Stalk cell polar ion transport provide for bladder‐based salinity tolerance in Chenopodium quinoa
Summary Chenopodium quinoa uses epidermal bladder cells (EBCs) to sequester excess salt. Each EBC complex consists of a leaf epidermal cell, a stalk cell, and the bladder. Under salt stress, sodium (Na+), chloride (Cl−), potassium (K+) and various metabolites are shuttled from the leaf lamina to the...
Saved in:
Published in | The New phytologist Vol. 235; no. 5; pp. 1822 - 1835 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Chenopodium quinoa uses epidermal bladder cells (EBCs) to sequester excess salt. Each EBC complex consists of a leaf epidermal cell, a stalk cell, and the bladder.
Under salt stress, sodium (Na+), chloride (Cl−), potassium (K+) and various metabolites are shuttled from the leaf lamina to the bladders. Stalk cells operate as both a selectivity filter and a flux controller.
In line with the nature of a transfer cell, advanced transmission electron tomography, electrophysiology, and fluorescent tracer flux studies revealed the stalk cell’s polar organization and bladder‐directed solute flow.
RNA sequencing and cluster analysis revealed the gene expression profiles of the stalk cells. Among the stalk cell enriched genes, ion channels and carriers as well as sugar transporters were most pronounced. Based on their electrophysiological fingerprint and thermodynamic considerations, a model for stalk cell transcellular transport was derived. |
---|---|
AbstractList | Chenopodium quinoa
uses epidermal bladder cells (EBCs) to sequester excess salt. Each EBC complex consists of a leaf epidermal cell, a stalk cell, and the bladder.
Under salt stress, sodium (Na
+
), chloride (Cl
−
), potassium (K
+
) and various metabolites are shuttled from the leaf lamina to the bladders. Stalk cells operate as both a selectivity filter and a flux controller.
In line with the nature of a transfer cell, advanced transmission electron tomography, electrophysiology, and fluorescent tracer flux studies revealed the stalk cell’s polar organization and bladder‐directed solute flow.
RNA sequencing and cluster analysis revealed the gene expression profiles of the stalk cells. Among the stalk cell enriched genes, ion channels and carriers as well as sugar transporters were most pronounced. Based on their electrophysiological fingerprint and thermodynamic considerations, a model for stalk cell transcellular transport was derived. Chenopodium quinoa uses epidermal bladder cells (EBCs) to sequester excess salt. Each EBC complex consists of a leaf epidermal cell, a stalk cell, and the bladder. Under salt stress, sodium (Na ), chloride (Cl ), potassium (K ) and various metabolites are shuttled from the leaf lamina to the bladders. Stalk cells operate as both a selectivity filter and a flux controller. In line with the nature of a transfer cell, advanced transmission electron tomography, electrophysiology, and fluorescent tracer flux studies revealed the stalk cell's polar organization and bladder-directed solute flow. RNA sequencing and cluster analysis revealed the gene expression profiles of the stalk cells. Among the stalk cell enriched genes, ion channels and carriers as well as sugar transporters were most pronounced. Based on their electrophysiological fingerprint and thermodynamic considerations, a model for stalk cell transcellular transport was derived. Chenopodium quinoa uses epidermal bladder cells (EBCs) to sequester excess salt. Each EBC complex consists of a leaf epidermal cell, a stalk cell, and the bladder.Under salt stress, sodium (Na+), chloride (Cl−), potassium (K+) and various metabolites are shuttled from the leaf lamina to the bladders. Stalk cells operate as both a selectivity filter and a flux controller.In line with the nature of a transfer cell, advanced transmission electron tomography, electrophysiology, and fluorescent tracer flux studies revealed the stalk cell’s polar organization and bladder‐directed solute flow.RNA sequencing and cluster analysis revealed the gene expression profiles of the stalk cells. Among the stalk cell enriched genes, ion channels and carriers as well as sugar transporters were most pronounced. Based on their electrophysiological fingerprint and thermodynamic considerations, a model for stalk cell transcellular transport was derived. Summary Chenopodium quinoa uses epidermal bladder cells (EBCs) to sequester excess salt. Each EBC complex consists of a leaf epidermal cell, a stalk cell, and the bladder. Under salt stress, sodium (Na+), chloride (Cl−), potassium (K+) and various metabolites are shuttled from the leaf lamina to the bladders. Stalk cells operate as both a selectivity filter and a flux controller. In line with the nature of a transfer cell, advanced transmission electron tomography, electrophysiology, and fluorescent tracer flux studies revealed the stalk cell’s polar organization and bladder‐directed solute flow. RNA sequencing and cluster analysis revealed the gene expression profiles of the stalk cells. Among the stalk cell enriched genes, ion channels and carriers as well as sugar transporters were most pronounced. Based on their electrophysiological fingerprint and thermodynamic considerations, a model for stalk cell transcellular transport was derived. Chenopodium quinoa uses epidermal bladder cells (EBCs) to sequester excess salt. Each EBC complex consists of a leaf epidermal cell, a stalk cell, and the bladder. Under salt stress, sodium (Na+ ), chloride (Cl- ), potassium (K+ ) and various metabolites are shuttled from the leaf lamina to the bladders. Stalk cells operate as both a selectivity filter and a flux controller. In line with the nature of a transfer cell, advanced transmission electron tomography, electrophysiology, and fluorescent tracer flux studies revealed the stalk cell's polar organization and bladder-directed solute flow. RNA sequencing and cluster analysis revealed the gene expression profiles of the stalk cells. Among the stalk cell enriched genes, ion channels and carriers as well as sugar transporters were most pronounced. Based on their electrophysiological fingerprint and thermodynamic considerations, a model for stalk cell transcellular transport was derived.Chenopodium quinoa uses epidermal bladder cells (EBCs) to sequester excess salt. Each EBC complex consists of a leaf epidermal cell, a stalk cell, and the bladder. Under salt stress, sodium (Na+ ), chloride (Cl- ), potassium (K+ ) and various metabolites are shuttled from the leaf lamina to the bladders. Stalk cells operate as both a selectivity filter and a flux controller. In line with the nature of a transfer cell, advanced transmission electron tomography, electrophysiology, and fluorescent tracer flux studies revealed the stalk cell's polar organization and bladder-directed solute flow. RNA sequencing and cluster analysis revealed the gene expression profiles of the stalk cells. Among the stalk cell enriched genes, ion channels and carriers as well as sugar transporters were most pronounced. Based on their electrophysiological fingerprint and thermodynamic considerations, a model for stalk cell transcellular transport was derived. |
Author | Maierhofer, Tobias Bazihizina, Nadia Breadmore, Michael Scherzer, Sönke Hedrich, Rainer Alquraishi, Saleh Mayer, Klaus F. X. Huang, Shouguang Müller, Heike M. Zhu, Jian‐Kang Messerer, Maxim Cuin, Tracey Ann Shabala, Sergey Ache, Peter Fella, Christian Mancuso, Stefano Böhm, Jennifer Stigloher, Christian Cabot, Joan Al‐Rasheid, Khaled A. S. Zhang, Heng |
Author_xml | – sequence: 1 givenname: Nadia orcidid: 0000-0003-4856-0659 surname: Bazihizina fullname: Bazihizina, Nadia organization: University of Tasmania – sequence: 2 givenname: Jennifer orcidid: 0000-0002-8104-8705 surname: Böhm fullname: Böhm, Jennifer organization: University of Wuerzburg – sequence: 3 givenname: Maxim orcidid: 0000-0003-0554-5045 surname: Messerer fullname: Messerer, Maxim organization: Helmholtz Center Munich – sequence: 4 givenname: Christian orcidid: 0000-0001-6941-2669 surname: Stigloher fullname: Stigloher, Christian email: christian.stigloher@uni-wuerzburg.de organization: University of Wuerzburg – sequence: 5 givenname: Heike M. orcidid: 0000-0002-9316-6493 surname: Müller fullname: Müller, Heike M. organization: University of Wuerzburg – sequence: 6 givenname: Tracey Ann orcidid: 0000-0002-7026-1500 surname: Cuin fullname: Cuin, Tracey Ann organization: University of Tasmania – sequence: 7 givenname: Tobias orcidid: 0000-0002-6839-4240 surname: Maierhofer fullname: Maierhofer, Tobias organization: University of Wuerzburg – sequence: 8 givenname: Joan orcidid: 0000-0002-3305-078X surname: Cabot fullname: Cabot, Joan organization: LEITAT Technological Center – sequence: 9 givenname: Klaus F. X. orcidid: 0000-0001-6484-1077 surname: Mayer fullname: Mayer, Klaus F. X. organization: Helmholtz Center Munich – sequence: 10 givenname: Christian orcidid: 0000-0002-5932-9295 surname: Fella fullname: Fella, Christian organization: Nano CT Systeme – sequence: 11 givenname: Shouguang orcidid: 0000-0001-7007-0301 surname: Huang fullname: Huang, Shouguang organization: University of Wuerzburg – sequence: 12 givenname: Khaled A. S. orcidid: 0000-0002-3404-3397 surname: Al‐Rasheid fullname: Al‐Rasheid, Khaled A. S. organization: King Saud University – sequence: 13 givenname: Saleh orcidid: 0000-0002-9629-7288 surname: Alquraishi fullname: Alquraishi, Saleh organization: King Saud University – sequence: 14 givenname: Michael orcidid: 0000-0001-5591-4326 surname: Breadmore fullname: Breadmore, Michael organization: University of Tasmania – sequence: 15 givenname: Stefano orcidid: 0000-0003-1752-3986 surname: Mancuso fullname: Mancuso, Stefano organization: University of Florence – sequence: 16 givenname: Sergey orcidid: 0000-0003-2345-8981 surname: Shabala fullname: Shabala, Sergey organization: Foshan University – sequence: 17 givenname: Peter orcidid: 0000-0002-2902-7552 surname: Ache fullname: Ache, Peter organization: University of Wuerzburg – sequence: 18 givenname: Heng orcidid: 0000-0002-1541-3890 surname: Zhang fullname: Zhang, Heng organization: Chinese Academy of Sciences – sequence: 19 givenname: Jian‐Kang orcidid: 0000-0001-5134-731X surname: Zhu fullname: Zhu, Jian‐Kang organization: Southern University of Science and Technology – sequence: 20 givenname: Rainer orcidid: 0000-0003-3224-1362 surname: Hedrich fullname: Hedrich, Rainer email: hedrich@botanik.uni-wuerzburg.de organization: University of Wuerzburg – sequence: 21 givenname: Sönke orcidid: 0000-0002-7197-2101 surname: Scherzer fullname: Scherzer, Sönke email: soenke.scherzer@uni-wuerzburg.de organization: University of Wuerzburg |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35510810$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1O3DAUha2Kqgy0i75AZYlNWQT8H2eJRgUqobZSW6k7y0luhMFjBztpNTsegWfkSerpDBtE78Z38Z2j63MO0F6IARB6T8kJLXMaxusTqhmRr9CCCtVUmvJ6Dy0IYbpSQv3aRwc53xBCGqnYG7TPpaREU7JA3ffJ-lvcgfd4jN4m7GLAU7IhjzFNeEzxt-sBDzHh1tu-h_R4_9DaDD3O1rvgpjWeooei6AC7gJfXEOIYezev8N3sQrRv0evB-gzvdu8h-nn-6cfysrr6evF5eXZVdUIKWTEuNROUUw2qlspyAZaVVRPgLdFWDLxuaG9rNWigttvQrbRKNK3gDQA_RB-3vuXouxnyZFYub35mA8Q5G6YUoYQRQgt69Ay9iXMK5bpCNTWhDdN1oT7sqLldQW_G5FY2rc1TfAU43QJdijknGEznJjuVCEuCzhtKzKYgUwoy_woqiuNniifTl9id-x_nYf1_0Hz5drlV_AVJw59s |
CitedBy_id | crossref_primary_10_1111_nph_18420 crossref_primary_10_5511_plantbiotechnology_24_0807a crossref_primary_10_1007_s42452_024_05713_8 crossref_primary_10_1016_j_cub_2023_09_063 crossref_primary_10_1016_j_sajb_2024_05_050 crossref_primary_10_1007_s44154_024_00189_3 crossref_primary_10_3389_fpls_2023_1092885 crossref_primary_10_1111_nph_18910 crossref_primary_10_1007_s00709_023_01922_x crossref_primary_10_1007_s10653_023_01659_9 |
Cites_doi | 10.1073/pnas.1701860114 10.1186/1746-4811-8-13 10.7554/eLife.44474 10.1007/s11104-007-9457-4 10.1016/j.tplants.2014.09.001 10.1080/15592324.2017.1359365 10.1371/journal.pbio.3000964 10.1038/nature21370 10.3389/fpls.2015.00114 10.1104/pp.108.126979 10.3389/fpls.2012.00022 10.1038/cr.2017.124 10.1006/jsbi.1996.0013 10.1038/s41586-019-1449-z 10.1146/annurev.cellbio.23.090506.123233 10.1126/science.aat7744 10.1046/j.1365-313X.1997.12051067.x 10.1126/scisignal.2001346 10.3389/fpls.2012.00034 10.1016/j.cub.2013.07.028 10.1111/j.1469-8137.2008.02531.x 10.1111/j.1574-6976.2006.00019.x 10.1046/j.1365-313X.2003.01931.x 10.1016/S0014-5793(00)02248-1 10.1111/nph.14685 10.1016/j.pbi.2015.05.011 10.3389/fpls.2021.643499 10.1186/1471-2229-5-13 10.1371/journal.pone.0090765 10.1105/tpc.17.00714 10.1111/plb.12884 10.1111/j.1365-313X.2008.03555.x 10.1073/pnas.1807049115 10.1016/j.molp.2019.07.003 10.1046/j.1365-313X.1995.7020321.x 10.1016/j.cub.2016.06.045 10.1152/physrev.00038.2011 10.1016/j.arthro.2020.02.043 10.1016/j.ceb.2004.08.002 10.1038/s41467-019-11201-0 10.1016/bs.mcb.2017.03.006 10.1016/j.pbi.2017.08.002 10.1080/21688370.2015.1037417 10.1007/BF00239980 10.1073/pnas.1507810112 10.1093/jxb/erq257 10.1104/pp.106.089003 10.1111/j.1365-313X.2004.02016.x 10.1016/j.cell.2016.08.029 10.1038/s41467-018-03582-5 10.1111/pce.12995 10.1007/s00425-005-1551-3 10.1016/j.cub.2018.08.004 10.1093/jxb/eraa285 10.1016/j.molp.2019.10.013 10.1093/dnares/dsw037 10.1111/nph.13841 |
ContentType | Journal Article |
Copyright | 2022 The Authors. © 2022 New Phytologist Foundation 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. © 2022 New Phytologist Foundation – notice: 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 |
DOI | 10.1111/nph.18205 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 1835 |
ExternalDocumentID | 35510810 10_1111_nph_18205 NPH18205 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Joint 979 Research Projects between Pakistan Science Foundation and National Natural Science Foundation China funderid: 31961143001 – fundername: Deutsche Forschungsgemeinschaft funderid: HE 1640/44‐1; INST 93/1003‐1 FUGG (426173797); SCHE 2148/1‐1 – fundername: Strategic Priority Research Program of CAS funderid: XDB27040101; XDB27040108 – fundername: Australian Research Council (DP150101663) funderid: WQ20174400441 – fundername: King Saud University´s International Cooperation and Scientific Twinning Dept funderid: ICSTD‐2020/2 – fundername: Marie Curie Fellowship funderid: 700001 – fundername: King Saud University´s International Cooperation and Scientific Twinning Dept grantid: ICSTD-2020/2 – fundername: Deutsche Forschungsgemeinschaft grantid: SCHE 2148/1-1 – fundername: Deutsche Forschungsgemeinschaft grantid: HE 1640/44-1 – fundername: Strategic Priority Research Program of CAS grantid: XDB27040101 – fundername: Deutsche Forschungsgemeinschaft grantid: INST 93/1003-1 FUGG (426173797) – fundername: Australian Research Council (DP150101663) grantid: WQ20174400441 – fundername: Joint 979 Research Projects between Pakistan Science Foundation and National Natural Science Foundation China grantid: 31961143001 – fundername: Strategic Priority Research Program of CAS grantid: XDB27040108 – fundername: Marie Curie Fellowship grantid: 700001 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29N 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANLZ AAONW AASGY AASVR AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABLJU ABPLY ABPVW ABTLG ABVKB ABXSQ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACQPF ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHXOZ AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DIK DOOOF DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FIJ G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HZI HZ~ IHE IPNFZ IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RCA RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XOL YNT YQT YXE ZCG ZZTAW ~02 ~IA ~KM ~WT AAYXX ABGDZ ABSQW ADXHL AEYWJ AGHNM AGUYK AGYGG CITATION NPM 7QO 7SN 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c4545-2358241318e6756a34ea2e6780e3b08a4f3791da76f8e1ac5824b5a649b439ee3 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri Jul 11 06:41:44 EDT 2025 Fri Jul 25 10:27:19 EDT 2025 Wed Feb 19 02:25:53 EST 2025 Tue Jul 01 02:28:42 EDT 2025 Thu Apr 24 23:00:06 EDT 2025 Wed Jan 22 16:23:48 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | salt tolerance stalk cell halophyte polar ion transport quinoa |
Language | English |
License | Attribution 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4545-2358241318e6756a34ea2e6780e3b08a4f3791da76f8e1ac5824b5a649b439ee3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6941-2669 0000-0002-3305-078X 0000-0002-2902-7552 0000-0001-7007-0301 0000-0003-1752-3986 0000-0002-7197-2101 0000-0002-9316-6493 0000-0001-6484-1077 0000-0002-9629-7288 0000-0001-5591-4326 0000-0002-8104-8705 0000-0003-0554-5045 0000-0002-1541-3890 0000-0003-4856-0659 0000-0002-7026-1500 0000-0003-2345-8981 0000-0002-5932-9295 0000-0002-3404-3397 0000-0002-6839-4240 0000-0001-5134-731X 0000-0003-3224-1362 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.18205 |
PMID | 35510810 |
PQID | 2697019287 |
PQPubID | 2026848 |
PageCount | 1835 |
ParticipantIDs | proquest_miscellaneous_2660102001 proquest_journals_2697019287 pubmed_primary_35510810 crossref_citationtrail_10_1111_nph_18205 crossref_primary_10_1111_nph_18205 wiley_primary_10_1111_nph_18205_NPH18205 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2022 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 40 2018; 361 2006; 30 2019; 10 2013; 23 2007; 143 2019; 12 2011; 62 1990; 182 2020; 13 2018; 41 2008; 148 2008; 302 2017; 114 2020; 18 2018; 9 2005; 222 2019; 21 2004; 37 1997; 12 2008; 24 2014; 19 2000; 486 2014; 9 2019; 8 2018; 28 2015; 6 2015; 3 2019; 31 2017; 27 2003; 36 2016; 167 2020; 36 2008; 55 2011; 4 2017; 216 1995; 7 2012; 92 2012; 3 2015; 27 2021; 12 2004; 16 2020; 71 2015; 112 2018; 115 2017; 12 2005; 5 2016; 210 2017; 140 2008; 179 2017; 542 2016; 26 2012; 8 2016; 23 2019; 572 1996; 116 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 6 start-page: 114 year: 2015 article-title: Chromatin changes in response to drought, salinity, heat, and cold stresses in plants publication-title: Frontiers in Plant Science – volume: 27 start-page: 8 year: 2015 end-page: 16 article-title: Stress‐induced structural changes in plant chromatin publication-title: Current Opinion in Plant Biology – volume: 16 start-page: 500 year: 2004 end-page: 506 article-title: Plasmodesmata form and function publication-title: Current Opinion in Cell Biology – volume: 13 start-page: 128 year: 2020 end-page: 143 article-title: Phytosphinganine affects plasmodesmata permeability via facilitating PDLP5‐stimulated callose accumulation in arabidopsis publication-title: Molecular Plant – volume: 5 start-page: 13 year: 2005 article-title: New insights into the tonoplast architecture of plant vacuoles and vacuolar dynamics during osmotic stress publication-title: BMC Plant Biology – volume: 542 start-page: 307 year: 2017 end-page: 312 article-title: The genome of publication-title: Nature – volume: 143 start-page: 188 year: 2007 end-page: 198 article-title: Arabidopsis sucrose transporter AtSUC9. High‐affinity transport activity, intragenic control of expression, and early flowering mutant phenotype publication-title: Plant Physiology – volume: 3 start-page: 22 year: 2012 article-title: Evolution of plant sucrose uptake transporters publication-title: Frontiers in Plant Science – volume: 21 start-page: 31 year: 2019 end-page: 38 article-title: Salinity and crop yield publication-title: Plant Biology – volume: 26 start-page: 2213 year: 2016 end-page: 2220 article-title: Silent S‐type anion channel subunit SLAH1 gates SLAH3 open for chloride root‐to‐shoot translocation publication-title: Current Biology – volume: 40 start-page: 1900 year: 2017 end-page: 1915 article-title: Epidermal bladder cells confer salinity stress tolerance in the halophyte quinoa and Atriplex species publication-title: Plant, Cell & Environment – volume: 19 start-page: 687 year: 2014 end-page: 691 article-title: Salt bladders: do they matter? publication-title: Trends in Plant Science – volume: 210 start-page: 922 year: 2016 end-page: 933 article-title: SLAH3‐type anion channel expressed in poplar secretory epithelia operates in calcium kinase CPK‐autonomous manner publication-title: New Phytologist – volume: 3 year: 2015 article-title: Physiological extracellular electrical signals guide and orient the polarity of gut epithelial cells publication-title: Tissue Barriers – volume: 4 start-page: ra32 year: 2011 article-title: Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1 publication-title: Science Signalling – volume: 3 start-page: 34 year: 2012 article-title: High affinity ammonium transporters: molecular mechanism of action publication-title: Frontiers in Plant Science – volume: 216 start-page: 46 year: 2017 end-page: 61 article-title: Biology of SLAC1‐type anion channels ‐ from nutrient uptake to stomatal closure publication-title: New Phytologist – volume: 31 start-page: 325 year: 2019 end-page: 345 article-title: Phloem companion cell‐specific transcriptomic and epigenomic analyses identify MRF1, a regulator of flowering publication-title: Plant Cell – volume: 222 start-page: 418 year: 2005 end-page: 427 article-title: AtGLR3.4, a glutamate receptor channel‐like gene is sensitive to touch and cold publication-title: Planta – volume: 115 start-page: 10178 year: 2018 end-page: 10183 article-title: Identification of cell populations necessary for leaf‐to‐leaf electrical signaling in a wounded plant publication-title: Proceedings of the National Academy of Sciences, USA – volume: 10 start-page: 3564 year: 2019 article-title: Controlling intercellular flow through mechanosensitive plasmodesmata nanopores publication-title: Nature Communications – volume: 27 start-page: 1327 year: 2017 end-page: 1340 article-title: A high‐quality genome assembly of quinoa provides insights into the molecular basis of salt bladder‐based salinity tolerance and the exceptional nutritional value publication-title: Cell Research – volume: 23 start-page: 1649 year: 2013 end-page: 1657 article-title: The ammonium channel DmAMT1 provides NH uptake associated with Venus flytrap's prey digestion publication-title: Current Biology – volume: 12 year: 2017 article-title: Arabidopsis thaliana Acyl‐CoA‐binding protein ACBP6 interacts with plasmodesmata‐located protein PDLP8 publication-title: Plant Signaling & Behavior – volume: 116 start-page: 71 year: 1996 end-page: 76 article-title: Computer visualization of three‐dimensional image data using IMOD publication-title: Journal of Structural Biology – volume: 18 year: 2020 article-title: The venus flytrap trigger hair‐specific potassium channel KDM1 can reestablish the K gradient required for hapto‐electric signaling publication-title: PLoS Biology – volume: 37 start-page: 914 year: 2004 end-page: 939 article-title: MapMan: a user‐driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes publication-title: The Plant Journal – volume: 112 start-page: 7309 year: 2015 end-page: 7314 article-title: Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps publication-title: Proceedings of the National Academy of Sciences, USA – volume: 24 start-page: 551 year: 2008 end-page: 575 article-title: Cell polarity signaling in Arabidopsis publication-title: Annual Review of Cell and Developmental Biology – volume: 36 start-page: 931 year: 2003 end-page: 945 article-title: Isolation of AtSUC2 promoter‐GFP‐marked companion cells for patch‐clamp studies and expression profiling publication-title: The Plant Journal – volume: 148 start-page: 1583 year: 2008 end-page: 1602 article-title: Transcriptional profiling of mature Arabidopsis trichomes reveals that NOECK encodes the MIXTA‐like transcriptional regulator MYB106 publication-title: Plant Physiology – volume: 62 start-page: 185 year: 2011 end-page: 193 article-title: Ionic and osmotic relations in quinoa ( Willd.) plants grown at various salinity levels publication-title: Journal of Experimental Botany – volume: 36 start-page: 1897 year: 2020 end-page: 1903 article-title: Development and validation of the hospital for special surgery anterior cruciate ligament postoperative satisfaction survey publication-title: Arthroscopy – volume: 8 start-page: 13 year: 2012 article-title: A novel fluorescent assay for sucrose transporters publication-title: Plant Methods – volume: 140 start-page: 277 year: 2017 end-page: 301 article-title: Find your way with X‐Ray: using microCT to correlate imaging with 3D electron microscopy publication-title: Methods in Cell Biology – volume: 28 start-page: 3075 year: 2018 end-page: 3085 article-title: Understanding the molecular basis of salt sequestration in epidermal bladder cells of publication-title: Current Biology – volume: 12 start-page: 1182 year: 2019 end-page: 1202 article-title: More transporters, more substrates: the arabidopsis major facilitator superfamily revisited publication-title: Molecular Plant – volume: 23 start-page: 535 year: 2016 end-page: 546 article-title: Draft genome sequence of an inbred line of , an allotetraploid crop with great environmental adaptability and outstanding nutritional properties publication-title: DNA Research – volume: 12 start-page: 1067 year: 1997 end-page: 1078 article-title: Calcium signalling in responding to drought and salinity publication-title: The Plant Journal – volume: 8 year: 2019 article-title: Anion channel SLAH3 is a regulatory target of chitin receptor‐associated kinase PBL27 in microbial stomatal closure publication-title: eLife – volume: 41 start-page: 46 year: 2018 end-page: 53 article-title: Outer, inner and planar polarity in the Arabidopsis root publication-title: Current Opinion in Plant Biology – volume: 7 start-page: 321 year: 1995 end-page: 332 article-title: Expression of a cloned plant K channel in Xenopus oocytes: analysis of macroscopic currents publication-title: The Plant Journal – volume: 9 start-page: 1174 year: 2018 article-title: AUX1‐mediated root hair auxin influx governs SCF(TIR1/AFB)‐type Ca signaling publication-title: Nature Communications – volume: 182 start-page: 34 year: 1990 end-page: 38 article-title: Calcium‐loaded 1,2‐bis(2‐aminophenoxy)ethane‐ , , , ‐tetraacetic acid blocks cell‐to‐cell diffusion of carboxyfluorescein in staminal hairs of publication-title: Planta – volume: 486 start-page: 93 year: 2000 end-page: 98 article-title: GORK, a delayed outward rectifier expressed in guard cells of , is a K ‐selective, K ‐sensing ion channel publication-title: FEBS Letters – volume: 92 start-page: 1777 year: 2012 end-page: 1811 article-title: Ion channels in plants publication-title: Physiological Reviews – volume: 12 start-page: 643499 year: 2021 article-title: Virus‐mediated transient expression techniques enable functional genomics studies and modulations of betalain biosynthesis and plant height in quinoa publication-title: Frontiers in Plant Science – volume: 167 start-page: 313 year: 2016 end-page: 324 article-title: Abiotic stress signaling and responses in plants publication-title: Cell – volume: 9 year: 2014 article-title: A root specific induction of carotenoid biosynthesis contributes to ABA production upon salt stress in Arabidopsis publication-title: PLoS ONE – volume: 71 start-page: 5333 year: 2020 end-page: 5347 article-title: Prospects for the accelerated improvement of the resilient crop quinoa publication-title: Journal of Experimental Botany – volume: 114 start-page: 4822 year: 2017 end-page: 4827 article-title: Insect haptoelectrical stimulation of Venus flytrap triggers exocytosis in gland cells publication-title: Proceedings of the National Academy of Sciences, USA – volume: 572 start-page: 341 year: 2019 end-page: 346 article-title: Plant cell‐surface GIPC sphingolipids sense salt to trigger Ca influx publication-title: Nature – volume: 30 start-page: 472 year: 2006 end-page: 486 article-title: Non‐invasive microelectrode ion flux measurements to study adaptive responses of microorganisms to the environment publication-title: FEMS Microbiology Reviews – volume: 361 start-page: 1112 year: 2018 end-page: 1115 article-title: Glutamate triggers long‐distance, calcium‐based plant defense signaling publication-title: Science – volume: 55 start-page: 746 year: 2008 end-page: 759 article-title: Identification of Arabidopsis thaliana phloem RNAs provides a search criterion for phloem‐based transcripts hidden in complex datasets of microarray experiments publication-title: The Plant Journal – volume: 302 start-page: 79 year: 2008 end-page: 90 article-title: Effect of salinity on composition, viability and germination of seeds of Willd publication-title: Plant and Soil – volume: 179 start-page: 945 year: 2008 end-page: 963 article-title: Salinity tolerance in halophytes publication-title: New Phytologist – ident: e_1_2_9_44_1 doi: 10.1073/pnas.1701860114 – ident: e_1_2_9_10_1 doi: 10.1186/1746-4811-8-13 – ident: e_1_2_9_28_1 doi: 10.7554/eLife.44474 – ident: e_1_2_9_25_1 doi: 10.1007/s11104-007-9457-4 – ident: e_1_2_9_46_1 doi: 10.1016/j.tplants.2014.09.001 – ident: e_1_2_9_54_1 doi: 10.1080/15592324.2017.1359365 – ident: e_1_2_9_14_1 doi: 10.1371/journal.pbio.3000964 – ident: e_1_2_9_18_1 doi: 10.1038/nature21370 – ident: e_1_2_9_23_1 doi: 10.3389/fpls.2015.00114 – ident: e_1_2_9_17_1 doi: 10.1104/pp.108.126979 – ident: e_1_2_9_39_1 doi: 10.3389/fpls.2012.00022 – ident: e_1_2_9_58_1 doi: 10.1038/cr.2017.124 – ident: e_1_2_9_26_1 doi: 10.1006/jsbi.1996.0013 – ident: e_1_2_9_19_1 doi: 10.1038/s41586-019-1449-z – ident: e_1_2_9_52_1 doi: 10.1146/annurev.cellbio.23.090506.123233 – ident: e_1_2_9_49_1 doi: 10.1126/science.aat7744 – ident: e_1_2_9_24_1 doi: 10.1046/j.1365-313X.1997.12051067.x – ident: e_1_2_9_9_1 doi: 10.1126/scisignal.2001346 – ident: e_1_2_9_35_1 doi: 10.3389/fpls.2012.00034 – ident: e_1_2_9_43_1 doi: 10.1016/j.cub.2013.07.028 – ident: e_1_2_9_8_1 doi: 10.1111/j.1469-8137.2008.02531.x – ident: e_1_2_9_45_1 doi: 10.1111/j.1574-6976.2006.00019.x – ident: e_1_2_9_15_1 doi: 10.1046/j.1365-313X.2003.01931.x – ident: e_1_2_9_2_1 doi: 10.1016/S0014-5793(00)02248-1 – ident: e_1_2_9_13_1 doi: 10.1111/nph.14685 – ident: e_1_2_9_37_1 doi: 10.1016/j.pbi.2015.05.011 – ident: e_1_2_9_34_1 doi: 10.3389/fpls.2021.643499 – ident: e_1_2_9_40_1 doi: 10.1186/1471-2229-5-13 – ident: e_1_2_9_41_1 doi: 10.1371/journal.pone.0090765 – ident: e_1_2_9_55_1 doi: 10.1105/tpc.17.00714 – ident: e_1_2_9_57_1 doi: 10.1111/plb.12884 – ident: e_1_2_9_6_1 doi: 10.1111/j.1365-313X.2008.03555.x – ident: e_1_2_9_32_1 doi: 10.1073/pnas.1807049115 – ident: e_1_2_9_33_1 doi: 10.1016/j.molp.2019.07.003 – ident: e_1_2_9_51_1 doi: 10.1046/j.1365-313X.1995.7020321.x – ident: e_1_2_9_5_1 doi: 10.1016/j.cub.2016.06.045 – ident: e_1_2_9_12_1 doi: 10.1152/physrev.00038.2011 – ident: e_1_2_9_20_1 doi: 10.1016/j.arthro.2020.02.043 – ident: e_1_2_9_4_1 doi: 10.1016/j.ceb.2004.08.002 – ident: e_1_2_9_36_1 doi: 10.1038/s41467-019-11201-0 – ident: e_1_2_9_21_1 doi: 10.1016/bs.mcb.2017.03.006 – ident: e_1_2_9_31_1 doi: 10.1016/j.pbi.2017.08.002 – ident: e_1_2_9_38_1 doi: 10.1080/21688370.2015.1037417 – ident: e_1_2_9_50_1 doi: 10.1007/BF00239980 – ident: e_1_2_9_42_1 doi: 10.1073/pnas.1507810112 – ident: e_1_2_9_11_1 doi: 10.1093/jxb/erq257 – ident: e_1_2_9_47_1 doi: 10.1104/pp.106.089003 – ident: e_1_2_9_48_1 doi: 10.1111/j.1365-313X.2004.02016.x – ident: e_1_2_9_56_1 doi: 10.1016/j.cell.2016.08.029 – ident: e_1_2_9_7_1 doi: 10.1038/s41467-018-03582-5 – ident: e_1_2_9_22_1 doi: 10.1111/pce.12995 – ident: e_1_2_9_30_1 doi: 10.1007/s00425-005-1551-3 – ident: e_1_2_9_3_1 doi: 10.1016/j.cub.2018.08.004 – ident: e_1_2_9_29_1 doi: 10.1093/jxb/eraa285 – ident: e_1_2_9_27_1 doi: 10.1016/j.molp.2019.10.013 – ident: e_1_2_9_53_1 doi: 10.1093/dnares/dsw037 – ident: e_1_2_9_16_1 doi: 10.1111/nph.13841 |
SSID | ssj0009562 |
Score | 2.4615195 |
Snippet | Summary
Chenopodium quinoa uses epidermal bladder cells (EBCs) to sequester excess salt. Each EBC complex consists of a leaf epidermal cell, a stalk cell, and... Chenopodium quinoa uses epidermal bladder cells (EBCs) to sequester excess salt. Each EBC complex consists of a leaf epidermal cell, a stalk cell, and the... Chenopodium quinoa uses epidermal bladder cells (EBCs) to sequester excess salt. Each EBC complex consists of a leaf epidermal cell, a stalk cell, and the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1822 |
SubjectTerms | Bladder Cells Chenopodium quinoa Cluster analysis Electrophysiology Fluorescence Gene expression Gene sequencing halophyte Ion channels Ion transport Leaves Metabolites polar ion transport Potassium Quinoa RNA sequencing Saccharides Salinity tolerance salt tolerance Selectivity Sodium Solutes stalk cell Tomography Tracers |
Title | Stalk cell polar ion transport provide for bladder‐based salinity tolerance in Chenopodium quinoa |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.18205 https://www.ncbi.nlm.nih.gov/pubmed/35510810 https://www.proquest.com/docview/2697019287 https://www.proquest.com/docview/2660102001 |
Volume | 235 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB7BikMvLW1pu7BFpuqBS1aJ43g34kRR0aoSCKEi7aFSZDuOWO022bLJAU48As_IkzDj_Aj6I1XcLHkiOx6P5xtr5jPAZ5npKIw19zKeGU9kKfeU0YEX2TAd-ZlWxlEpnZzKyYX4No2ma3DQ1sLU_BDdhRtZhjuvycCVXj0y8nx5OST2cSowp1wtAkTn_BHhruQtA7MUctqwClEWT_flU1_0B8B8iledwzl-BT_aqdZ5JvNhVeqhufmNxfGZ_7IJLxsgyg7rnfMa1mz-Bja-FAgWr9-CQRC6mDO61mdLin4Z6o-VLRM6awr4GEJephd0el3d396RS0zZSlG1ZXnNymJh6d0Oy2Y5O7q0ebEs0ln1k_2qZnmhtuDi-Ov3o4nXvMfgGYFAy3NVtej0grHFMEOqUFjFsTn2baj9sRJZOIqDVI1kNraBMiStIyVFrBH2WBu-g15e5PYDsNjnKot5IE2EfUYoPOck18YEKYIGGfdhv9VMYhqycnozY5G0QQsuWeKWrA-fOtFlzdDxN6FBq96kMdJVwmVMZPQYM_Zhr-tG86LFVbktKpKhiJUSz_rwvt4W3SgI1QJEVD5O1in338Mnp2cT19j-f9EdeMGp1MLlsw2gV15V9iMCoFLvwjoXZ7tuvz8A8jYCsQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RQCoXXn0tj9ateuCSVeIk3o3Ehae2FFZVBdJeqsh2HLFiSbaQHOipP4HfyC9hxnkICpWq3ix5Ijsej-cby_MNwGeRqtCPFHdSnmonSBPuSK08JzR-0nNTJbWlUjoZisFZcDQKRzOw3eTCVPwQ7YUbWYY9r8nA6UL6gZVn0_Mu0Y-HL2COKnoTc_7-d_6AclfwhoNZBGJU8wrRO57208fe6AnEfIxYrcs5XIIfzWSrlyYX3bJQXf3rDx7H__2bZVissSjbqTbPCsyYbBXmd3PEizevQCMOnVwwutlnUwqAGaqQFQ0ZOqtz-BiiXqYmdIBd3f2-Ja-YsGtJCZfFDSvyiaHSHYaNM7Z3brJ8mifj8pL9LMdZLl_D2eHB6d7AqUsyODpArOXYxFr0e17fYKQhpB8YybHZd42v3L4MUr8XeYnsibRvPKlJWoVSBJFC5GOM_wZmszwz74BFLpdpxD2hQ-zTgcSjTnCltZcgbhBRB7Ya1cS65iunshmTuIlbcMliu2Qd-NSKTiuSjueENhr9xrWdXsdcRMRHj2FjBz623WhhtLgyM3lJMhS00tuzDryt9kU7CqI1D0GVi5O12v378PHw28A21v5d9AO8HJyeHMfHX4Zf12GBU-aFfd62AbPFVWk2EQ8V6r3d9vf6UgX2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwEB5RqCouFfSHbqGtizj0kipxHO9GnIB2tf1htQeQ9hbZjq1dsU0CZA_ceASekSfpjDeJQG2l3ix5IkczGc83zsxngAPpdBKnmgeOOxMIl_NAGR0FiY3zfui0Mp5K6XQsR-fi-zSZrsFh2wuz4ofoDtzIM_x-TQ5e5e6BkxfV7DOxjydPYIN-9lE9FxeTB4y7krcUzFLIaUMrRGU83aOPg9EfCPMxYPURZ7gFzxuoyI5Wtt2GNVu8gKfHJcK5m5dgECYuLhgdvLOK8lOGGmZ1y1XOmhY7hqCU6QXtL1f3t3cUtHJ2ragfsr5hdbmwdLOGZfOCncxsUVZlPl_-YpfLeVGqV3A-_Hp2MgqaGxMCIxAKBb7vFcNSNLCYCEgVC6s4DgehjXU4UMLF_TTKVV-6gY2UIWmdKClSjcDE2vg1rBdlYd8AS0OuXMojaRKcM0LhTiS5NibKMazLtAefWtVlpqETp1stFlmbVqCWM6_lHux3otWKQ-NvQnut_rPGja4zLlOii8esrgcfu2l0AFKuKmy5JBnKKak0rAc7K7t1qyCYihDzhPiy3pD_Xj4bT0Z-8Pb_RT_As8mXYfbz2_jHLmxy6ovwxWd7sF5fLe07RCu1fu-_yt-Rx-Re |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stalk+cell+polar+ion+transport+provide+for+bladder-based+salinity+tolerance+in+Chenopodium+quinoa&rft.jtitle=The+New+phytologist&rft.au=Bazihizina%2C+Nadia&rft.au=B%C3%B6hm%2C+Jennifer&rft.au=Messerer%2C+Maxim&rft.au=Stigloher%2C+Christian&rft.date=2022-09-01&rft.eissn=1469-8137&rft_id=info:doi/10.1111%2Fnph.18205&rft_id=info%3Apmid%2F35510810&rft.externalDocID=35510810 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |