 start-page: 2667 year: 2000 end-page: 2676 article-title: Probing the photoreaction mechanism of phytochrome through analysis of resonance Raman vibrational spectra of recombinant analogues publication-title: Biochemistry – volume: 5 start-page: 553 year: 2006 end-page: 556 article-title: Proton transfer in the photoreceptors phytochrome and photoactive yellow protein publication-title: Photochem. Photobiol. Sci. – volume: 86 start-page: 856 year: 2010 end-page: 861 article-title: Role of the protein cavity in phytochrome chromoprotein assembly and double‐bond isomerization: A comparison with model compounds publication-title: Photochem. Photobiol. – volume: 82 start-page: 1004 year: 2002 end-page: 1016 article-title: Ultrafast dynamics of phytochrome from the cyanobacterium synechocystis, reconstituted with phycocyanobilin and phycoerythrobilin publication-title: Biophys. J. – volume: 8 start-page: 540 year: 2015 end-page: 551 article-title: Phytochrome signaling: Time to tighten up the loose ends publication-title: Mol. Plant. – volume: 85 start-page: 239 year: 2009 end-page: 249 article-title: The photoreactions of recombinant phytochrome CphA from the cyanobacterium calothrix PCC7601: A low‐temperature UV‐vis and FTIR study publication-title: Photochem. Photobiol. – volume: 2 start-page: e1600920 year: 2016 article-title: Structural photoactivation of a full‐length bacterial phytochrome publication-title: Sci. Adv. – volume: 283 start-page: 12212 year: 2008 end-page: 12226 article-title: Mutational analysis of deinococcus radiodurans bacteriophytochrome reveals key amino acids necessary for the photochromicity and proton exchange cycle of phytochromes publication-title: J. Biol. Chem. – volume: 509 start-page: 245 year: 2014 end-page: 248 article-title: Signal amplification and transduction in phytochrome photosensors publication-title: Nature – volume: 140 start-page: 12396 year: 2018 end-page: 12404 article-title: Chromophore‐protein interplay during the phytochrome photocycle revealed by step‐scan FTIR spectroscopy publication-title: J. Am. Chem. Soc. – volume: 57 start-page: 837 year: 2006 end-page: 858 article-title: Phytochrome structure and signaling mechanisms publication-title: Annu. Rev. Plant Biol. – volume: 117 start-page: 11049 year: 2013 end-page: 11057 article-title: Fluorescence properties of the chromophore‐binding domain of bacteriophytochrome from publication-title: J. Phys. Chem. B – volume: 81 start-page: 1481 year: 2005 end-page: 1488 article-title: Phototaxis in the cyanobacterium sp. PCC 6803: Role of different photoreceptors publication-title: Photochem. Photobiol. – volume: 53 start-page: 2818 year: 2014 end-page: 2826 article-title: Dynamic inhomogeneity in the photodynamics of cyanobacterial phytochrome Cph1 publication-title: Biochemistry – volume: 288 start-page: 31738 year: 2013 end-page: 31751 article-title: Unusual spectral properties of bacteriophytochrome Agp2 result from a deprotonation of the chromophore in the red‐absorbing form Pr publication-title: J. Biol. Chem. – volume: 9 start-page: 3454 year: 2018 end-page: 3462 article-title: Protonation heterogeneity modulates the ultrafast photocycle initiation dynamics of phytochrome Cph1 publication-title: J. Phys. Chem. Lett. – volume: 14 start-page: 498 year: 2011 end-page: 506 article-title: Phytochrome structure and photochemistry: Recent advances toward a complete molecular picture publication-title: Curr. Opin. Plant Biol. – volume: 9 start-page: 498 year: 2018 article-title: 3D structures of plant phytochrome A as Pr and Pfr from solid‐state NMR: Implications for molecular function publication-title: Front. Plant. Sci. – volume: 108 start-page: 3842 year: 2011 end-page: 3847 article-title: Two ground state isoforms and a chromophore D‐ring photoflip triggering extensive intramolecular changes in a canonical phytochrome publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 36 start-page: 10675 year: 1997 end-page: 10684 article-title: Mechanistic roles of tyrosine 149 and serine 124 in UDP‐galactose 4‐epimerase from publication-title: Biochemistry – volume: 6 start-page: 239 year: 2015 end-page: 243 article-title: Femto‐ to microsecond photodynamics of an unusual bacteriophytochrome publication-title: J. Phys. Chem. Lett. – volume: 7 start-page: 423 year: 2015 end-page: 430 article-title: A protonation‐coupled feedback mechanism controls the signalling process in bathy phytochromes publication-title: Nat. Chem. – volume: 37 start-page: 87 year: 2017 end-page: 93 article-title: Phytochrome diversification in cyanobacteria and eukaryotic algae publication-title: Curr. Opin. Plant Biol. – volume: 13 start-page: 11985 year: 2011 end-page: 11997 article-title: Fluorescence quantum yield and photochemistry of bacteriophytochrome constructs publication-title: Phys. Chem. Chem. Phys. – volume: 46 start-page: 67 year: 2011 end-page: 88 article-title: Bacterial phytochromes: More than meets the light publication-title: Crit. Rev. Biochem. Mol. Biol. – volume: 134 start-page: 1408 year: 2012 end-page: 1411 article-title: Real‐time tracking of phytochrome's orientational changes during pr photoisomerization publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 27 issue: 33–8 year: 1996 end-page: 28 article-title: VMD: Visual molecular dynamics publication-title: J. Mol. Graph. – start-page: 233 year: 2009 end-page: 258 – year: 2012 – volume: 289 start-page: 24573 year: 2014 end-page: 24587 article-title: Crystallographic and electron microscopic analyses of a bacterial phytochrome reveal local and global rearrangements during photoconversion publication-title: J. Biol. Chem. – volume: 13 start-page: 565 year: 2010 end-page: 570 article-title: Phytochrome: Structural basis for its functions publication-title: Curr. Opin. Plant Biol. – volume: 247 start-page: 765 year: 1995 end-page: 773 article-title: Functional significance of arginine 15 in the active site of human class alpha glutathione transferase A1‐1 publication-title: J. Mol. Biol. – volume: 117 start-page: 6423 year: 2017 end-page: 6446 article-title: Near‐infrared fluorescent proteins, biosensors, and optogenetic tools engineered from phytochromes publication-title: Chem. Rev. – volume: 320 start-page: 330 year: 1995 end-page: 344 article-title: High‐pressure‐induced transitions in microsomal cytochrome P450 2B4 in solution: Evidence for conformational inhomogeneity in the oligomers publication-title: Arch. Biochem. Biophys. – volume: 293 start-page: 8161 year: 2018 end-page: 8172 article-title: On the (un)coupling of the chromophore, tongue interactions and overall conformation in a bacterial phytochrome publication-title: J. Biol. Chem. – volume: 282 start-page: 12298 year: 2007 end-page: 12309 article-title: High resolution structure of deinococcus bacteriophytochrome yields new insights into phytochrome architecture and evolution publication-title: J. Biol. Chem. – volume: 121 start-page: 47 year: 2017 end-page: 57 article-title: Protonation‐dependent structural heterogeneity in the chromophore binding site of cyanobacterial phytochrome Cph1 publication-title: J. Phys. Chem. B – volume: 413 start-page: 115 year: 2011 end-page: 127 article-title: Spectroscopy and a high‐resolution crystal structure of Tyr263 mutants of cyanobacterial phytochrome Cph1 publication-title: J. Mol. Biol. – volume: 20 start-page: 18216 year: 2018 end-page: 18225 article-title: Coordination of the biliverdin D‐ring in bacteriophytochromes publication-title: Phys. Chem. Chem. Phys. – volume: 289 start-page: 32144 year: 2014 end-page: 32152 article-title: Origins of fluorescence in evolved bacteriophytochromes publication-title: J. Biol. Chem. – volume: 10 start-page: 2528 year: 2008 end-page: 2537 article-title: Which factors determine the acidity of the phytochromobilin chromophore of plant phytochrome? publication-title: Phys. Chem. Chem. Phys. – volume: 106 start-page: 1784 year: 2009 end-page: 1789 article-title: Ultrafast excited‐state isomerization in phytochrome revealed by femtosecond stimulated Raman spectroscopy publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 49 start-page: 6070 year: 2010 end-page: 6082 article-title: Biliverdin amides reveal roles for propionate side chains in bilin reductase recognition and in holophytochrome assembly and photoconversion publication-title: Biochemistry – volume: 45 start-page: 1703 year: 1959 end-page: 1708 article-title: Detection, assay, and preliminary purification of the pigment controlling photoresponsive development of plants publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 107 start-page: 9170 year: 2010 end-page: 9175 article-title: Proton‐transfer and hydrogen‐bond interactions determine fluorescence quantum yield and photochemical efficiency of bacteriophytochrome publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 14 start-page: 27 issue: 33 year: 1996 ident: e_1_2_8_55_1 article-title: VMD: Visual molecular dynamics publication-title: J. Mol. Graph. contributor: fullname: Humphrey W. – ident: e_1_2_8_28_1 doi: 10.1039/b719190a – ident: e_1_2_8_25_1 doi: 10.1021/bi100756x – ident: e_1_2_8_27_1 doi: 10.1074/jbc.M608878200 – ident: e_1_2_8_50_1 doi: 10.1021/bi500108s – ident: e_1_2_8_43_1 doi: 10.1073/pnas.0812056106 – ident: e_1_2_8_38_1 doi: 10.1074/jbc.M113.479535 – ident: e_1_2_8_9_1 doi: 10.1016/j.pbi.2010.07.002 – ident: e_1_2_8_8_1 doi: 10.1016/j.pbi.2017.04.003 – ident: e_1_2_8_17_1 doi: 10.1074/jbc.M505493200 – ident: e_1_2_8_48_1 doi: 10.1016/j.jmb.2011.08.023 – ident: e_1_2_8_47_1 doi: 10.1073/pnas.0911535107 – ident: e_1_2_8_14_1 doi: 10.1021/jacs.8b04659 – ident: e_1_2_8_39_1 doi: 10.1002/pro.19 – ident: e_1_2_8_52_1 doi: 10.1074/jbc.M114.589739 – volume-title: Two‐Component Systems in Bacteria year: 2012 ident: e_1_2_8_4_1 contributor: fullname: Gross R. – ident: e_1_2_8_46_1 doi: 10.1039/c1cp00050k – ident: e_1_2_8_45_1 doi: 10.1074/jbc.M611824200 – ident: e_1_2_8_49_1 doi: 10.3389/fpls.2018.00498 – ident: e_1_2_8_5_1 doi: 10.1562/2005-06-28-RA-592 – ident: e_1_2_8_21_1 doi: 10.1111/php.12029 – ident: e_1_2_8_29_1 doi: 10.1021/acs.jpcb.6b09600 – ident: e_1_2_8_42_1 doi: 10.1073/pnas.1013377108 – ident: e_1_2_8_3_1 doi: 10.1016/j.molp.2014.11.021 – ident: e_1_2_8_13_1 doi: 10.1021/ja209413d – ident: e_1_2_8_53_1 doi: 10.1021/acs.chemrev.6b00700 – ident: e_1_2_8_22_1 doi: 10.1021/bi991688z – ident: e_1_2_8_34_1 doi: 10.1021/jp312061b – ident: e_1_2_8_54_1 doi: 10.1074/jbc.M114.571661 – ident: e_1_2_8_30_1 doi: 10.1021/acs.jpclett.8b01133 – ident: e_1_2_8_33_1 doi: 10.1074/jbc.M709355200 – ident: e_1_2_8_41_1 doi: 10.1016/S0022-2836(05)80154-8 – ident: e_1_2_8_10_1 doi: 10.1146/annurev.arplant.56.032604.144208 – ident: e_1_2_8_16_1 doi: 10.1021/bi002651d – ident: e_1_2_8_12_1 doi: 10.1021/ar6000523 – ident: e_1_2_8_20_1 doi: 10.1042/BJ20050826 – ident: e_1_2_8_19_1 doi: 10.1111/j.1751-1097.2010.00740.x – ident: e_1_2_8_11_1 doi: 10.1126/sciadv.1600920 – ident: e_1_2_8_32_1 doi: 10.1039/C8CP01696H – ident: e_1_2_8_40_1 doi: 10.1021/bi970430a – ident: e_1_2_8_18_1 doi: 10.1039/b603846h – ident: e_1_2_8_51_1 doi: 10.1016/S0006-3495(02)75460-X – ident: e_1_2_8_6_1 doi: 10.1073/pnas.45.12.1703 – ident: e_1_2_8_7_1 doi: 10.1016/j.pbi.2011.06.002 – ident: e_1_2_8_35_1 doi: 10.1038/nature13310 – ident: e_1_2_8_26_1 doi: 10.1073/pnas.0902370106 – ident: e_1_2_8_44_1 doi: 10.1021/jz502408n – ident: e_1_2_8_15_1 doi: 10.1038/nchem.2225 – ident: e_1_2_8_36_1 doi: 10.1016/0003-9861(95)90017-9 – ident: e_1_2_8_23_1 doi: 10.1111/j.1751-1097.2008.00426.x – ident: e_1_2_8_37_1 doi: 10.1016/S0076-6879(08)03809-3 – ident: e_1_2_8_31_1 doi: 10.1074/jbc.RA118.001794 – ident: e_1_2_8_2_1 doi: 10.3109/10409238.2010.546389 – ident: e_1_2_8_24_1 doi: 10.1073/pnas.1302909110 |
SSID | ssj0014971 |
Score | 2.416392 |
Snippet | Red‐light photosensory proteins, phytochromes, link light activation to biological functions by interconverting between two conformational states. For this,... Red-light photosensory proteins, phytochromes, link light activation to biological functions by interconverting between two conformational states. For this,... Abstract Red‐light photosensory proteins, phytochromes, link light activation to biological functions by interconverting between two conformational states. For... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 969 |
SubjectTerms | Amino acids Biliverdin Chemical properties Chromophores Organic chemistry Phenols Phytochromes Proteins Protonation Spectroscopy Spectrum analysis |
Title | UV‐Vis Spectroscopy Reveals a Correlation Between Y263 and BV Protonation States in Bacteriophytochromes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fphp.13095 https://www.ncbi.nlm.nih.gov/pubmed/30843203 https://www.proquest.com/docview/2259865019 https://search.proquest.com/docview/2188984650 |
Volume | 95 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEB5CIE0vbbpNEzdpUUsPuThoLf9I9JRsE5ZCyhK6SwIBI8ky-QF7ib2F5JRHyDP2STKybNOkBEpvBo-RpZmRPkkz3wB8UTkNRMypn2U8tyk51BdGRn6Gi72WLA8pswnORz_i8TT8fhKdLMHXLhfG8UP0B27WM5r52jq4VNUfTj4_n9tSxsImmA9ZYsO5vh331FEI_BNXLY8NfZt82bIK2Sie_svHa9FfAPMxXm0WnMPXcNb9qoszudpd1GpX3z5hcfzPvqzBqxaIkj1nOW9gyRQDWHGlKW8GsDrqKsEN4MVRewH_Fi6ns99397OLitjC9bWlwiznN-TY_ELAWRFJRrbah4uvI_suBoycBjEjssjI_oxMrsu6dCeQxAFdcoGSjjO6RJ3XpT63FArVOkwPD36Oxn5brsHXIeIwP5cZoh-eJDhjKkVloLnSkTERzRBkMh0hFOOxCqmKYh0kSgw5WlBCJZc0yBhj72C5KAuzCUQpacKcGaGjIMxlJJhiPFcCt3sI6GLlwedOcencsXKk3W4GxzJtxtKD7U6laeuYVYrTl0BzQGDrwaf-NY6nvSeRhSkXKDPk2I8QpTzYcKbQt8IoD1lAmQc7jUKfbz6djCfNw_t_F92ClwjIhAsH3obl-nphPiDoqdXHxrofAKMM_TM |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIigXfpa_QAGDOHBJ5Y3jxJa40IVqgW61qrqrckCR7ThqQUpW3SxSe-oj9Bn7JIzjJKIgJMQtUiZy7JmxP9sz8wG81gWNZCJomOeicCk5NJRW8TDHxd4oVsSUuQTnyV4ynsWfDvnhGrztcmF8fYj-wM15RjNfOwd3B9K_ePniaOG4jCW_BtfR3Zkjbni_3xePQuifer48Ngxd-mVbV8jF8fSfXl2N_oCYVxFrs-Ts3IGv3c_6SJPvW6tab5mz3-o4_m9v7sLtFouSd9547sGaLQdww7NTng5gY9SRwQ3g5qS9g78P32bzy_OL-fGSOO762lXDrBanZN_-QMy5JIqMHOGHD7Ej2z4MjHyJEkZUmZPtOZmeVHXlDyGJx7rkGCV92egK1V5X5shVUVg-gNnOh4PROGwZG0ITIxQLC5UjABJpipOm1lRFRmjDreU0R5zJDEc0JhIdU80TE6VaDgUaUUqVUDTKGWMPYb2sSvsYiNbKxgWz0vAoLhSXTDNRaIk7PsR0iQ7gVae5bOELc2TdhgbHMmvGMoDNTqdZ65vLDGcwifaA2DaAl_1rHE93VaJKW61QZiiwHzFKBfDI20LfCqMiZhFlAbxpNPr35rPpeNo8PPl30RewMT6Y7Ga7H_c-P4VbiM-kjw7ehPX6ZGWfIQaq9fPG1H8CY6oBWg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIgoXfhYogQIGceCSyhs7iS1OdGG1_LRaVeyqSEiR7ThqqZRE3SxSOfEIPCNPwjhOIgpCQtwiZSLHnhn7sz3zDcAzXdBIJoKGeS4Kl5JDQ2lVHOa42BvFCk6ZS3DeP0hmC_72KD7agBd9LoznhxgO3JxntPO1c_A6L35x8vq4dqWMZXwJLvMEka9DRIcDdxQi_9SXy2Pj0GVfdrRCLoxn-PTiYvQHwrwIWNsVZ3oDPvX_6gNNTnfXjd41X3-jcfzPztyE6x0SJS-96dyCDVuO4IqvTXk-gquTvhTcCLb2uxv42_B5sfzx7fvyZEVc5frGcWFW9Tk5tF8Qca6IIhNX7sMH2JE9HwRGPkYJI6rMyd6SzM-qpvJHkMQjXXKCkp40ukKlN5U5dhwKqzuwmL7-MJmFXb2G0HAEYmGhcoQ_Ik1xytSaqsgIbWJrY5ojymQmRiwmEs2pjhMTpVqOBZpQSpVQNMoZY3dhs6xKew-I1srygllp4ogXKpZMM1Foifs9RHSJDuBpr7is9rQcWb-dwbHM2rEMYKdXadZ55irD-UuiOSCyDeDJ8BrH012UqNJWa5QZC-wHR6kAtr0pDK0wKjiLKAvgeavQvzefzWfz9uH-v4s-hq35q2n2_s3BuwdwDcGZ9KHBO7DZnK3tQwRAjX7UGvpPZG4ACQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UV-Vis+Spectroscopy+Reveals+a+Correlation+Between+Y263+and+BV+Protonation+States+in+Bacteriophytochromes&rft.jtitle=Photochemistry+and+photobiology&rft.au=Rumfeldt%2C+Jessica+A&rft.au=Takala%2C+Heikki&rft.au=Liukkonen%2C+Alli&rft.au=Ihalainen%2C+Janne+A&rft.date=2019-07-01&rft.eissn=1751-1097&rft.volume=95&rft.issue=4&rft.spage=969&rft.epage=979&rft_id=info:doi/10.1111%2Fphp.13095&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-8655&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-8655&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-8655&client=summon |