UV‐Vis Spectroscopy Reveals a Correlation Between Y263 and BV Protonation States in Bacteriophytochromes

Red‐light photosensory proteins, phytochromes, link light activation to biological functions by interconverting between two conformational states. For this, they undergo large‐scale secondary and tertiary changes which follow small‐scale Z to E bond photoisomerization of the covalently bound bilin c...

Full description

Saved in:
Bibliographic Details
Published inPhotochemistry and photobiology Vol. 95; no. 4; pp. 969 - 979
Main Authors Rumfeldt, Jessica A., Takala, Heikki, Liukkonen, Alli, Ihalainen, Janne A.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Red‐light photosensory proteins, phytochromes, link light activation to biological functions by interconverting between two conformational states. For this, they undergo large‐scale secondary and tertiary changes which follow small‐scale Z to E bond photoisomerization of the covalently bound bilin chromophore. The complex network of amino acid interactions in the chromophore‐binding pocket plays a central role in this process. Highly conserved Y263 and H290 have been found to be important for the photoconversion yield, while H260 has been identified as important for bilin protonation and proton transfer steps. Here, we focus on the roles these amino acids are playing in preserving the chemical properties of bilin in the resting Pr state of the photosensory unit of a bacteriophytochrome from Deinococcus radiodurans. By using pH‐dependent UV‐Vis spectroscopy and spectral decomposition modeling, we confirm the importance of H260 for biliverdin protonation. Further, we demonstrate that in the canonical bacteriophytochromes, the pKa value of the phenol group of the Y263 is uncommonly low. This directly influences the protonation of the bilin molecule and likely the functional properties of the protein. Our study expands the understanding of the tight interplay between the nearby amino acids and bilin in the phytochrome family. Biliverdin (grey) and Y263 (teal) undergo parallel deprotonation events, requiring a four‐pKa model to describe the pH‐induced transition. Biliverdin and tyrosine each have two pKas due to reciprocal stabilization of the charges (positive for biliverdin and negative for Y263) that occurs within a selective pH range.
AbstractList Red-light photosensory proteins, phytochromes, link light activation to biological functions by interconverting between two conformational states. For this, they undergo large-scale secondary and tertiary changes which follow small-scale Z to E bond photoisomerization of the covalently bound bilin chromophore. The complex network of amino acid interactions in the chromophore-binding pocket plays a central role in this process. Highly conserved Y263 and H290 have been found to be important for the photoconversion yield, while H260 has been identified as important for bilin protonation and proton transfer steps. Here, we focus on the roles these amino acids are playing in preserving the chemical properties of bilin in the resting Pr state of the photosensory unit of a bacteriophytochrome from Deinococcus radiodurans. By using pH-dependent UV-Vis spectroscopy and spectral decomposition modeling, we confirm the importance of H260 for biliverdin protonation. Further, we demonstrate that in the canonical bacteriophytochromes, the pK value of the phenol group of the Y263 is uncommonly low. This directly influences the protonation of the bilin molecule and likely the functional properties of the protein. Our study expands the understanding of the tight interplay between the nearby amino acids and bilin in the phytochrome family.
Abstract Red‐light photosensory proteins, phytochromes, link light activation to biological functions by interconverting between two conformational states. For this, they undergo large‐scale secondary and tertiary changes which follow small‐scale Z to E bond photoisomerization of the covalently bound bilin chromophore. The complex network of amino acid interactions in the chromophore‐binding pocket plays a central role in this process. Highly conserved Y263 and H290 have been found to be important for the photoconversion yield, while H260 has been identified as important for bilin protonation and proton transfer steps. Here, we focus on the roles these amino acids are playing in preserving the chemical properties of bilin in the resting Pr state of the photosensory unit of a bacteriophytochrome from Deinococcus radiodurans . By using pH‐dependent UV‐Vis spectroscopy and spectral decomposition modeling, we confirm the importance of H260 for biliverdin protonation. Further, we demonstrate that in the canonical bacteriophytochromes, the p K a value of the phenol group of the Y263 is uncommonly low. This directly influences the protonation of the bilin molecule and likely the functional properties of the protein. Our study expands the understanding of the tight interplay between the nearby amino acids and bilin in the phytochrome family.
Red‐light photosensory proteins, phytochromes, link light activation to biological functions by interconverting between two conformational states. For this, they undergo large‐scale secondary and tertiary changes which follow small‐scale Z to E bond photoisomerization of the covalently bound bilin chromophore. The complex network of amino acid interactions in the chromophore‐binding pocket plays a central role in this process. Highly conserved Y263 and H290 have been found to be important for the photoconversion yield, while H260 has been identified as important for bilin protonation and proton transfer steps. Here, we focus on the roles these amino acids are playing in preserving the chemical properties of bilin in the resting Pr state of the photosensory unit of a bacteriophytochrome from Deinococcus radiodurans. By using pH‐dependent UV‐Vis spectroscopy and spectral decomposition modeling, we confirm the importance of H260 for biliverdin protonation. Further, we demonstrate that in the canonical bacteriophytochromes, the pKa value of the phenol group of the Y263 is uncommonly low. This directly influences the protonation of the bilin molecule and likely the functional properties of the protein. Our study expands the understanding of the tight interplay between the nearby amino acids and bilin in the phytochrome family. Biliverdin (grey) and Y263 (teal) undergo parallel deprotonation events, requiring a four‐pKa model to describe the pH‐induced transition. Biliverdin and tyrosine each have two pKas due to reciprocal stabilization of the charges (positive for biliverdin and negative for Y263) that occurs within a selective pH range.
Red‐light photosensory proteins, phytochromes, link light activation to biological functions by interconverting between two conformational states. For this, they undergo large‐scale secondary and tertiary changes which follow small‐scale Z to E bond photoisomerization of the covalently bound bilin chromophore. The complex network of amino acid interactions in the chromophore‐binding pocket plays a central role in this process. Highly conserved Y263 and H290 have been found to be important for the photoconversion yield, while H260 has been identified as important for bilin protonation and proton transfer steps. Here, we focus on the roles these amino acids are playing in preserving the chemical properties of bilin in the resting Pr state of the photosensory unit of a bacteriophytochrome from Deinococcus radiodurans. By using pH‐dependent UV‐Vis spectroscopy and spectral decomposition modeling, we confirm the importance of H260 for biliverdin protonation. Further, we demonstrate that in the canonical bacteriophytochromes, the pKa value of the phenol group of the Y263 is uncommonly low. This directly influences the protonation of the bilin molecule and likely the functional properties of the protein. Our study expands the understanding of the tight interplay between the nearby amino acids and bilin in the phytochrome family.
Author Rumfeldt, Jessica A.
Liukkonen, Alli
Takala, Heikki
Ihalainen, Janne A.
Author_xml – sequence: 1
  givenname: Jessica A.
  orcidid: 0000-0001-7861-377X
  surname: Rumfeldt
  fullname: Rumfeldt, Jessica A.
  organization: University of Jyväskylä
– sequence: 2
  givenname: Heikki
  orcidid: 0000-0003-2518-8583
  surname: Takala
  fullname: Takala, Heikki
  organization: University of Helsinki
– sequence: 3
  givenname: Alli
  surname: Liukkonen
  fullname: Liukkonen, Alli
  organization: University of Jyväskylä
– sequence: 4
  givenname: Janne A.
  surname: Ihalainen
  fullname: Ihalainen, Janne A.
  email: janne.ihalainen@jyu.fi
  organization: University of Jyväskylä
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30843203$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1O3DAURi0EKgPtgheoLLGhi4B_4thewghKJSRGpYzUleU4dzQZZeLU9oBmxyP0GfskdRtggcTd3MU9Orr6vgO02_seEDqi5JTmORuWwynlRIsdNKFS0IISLXfRhBBOC1UJsY8OYlwRQkst6Qe0z4kqOSN8glb38z9Pv-dtxHcDuBR8dH7Y4u_wALaL2OKpDwE6m1rf4wtIjwA9_skqjm3f4Is5ngWffD_e75JNEHGbSesShNYPy23ybhn8GuJHtLfITvj0vA_R_dXlj-l1cXP79dv0_KZwpShFsbANV1pJ2TRQ18Qyp2onAARptJTcCa6ZquqS1KJyTNaaKqhBEqssYQ3n_BCdjN4h-F8biMms2-ig62wPfhMNoyr7y0qQjB6_QVd-E_r8nWFM6BwdoTpTX0bK5XhigIUZQru2YWsoMf8KMLkA87-AzH5-Nm7qNTSv5EviGTgbgce2g-37JjO7no3Kv183kb0
CitedBy_id crossref_primary_10_1016_j_jmb_2021_167092
crossref_primary_10_1073_pnas_2025094118
crossref_primary_10_3389_fpls_2021_663751
crossref_primary_10_1111_php_13197
crossref_primary_10_1007_s43630_022_00272_6
crossref_primary_10_1063_5_0135268
crossref_primary_10_1007_s43630_022_00265_5
crossref_primary_10_1039_d0pp00117a
crossref_primary_10_1126_sciadv_adn8386
crossref_primary_10_1007_s43630_022_00245_9
crossref_primary_10_1021_acs_jpcb_9b08938
crossref_primary_10_1007_s11120_023_01066_2
crossref_primary_10_3390_ijms221910690
crossref_primary_10_3390_cells11193136
crossref_primary_10_3390_ijms24098139
Cites_doi 10.1039/b719190a
10.1021/bi100756x
10.1074/jbc.M608878200
10.1021/bi500108s
10.1073/pnas.0812056106
10.1074/jbc.M113.479535
10.1016/j.pbi.2010.07.002
10.1016/j.pbi.2017.04.003
10.1074/jbc.M505493200
10.1016/j.jmb.2011.08.023
10.1073/pnas.0911535107
10.1021/jacs.8b04659
10.1002/pro.19
10.1074/jbc.M114.589739
10.1039/c1cp00050k
10.1074/jbc.M611824200
10.3389/fpls.2018.00498
10.1562/2005-06-28-RA-592
10.1111/php.12029
10.1021/acs.jpcb.6b09600
10.1073/pnas.1013377108
10.1016/j.molp.2014.11.021
10.1021/ja209413d
10.1021/acs.chemrev.6b00700
10.1021/bi991688z
10.1021/jp312061b
10.1074/jbc.M114.571661
10.1021/acs.jpclett.8b01133
10.1074/jbc.M709355200
10.1016/S0022-2836(05)80154-8
10.1146/annurev.arplant.56.032604.144208
10.1021/bi002651d
10.1021/ar6000523
10.1042/BJ20050826
10.1111/j.1751-1097.2010.00740.x
10.1126/sciadv.1600920
10.1039/C8CP01696H
10.1021/bi970430a
10.1039/b603846h
10.1016/S0006-3495(02)75460-X
10.1073/pnas.45.12.1703
10.1016/j.pbi.2011.06.002
10.1038/nature13310
10.1073/pnas.0902370106
10.1021/jz502408n
10.1038/nchem.2225
10.1016/0003-9861(95)90017-9
10.1111/j.1751-1097.2008.00426.x
10.1016/S0076-6879(08)03809-3
10.1074/jbc.RA118.001794
10.3109/10409238.2010.546389
10.1073/pnas.1302909110
ContentType Journal Article
Copyright 2019 American Society for Photobiology
2019 American Society for Photobiology.
Copyright_xml – notice: 2019 American Society for Photobiology
– notice: 2019 American Society for Photobiology.
DBID NPM
AAYXX
CITATION
4T-
7TM
7U7
8FD
C1K
FR3
K9.
NAPCQ
P64
RC3
7X8
DOI 10.1111/php.13095
DatabaseName PubMed
CrossRef
Docstoc
Nucleic Acids Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
Nucleic Acids Abstracts
Docstoc
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef

Nursing & Allied Health Premium
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Biology
EISSN 1751-1097
EndPage 979
ExternalDocumentID 10_1111_php_13095
30843203
PHP13095
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Magnus Ehrnroothin Säätiö
– fundername: Academy of Finland
  funderid: 285461; 296132
– fundername: Jane ja Aatos Erkon Säätiö
GroupedDBID ---
-JH
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
123
1OB
1OC
29O
31~
33P
3O-
3SF
3V.
4.4
41~
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5RE
5VS
66C
702
7PT
7RV
7X2
7X7
8-0
8-1
8-3
8-4
8-5
88A
88E
88I
8AF
8AO
8FE
8FH
8FI
8FJ
8FW
8R4
8R5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAPSS
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADHSS
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEPYG
AEQDE
AEUQT
AEUYR
AFBPY
AFFIJ
AFFPM
AFGKR
AFKRA
AFNWH
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKPMI
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BDRZF
BENPR
BFHJK
BHBCM
BHPHI
BKEYQ
BLYAC
BMNLL
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
C1A
CAG
CCPQU
COF
CS3
D-E
D-F
DC7
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DWQXO
E3Z
EBS
ECGQY
EJD
ESX
EX3
F00
F01
F04
F5P
FEDTE
FYUFA
FZ0
G-S
G.N
G8K
GNUQQ
GODZA
H.T
H.X
H13
HCIFZ
HF~
HGLYW
HMCUK
HVGLF
HZ~
H~9
IH2
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M0K
M0L
M1P
M2P
M2Q
M7P
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NAPCQ
NDZJH
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQ0
PQQKQ
PROAC
PSQYO
Q.N
Q11
Q2X
Q5J
QB0
R.K
RBO
RIG
RIWAO
RJQFR
ROL
RWL
RX1
S0X
SAMSI
SJN
SUPJJ
TAE
UB1
UKHRP
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WOW
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XOL
YNT
ZGI
ZXP
ZZTAW
~02
~IA
~KM
~WT
NPM
AAYXX
CITATION
4T-
7TM
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c4545-fad389877ddebb0a2c8bc5ee50d9773c539286b40b56c27b918ebe70a8a02d333
IEDL.DBID DR2
ISSN 0031-8655
IngestDate Wed Jul 24 13:26:49 EDT 2024
Thu Oct 10 20:20:51 EDT 2024
Fri Aug 23 02:22:43 EDT 2024
Sat Sep 28 08:29:37 EDT 2024
Sat Aug 24 01:11:57 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License 2019 American Society for Photobiology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4545-fad389877ddebb0a2c8bc5ee50d9773c539286b40b56c27b918ebe70a8a02d333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7861-377X
0000-0003-2518-8583
OpenAccessLink https://jyx.jyu.fi/bitstream/123456789/65699/1/supportinginformationrefeb20finalsubmission.pdf
PMID 30843203
PQID 2259865019
PQPubID 30729
PageCount 11
ParticipantIDs proquest_miscellaneous_2188984650
proquest_journals_2259865019
crossref_primary_10_1111_php_13095
pubmed_primary_30843203
wiley_primary_10_1111_php_13095_PHP13095
PublicationCentury 2000
PublicationDate July/August 2019
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: July/August 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Lawrence
PublicationTitle Photochemistry and photobiology
PublicationTitleAlternate Photochem Photobiol
PublicationYear 2019
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2009; 85
2010; 13
2010; 107
2013; 288
2011; 13
2011; 14
2001; 40
2017; 117
2018; 9
2012; 134
2018; 293
2017; 37
2013; 117
1995; 247
2013; 110
2017; 121
1995; 320
2009; 18
2014; 53
2014; 289
2011; 413
2005; 392
2015; 6
2018; 140
2012
2007; 282
2006; 57
2013; 89
2009
2006; 5
2008; 10
2005; 81
2002; 82
1996; 14
2015; 8
2015; 7
2018; 20
2008; 283
1959; 45
2005; 280
2010; 86
2010; 49
2011; 108
2016; 2
2000; 39
2014; 509
1997; 36
2011; 46
2007; 40
2009; 106
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
Gross R. (e_1_2_8_4_1) 2012
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
Humphrey W. (e_1_2_8_55_1) 1996; 14
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 282
  start-page: 2116
  year: 2007
  end-page: 2123
  article-title: Highly conserved residues asp‐197 and his‐250 in Agp1 phytochrome control the proton affinity of the chromophore and Pfr formation
  publication-title: J. Biol. Chem.
– volume: 40
  start-page: 11460
  year: 2001
  end-page: 11471
  article-title: Light‐induced proton release and proton uptake reactions in the cyanobacterial phytochrome Cph1
  publication-title: Biochemistry
– volume: 392
  start-page: 103
  year: 2005
  end-page: 116
  article-title: Phylogenetic analysis of the phytochrome superfamily reveals distinct microbial subfamilies of photoreceptors
  publication-title: Biochem. J.
– volume: 110
  start-page: 4974
  year: 2013
  end-page: 4979
  article-title: Green/red cyanobacteriochromes regulate complementary chromatic acclimation via a protochromic photocycle
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 40
  start-page: 258
  year: 2007
  end-page: 266
  article-title: The chromophore structural changes during the photocycle of phytochrome: A combined resonance Raman and quantum chemical approach
  publication-title: Acc. Chem. Res.
– volume: 18
  start-page: 247
  year: 2009
  end-page: 251
  article-title: A summary of the measured pK values of the ionizable groups in folded proteins
  publication-title: Protein Sci.
– volume: 106
  start-page: 6123
  year: 2009
  end-page: 6127
  article-title: Distinct classes of red/far‐red photochemistry within the phytochrome superfamily
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 280
  start-page: 34358
  year: 2005
  end-page: 34364
  article-title: Light‐induced proton release of phytochrome is coupled to the transient deprotonation of the tetrapyrrole chromophore
  publication-title: J. Biol. Chem.
– volume: 89
  start-page: 259
  year: 2013
  end-page: 273
  article-title: Solid‐state NMR spectroscopy to probe photoactivation in canonical phytochromes
  publication-title: Photochem. Photobiol.
– volume: 39
  start-page: 2667
  year: 2000
  end-page: 2676
  article-title: Probing the photoreaction mechanism of phytochrome through analysis of resonance Raman vibrational spectra of recombinant analogues
  publication-title: Biochemistry
– volume: 5
  start-page: 553
  year: 2006
  end-page: 556
  article-title: Proton transfer in the photoreceptors phytochrome and photoactive yellow protein
  publication-title: Photochem. Photobiol. Sci.
– volume: 86
  start-page: 856
  year: 2010
  end-page: 861
  article-title: Role of the protein cavity in phytochrome chromoprotein assembly and double‐bond isomerization: A comparison with model compounds
  publication-title: Photochem. Photobiol.
– volume: 82
  start-page: 1004
  year: 2002
  end-page: 1016
  article-title: Ultrafast dynamics of phytochrome from the cyanobacterium synechocystis, reconstituted with phycocyanobilin and phycoerythrobilin
  publication-title: Biophys. J.
– volume: 8
  start-page: 540
  year: 2015
  end-page: 551
  article-title: Phytochrome signaling: Time to tighten up the loose ends
  publication-title: Mol. Plant.
– volume: 85
  start-page: 239
  year: 2009
  end-page: 249
  article-title: The photoreactions of recombinant phytochrome CphA from the cyanobacterium calothrix PCC7601: A low‐temperature UV‐vis and FTIR study
  publication-title: Photochem. Photobiol.
– volume: 2
  start-page: e1600920
  year: 2016
  article-title: Structural photoactivation of a full‐length bacterial phytochrome
  publication-title: Sci. Adv.
– volume: 283
  start-page: 12212
  year: 2008
  end-page: 12226
  article-title: Mutational analysis of deinococcus radiodurans bacteriophytochrome reveals key amino acids necessary for the photochromicity and proton exchange cycle of phytochromes
  publication-title: J. Biol. Chem.
– volume: 509
  start-page: 245
  year: 2014
  end-page: 248
  article-title: Signal amplification and transduction in phytochrome photosensors
  publication-title: Nature
– volume: 140
  start-page: 12396
  year: 2018
  end-page: 12404
  article-title: Chromophore‐protein interplay during the phytochrome photocycle revealed by step‐scan FTIR spectroscopy
  publication-title: J. Am. Chem. Soc.
– volume: 57
  start-page: 837
  year: 2006
  end-page: 858
  article-title: Phytochrome structure and signaling mechanisms
  publication-title: Annu. Rev. Plant Biol.
– volume: 117
  start-page: 11049
  year: 2013
  end-page: 11057
  article-title: Fluorescence properties of the chromophore‐binding domain of bacteriophytochrome from
  publication-title: J. Phys. Chem. B
– volume: 81
  start-page: 1481
  year: 2005
  end-page: 1488
  article-title: Phototaxis in the cyanobacterium sp. PCC 6803: Role of different photoreceptors
  publication-title: Photochem. Photobiol.
– volume: 53
  start-page: 2818
  year: 2014
  end-page: 2826
  article-title: Dynamic inhomogeneity in the photodynamics of cyanobacterial phytochrome Cph1
  publication-title: Biochemistry
– volume: 288
  start-page: 31738
  year: 2013
  end-page: 31751
  article-title: Unusual spectral properties of bacteriophytochrome Agp2 result from a deprotonation of the chromophore in the red‐absorbing form Pr
  publication-title: J. Biol. Chem.
– volume: 9
  start-page: 3454
  year: 2018
  end-page: 3462
  article-title: Protonation heterogeneity modulates the ultrafast photocycle initiation dynamics of phytochrome Cph1
  publication-title: J. Phys. Chem. Lett.
– volume: 14
  start-page: 498
  year: 2011
  end-page: 506
  article-title: Phytochrome structure and photochemistry: Recent advances toward a complete molecular picture
  publication-title: Curr. Opin. Plant Biol.
– volume: 9
  start-page: 498
  year: 2018
  article-title: 3D structures of plant phytochrome A as Pr and Pfr from solid‐state NMR: Implications for molecular function
  publication-title: Front. Plant. Sci.
– volume: 108
  start-page: 3842
  year: 2011
  end-page: 3847
  article-title: Two ground state isoforms and a chromophore D‐ring photoflip triggering extensive intramolecular changes in a canonical phytochrome
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 36
  start-page: 10675
  year: 1997
  end-page: 10684
  article-title: Mechanistic roles of tyrosine 149 and serine 124 in UDP‐galactose 4‐epimerase from
  publication-title: Biochemistry
– volume: 6
  start-page: 239
  year: 2015
  end-page: 243
  article-title: Femto‐ to microsecond photodynamics of an unusual bacteriophytochrome
  publication-title: J. Phys. Chem. Lett.
– volume: 7
  start-page: 423
  year: 2015
  end-page: 430
  article-title: A protonation‐coupled feedback mechanism controls the signalling process in bathy phytochromes
  publication-title: Nat. Chem.
– volume: 37
  start-page: 87
  year: 2017
  end-page: 93
  article-title: Phytochrome diversification in cyanobacteria and eukaryotic algae
  publication-title: Curr. Opin. Plant Biol.
– volume: 13
  start-page: 11985
  year: 2011
  end-page: 11997
  article-title: Fluorescence quantum yield and photochemistry of bacteriophytochrome constructs
  publication-title: Phys. Chem. Chem. Phys.
– volume: 46
  start-page: 67
  year: 2011
  end-page: 88
  article-title: Bacterial phytochromes: More than meets the light
  publication-title: Crit. Rev. Biochem. Mol. Biol.
– volume: 134
  start-page: 1408
  year: 2012
  end-page: 1411
  article-title: Real‐time tracking of phytochrome's orientational changes during pr photoisomerization
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 27
  issue: 33–8
  year: 1996
  end-page: 28
  article-title: VMD: Visual molecular dynamics
  publication-title: J. Mol. Graph.
– start-page: 233
  year: 2009
  end-page: 258
– year: 2012
– volume: 289
  start-page: 24573
  year: 2014
  end-page: 24587
  article-title: Crystallographic and electron microscopic analyses of a bacterial phytochrome reveal local and global rearrangements during photoconversion
  publication-title: J. Biol. Chem.
– volume: 13
  start-page: 565
  year: 2010
  end-page: 570
  article-title: Phytochrome: Structural basis for its functions
  publication-title: Curr. Opin. Plant Biol.
– volume: 247
  start-page: 765
  year: 1995
  end-page: 773
  article-title: Functional significance of arginine 15 in the active site of human class alpha glutathione transferase A1‐1
  publication-title: J. Mol. Biol.
– volume: 117
  start-page: 6423
  year: 2017
  end-page: 6446
  article-title: Near‐infrared fluorescent proteins, biosensors, and optogenetic tools engineered from phytochromes
  publication-title: Chem. Rev.
– volume: 320
  start-page: 330
  year: 1995
  end-page: 344
  article-title: High‐pressure‐induced transitions in microsomal cytochrome P450 2B4 in solution: Evidence for conformational inhomogeneity in the oligomers
  publication-title: Arch. Biochem. Biophys.
– volume: 293
  start-page: 8161
  year: 2018
  end-page: 8172
  article-title: On the (un)coupling of the chromophore, tongue interactions and overall conformation in a bacterial phytochrome
  publication-title: J. Biol. Chem.
– volume: 282
  start-page: 12298
  year: 2007
  end-page: 12309
  article-title: High resolution structure of deinococcus bacteriophytochrome yields new insights into phytochrome architecture and evolution
  publication-title: J. Biol. Chem.
– volume: 121
  start-page: 47
  year: 2017
  end-page: 57
  article-title: Protonation‐dependent structural heterogeneity in the chromophore binding site of cyanobacterial phytochrome Cph1
  publication-title: J. Phys. Chem. B
– volume: 413
  start-page: 115
  year: 2011
  end-page: 127
  article-title: Spectroscopy and a high‐resolution crystal structure of Tyr263 mutants of cyanobacterial phytochrome Cph1
  publication-title: J. Mol. Biol.
– volume: 20
  start-page: 18216
  year: 2018
  end-page: 18225
  article-title: Coordination of the biliverdin D‐ring in bacteriophytochromes
  publication-title: Phys. Chem. Chem. Phys.
– volume: 289
  start-page: 32144
  year: 2014
  end-page: 32152
  article-title: Origins of fluorescence in evolved bacteriophytochromes
  publication-title: J. Biol. Chem.
– volume: 10
  start-page: 2528
  year: 2008
  end-page: 2537
  article-title: Which factors determine the acidity of the phytochromobilin chromophore of plant phytochrome?
  publication-title: Phys. Chem. Chem. Phys.
– volume: 106
  start-page: 1784
  year: 2009
  end-page: 1789
  article-title: Ultrafast excited‐state isomerization in phytochrome revealed by femtosecond stimulated Raman spectroscopy
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 49
  start-page: 6070
  year: 2010
  end-page: 6082
  article-title: Biliverdin amides reveal roles for propionate side chains in bilin reductase recognition and in holophytochrome assembly and photoconversion
  publication-title: Biochemistry
– volume: 45
  start-page: 1703
  year: 1959
  end-page: 1708
  article-title: Detection, assay, and preliminary purification of the pigment controlling photoresponsive development of plants
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 107
  start-page: 9170
  year: 2010
  end-page: 9175
  article-title: Proton‐transfer and hydrogen‐bond interactions determine fluorescence quantum yield and photochemical efficiency of bacteriophytochrome
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 14
  start-page: 27
  issue: 33
  year: 1996
  ident: e_1_2_8_55_1
  article-title: VMD: Visual molecular dynamics
  publication-title: J. Mol. Graph.
  contributor:
    fullname: Humphrey W.
– ident: e_1_2_8_28_1
  doi: 10.1039/b719190a
– ident: e_1_2_8_25_1
  doi: 10.1021/bi100756x
– ident: e_1_2_8_27_1
  doi: 10.1074/jbc.M608878200
– ident: e_1_2_8_50_1
  doi: 10.1021/bi500108s
– ident: e_1_2_8_43_1
  doi: 10.1073/pnas.0812056106
– ident: e_1_2_8_38_1
  doi: 10.1074/jbc.M113.479535
– ident: e_1_2_8_9_1
  doi: 10.1016/j.pbi.2010.07.002
– ident: e_1_2_8_8_1
  doi: 10.1016/j.pbi.2017.04.003
– ident: e_1_2_8_17_1
  doi: 10.1074/jbc.M505493200
– ident: e_1_2_8_48_1
  doi: 10.1016/j.jmb.2011.08.023
– ident: e_1_2_8_47_1
  doi: 10.1073/pnas.0911535107
– ident: e_1_2_8_14_1
  doi: 10.1021/jacs.8b04659
– ident: e_1_2_8_39_1
  doi: 10.1002/pro.19
– ident: e_1_2_8_52_1
  doi: 10.1074/jbc.M114.589739
– volume-title: Two‐Component Systems in Bacteria
  year: 2012
  ident: e_1_2_8_4_1
  contributor:
    fullname: Gross R.
– ident: e_1_2_8_46_1
  doi: 10.1039/c1cp00050k
– ident: e_1_2_8_45_1
  doi: 10.1074/jbc.M611824200
– ident: e_1_2_8_49_1
  doi: 10.3389/fpls.2018.00498
– ident: e_1_2_8_5_1
  doi: 10.1562/2005-06-28-RA-592
– ident: e_1_2_8_21_1
  doi: 10.1111/php.12029
– ident: e_1_2_8_29_1
  doi: 10.1021/acs.jpcb.6b09600
– ident: e_1_2_8_42_1
  doi: 10.1073/pnas.1013377108
– ident: e_1_2_8_3_1
  doi: 10.1016/j.molp.2014.11.021
– ident: e_1_2_8_13_1
  doi: 10.1021/ja209413d
– ident: e_1_2_8_53_1
  doi: 10.1021/acs.chemrev.6b00700
– ident: e_1_2_8_22_1
  doi: 10.1021/bi991688z
– ident: e_1_2_8_34_1
  doi: 10.1021/jp312061b
– ident: e_1_2_8_54_1
  doi: 10.1074/jbc.M114.571661
– ident: e_1_2_8_30_1
  doi: 10.1021/acs.jpclett.8b01133
– ident: e_1_2_8_33_1
  doi: 10.1074/jbc.M709355200
– ident: e_1_2_8_41_1
  doi: 10.1016/S0022-2836(05)80154-8
– ident: e_1_2_8_10_1
  doi: 10.1146/annurev.arplant.56.032604.144208
– ident: e_1_2_8_16_1
  doi: 10.1021/bi002651d
– ident: e_1_2_8_12_1
  doi: 10.1021/ar6000523
– ident: e_1_2_8_20_1
  doi: 10.1042/BJ20050826
– ident: e_1_2_8_19_1
  doi: 10.1111/j.1751-1097.2010.00740.x
– ident: e_1_2_8_11_1
  doi: 10.1126/sciadv.1600920
– ident: e_1_2_8_32_1
  doi: 10.1039/C8CP01696H
– ident: e_1_2_8_40_1
  doi: 10.1021/bi970430a
– ident: e_1_2_8_18_1
  doi: 10.1039/b603846h
– ident: e_1_2_8_51_1
  doi: 10.1016/S0006-3495(02)75460-X
– ident: e_1_2_8_6_1
  doi: 10.1073/pnas.45.12.1703
– ident: e_1_2_8_7_1
  doi: 10.1016/j.pbi.2011.06.002
– ident: e_1_2_8_35_1
  doi: 10.1038/nature13310
– ident: e_1_2_8_26_1
  doi: 10.1073/pnas.0902370106
– ident: e_1_2_8_44_1
  doi: 10.1021/jz502408n
– ident: e_1_2_8_15_1
  doi: 10.1038/nchem.2225
– ident: e_1_2_8_36_1
  doi: 10.1016/0003-9861(95)90017-9
– ident: e_1_2_8_23_1
  doi: 10.1111/j.1751-1097.2008.00426.x
– ident: e_1_2_8_37_1
  doi: 10.1016/S0076-6879(08)03809-3
– ident: e_1_2_8_31_1
  doi: 10.1074/jbc.RA118.001794
– ident: e_1_2_8_2_1
  doi: 10.3109/10409238.2010.546389
– ident: e_1_2_8_24_1
  doi: 10.1073/pnas.1302909110
SSID ssj0014971
Score 2.416392
Snippet Red‐light photosensory proteins, phytochromes, link light activation to biological functions by interconverting between two conformational states. For this,...
Red-light photosensory proteins, phytochromes, link light activation to biological functions by interconverting between two conformational states. For this,...
Abstract Red‐light photosensory proteins, phytochromes, link light activation to biological functions by interconverting between two conformational states. For...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 969
SubjectTerms Amino acids
Biliverdin
Chemical properties
Chromophores
Organic chemistry
Phenols
Phytochromes
Proteins
Protonation
Spectroscopy
Spectrum analysis
Title UV‐Vis Spectroscopy Reveals a Correlation Between Y263 and BV Protonation States in Bacteriophytochromes
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fphp.13095
https://www.ncbi.nlm.nih.gov/pubmed/30843203
https://www.proquest.com/docview/2259865019
https://search.proquest.com/docview/2188984650
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEB5CIE0vbbpNEzdpUUsPuThoLf9I9JRsE5ZCyhK6SwIBI8ky-QF7ib2F5JRHyDP2STKybNOkBEpvBo-RpZmRPkkz3wB8UTkNRMypn2U8tyk51BdGRn6Gi72WLA8pswnORz_i8TT8fhKdLMHXLhfG8UP0B27WM5r52jq4VNUfTj4_n9tSxsImmA9ZYsO5vh331FEI_BNXLY8NfZt82bIK2Sie_svHa9FfAPMxXm0WnMPXcNb9qoszudpd1GpX3z5hcfzPvqzBqxaIkj1nOW9gyRQDWHGlKW8GsDrqKsEN4MVRewH_Fi6ns99397OLitjC9bWlwiznN-TY_ELAWRFJRrbah4uvI_suBoycBjEjssjI_oxMrsu6dCeQxAFdcoGSjjO6RJ3XpT63FArVOkwPD36Oxn5brsHXIeIwP5cZoh-eJDhjKkVloLnSkTERzRBkMh0hFOOxCqmKYh0kSgw5WlBCJZc0yBhj72C5KAuzCUQpacKcGaGjIMxlJJhiPFcCt3sI6GLlwedOcencsXKk3W4GxzJtxtKD7U6laeuYVYrTl0BzQGDrwaf-NY6nvSeRhSkXKDPk2I8QpTzYcKbQt8IoD1lAmQc7jUKfbz6djCfNw_t_F92ClwjIhAsH3obl-nphPiDoqdXHxrofAKMM_TM
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIigXfpa_QAGDOHBJ5Y3jxJa40IVqgW61qrqrckCR7ThqQUpW3SxSe-oj9Bn7JIzjJKIgJMQtUiZy7JmxP9sz8wG81gWNZCJomOeicCk5NJRW8TDHxd4oVsSUuQTnyV4ynsWfDvnhGrztcmF8fYj-wM15RjNfOwd3B9K_ePniaOG4jCW_BtfR3Zkjbni_3xePQuifer48Ngxd-mVbV8jF8fSfXl2N_oCYVxFrs-Ts3IGv3c_6SJPvW6tab5mz3-o4_m9v7sLtFouSd9547sGaLQdww7NTng5gY9SRwQ3g5qS9g78P32bzy_OL-fGSOO762lXDrBanZN_-QMy5JIqMHOGHD7Ej2z4MjHyJEkZUmZPtOZmeVHXlDyGJx7rkGCV92egK1V5X5shVUVg-gNnOh4PROGwZG0ITIxQLC5UjABJpipOm1lRFRmjDreU0R5zJDEc0JhIdU80TE6VaDgUaUUqVUDTKGWMPYb2sSvsYiNbKxgWz0vAoLhSXTDNRaIk7PsR0iQ7gVae5bOELc2TdhgbHMmvGMoDNTqdZ65vLDGcwifaA2DaAl_1rHE93VaJKW61QZiiwHzFKBfDI20LfCqMiZhFlAbxpNPr35rPpeNo8PPl30RewMT6Y7Ga7H_c-P4VbiM-kjw7ehPX6ZGWfIQaq9fPG1H8CY6oBWg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIgoXfhYogQIGceCSyhs7iS1OdGG1_LRaVeyqSEiR7ThqqZRE3SxSOfEIPCNPwjhOIgpCQtwiZSLHnhn7sz3zDcAzXdBIJoKGeS4Kl5JDQ2lVHOa42BvFCk6ZS3DeP0hmC_72KD7agBd9LoznhxgO3JxntPO1c_A6L35x8vq4dqWMZXwJLvMEka9DRIcDdxQi_9SXy2Pj0GVfdrRCLoxn-PTiYvQHwrwIWNsVZ3oDPvX_6gNNTnfXjd41X3-jcfzPztyE6x0SJS-96dyCDVuO4IqvTXk-gquTvhTcCLb2uxv42_B5sfzx7fvyZEVc5frGcWFW9Tk5tF8Qca6IIhNX7sMH2JE9HwRGPkYJI6rMyd6SzM-qpvJHkMQjXXKCkp40ukKlN5U5dhwKqzuwmL7-MJmFXb2G0HAEYmGhcoQ_Ik1xytSaqsgIbWJrY5ojymQmRiwmEs2pjhMTpVqOBZpQSpVQNMoZY3dhs6xKew-I1srygllp4ogXKpZMM1Foifs9RHSJDuBpr7is9rQcWb-dwbHM2rEMYKdXadZ55irD-UuiOSCyDeDJ8BrH012UqNJWa5QZC-wHR6kAtr0pDK0wKjiLKAvgeavQvzefzWfz9uH-v4s-hq35q2n2_s3BuwdwDcGZ9KHBO7DZnK3tQwRAjX7UGvpPZG4ACQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UV-Vis+Spectroscopy+Reveals+a+Correlation+Between+Y263+and+BV+Protonation+States+in+Bacteriophytochromes&rft.jtitle=Photochemistry+and+photobiology&rft.au=Rumfeldt%2C+Jessica+A&rft.au=Takala%2C+Heikki&rft.au=Liukkonen%2C+Alli&rft.au=Ihalainen%2C+Janne+A&rft.date=2019-07-01&rft.eissn=1751-1097&rft.volume=95&rft.issue=4&rft.spage=969&rft.epage=979&rft_id=info:doi/10.1111%2Fphp.13095&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-8655&client=summon