Sea ice loss increases genetic isolation in a high Arctic ungulate metapopulation

Sea ice loss may have dramatic consequences for population connectivity, extinction–colonization dynamics, and even the persistence of Arctic species subject to climate change. This is of particular concern in face of additional anthropogenic stressors, such as overexploitation. In this study, we as...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 26; no. 4; pp. 2028 - 2041
Main Authors Peeters, Bart, Le Moullec, Mathilde, Raeymaekers, Joost A. M., Marquez, Jonatan F., Røed, Knut H., Pedersen, Åshild Ø., Veiberg, Vebjørn, Loe, Leif Egil, Hansen, Brage B.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sea ice loss may have dramatic consequences for population connectivity, extinction–colonization dynamics, and even the persistence of Arctic species subject to climate change. This is of particular concern in face of additional anthropogenic stressors, such as overexploitation. In this study, we assess the population‐genetic implications of diminishing sea ice cover in the endemic, high Arctic Svalbard reindeer (Rangifer tarandus platyrhynchus) by analyzing the interactive effects of landscape barriers and reintroductions (following harvest‐induced extirpations) on their metapopulation genetic structure. We genotyped 411 wild reindeer from 25 sampling sites throughout the entire subspecies' range at 19 microsatellite loci. Bayesian clustering analysis showed a genetic structure composed of eight populations, of which two were admixed. Overall population genetic differentiation was high (mean FST = 0.21). Genetic diversity was low (allelic richness [AR] = 2.07–2.58; observed heterozygosity = 0.23–0.43) and declined toward the outer distribution range, where populations showed significant levels of inbreeding. Coalescent estimates of effective population sizes and migration rates revealed strong evolutionary source–sink dynamics with the central population as the main source. The population genetic structure was best explained by a landscape genetics model combining strong isolation by glaciers and open water, and high connectivity by dispersal across winter sea ice. However, the observed patterns of natural isolation were strongly modified by the signature of past harvest‐induced extirpations, subsequent reintroductions, and recent lack of sea ice. These results suggest that past and current anthropogenic drivers of metapopulation dynamics may have interactive effects on large‐scale ecological and evolutionary processes. Continued loss of sea ice as a dispersal corridor within and between island systems is expected to increase the genetic isolation of populations, and thus threaten the evolutionary potential and persistence of Arctic wildlife. Climate change and the rapid decline in sea ice may have dramatic consequences for Arctic wildlife. Here, we show that the metapopulation genetic structure of Svalbard reindeer was strongly determined by dispersal across winter sea ice. However, the observed patterns of natural isolation were modified by recent reintroductions following harvest‐induced extirpations and diminishing sea ice cover. These findings provide novel insight in the genetic isolation of Arctic wildlife populations linked to interactive effects of sea ice loss and anthropogenic alterations in species distribution.
AbstractList Sea ice loss may have dramatic consequences for population connectivity, extinction-colonization dynamics, and even the persistence of Arctic species subject to climate change. This is of particular concern in face of additional anthropogenic stressors, such as overexploitation. In this study, we assess the population-genetic implications of diminishing sea ice cover in the endemic, high Arctic Svalbard reindeer (Rangifer tarandus platyrhynchus) by analyzing the interactive effects of landscape barriers and reintroductions (following harvest-induced extirpations) on their metapopulation genetic structure. We genotyped 411 wild reindeer from 25 sampling sites throughout the entire subspecies' range at 19 microsatellite loci. Bayesian clustering analysis showed a genetic structure composed of eight populations, of which two were admixed. Overall population genetic differentiation was high (mean F  = 0.21). Genetic diversity was low (allelic richness [AR] = 2.07-2.58; observed heterozygosity = 0.23-0.43) and declined toward the outer distribution range, where populations showed significant levels of inbreeding. Coalescent estimates of effective population sizes and migration rates revealed strong evolutionary source-sink dynamics with the central population as the main source. The population genetic structure was best explained by a landscape genetics model combining strong isolation by glaciers and open water, and high connectivity by dispersal across winter sea ice. However, the observed patterns of natural isolation were strongly modified by the signature of past harvest-induced extirpations, subsequent reintroductions, and recent lack of sea ice. These results suggest that past and current anthropogenic drivers of metapopulation dynamics may have interactive effects on large-scale ecological and evolutionary processes. Continued loss of sea ice as a dispersal corridor within and between island systems is expected to increase the genetic isolation of populations, and thus threaten the evolutionary potential and persistence of Arctic wildlife.
Sea ice loss may have dramatic consequences for population connectivity, extinction–colonization dynamics, and even the persistence of Arctic species subject to climate change. This is of particular concern in face of additional anthropogenic stressors, such as overexploitation. In this study, we assess the population‐genetic implications of diminishing sea ice cover in the endemic, high Arctic Svalbard reindeer ( Rangifer tarandus platyrhynchus ) by analyzing the interactive effects of landscape barriers and reintroductions (following harvest‐induced extirpations) on their metapopulation genetic structure. We genotyped 411 wild reindeer from 25 sampling sites throughout the entire subspecies' range at 19 microsatellite loci. Bayesian clustering analysis showed a genetic structure composed of eight populations, of which two were admixed. Overall population genetic differentiation was high (mean F ST  = 0.21). Genetic diversity was low (allelic richness [AR] = 2.07–2.58; observed heterozygosity = 0.23–0.43) and declined toward the outer distribution range, where populations showed significant levels of inbreeding. Coalescent estimates of effective population sizes and migration rates revealed strong evolutionary source–sink dynamics with the central population as the main source. The population genetic structure was best explained by a landscape genetics model combining strong isolation by glaciers and open water, and high connectivity by dispersal across winter sea ice. However, the observed patterns of natural isolation were strongly modified by the signature of past harvest‐induced extirpations, subsequent reintroductions, and recent lack of sea ice. These results suggest that past and current anthropogenic drivers of metapopulation dynamics may have interactive effects on large‐scale ecological and evolutionary processes. Continued loss of sea ice as a dispersal corridor within and between island systems is expected to increase the genetic isolation of populations, and thus threaten the evolutionary potential and persistence of Arctic wildlife.
Sea ice loss may have dramatic consequences for population connectivity, extinction–colonization dynamics, and even the persistence of Arctic species subject to climate change. This is of particular concern in face of additional anthropogenic stressors, such as overexploitation. In this study, we assess the population‐genetic implications of diminishing sea ice cover in the endemic, high Arctic Svalbard reindeer (Rangifer tarandus platyrhynchus) by analyzing the interactive effects of landscape barriers and reintroductions (following harvest‐induced extirpations) on their metapopulation genetic structure. We genotyped 411 wild reindeer from 25 sampling sites throughout the entire subspecies' range at 19 microsatellite loci. Bayesian clustering analysis showed a genetic structure composed of eight populations, of which two were admixed. Overall population genetic differentiation was high (mean FST = 0.21). Genetic diversity was low (allelic richness [AR] = 2.07–2.58; observed heterozygosity = 0.23–0.43) and declined toward the outer distribution range, where populations showed significant levels of inbreeding. Coalescent estimates of effective population sizes and migration rates revealed strong evolutionary source–sink dynamics with the central population as the main source. The population genetic structure was best explained by a landscape genetics model combining strong isolation by glaciers and open water, and high connectivity by dispersal across winter sea ice. However, the observed patterns of natural isolation were strongly modified by the signature of past harvest‐induced extirpations, subsequent reintroductions, and recent lack of sea ice. These results suggest that past and current anthropogenic drivers of metapopulation dynamics may have interactive effects on large‐scale ecological and evolutionary processes. Continued loss of sea ice as a dispersal corridor within and between island systems is expected to increase the genetic isolation of populations, and thus threaten the evolutionary potential and persistence of Arctic wildlife.
Sea ice loss may have dramatic consequences for population connectivity, extinction-colonization dynamics, and even the persistence of Arctic species subject to climate change. This is of particular concern in face of additional anthropogenic stressors, such as overexploitation. In this study, we assess the population-genetic implications of diminishing sea ice cover in the endemic, high Arctic Svalbard reindeer (Rangifer tarandus platyrhynchus) by analyzing the interactive effects of landscape barriers and reintroductions (following harvest-induced extirpations) on their metapopulation genetic structure. We genotyped 411 wild reindeer from 25 sampling sites throughout the entire subspecies' range at 19 microsatellite loci. Bayesian clustering analysis showed a genetic structure composed of eight populations, of which two were admixed. Overall population genetic differentiation was high (mean FST = 0.21). Genetic diversity was low (allelic richness [AR] = 2.07-2.58; observed heterozygosity = 0.23-0.43) and declined toward the outer distribution range, where populations showed significant levels of inbreeding. Coalescent estimates of effective population sizes and migration rates revealed strong evolutionary source-sink dynamics with the central population as the main source. The population genetic structure was best explained by a landscape genetics model combining strong isolation by glaciers and open water, and high connectivity by dispersal across winter sea ice. However, the observed patterns of natural isolation were strongly modified by the signature of past harvest-induced extirpations, subsequent reintroductions, and recent lack of sea ice. These results suggest that past and current anthropogenic drivers of metapopulation dynamics may have interactive effects on large-scale ecological and evolutionary processes. Continued loss of sea ice as a dispersal corridor within and between island systems is expected to increase the genetic isolation of populations, and thus threaten the evolutionary potential and persistence of Arctic wildlife.Sea ice loss may have dramatic consequences for population connectivity, extinction-colonization dynamics, and even the persistence of Arctic species subject to climate change. This is of particular concern in face of additional anthropogenic stressors, such as overexploitation. In this study, we assess the population-genetic implications of diminishing sea ice cover in the endemic, high Arctic Svalbard reindeer (Rangifer tarandus platyrhynchus) by analyzing the interactive effects of landscape barriers and reintroductions (following harvest-induced extirpations) on their metapopulation genetic structure. We genotyped 411 wild reindeer from 25 sampling sites throughout the entire subspecies' range at 19 microsatellite loci. Bayesian clustering analysis showed a genetic structure composed of eight populations, of which two were admixed. Overall population genetic differentiation was high (mean FST = 0.21). Genetic diversity was low (allelic richness [AR] = 2.07-2.58; observed heterozygosity = 0.23-0.43) and declined toward the outer distribution range, where populations showed significant levels of inbreeding. Coalescent estimates of effective population sizes and migration rates revealed strong evolutionary source-sink dynamics with the central population as the main source. The population genetic structure was best explained by a landscape genetics model combining strong isolation by glaciers and open water, and high connectivity by dispersal across winter sea ice. However, the observed patterns of natural isolation were strongly modified by the signature of past harvest-induced extirpations, subsequent reintroductions, and recent lack of sea ice. These results suggest that past and current anthropogenic drivers of metapopulation dynamics may have interactive effects on large-scale ecological and evolutionary processes. Continued loss of sea ice as a dispersal corridor within and between island systems is expected to increase the genetic isolation of populations, and thus threaten the evolutionary potential and persistence of Arctic wildlife.
Sea ice loss may have dramatic consequences for population connectivity, extinction–colonization dynamics, and even the persistence of Arctic species subject to climate change. This is of particular concern in face of additional anthropogenic stressors, such as overexploitation. In this study, we assess the population‐genetic implications of diminishing sea ice cover in the endemic, high Arctic Svalbard reindeer (Rangifer tarandus platyrhynchus) by analyzing the interactive effects of landscape barriers and reintroductions (following harvest‐induced extirpations) on their metapopulation genetic structure. We genotyped 411 wild reindeer from 25 sampling sites throughout the entire subspecies' range at 19 microsatellite loci. Bayesian clustering analysis showed a genetic structure composed of eight populations, of which two were admixed. Overall population genetic differentiation was high (mean FST = 0.21). Genetic diversity was low (allelic richness [AR] = 2.07–2.58; observed heterozygosity = 0.23–0.43) and declined toward the outer distribution range, where populations showed significant levels of inbreeding. Coalescent estimates of effective population sizes and migration rates revealed strong evolutionary source–sink dynamics with the central population as the main source. The population genetic structure was best explained by a landscape genetics model combining strong isolation by glaciers and open water, and high connectivity by dispersal across winter sea ice. However, the observed patterns of natural isolation were strongly modified by the signature of past harvest‐induced extirpations, subsequent reintroductions, and recent lack of sea ice. These results suggest that past and current anthropogenic drivers of metapopulation dynamics may have interactive effects on large‐scale ecological and evolutionary processes. Continued loss of sea ice as a dispersal corridor within and between island systems is expected to increase the genetic isolation of populations, and thus threaten the evolutionary potential and persistence of Arctic wildlife. Climate change and the rapid decline in sea ice may have dramatic consequences for Arctic wildlife. Here, we show that the metapopulation genetic structure of Svalbard reindeer was strongly determined by dispersal across winter sea ice. However, the observed patterns of natural isolation were modified by recent reintroductions following harvest‐induced extirpations and diminishing sea ice cover. These findings provide novel insight in the genetic isolation of Arctic wildlife populations linked to interactive effects of sea ice loss and anthropogenic alterations in species distribution.
Author Peeters, Bart
Le Moullec, Mathilde
Hansen, Brage B.
Raeymaekers, Joost A. M.
Pedersen, Åshild Ø.
Røed, Knut H.
Veiberg, Vebjørn
Loe, Leif Egil
Marquez, Jonatan F.
Author_xml – sequence: 1
  givenname: Bart
  orcidid: 0000-0002-2341-1035
  surname: Peeters
  fullname: Peeters, Bart
  email: bart.peeters@ntnu.no
  organization: Norwegian University of Science and Technology
– sequence: 2
  givenname: Mathilde
  orcidid: 0000-0002-3290-7091
  surname: Le Moullec
  fullname: Le Moullec, Mathilde
  organization: Norwegian University of Science and Technology
– sequence: 3
  givenname: Joost A. M.
  orcidid: 0000-0003-2732-7495
  surname: Raeymaekers
  fullname: Raeymaekers, Joost A. M.
  organization: Nord University
– sequence: 4
  givenname: Jonatan F.
  orcidid: 0000-0003-2034-6634
  surname: Marquez
  fullname: Marquez, Jonatan F.
  organization: Norwegian University of Science and Technology
– sequence: 5
  givenname: Knut H.
  surname: Røed
  fullname: Røed, Knut H.
  organization: Norwegian University of Life Sciences
– sequence: 6
  givenname: Åshild Ø.
  surname: Pedersen
  fullname: Pedersen, Åshild Ø.
  organization: Fram Centre
– sequence: 7
  givenname: Vebjørn
  orcidid: 0000-0003-1037-5183
  surname: Veiberg
  fullname: Veiberg, Vebjørn
  organization: Norwegian Institute for Nature Research
– sequence: 8
  givenname: Leif Egil
  orcidid: 0000-0003-4804-2253
  surname: Loe
  fullname: Loe, Leif Egil
  organization: Norwegian University of Life Sciences
– sequence: 9
  givenname: Brage B.
  orcidid: 0000-0001-8763-4361
  surname: Hansen
  fullname: Hansen, Brage B.
  organization: Norwegian University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31849126$$D View this record in MEDLINE/PubMed
BookMark eNp90c9LwzAUB_AgE7epB_8BCXjRQ7f8aNL2OIdOYSCinkuavm4ZXTuTFtl_b7ZODwPNJYH3eY_wfUPUq-oKELqiZET9GS90NqJhIsUJGlAuRcDCWPZ2bxEGlFDeR0PnVoQQzog8Q31O4zChTA7Q6xsobDTgsnYOm0pbUA4cXkAFjdHYuLpUjakrX8MKL81iiSdW70pttWh9DfAaGrWpN20HL9BpoUoHl4f7HH08PrxPn4L5y-x5OpkHOhShCGSW61hwyuI8YZRkSmckYwwiVkgQUQGxlhApUeQJkJiDiCXwSLOkIIXQMufn6Labu7H1ZwuuSdfGaShLVUHdupRxFvNQUCk9vTmiq7q1lf-dV1HEBE8i6tX1QbXZGvJ0Y81a2W36E5YHdx3Q1odlofgllKS7RaR-Eel-Ed6Oj6w2zT6fxipT_tfxZUrY_j06nU3vu45v_9CYKQ
CitedBy_id crossref_primary_10_1515_ami_2020_0110
crossref_primary_10_1007_s10980_021_01202_0
crossref_primary_10_1111_eva_13585
crossref_primary_10_1515_mammalia_2023_0004
crossref_primary_10_3354_cr01668
crossref_primary_10_1016_j_gene_2023_147957
crossref_primary_10_3354_cr01656
crossref_primary_10_1016_j_isci_2023_107811
crossref_primary_10_1111_ecog_07119
crossref_primary_10_3354_cr01682
crossref_primary_10_30766_2072_9081_2024_25_4_525_537
crossref_primary_10_1016_j_biocon_2023_110084
crossref_primary_10_3389_fcosc_2022_799998
crossref_primary_10_3390_d14121120
crossref_primary_10_1111_mec_17274
crossref_primary_10_1002_ecs2_3883
crossref_primary_10_1038_s41598_024_54296_2
crossref_primary_10_3389_fevo_2022_1058674
crossref_primary_10_1139_cjz_2023_0178
crossref_primary_10_33265_polar_v41_6310
Cites_doi 10.1007/s10592-005-9098-1
10.1046/j.0962-1083.2001.01451.x
10.1371/journal.pone.0165237
10.1017/S0032247411000647
10.1002/ece3.3809
10.1111/2041-210X.12984
10.1038/33136
10.1038/nclimate2074
10.1038/hdy.1997.46
10.1111/j.1471-8286.2004.00845.x
10.1046/j.1420-9101.1998.11040495.x
10.1046/j.1365-2052.2003.00927.x
10.7557/2.25.1.334
10.1111/gcb.14761
10.1016/j.tree.2008.02.008
10.1098/rspb.2011.1880
10.1073/pnas.0706568104
10.1111/j.1752-4571.2009.00104.x
10.1111/1755-0998.12559
10.5194/tc-3-11-2009
10.1073/pnas.081068098
10.7557/2.25.4.1773
10.1002/ece3.4915
10.1111/2041-210X.12105
10.1111/j.1471-8286.2004.00828.x
10.1093/genetics/145.4.1219
10.1111/j.1755-0998.2009.02731.x
10.1017/S0032247417000481
10.1098/rspb.1997.0069
10.1186/s40462-016-0079-4
10.1046/j.1471-8286.2002.00305.x
10.1038/hdy.1992.111
10.1111/j.0014-3820.2006.tb00500.x
10.1007/BF02763457
10.1111/j.1365-294X.2007.03659.x
10.1007/s00442-011-1939-7
10.1046/j.1420-9101.2000.00137.x
10.1002/ecs2.1374
10.1111/1755-0998.12224
10.1198/108571102320
10.1139/Z10-086
10.1111/j.1558-5646.1984.tb05657.x
10.1016/j.cub.2018.10.054
10.1890/11-0095.1
10.1002/jwmg.21761
10.1175/JPO-D-15-0058.1
10.1002/2017JC012768
10.3402/tellusa.v66.23933
10.1111/j.1600-0587.2000.tb00300.x
10.1088/1748-9326/aaefb3
10.1086/342072
10.1111/j.1523-1739.1998.96456.x
10.1111/mec.12509
10.1098/rsbl.2016.0235
10.1086/303312
10.1016/j.ecolmodel.2006.03.017
10.1371/journal.pone.0036748
10.1111/1755-0998.12157
10.1007/s00300-011-1030-1
10.1111/gcb.13435
10.1098/rsbl.2016.0264
10.1002/ece3.397
10.1644/09-MAMM-A-231.1
10.1016/j.biocon.2005.05.002
10.3389/fevo.2015.00033
10.1093/genetics/155.2.945
10.1046/j.1365-294X.2002.01582.x
10.18637/jss.v076.i13
10.1111/ecog.02995
10.1016/j.tpb.2010.06.007
10.1111/j.1365-294X.2010.04691.x
10.1111/j.1748-7692.1989.tb00210.x
10.1111/2041-210X.12512
10.1111/j.1365-294X.2007.03507.x
10.1029/2007GL029703
10.1007/s10592-015-0795-0
10.1126/science.1235225
10.1111/gcb.13381
10.1093/genetics/163.3.1177
10.1126/science.1173113
10.1038/23876
10.47536/jcrm.v11i2.623
10.1111/ddi.12748
10.1093/bioinformatics/bti803
10.1111/j.1471-8286.2007.01769.x
ContentType Journal Article
Copyright 2019 The Authors. published by John Wiley & Sons Ltd
2019 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
2019. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 The Authors. published by John Wiley & Sons Ltd
– notice: 2019 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
– notice: 2019. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
DOI 10.1111/gcb.14965
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
EndPage 2041
ExternalDocumentID 31849126
10_1111_gcb_14965
GCB14965
Genre article
Journal Article
GeographicLocations Arctic region
GeographicLocations_xml – name: Arctic region
GrantInformation_xml – fundername: Svalbard Environmental Protection Fund
  funderid: 14/137; 15/105
– fundername: Research Council of Norway
  funderid: 223257; 244647; 235652; 246054; 257173; 276080
– fundername: Norwegian Polar Institute
– fundername: Svalbard Environmental Protection Fund
  grantid: 15/105
– fundername: Research Council of Norway
  grantid: 244647
– fundername: Research Council of Norway
  grantid: 223257
– fundername: Research Council of Norway
  grantid: 235652
– fundername: Research Council of Norway
  grantid: 257173
– fundername: Research Council of Norway
  grantid: 246054
– fundername: Svalbard Environmental Protection Fund
  grantid: 14/137
– fundername: Research Council of Norway
  grantid: 276080
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
24P
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
AEUQT
AFPWT
ESX
NPM
WRC
WUP
7SN
7UA
C1K
F1W
H97
L.G
7X8
ID FETCH-LOGICAL-c4545-6bdc853128d9210bacb0b22e72f6e57fe8c6e7a5fd9e083e586e37c29f0f5c6d3
IEDL.DBID DR2
ISSN 1354-1013
1365-2486
IngestDate Fri Jul 11 01:16:41 EDT 2025
Wed Aug 13 09:41:40 EDT 2025
Wed Feb 19 02:25:46 EST 2025
Tue Jul 01 03:53:03 EDT 2025
Thu Apr 24 22:55:56 EDT 2025
Sun Jul 06 04:45:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords circuit theory
population genetics
extinction risk
harvesting
sea ice
landscape genetics
least-cost path
isolation
Arctic
climate change
Language English
License Attribution-NonCommercial
2019 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4545-6bdc853128d9210bacb0b22e72f6e57fe8c6e7a5fd9e083e586e37c29f0f5c6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2732-7495
0000-0002-2341-1035
0000-0001-8763-4361
0000-0003-2034-6634
0000-0002-3290-7091
0000-0003-1037-5183
0000-0003-4804-2253
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.14965
PMID 31849126
PQID 2377253971
PQPubID 30327
PageCount 14
ParticipantIDs proquest_miscellaneous_2328345166
proquest_journals_2377253971
pubmed_primary_31849126
crossref_primary_10_1111_gcb_14965
crossref_citationtrail_10_1111_gcb_14965
wiley_primary_10_1111_gcb_14965_GCB14965
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2020
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Global change biology
PublicationTitleAlternate Glob Chang Biol
PublicationYear 2020
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2010; 11
2007; 104
2010; 10
2017; 41
2013; 4
2010; 19
1991; 10
2002; 11
2019; 14
1970
1967; 27
1998; 396
1998; 40
2007; 34
2014; 23
2014; 66
1998; 392
2005; 25
2006; 60
2018; 9
2018; 8
2014; 4
2006; 22
2000; 13
1997; 264
2017; 76
2019; 25
1997; 145
2008; 23
2014; 14
2007; 7
2017; 122
2010; 3
1998; 12
1998; 11
2016; 46
2011; 166
2009; 325
2001; 98
2003; 163
2010; 78
1989; 5
2018; 28
2019; 9
2015; 3
2012
2000; 23
2002; 7
2017; 23
2008; 17
2009
2006; 7
2002; 2
2006; 197
2000; 155
2013; 341
2012; 35
2016; 17
1959
2016; 12
2003; 34
2007; 16
2018; 24
2016; 11
2016; 4
2010; 88
2017; 53
2016; 7
2012; 2
2002; 160
1989; 12
2019; 83
2017; 17
1984; 38
2005; 126
2011; 92
1997; 78
2005; 5
2003; 25
2018
2017
2016
2012; 48
2012; 279
2009; 3
2010; 91
2012; 7
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_5_1
e_1_2_8_7_1
R Core Team (e_1_2_8_77_1) 2016
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Lønø O. (e_1_2_8_53_1) 1959
Pedersen Å. Ø. (e_1_2_8_68_1) 2018
e_1_2_8_70_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
Walsh P. S. (e_1_2_8_90_1) 1991; 10
e_1_2_8_93_1
e_1_2_8_25_1
e_1_2_8_46_1
Norderhaug M. (e_1_2_8_63_1) 1970
e_1_2_8_27_1
e_1_2_8_48_1
Nychka D. (e_1_2_8_65_1) 2017
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
Stien A. (e_1_2_8_83_1) 2012
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_88_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_84_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_79_1
e_1_2_8_92_1
e_1_2_8_94_1
e_1_2_8_96_1
Governor of Svalbard (e_1_2_8_29_1) 2009
Higdon J. (e_1_2_8_37_1) 2010; 11
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
Tyler N. J. C. (e_1_2_8_87_1) 1989; 12
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – year: 2009
– volume: 12
  start-page: 20160235
  issue: 9
  year: 2016
  article-title: Loss of connectivity among island‐dwelling Peary caribou following sea ice decline
  publication-title: Biology Letters
– volume: 35
  start-page: 53
  issue: 1
  year: 2012
  end-page: 62
  article-title: Age‐dependent genetic structure of Arctic foxes in Svalbard
  publication-title: Polar Biology
– volume: 11
  start-page: 495
  issue: 4
  year: 1998
  end-page: 512
  article-title: Cumulative effects of founding events during colonisation on genetic diversity and differentiation in an island and stepping‐stone model
  publication-title: Journal of Evolutionary Biology
– volume: 155
  start-page: 945
  issue: 2
  year: 2000
  end-page: 959
  article-title: Inference of population structure using multilocus genotype data
  publication-title: Genetics
– volume: 34
  start-page: L09501
  issue: 9
  year: 2007
  article-title: Arctic sea ice decline: Faster than forecast
  publication-title: Geophysical Research Letters
– volume: 160
  start-page: 439
  issue: 4
  year: 2002
  end-page: 451
  article-title: The spatial scale of population fluctuations and quasi‐extinction risk
  publication-title: American Naturalist
– volume: 12
  start-page: 369
  issue: 4
  year: 1989
  end-page: 376
  article-title: Why don't Svalbard reindeer migrate?
  publication-title: Holarctic Ecology
– volume: 155
  start-page: 154
  issue: 2
  year: 2000
  end-page: 167
  article-title: The effects of a bottleneck on inbreeding depression and the genetic load
  publication-title: The American Naturalist
– volume: 66
  start-page: 23933
  issue: 1
  year: 2014
  article-title: Loss of sea ice during winter north of Svalbard
  publication-title: Tellus A: Dynamic Meteorology and Oceanography
– volume: 3
  start-page: 244
  issue: 3
  year: 2010
  end-page: 262
  article-title: Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: A largely untapped resource for applied conservation and evolution
  publication-title: Evolutionary Applications
– volume: 10
  start-page: 167
  issue: 1
  year: 2010
  end-page: 169
  article-title: Genhet: An easy‐to‐use R function to estimate individual heterozygosity
  publication-title: Molecular Ecology Resources
– volume: 23
  start-page: 490
  issue: 2
  year: 2017
  end-page: 502
  article-title: Climate change impacts on wildlife in a High Arctic archipelago – Svalbard, Norway
  publication-title: Global Change Biology
– volume: 53
  start-page: 520
  issue: 5
  year: 2017
  end-page: 533
  article-title: Catching up: The state and potential of historical catch data from Svalbard in the European Arctic
  publication-title: Polar Record
– volume: 92
  start-page: 1917
  issue: 10
  year: 2011
  end-page: 1923
  article-title: Climate, icing, and wild arctic reindeer: Past relationships and future prospects
  publication-title: Ecology
– year: 2018
– volume: 27
  start-page: 209
  year: 1967
  end-page: 220
  article-title: Detection of disease clustering and a generalized regression approach
  publication-title: Cancer Research
– volume: 91
  start-page: 698
  issue: 3
  year: 2010
  end-page: 711
  article-title: Bottlenecks, isolation, and life at the northern range limit: Peary caribou on Ellesmere Island
  publication-title: Canada. Journal of Mammalogy
– volume: 4
  start-page: 14
  issue: 1
  year: 2016
  article-title: Caribou, water, and ice – fine‐scale movements of a migratory arctic ungulate in the context of climate change
  publication-title: Movement Ecology
– volume: 16
  start-page: 4241
  issue: 20
  year: 2007
  end-page: 4255
  article-title: Sea ice occurrence predicts genetic isolation in the Arctic fox
  publication-title: Molecular Ecology
– volume: 11
  issue: 11
  year: 2016
  article-title: Colonizing the high Arctic: Mitochondrial DNA reveals common origin of Eurasian archipelagic reindeer ( )
  publication-title: PLoS ONE
– year: 1959
– volume: 34
  start-page: 33
  issue: 1
  year: 2003
  end-page: 41
  article-title: Genetic variation in caribou and reindeer ( )
  publication-title: Animal Genetics
– volume: 98
  start-page: 4563
  issue: 8
  year: 2001
  end-page: 4568
  article-title: Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 5
  start-page: 1
  issue: 1
  year: 1989
  end-page: 16
  article-title: Managing the exploitation of Pacific walruses: A tragedy of delayed response and poor communication
  publication-title: Marine Mammal Science
– volume: 48
  start-page: 47
  issue: 244
  year: 2012
  end-page: 63
  article-title: Vegetation mapping of Svalbard utilising Landsat TM/ETM plus data
  publication-title: Polar Record
– volume: 24
  start-page: 1092
  issue: 8
  year: 2018
  end-page: 1108
  article-title: Population structure of caribou in an ice‐bound archipelago
  publication-title: Diversity and Distributions
– volume: 14
  issue: 1
  year: 2019
  article-title: Spatiotemporal patterns of rain‐on‐snow and basal ice in high Arctic Svalbard: Detection of a climate‐cryosphere regime shift
  publication-title: Environmental Research Letters
– volume: 325
  start-page: 1355
  issue: 5946
  year: 2009
  end-page: 1358
  article-title: Ecological dynamics across the Arctic associated with recent climate change
  publication-title: Science
– volume: 11
  start-page: 421
  issue: 3
  year: 2002
  end-page: 436
  article-title: Microsatellite DNA and recent statistical methods in wildlife conservation management: Applications in Alpine ibex ( )
  publication-title: Molecular Ecology
– volume: 28
  start-page: 4022
  issue: 24
  year: 2018
  end-page: 4028
  article-title: The muskox lost a substantial part of its genetic diversity on its long road to Greenland
  publication-title: Current Biology
– volume: 23
  start-page: 1374
  issue: 4
  year: 2017
  end-page: 1389
  article-title: Contrasting effects of summer and winter warming on body mass explain population dynamics in a food‐limited Arctic herbivore
  publication-title: Global Change Biology
– volume: 12
  start-page: 20160264
  issue: 9
  year: 2016
  article-title: The role of sea ice for vascular plant dispersal in the Arctic
  publication-title: Biology Letters
– volume: 23
  start-page: 29
  issue: 1
  year: 2014
  end-page: 39
  article-title: Meta‐analysis reveals lower genetic diversity in overfished populations
  publication-title: Molecular Ecology
– volume: 23
  start-page: 327
  issue: 6
  year: 2008
  end-page: 337
  article-title: Genetic effects of harvest on wild animal populations
  publication-title: Trends in Ecology & Evolution
– volume: 19
  start-page: 3496
  issue: 17
  year: 2010
  end-page: 3514
  article-title: Landscape genetics: Where are we now?
  publication-title: Molecular Ecology
– volume: 12
  start-page: 665
  issue: 3
  year: 1998
  end-page: 675
  article-title: Inbreeding and extinction: Island populations
  publication-title: Conservation Biology
– volume: 2
  start-page: 2895
  issue: 11
  year: 2012
  end-page: 2911
  article-title: Gene flow on ice: The role of sea ice and whaling in shaping Holarctic genetic diversity and population differentiation in bowhead whales ( )
  publication-title: Ecology and Evolution
– volume: 13
  start-page: 58
  issue: 1
  year: 2000
  end-page: 62
  article-title: Genetic differentiation between individuals
  publication-title: Journal of Evolutionary Biology
– volume: 166
  start-page: 973
  issue: 4
  year: 2011
  end-page: 984
  article-title: Pulses of movement across the sea ice: Population connectivity and temporal genetic structure in the arctic fox
  publication-title: Oecologia
– volume: 25
  start-page: 19
  issue: 1
  year: 2003
  end-page: 30
  article-title: Refugial origin and postglacial colonization of holarctic reindeer and caribou
  publication-title: Rangifer
– volume: 41
  start-page: 922
  issue: 6
  year: 2017
  end-page: 937
  article-title: Linking genetic and ecological differentiation in an ungulate with a circumpolar distribution
  publication-title: Ecography
– volume: 11
  start-page: 185
  issue: 2
  year: 2010
  end-page: 216
  article-title: Commercial and subsistence harvests of bowhead whales ( ) in eastern Canada and West Greenland
  publication-title: Journal of Cetacean Research and Management
– volume: 122
  start-page: 6883
  issue: 8
  year: 2017
  end-page: 6900
  article-title: Variability and trends in the Arctic Sea ice cover: Results from different techniques
  publication-title: Journal of Geophysical Research‐Oceans
– volume: 3
  start-page: 33
  year: 2015
  article-title: Climate change and the increasing impact of polar bears on bird populations
  publication-title: Frontiers in Ecology and Evolution
– volume: 17
  start-page: 437
  issue: 2
  year: 2016
  end-page: 453
  article-title: Integrating ecological and genetic structure to define management units for caribou in Eastern Canada
  publication-title: Conservation Genetics
– volume: 126
  start-page: 131
  issue: 2
  year: 2005
  end-page: 140
  article-title: Genetics and extinction
  publication-title: Biological Conservation
– volume: 396
  start-page: 41
  year: 1998
  end-page: 49
  article-title: Metapopulation dynamics
  publication-title: Nature
– volume: 38
  start-page: 1358
  issue: 6
  year: 1984
  end-page: 1370
  article-title: Estimating F‐statistics for the analysis of population structure
  publication-title: Evolution
– volume: 14
  start-page: 209
  issue: 1
  year: 2014
  end-page: 214
  article-title: NeEstimator v2: Re‐implementation of software for the estimation of contemporary effective population size (Ne) from genetic data
  publication-title: Molecular Ecology Resources
– volume: 76
  start-page: 1
  issue: 13
  year: 2017
  end-page: 21
  article-title: R package gdistance: Distances and routes on geographical grids
  publication-title: Journal of Statistical Software
– volume: 104
  start-page: 19885
  issue: 50
  year: 2007
  end-page: 19890
  article-title: Circuit theory predicts gene flow in plant and animal populations
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 7
  issue: 6
  year: 2016
  article-title: Behavioral buffering of extreme weather events in a high‐Arctic herbivore
  publication-title: Ecosphere
– volume: 2
  start-page: 618
  issue: 4
  year: 2002
  end-page: 620
  article-title: SPAGeDi: A versatile computer program to analyse spatial genetic structure at the individual or population levels
  publication-title: Molecular Ecology Notes
– volume: 163
  start-page: 1177
  issue: 3
  year: 2003
  end-page: 1191
  article-title: Bayesian inference of recent migration rates using multilocus genotypes
  publication-title: Genetics
– volume: 17
  start-page: 5
  issue: 1
  year: 2017
  end-page: 11
  article-title: STRATAG: An R package for manipulating, summarizing and analysing population genetic data
  publication-title: Molecular Ecology Resources
– volume: 40
  start-page: 259
  issue: 3
  year: 1998
  end-page: 269
  article-title: Anthropogenic, ecological and genetic factors in extinction and conservation
  publication-title: Researches on Population Ecology
– volume: 9
  start-page: 2189
  issue: 4
  year: 2019
  end-page: 2205
  article-title: Prioritization of landscape connectivity for the conservation of Peary caribou
  publication-title: Ecology and Evolution
– volume: 279
  start-page: 1575
  issue: 1733
  year: 2012
  end-page: 1582
  article-title: Linking extinction–colonization dynamics to genetic structure in a salamander metapopulation
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 25
  start-page: 77
  issue: 4
  year: 2005
  end-page: 88
  article-title: Sea‐ice crossings by caribou in the south‐central Canadian Arctic Archipelago and their ecological importance
  publication-title: Rangifer
– volume: 7
  issue: 5
  year: 2012
  article-title: Loss of MHC and neutral variation in Peary caribou: Genetic drift is not mitigated by balancing selection or exacerbated by MHC allele distributions
  publication-title: PLoS ONE
– volume: 264
  start-page: 481
  issue: 1381
  year: 1997
  end-page: 486
  article-title: Synchronous dynamics and rates of extinction in spatially structured populations
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– year: 2016
– volume: 145
  start-page: 1219
  issue: 4
  year: 1997
  end-page: 1228
  article-title: Genetic differentiation and estimation of gene flow from F‐statistics under isolation by distance
  publication-title: Genetics
– volume: 88
  start-page: 1202
  issue: 12
  year: 2010
  end-page: 1209
  article-title: Partial seasonal migration in high‐arctic Svalbard reindeer ( )
  publication-title: Canadian Journal of Zoology
– volume: 83
  start-page: 1676
  issue: 8
  year: 2019
  end-page: 1686
  article-title: A century of conservation: The ongoing recovery of Svalbard reindeer
  publication-title: The Journal of Wildlife Management
– year: 2012
– volume: 11
  start-page: 1923
  issue: 10
  year: 2002
  end-page: 1930
  article-title: Microsatellite DNA evidence for genetic drift and philopatry in Svalbard reindeer
  publication-title: Molecular Ecology
– volume: 60
  start-page: 1551
  issue: 8
  year: 2006
  end-page: 1561
  article-title: Isolation by resistance
  publication-title: Evolution
– volume: 9
  start-page: 1638
  issue: 6
  year: 2018
  end-page: 1647
  article-title: ResistanceGA: An R package for the optimization of resistance surfaces using genetic algorithms
  publication-title: Methods in Ecology and Evolution
– volume: 10
  start-page: 506
  issue: 4
  year: 1991
  end-page: 513
  article-title: Chelex 100 as a medium for simple extraction of DNA for PCR‐based typing from forensic material
  publication-title: BioTechniques
– volume: 4
  start-page: 1001
  issue: 11
  year: 2013
  end-page: 1010
  article-title: Spatial models for distance sampling data: Recent developments and future directions
  publication-title: Methods in Ecology and Evolution
– volume: 3
  start-page: 11
  issue: 1
  year: 2009
  end-page: 19
  article-title: The emergence of surface‐based Arctic amplification
  publication-title: Cryosphere
– volume: 7
  start-page: 573
  issue: 5
  year: 2016
  end-page: 579
  article-title: piecewiseSEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics
  publication-title: Methods in Ecology and Evolution
– volume: 78
  start-page: 311
  year: 1997
  end-page: 327
  article-title: Do island populations have less genetic variation than mainland populations?
  publication-title: Heredity
– volume: 5
  start-page: 184
  issue: 1
  year: 2005
  end-page: 186
  article-title: HIERFSTAT, a package for R to compute and test hierarchical F‐statistics
  publication-title: Molecular Ecology Notes
– volume: 78
  start-page: 225
  issue: 3
  year: 2010
  end-page: 238
  article-title: Effects of colonization asymmetries on metapopulation persistence
  publication-title: Theoretical Population Biology
– volume: 392
  start-page: 491
  issue: 6675
  year: 1998
  end-page: 494
  article-title: Inbreeding and extinction in a butterfly metapopulation
  publication-title: Nature
– volume: 197
  start-page: 516
  issue: 3–4
  year: 2006
  end-page: 519
  article-title: The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals
  publication-title: Ecological Modelling
– volume: 5
  start-page: 187
  issue: 1
  year: 2005
  end-page: 189
  article-title: HP‐RARE 1.0: A computer program for performing rarefaction on measures of allelic richness
  publication-title: Molecular Ecology Notes
– volume: 7
  start-page: 295
  issue: 2
  year: 2006
  end-page: 302
  article-title: Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation
  publication-title: Conservation Genetics
– volume: 14
  start-page: 745
  issue: 4
  year: 2014
  end-page: 752
  article-title: Performance of individual vs. group sampling for inferring dispersal under isolation‐by‐distance
  publication-title: Molecular Ecology Resources
– volume: 17
  start-page: 1170
  issue: 5
  year: 2008
  end-page: 1188
  article-title: Genetic variation across species' geographical ranges: The central‐marginal hypothesis and beyond
  publication-title: Molecular Ecology
– volume: 8
  start-page: 2062
  issue: 4
  year: 2018
  end-page: 2075
  article-title: Range contraction and increasing isolation of a polar bear subpopulation in an era of sea‐ice loss
  publication-title: Ecology and Evolution
– volume: 22
  start-page: 341
  issue: 3
  year: 2006
  end-page: 345
  article-title: Comparison of Bayesian and maximum‐likelihood inference of population genetic parameters
  publication-title: Bioinformatics
– year: 1970
– volume: 7
  start-page: 361
  issue: 3
  year: 2002
  end-page: 372
  article-title: Confidence limits for regression relationships between distance matrices: Estimating gene flow with distance
  publication-title: Journal of Agricultural, Biological, and Environmental Statistics
– year: 2017
– volume: 7
  start-page: 747
  issue: 5
  year: 2007
  end-page: 756
  article-title: Bayesian clustering algorithms ascertaining spatial population structure: A new computer program and a comparison study
  publication-title: Molecular Ecology Notes
– volume: 25
  start-page: 3656
  issue: 11
  year: 2019
  end-page: 3668
  article-title: Spatial heterogeneity in climate change effects decouples the long‐term dynamics of wild reindeer populations in the high Arctic
  publication-title: Global Change Biology
– volume: 46
  start-page: 1209
  issue: 4
  year: 2016
  end-page: 1230
  article-title: A simple shelf circulation model: Intrusion of Atlantic water on the West Spitsbergen shelf
  publication-title: Journal of Physical Oceanography
– volume: 23
  start-page: 437
  issue: 4
  year: 2000
  end-page: 443
  article-title: Fluctuations of an introduced population of Svalbard reindeer: The effects of density dependence and climatic variation
  publication-title: Ecography
– volume: 341
  start-page: 519
  issue: 6145
  year: 2013
  end-page: 524
  article-title: Ecological consequences of sea‐ice decline
  publication-title: Science
– volume: 4
  start-page: 132
  year: 2014
  end-page: 137
  article-title: Genetic diversity in caribou linked to past and future climate change
  publication-title: Nature Climate Change
– ident: e_1_2_8_47_1
  doi: 10.1007/s10592-005-9098-1
– ident: e_1_2_8_57_1
  doi: 10.1046/j.0962-1083.2001.01451.x
– volume-title: When ground‐ice replaces fjord‐ice – Results from a study of GPS‐collared Svalbard reindeer females
  year: 2018
  ident: e_1_2_8_68_1
– ident: e_1_2_8_44_1
  doi: 10.1371/journal.pone.0165237
– ident: e_1_2_8_40_1
  doi: 10.1017/S0032247411000647
– ident: e_1_2_8_45_1
  doi: 10.1002/ece3.3809
– ident: e_1_2_8_70_1
  doi: 10.1111/2041-210X.12984
– ident: e_1_2_8_81_1
  doi: 10.1038/33136
– ident: e_1_2_8_95_1
  doi: 10.1038/nclimate2074
– ident: e_1_2_8_24_1
  doi: 10.1038/hdy.1997.46
– ident: e_1_2_8_41_1
  doi: 10.1111/j.1471-8286.2004.00845.x
– ident: e_1_2_8_48_1
  doi: 10.1046/j.1420-9101.1998.11040495.x
– ident: e_1_2_8_17_1
  doi: 10.1046/j.1365-2052.2003.00927.x
– ident: e_1_2_8_78_1
  doi: 10.7557/2.25.1.334
– volume-title: fields: Tools for spatial data
  year: 2017
  ident: e_1_2_8_65_1
– ident: e_1_2_8_32_1
  doi: 10.1111/gcb.14761
– volume-title: The reindeer on Svalbard
  year: 1959
  ident: e_1_2_8_53_1
– ident: e_1_2_8_4_1
  doi: 10.1016/j.tree.2008.02.008
– ident: e_1_2_8_14_1
  doi: 10.1098/rspb.2011.1880
– ident: e_1_2_8_59_1
  doi: 10.1073/pnas.0706568104
– ident: e_1_2_8_91_1
  doi: 10.1111/j.1752-4571.2009.00104.x
– ident: e_1_2_8_7_1
  doi: 10.1111/1755-0998.12559
– ident: e_1_2_8_82_1
  doi: 10.5194/tc-3-11-2009
– ident: e_1_2_8_9_1
  doi: 10.1073/pnas.081068098
– ident: e_1_2_8_61_1
  doi: 10.7557/2.25.4.1773
– ident: e_1_2_8_55_1
  doi: 10.1002/ece3.4915
– ident: e_1_2_8_60_1
  doi: 10.1111/2041-210X.12105
– ident: e_1_2_8_28_1
  doi: 10.1111/j.1471-8286.2004.00828.x
– ident: e_1_2_8_66_1
– ident: e_1_2_8_79_1
  doi: 10.1093/genetics/145.4.1219
– ident: e_1_2_8_16_1
  doi: 10.1111/j.1755-0998.2009.02731.x
– ident: e_1_2_8_43_1
  doi: 10.1017/S0032247417000481
– ident: e_1_2_8_36_1
  doi: 10.1098/rspb.1997.0069
– ident: e_1_2_8_50_1
  doi: 10.1186/s40462-016-0079-4
– ident: e_1_2_8_35_1
  doi: 10.1046/j.1471-8286.2002.00305.x
– ident: e_1_2_8_56_1
  doi: 10.1038/hdy.1992.111
– ident: e_1_2_8_58_1
  doi: 10.1111/j.0014-3820.2006.tb00500.x
– ident: e_1_2_8_46_1
  doi: 10.1007/BF02763457
– ident: e_1_2_8_20_1
  doi: 10.1111/j.1365-294X.2007.03659.x
– ident: e_1_2_8_64_1
  doi: 10.1007/s00442-011-1939-7
– ident: e_1_2_8_80_1
  doi: 10.1046/j.1420-9101.2000.00137.x
– ident: e_1_2_8_52_1
  doi: 10.1002/ecs2.1374
– ident: e_1_2_8_54_1
  doi: 10.1111/1755-0998.12224
– ident: e_1_2_8_12_1
  doi: 10.1198/108571102320
– volume-title: Plan for the management of Svalbard reindeer, knowledge and management status
  year: 2009
  ident: e_1_2_8_29_1
– ident: e_1_2_8_31_1
  doi: 10.1139/Z10-086
– ident: e_1_2_8_92_1
  doi: 10.1111/j.1558-5646.1984.tb05657.x
– ident: e_1_2_8_33_1
  doi: 10.1016/j.cub.2018.10.054
– ident: e_1_2_8_30_1
  doi: 10.1890/11-0095.1
– ident: e_1_2_8_49_1
  doi: 10.1002/jwmg.21761
– ident: e_1_2_8_62_1
  doi: 10.1175/JPO-D-15-0058.1
– volume: 12
  start-page: 369
  issue: 4
  year: 1989
  ident: e_1_2_8_87_1
  article-title: Why don't Svalbard reindeer migrate?
  publication-title: Holarctic Ecology
– ident: e_1_2_8_13_1
  doi: 10.1002/2017JC012768
– volume: 10
  start-page: 506
  issue: 4
  year: 1991
  ident: e_1_2_8_90_1
  article-title: Chelex 100 as a medium for simple extraction of DNA for PCR‐based typing from forensic material
  publication-title: BioTechniques
– ident: e_1_2_8_67_1
  doi: 10.3402/tellusa.v66.23933
– ident: e_1_2_8_2_1
  doi: 10.1111/j.1600-0587.2000.tb00300.x
– ident: e_1_2_8_69_1
  doi: 10.1088/1748-9326/aaefb3
– ident: e_1_2_8_22_1
  doi: 10.1086/342072
– ident: e_1_2_8_25_1
  doi: 10.1111/j.1523-1739.1998.96456.x
– ident: e_1_2_8_72_1
  doi: 10.1111/mec.12509
– ident: e_1_2_8_38_1
  doi: 10.1098/rsbl.2016.0235
– ident: e_1_2_8_42_1
  doi: 10.1086/303312
– ident: e_1_2_8_10_1
  doi: 10.1016/j.ecolmodel.2006.03.017
– ident: e_1_2_8_86_1
  doi: 10.1371/journal.pone.0036748
– ident: e_1_2_8_19_1
  doi: 10.1111/1755-0998.12157
– ident: e_1_2_8_21_1
  doi: 10.1007/s00300-011-1030-1
– ident: e_1_2_8_3_1
  doi: 10.1111/gcb.13435
– ident: e_1_2_8_5_1
  doi: 10.1098/rsbl.2016.0264
– ident: e_1_2_8_6_1
  doi: 10.1002/ece3.397
– ident: e_1_2_8_71_1
  doi: 10.1644/09-MAMM-A-231.1
– ident: e_1_2_8_26_1
  doi: 10.1016/j.biocon.2005.05.002
– ident: e_1_2_8_76_1
  doi: 10.3389/fevo.2015.00033
– ident: e_1_2_8_75_1
  doi: 10.1093/genetics/155.2.945
– ident: e_1_2_8_15_1
  doi: 10.1046/j.1365-294X.2002.01582.x
– ident: e_1_2_8_88_1
  doi: 10.18637/jss.v076.i13
– ident: e_1_2_8_94_1
  doi: 10.1111/ecog.02995
– ident: e_1_2_8_89_1
  doi: 10.1016/j.tpb.2010.06.007
– ident: e_1_2_8_84_1
  doi: 10.1111/j.1365-294X.2010.04691.x
– ident: e_1_2_8_23_1
  doi: 10.1111/j.1748-7692.1989.tb00210.x
– ident: e_1_2_8_51_1
  doi: 10.1111/2041-210X.12512
– ident: e_1_2_8_27_1
  doi: 10.1111/j.1365-294X.2007.03507.x
– ident: e_1_2_8_85_1
  doi: 10.1029/2007GL029703
– ident: e_1_2_8_96_1
  doi: 10.1007/s10592-015-0795-0
– ident: e_1_2_8_73_1
  doi: 10.1126/science.1235225
– volume-title: R: A language and environment for statistical computing
  year: 2016
  ident: e_1_2_8_77_1
– ident: e_1_2_8_18_1
  doi: 10.1111/gcb.13381
– ident: e_1_2_8_93_1
  doi: 10.1093/genetics/163.3.1177
– ident: e_1_2_8_74_1
  doi: 10.1126/science.1173113
– volume-title: Hunting on Svalbard reindeer – Knowledge status and evaluation of relevant management models
  year: 2012
  ident: e_1_2_8_83_1
– ident: e_1_2_8_34_1
  doi: 10.1038/23876
– volume: 11
  start-page: 185
  issue: 2
  year: 2010
  ident: e_1_2_8_37_1
  article-title: Commercial and subsistence harvests of bowhead whales (Balaena mysticetus) in eastern Canada and West Greenland
  publication-title: Journal of Cetacean Research and Management
  doi: 10.47536/jcrm.v11i2.623
– ident: e_1_2_8_39_1
  doi: 10.1111/ddi.12748
– volume-title: The Svalbard reindeer in the 1960's
  year: 1970
  ident: e_1_2_8_63_1
– ident: e_1_2_8_8_1
  doi: 10.1093/bioinformatics/bti803
– ident: e_1_2_8_11_1
  doi: 10.1111/j.1471-8286.2007.01769.x
SSID ssj0003206
Score 2.4268305
Snippet Sea ice loss may have dramatic consequences for population connectivity, extinction–colonization dynamics, and even the persistence of Arctic species subject...
Sea ice loss may have dramatic consequences for population connectivity, extinction-colonization dynamics, and even the persistence of Arctic species subject...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2028
SubjectTerms Ablation
Anthropogenic factors
Arctic
Bayesian analysis
Biological evolution
circuit theory
Climate change
Cluster analysis
Clustering
Colonization
Dispersal
Dispersion
Dynamics
Ecological effects
Evolution
extinction risk
Genetic analysis
Genetic diversity
Genetic isolation
Genetic structure
Genetic variation
Genetics
Glaciers
harvesting
Heterozygosity
Ice
Ice cover
Ice environments
Inbreeding
isolation
Landscape
landscape genetics
least‐cost path
Metapopulations
Microsatellites
Overexploitation
Population
Population genetics
Population studies
Populations
Probability theory
Rangifer tarandus platyrhynchus
Sea ice
Sexual isolation
Source-sink relationships
Species extinction
Wildlife
Title Sea ice loss increases genetic isolation in a high Arctic ungulate metapopulation
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.14965
https://www.ncbi.nlm.nih.gov/pubmed/31849126
https://www.proquest.com/docview/2377253971
https://www.proquest.com/docview/2328345166
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD7UguCLl9Xqai2jiPiSkp3JTDL4pEtrESreCn0QwszkRBbXbGl2H_TXe87kUusFxLeEOWEuOZfvJOcC8ER5lyuT2QTTyiVZlrukcCTu2mtT1coSZuDc4eM35ugke32qT7fg-ZAL09WHGD-4sWREfc0C7nz7k5B_Dp7E3BpOMOdYLQZE7y9KRykZ-2rOlM5I1cxUX1WIo3jGJy_bot8A5mW8Gg3O4Q34NCy1izP5sr9Z-_3w_Zcqjv-5l5twvQei4kXHObdgC5sJXO1aU36bwM7BRQYckfUqoJ3A9Jhg9uo8komnYr5cEOaNd7fh3Qd0gjSPWNJ2xaJhRNpiK4hJOVdSLIjRIyfQmHCCSyXTAjhLS5DO4UZiKL7i2p2NXcXuwMnhwcf5UdL3bEhCRmAsMb4KhADI6lWWvEnvgk-9lJjL2qDOayyCwdzpurJI6A91YVDlQdo6rXUwldqB7WbV4D0QOpVOuYpMq8szh9ZbK12qdRHQ2cKYKTwb3l4Z-oLm3FdjWQ6ODR1rGY91Co9H0rOuisefiHYHFih7QW5Lqcj90ATaZlN4NA6TCPJ_FdfgasM0hNG44TEt6W7HOuMspDIzO5O82MgAf5--fDV_GS_u_zvpA7gm2f-PkUS7sL0-3-BDAklrvwdXZPZ2L8rEDxJVDSk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgQXoAuFhUINQohLqqwdO7HEBbaPLXQrAa3UC4psZ4JWLNmqu3ugv75j51FKQULcEmUiPzKPz45nPoBXwppUqERHGBcmSpLURJkhc5dWqqIUmjCDzx0eH6rRcfLhRJ6swNs2F6auD9FtuHnLCP7aG7jfkP7Fyr85S3aulbwBNz2jt6-cv_35sniU4IFZcyBkQs5mIJq6Qv4cT_fq1Wh0DWJeRawh5Ozeg69tZ-uTJt-3lgu75c5_q-P4v6O5D3cbLMre1cqzBitY9eBWzU75swfrO5dJcCTWeIF5D_pjQtqzsyDGXrPhdEKwN9w9gE9f0DByPmxK42WTyoPSOc4Z6alPl2QT0vWgDPSMGearJVMHfKIWI7fjucSQ_cCFOe2IxR7C8e7O0XAUNbQNkUsIj0XKFo5AAAW-QtOC0hpnY8s5prxUKNMSM6cwNbIsNBIARJkpFKnjuoxL6VQh1mG1mlX4GJiMuRGmoOhq0sSgtlpzE0uZOTQ6U6oPb9rPl7umprmn1pjm7dqGpjUP09qHl53oaV3I409CG60O5I0tz3MuaAUiCbcN-vCie0xW6H-tmApnSy9DMM1zHlOXHtW607VCXjPRA-47GzTg783ne8P34eLJv4tuwu3R0fggP9g__PgU7nC_HRAOFm3A6uJsic8IMy3s82AaF4DkEG4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB9qRfFF9LR6WnUVEV8Cuf1KFp_07Fk_Wipa6FvY3Uzk4MwdveuD_70zm1y0qOBbQibsktnfzG-yOzMAz1XwhbLaZZjXPtO68FnpCe4mGFs3yhFn4Nzho2N7eKo_nJmzHXi1zYXp6kMMP9wYGcleM8BXdfMbyL_FQDB31lyBq7zZx-e5pD4ZzLCSqbHmRBlNtmai-rJCfIxnePWyM_qDYV4mrMnjzG7BzZ4qitedbm_DDrYjuNY1j_wxgr2DXzlqJNaDdD2C8RER4eV5EhMvxHQxJ1aa7u7A5y_oBdkGsaD5iHnLnHGNa0HLiLMZxZyWYtIVPRNecDFjmgDnUQmyCtzqC8V33PjV0PfrLpzODr5OD7O-q0IWNdGlzIY6ko8mv1Q7iveCjyEPUmIhG4umaLCMFgtvmtoh8TM0pUVVROmavDHR1moPdttli_dBmFx65Wtyfr7QHl1wTvrcmDKid6W1Y3i5_bxV7EuOc-eLRbUNPUgTVdLEGJ4NoquuzsbfhPa3Oqp6qK0rqShAMESrJmN4OjwmkPDOh29xecEyxKK4JTFN6V6n22EUMmraTSRPNin738NX76Zv0sWD_xd9AtdP3s6qT--PPz6EG5KD9XTsZx92N-cX-IgYzSY8Tiv3Jxvl7uc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sea+ice+loss+increases+genetic+isolation+in+a+high+Arctic+ungulate+metapopulation&rft.jtitle=Global+change+biology&rft.au=Peeters%2C+Bart&rft.au=Le+Moullec%2C+Mathilde&rft.au=Raeymaekers%2C+Joost+A.+M.&rft.au=Marquez%2C+Jonatan+F.&rft.date=2020-04-01&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=26&rft.issue=4&rft.spage=2028&rft.epage=2041&rft_id=info:doi/10.1111%2Fgcb.14965&rft.externalDBID=10.1111%252Fgcb.14965&rft.externalDocID=GCB14965
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon