Stalk cell polar ion transport provide for bladder‐based salinity tolerance in Chenopodium quinoa

Summary Chenopodium quinoa uses epidermal bladder cells (EBCs) to sequester excess salt. Each EBC complex consists of a leaf epidermal cell, a stalk cell, and the bladder. Under salt stress, sodium (Na+), chloride (Cl−), potassium (K+) and various metabolites are shuttled from the leaf lamina to the...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 235; no. 5; pp. 1822 - 1835
Main Authors Bazihizina, Nadia, Böhm, Jennifer, Messerer, Maxim, Stigloher, Christian, Müller, Heike M., Cuin, Tracey Ann, Maierhofer, Tobias, Cabot, Joan, Mayer, Klaus F. X., Fella, Christian, Huang, Shouguang, Al‐Rasheid, Khaled A. S., Alquraishi, Saleh, Breadmore, Michael, Mancuso, Stefano, Shabala, Sergey, Ache, Peter, Zhang, Heng, Zhu, Jian‐Kang, Hedrich, Rainer, Scherzer, Sönke
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Chenopodium quinoa uses epidermal bladder cells (EBCs) to sequester excess salt. Each EBC complex consists of a leaf epidermal cell, a stalk cell, and the bladder. Under salt stress, sodium (Na+), chloride (Cl−), potassium (K+) and various metabolites are shuttled from the leaf lamina to the bladders. Stalk cells operate as both a selectivity filter and a flux controller. In line with the nature of a transfer cell, advanced transmission electron tomography, electrophysiology, and fluorescent tracer flux studies revealed the stalk cell’s polar organization and bladder‐directed solute flow. RNA sequencing and cluster analysis revealed the gene expression profiles of the stalk cells. Among the stalk cell enriched genes, ion channels and carriers as well as sugar transporters were most pronounced. Based on their electrophysiological fingerprint and thermodynamic considerations, a model for stalk cell transcellular transport was derived.
AbstractList Chenopodium quinoa uses epidermal bladder cells (EBCs) to sequester excess salt. Each EBC complex consists of a leaf epidermal cell, a stalk cell, and the bladder. Under salt stress, sodium (Na + ), chloride (Cl − ), potassium (K + ) and various metabolites are shuttled from the leaf lamina to the bladders. Stalk cells operate as both a selectivity filter and a flux controller. In line with the nature of a transfer cell, advanced transmission electron tomography, electrophysiology, and fluorescent tracer flux studies revealed the stalk cell’s polar organization and bladder‐directed solute flow. RNA sequencing and cluster analysis revealed the gene expression profiles of the stalk cells. Among the stalk cell enriched genes, ion channels and carriers as well as sugar transporters were most pronounced. Based on their electrophysiological fingerprint and thermodynamic considerations, a model for stalk cell transcellular transport was derived.
Chenopodium quinoa uses epidermal bladder cells (EBCs) to sequester excess salt. Each EBC complex consists of a leaf epidermal cell, a stalk cell, and the bladder. Under salt stress, sodium (Na ), chloride (Cl ), potassium (K ) and various metabolites are shuttled from the leaf lamina to the bladders. Stalk cells operate as both a selectivity filter and a flux controller. In line with the nature of a transfer cell, advanced transmission electron tomography, electrophysiology, and fluorescent tracer flux studies revealed the stalk cell's polar organization and bladder-directed solute flow. RNA sequencing and cluster analysis revealed the gene expression profiles of the stalk cells. Among the stalk cell enriched genes, ion channels and carriers as well as sugar transporters were most pronounced. Based on their electrophysiological fingerprint and thermodynamic considerations, a model for stalk cell transcellular transport was derived.
Chenopodium quinoa uses epidermal bladder cells (EBCs) to sequester excess salt. Each EBC complex consists of a leaf epidermal cell, a stalk cell, and the bladder.Under salt stress, sodium (Na+), chloride (Cl−), potassium (K+) and various metabolites are shuttled from the leaf lamina to the bladders. Stalk cells operate as both a selectivity filter and a flux controller.In line with the nature of a transfer cell, advanced transmission electron tomography, electrophysiology, and fluorescent tracer flux studies revealed the stalk cell’s polar organization and bladder‐directed solute flow.RNA sequencing and cluster analysis revealed the gene expression profiles of the stalk cells. Among the stalk cell enriched genes, ion channels and carriers as well as sugar transporters were most pronounced. Based on their electrophysiological fingerprint and thermodynamic considerations, a model for stalk cell transcellular transport was derived.
Summary Chenopodium quinoa uses epidermal bladder cells (EBCs) to sequester excess salt. Each EBC complex consists of a leaf epidermal cell, a stalk cell, and the bladder. Under salt stress, sodium (Na+), chloride (Cl−), potassium (K+) and various metabolites are shuttled from the leaf lamina to the bladders. Stalk cells operate as both a selectivity filter and a flux controller. In line with the nature of a transfer cell, advanced transmission electron tomography, electrophysiology, and fluorescent tracer flux studies revealed the stalk cell’s polar organization and bladder‐directed solute flow. RNA sequencing and cluster analysis revealed the gene expression profiles of the stalk cells. Among the stalk cell enriched genes, ion channels and carriers as well as sugar transporters were most pronounced. Based on their electrophysiological fingerprint and thermodynamic considerations, a model for stalk cell transcellular transport was derived.
Chenopodium quinoa uses epidermal bladder cells (EBCs) to sequester excess salt. Each EBC complex consists of a leaf epidermal cell, a stalk cell, and the bladder. Under salt stress, sodium (Na+ ), chloride (Cl- ), potassium (K+ ) and various metabolites are shuttled from the leaf lamina to the bladders. Stalk cells operate as both a selectivity filter and a flux controller. In line with the nature of a transfer cell, advanced transmission electron tomography, electrophysiology, and fluorescent tracer flux studies revealed the stalk cell's polar organization and bladder-directed solute flow. RNA sequencing and cluster analysis revealed the gene expression profiles of the stalk cells. Among the stalk cell enriched genes, ion channels and carriers as well as sugar transporters were most pronounced. Based on their electrophysiological fingerprint and thermodynamic considerations, a model for stalk cell transcellular transport was derived.Chenopodium quinoa uses epidermal bladder cells (EBCs) to sequester excess salt. Each EBC complex consists of a leaf epidermal cell, a stalk cell, and the bladder. Under salt stress, sodium (Na+ ), chloride (Cl- ), potassium (K+ ) and various metabolites are shuttled from the leaf lamina to the bladders. Stalk cells operate as both a selectivity filter and a flux controller. In line with the nature of a transfer cell, advanced transmission electron tomography, electrophysiology, and fluorescent tracer flux studies revealed the stalk cell's polar organization and bladder-directed solute flow. RNA sequencing and cluster analysis revealed the gene expression profiles of the stalk cells. Among the stalk cell enriched genes, ion channels and carriers as well as sugar transporters were most pronounced. Based on their electrophysiological fingerprint and thermodynamic considerations, a model for stalk cell transcellular transport was derived.
Author Maierhofer, Tobias
Bazihizina, Nadia
Breadmore, Michael
Scherzer, Sönke
Hedrich, Rainer
Alquraishi, Saleh
Mayer, Klaus F. X.
Huang, Shouguang
Müller, Heike M.
Zhu, Jian‐Kang
Messerer, Maxim
Cuin, Tracey Ann
Shabala, Sergey
Ache, Peter
Fella, Christian
Mancuso, Stefano
Böhm, Jennifer
Stigloher, Christian
Cabot, Joan
Al‐Rasheid, Khaled A. S.
Zhang, Heng
Author_xml – sequence: 1
  givenname: Nadia
  orcidid: 0000-0003-4856-0659
  surname: Bazihizina
  fullname: Bazihizina, Nadia
  organization: University of Tasmania
– sequence: 2
  givenname: Jennifer
  orcidid: 0000-0002-8104-8705
  surname: Böhm
  fullname: Böhm, Jennifer
  organization: University of Wuerzburg
– sequence: 3
  givenname: Maxim
  orcidid: 0000-0003-0554-5045
  surname: Messerer
  fullname: Messerer, Maxim
  organization: Helmholtz Center Munich
– sequence: 4
  givenname: Christian
  orcidid: 0000-0001-6941-2669
  surname: Stigloher
  fullname: Stigloher, Christian
  email: christian.stigloher@uni-wuerzburg.de
  organization: University of Wuerzburg
– sequence: 5
  givenname: Heike M.
  orcidid: 0000-0002-9316-6493
  surname: Müller
  fullname: Müller, Heike M.
  organization: University of Wuerzburg
– sequence: 6
  givenname: Tracey Ann
  orcidid: 0000-0002-7026-1500
  surname: Cuin
  fullname: Cuin, Tracey Ann
  organization: University of Tasmania
– sequence: 7
  givenname: Tobias
  orcidid: 0000-0002-6839-4240
  surname: Maierhofer
  fullname: Maierhofer, Tobias
  organization: University of Wuerzburg
– sequence: 8
  givenname: Joan
  orcidid: 0000-0002-3305-078X
  surname: Cabot
  fullname: Cabot, Joan
  organization: LEITAT Technological Center
– sequence: 9
  givenname: Klaus F. X.
  orcidid: 0000-0001-6484-1077
  surname: Mayer
  fullname: Mayer, Klaus F. X.
  organization: Helmholtz Center Munich
– sequence: 10
  givenname: Christian
  orcidid: 0000-0002-5932-9295
  surname: Fella
  fullname: Fella, Christian
  organization: Nano CT Systeme
– sequence: 11
  givenname: Shouguang
  orcidid: 0000-0001-7007-0301
  surname: Huang
  fullname: Huang, Shouguang
  organization: University of Wuerzburg
– sequence: 12
  givenname: Khaled A. S.
  orcidid: 0000-0002-3404-3397
  surname: Al‐Rasheid
  fullname: Al‐Rasheid, Khaled A. S.
  organization: King Saud University
– sequence: 13
  givenname: Saleh
  orcidid: 0000-0002-9629-7288
  surname: Alquraishi
  fullname: Alquraishi, Saleh
  organization: King Saud University
– sequence: 14
  givenname: Michael
  orcidid: 0000-0001-5591-4326
  surname: Breadmore
  fullname: Breadmore, Michael
  organization: University of Tasmania
– sequence: 15
  givenname: Stefano
  orcidid: 0000-0003-1752-3986
  surname: Mancuso
  fullname: Mancuso, Stefano
  organization: University of Florence
– sequence: 16
  givenname: Sergey
  orcidid: 0000-0003-2345-8981
  surname: Shabala
  fullname: Shabala, Sergey
  organization: Foshan University
– sequence: 17
  givenname: Peter
  orcidid: 0000-0002-2902-7552
  surname: Ache
  fullname: Ache, Peter
  organization: University of Wuerzburg
– sequence: 18
  givenname: Heng
  orcidid: 0000-0002-1541-3890
  surname: Zhang
  fullname: Zhang, Heng
  organization: Chinese Academy of Sciences
– sequence: 19
  givenname: Jian‐Kang
  orcidid: 0000-0001-5134-731X
  surname: Zhu
  fullname: Zhu, Jian‐Kang
  organization: Southern University of Science and Technology
– sequence: 20
  givenname: Rainer
  orcidid: 0000-0003-3224-1362
  surname: Hedrich
  fullname: Hedrich, Rainer
  email: hedrich@botanik.uni-wuerzburg.de
  organization: University of Wuerzburg
– sequence: 21
  givenname: Sönke
  orcidid: 0000-0002-7197-2101
  surname: Scherzer
  fullname: Scherzer, Sönke
  email: soenke.scherzer@uni-wuerzburg.de
  organization: University of Wuerzburg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35510810$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1O3DAUha2Kqgy0i75AZYlNWQT8H2eJRgUqobZSW6k7y0luhMFjBztpNTsegWfkSerpDBtE78Z38Z2j63MO0F6IARB6T8kJLXMaxusTqhmRr9CCCtVUmvJ6Dy0IYbpSQv3aRwc53xBCGqnYG7TPpaREU7JA3ffJ-lvcgfd4jN4m7GLAU7IhjzFNeEzxt-sBDzHh1tu-h_R4_9DaDD3O1rvgpjWeooei6AC7gJfXEOIYezev8N3sQrRv0evB-gzvdu8h-nn-6cfysrr6evF5eXZVdUIKWTEuNROUUw2qlspyAZaVVRPgLdFWDLxuaG9rNWigttvQrbRKNK3gDQA_RB-3vuXouxnyZFYub35mA8Q5G6YUoYQRQgt69Ay9iXMK5bpCNTWhDdN1oT7sqLldQW_G5FY2rc1TfAU43QJdijknGEznJjuVCEuCzhtKzKYgUwoy_woqiuNniifTl9id-x_nYf1_0Hz5drlV_AVJw59s
CitedBy_id crossref_primary_10_1111_nph_18420
crossref_primary_10_5511_plantbiotechnology_24_0807a
crossref_primary_10_1007_s42452_024_05713_8
crossref_primary_10_1016_j_cub_2023_09_063
crossref_primary_10_1016_j_sajb_2024_05_050
crossref_primary_10_1007_s44154_024_00189_3
crossref_primary_10_3389_fpls_2023_1092885
crossref_primary_10_1111_nph_18910
crossref_primary_10_1007_s00709_023_01922_x
crossref_primary_10_1007_s10653_023_01659_9
Cites_doi 10.1073/pnas.1701860114
10.1186/1746-4811-8-13
10.7554/eLife.44474
10.1007/s11104-007-9457-4
10.1016/j.tplants.2014.09.001
10.1080/15592324.2017.1359365
10.1371/journal.pbio.3000964
10.1038/nature21370
10.3389/fpls.2015.00114
10.1104/pp.108.126979
10.3389/fpls.2012.00022
10.1038/cr.2017.124
10.1006/jsbi.1996.0013
10.1038/s41586-019-1449-z
10.1146/annurev.cellbio.23.090506.123233
10.1126/science.aat7744
10.1046/j.1365-313X.1997.12051067.x
10.1126/scisignal.2001346
10.3389/fpls.2012.00034
10.1016/j.cub.2013.07.028
10.1111/j.1469-8137.2008.02531.x
10.1111/j.1574-6976.2006.00019.x
10.1046/j.1365-313X.2003.01931.x
10.1016/S0014-5793(00)02248-1
10.1111/nph.14685
10.1016/j.pbi.2015.05.011
10.3389/fpls.2021.643499
10.1186/1471-2229-5-13
10.1371/journal.pone.0090765
10.1105/tpc.17.00714
10.1111/plb.12884
10.1111/j.1365-313X.2008.03555.x
10.1073/pnas.1807049115
10.1016/j.molp.2019.07.003
10.1046/j.1365-313X.1995.7020321.x
10.1016/j.cub.2016.06.045
10.1152/physrev.00038.2011
10.1016/j.arthro.2020.02.043
10.1016/j.ceb.2004.08.002
10.1038/s41467-019-11201-0
10.1016/bs.mcb.2017.03.006
10.1016/j.pbi.2017.08.002
10.1080/21688370.2015.1037417
10.1007/BF00239980
10.1073/pnas.1507810112
10.1093/jxb/erq257
10.1104/pp.106.089003
10.1111/j.1365-313X.2004.02016.x
10.1016/j.cell.2016.08.029
10.1038/s41467-018-03582-5
10.1111/pce.12995
10.1007/s00425-005-1551-3
10.1016/j.cub.2018.08.004
10.1093/jxb/eraa285
10.1016/j.molp.2019.10.013
10.1093/dnares/dsw037
10.1111/nph.13841
ContentType Journal Article
Copyright 2022 The Authors. © 2022 New Phytologist Foundation
2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. © 2022 New Phytologist Foundation
– notice: 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
DOI 10.1111/nph.18205
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
Aquatic Science & Fisheries Abstracts (ASFA) Professional

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 1835
ExternalDocumentID 35510810
10_1111_nph_18205
NPH18205
Genre article
Journal Article
GrantInformation_xml – fundername: Joint 979 Research Projects between Pakistan Science Foundation and National Natural Science Foundation China
  funderid: 31961143001
– fundername: Deutsche Forschungsgemeinschaft
  funderid: HE 1640/44‐1; INST 93/1003‐1 FUGG (426173797); SCHE 2148/1‐1
– fundername: Strategic Priority Research Program of CAS
  funderid: XDB27040101; XDB27040108
– fundername: Australian Research Council (DP150101663)
  funderid: WQ20174400441
– fundername: King Saud University´s International Cooperation and Scientific Twinning Dept
  funderid: ICSTD‐2020/2
– fundername: Marie Curie Fellowship
  funderid: 700001
– fundername: King Saud University´s International Cooperation and Scientific Twinning Dept
  grantid: ICSTD-2020/2
– fundername: Deutsche Forschungsgemeinschaft
  grantid: SCHE 2148/1-1
– fundername: Deutsche Forschungsgemeinschaft
  grantid: HE 1640/44-1
– fundername: Strategic Priority Research Program of CAS
  grantid: XDB27040101
– fundername: Deutsche Forschungsgemeinschaft
  grantid: INST 93/1003-1 FUGG (426173797)
– fundername: Australian Research Council (DP150101663)
  grantid: WQ20174400441
– fundername: Joint 979 Research Projects between Pakistan Science Foundation and National Natural Science Foundation China
  grantid: 31961143001
– fundername: Strategic Priority Research Program of CAS
  grantid: XDB27040108
– fundername: Marie Curie Fellowship
  grantid: 700001
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29N
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAHQN
AAISJ
AAKGQ
AAMNL
AANLZ
AAONW
AASGY
AASVR
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABLJU
ABPLY
ABPVW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACQPF
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHXOZ
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DOOOF
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HZI
HZ~
IHE
IPNFZ
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RCA
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
YNT
YQT
YXE
ZCG
ZZTAW
~02
~IA
~KM
~WT
AAYXX
ABGDZ
ABSQW
ADXHL
AEYWJ
AGHNM
AGUYK
AGYGG
CITATION
NPM
7QO
7SN
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c4545-2358241318e6756a34ea2e6780e3b08a4f3791da76f8e1ac5824b5a649b439ee3
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 06:41:44 EDT 2025
Fri Jul 25 10:27:19 EDT 2025
Wed Feb 19 02:25:53 EST 2025
Tue Jul 01 02:28:42 EDT 2025
Thu Apr 24 23:00:06 EDT 2025
Wed Jan 22 16:23:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords salt tolerance
stalk cell
halophyte
polar ion transport
quinoa
Language English
License Attribution
2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4545-2358241318e6756a34ea2e6780e3b08a4f3791da76f8e1ac5824b5a649b439ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6941-2669
0000-0002-3305-078X
0000-0002-2902-7552
0000-0001-7007-0301
0000-0003-1752-3986
0000-0002-7197-2101
0000-0002-9316-6493
0000-0001-6484-1077
0000-0002-9629-7288
0000-0001-5591-4326
0000-0002-8104-8705
0000-0003-0554-5045
0000-0002-1541-3890
0000-0003-4856-0659
0000-0002-7026-1500
0000-0003-2345-8981
0000-0002-5932-9295
0000-0002-3404-3397
0000-0002-6839-4240
0000-0001-5134-731X
0000-0003-3224-1362
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.18205
PMID 35510810
PQID 2697019287
PQPubID 2026848
PageCount 1835
ParticipantIDs proquest_miscellaneous_2660102001
proquest_journals_2697019287
pubmed_primary_35510810
crossref_citationtrail_10_1111_nph_18205
crossref_primary_10_1111_nph_18205
wiley_primary_10_1111_nph_18205_NPH18205
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 40
2018; 361
2006; 30
2019; 10
2013; 23
2007; 143
2019; 12
2011; 62
1990; 182
2020; 13
2018; 41
2008; 148
2008; 302
2017; 114
2020; 18
2018; 9
2005; 222
2019; 21
2004; 37
1997; 12
2008; 24
2014; 19
2000; 486
2014; 9
2019; 8
2018; 28
2015; 6
2015; 3
2019; 31
2017; 27
2003; 36
2016; 167
2020; 36
2008; 55
2011; 4
2017; 216
1995; 7
2012; 92
2012; 3
2015; 27
2021; 12
2004; 16
2020; 71
2015; 112
2018; 115
2017; 12
2005; 5
2016; 210
2017; 140
2008; 179
2017; 542
2016; 26
2012; 8
2016; 23
2019; 572
1996; 116
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 6
  start-page: 114
  year: 2015
  article-title: Chromatin changes in response to drought, salinity, heat, and cold stresses in plants
  publication-title: Frontiers in Plant Science
– volume: 27
  start-page: 8
  year: 2015
  end-page: 16
  article-title: Stress‐induced structural changes in plant chromatin
  publication-title: Current Opinion in Plant Biology
– volume: 16
  start-page: 500
  year: 2004
  end-page: 506
  article-title: Plasmodesmata form and function
  publication-title: Current Opinion in Cell Biology
– volume: 13
  start-page: 128
  year: 2020
  end-page: 143
  article-title: Phytosphinganine affects plasmodesmata permeability via facilitating PDLP5‐stimulated callose accumulation in arabidopsis
  publication-title: Molecular Plant
– volume: 5
  start-page: 13
  year: 2005
  article-title: New insights into the tonoplast architecture of plant vacuoles and vacuolar dynamics during osmotic stress
  publication-title: BMC Plant Biology
– volume: 542
  start-page: 307
  year: 2017
  end-page: 312
  article-title: The genome of
  publication-title: Nature
– volume: 143
  start-page: 188
  year: 2007
  end-page: 198
  article-title: Arabidopsis sucrose transporter AtSUC9. High‐affinity transport activity, intragenic control of expression, and early flowering mutant phenotype
  publication-title: Plant Physiology
– volume: 3
  start-page: 22
  year: 2012
  article-title: Evolution of plant sucrose uptake transporters
  publication-title: Frontiers in Plant Science
– volume: 21
  start-page: 31
  year: 2019
  end-page: 38
  article-title: Salinity and crop yield
  publication-title: Plant Biology
– volume: 26
  start-page: 2213
  year: 2016
  end-page: 2220
  article-title: Silent S‐type anion channel subunit SLAH1 gates SLAH3 open for chloride root‐to‐shoot translocation
  publication-title: Current Biology
– volume: 40
  start-page: 1900
  year: 2017
  end-page: 1915
  article-title: Epidermal bladder cells confer salinity stress tolerance in the halophyte quinoa and Atriplex species
  publication-title: Plant, Cell & Environment
– volume: 19
  start-page: 687
  year: 2014
  end-page: 691
  article-title: Salt bladders: do they matter?
  publication-title: Trends in Plant Science
– volume: 210
  start-page: 922
  year: 2016
  end-page: 933
  article-title: SLAH3‐type anion channel expressed in poplar secretory epithelia operates in calcium kinase CPK‐autonomous manner
  publication-title: New Phytologist
– volume: 3
  year: 2015
  article-title: Physiological extracellular electrical signals guide and orient the polarity of gut epithelial cells
  publication-title: Tissue Barriers
– volume: 4
  start-page: ra32
  year: 2011
  article-title: Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1
  publication-title: Science Signalling
– volume: 3
  start-page: 34
  year: 2012
  article-title: High affinity ammonium transporters: molecular mechanism of action
  publication-title: Frontiers in Plant Science
– volume: 216
  start-page: 46
  year: 2017
  end-page: 61
  article-title: Biology of SLAC1‐type anion channels ‐ from nutrient uptake to stomatal closure
  publication-title: New Phytologist
– volume: 31
  start-page: 325
  year: 2019
  end-page: 345
  article-title: Phloem companion cell‐specific transcriptomic and epigenomic analyses identify MRF1, a regulator of flowering
  publication-title: Plant Cell
– volume: 222
  start-page: 418
  year: 2005
  end-page: 427
  article-title: AtGLR3.4, a glutamate receptor channel‐like gene is sensitive to touch and cold
  publication-title: Planta
– volume: 115
  start-page: 10178
  year: 2018
  end-page: 10183
  article-title: Identification of cell populations necessary for leaf‐to‐leaf electrical signaling in a wounded plant
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 10
  start-page: 3564
  year: 2019
  article-title: Controlling intercellular flow through mechanosensitive plasmodesmata nanopores
  publication-title: Nature Communications
– volume: 27
  start-page: 1327
  year: 2017
  end-page: 1340
  article-title: A high‐quality genome assembly of quinoa provides insights into the molecular basis of salt bladder‐based salinity tolerance and the exceptional nutritional value
  publication-title: Cell Research
– volume: 23
  start-page: 1649
  year: 2013
  end-page: 1657
  article-title: The ammonium channel DmAMT1 provides NH uptake associated with Venus flytrap's prey digestion
  publication-title: Current Biology
– volume: 12
  year: 2017
  article-title: Arabidopsis thaliana Acyl‐CoA‐binding protein ACBP6 interacts with plasmodesmata‐located protein PDLP8
  publication-title: Plant Signaling & Behavior
– volume: 116
  start-page: 71
  year: 1996
  end-page: 76
  article-title: Computer visualization of three‐dimensional image data using IMOD
  publication-title: Journal of Structural Biology
– volume: 18
  year: 2020
  article-title: The venus flytrap trigger hair‐specific potassium channel KDM1 can reestablish the K gradient required for hapto‐electric signaling
  publication-title: PLoS Biology
– volume: 37
  start-page: 914
  year: 2004
  end-page: 939
  article-title: MapMan: a user‐driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes
  publication-title: The Plant Journal
– volume: 112
  start-page: 7309
  year: 2015
  end-page: 7314
  article-title: Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 24
  start-page: 551
  year: 2008
  end-page: 575
  article-title: Cell polarity signaling in Arabidopsis
  publication-title: Annual Review of Cell and Developmental Biology
– volume: 36
  start-page: 931
  year: 2003
  end-page: 945
  article-title: Isolation of AtSUC2 promoter‐GFP‐marked companion cells for patch‐clamp studies and expression profiling
  publication-title: The Plant Journal
– volume: 148
  start-page: 1583
  year: 2008
  end-page: 1602
  article-title: Transcriptional profiling of mature Arabidopsis trichomes reveals that NOECK encodes the MIXTA‐like transcriptional regulator MYB106
  publication-title: Plant Physiology
– volume: 62
  start-page: 185
  year: 2011
  end-page: 193
  article-title: Ionic and osmotic relations in quinoa ( Willd.) plants grown at various salinity levels
  publication-title: Journal of Experimental Botany
– volume: 36
  start-page: 1897
  year: 2020
  end-page: 1903
  article-title: Development and validation of the hospital for special surgery anterior cruciate ligament postoperative satisfaction survey
  publication-title: Arthroscopy
– volume: 8
  start-page: 13
  year: 2012
  article-title: A novel fluorescent assay for sucrose transporters
  publication-title: Plant Methods
– volume: 140
  start-page: 277
  year: 2017
  end-page: 301
  article-title: Find your way with X‐Ray: using microCT to correlate imaging with 3D electron microscopy
  publication-title: Methods in Cell Biology
– volume: 28
  start-page: 3075
  year: 2018
  end-page: 3085
  article-title: Understanding the molecular basis of salt sequestration in epidermal bladder cells of
  publication-title: Current Biology
– volume: 12
  start-page: 1182
  year: 2019
  end-page: 1202
  article-title: More transporters, more substrates: the arabidopsis major facilitator superfamily revisited
  publication-title: Molecular Plant
– volume: 23
  start-page: 535
  year: 2016
  end-page: 546
  article-title: Draft genome sequence of an inbred line of , an allotetraploid crop with great environmental adaptability and outstanding nutritional properties
  publication-title: DNA Research
– volume: 12
  start-page: 1067
  year: 1997
  end-page: 1078
  article-title: Calcium signalling in responding to drought and salinity
  publication-title: The Plant Journal
– volume: 8
  year: 2019
  article-title: Anion channel SLAH3 is a regulatory target of chitin receptor‐associated kinase PBL27 in microbial stomatal closure
  publication-title: eLife
– volume: 41
  start-page: 46
  year: 2018
  end-page: 53
  article-title: Outer, inner and planar polarity in the Arabidopsis root
  publication-title: Current Opinion in Plant Biology
– volume: 7
  start-page: 321
  year: 1995
  end-page: 332
  article-title: Expression of a cloned plant K channel in Xenopus oocytes: analysis of macroscopic currents
  publication-title: The Plant Journal
– volume: 9
  start-page: 1174
  year: 2018
  article-title: AUX1‐mediated root hair auxin influx governs SCF(TIR1/AFB)‐type Ca signaling
  publication-title: Nature Communications
– volume: 182
  start-page: 34
  year: 1990
  end-page: 38
  article-title: Calcium‐loaded 1,2‐bis(2‐aminophenoxy)ethane‐ , , , ‐tetraacetic acid blocks cell‐to‐cell diffusion of carboxyfluorescein in staminal hairs of
  publication-title: Planta
– volume: 486
  start-page: 93
  year: 2000
  end-page: 98
  article-title: GORK, a delayed outward rectifier expressed in guard cells of , is a K ‐selective, K ‐sensing ion channel
  publication-title: FEBS Letters
– volume: 92
  start-page: 1777
  year: 2012
  end-page: 1811
  article-title: Ion channels in plants
  publication-title: Physiological Reviews
– volume: 12
  start-page: 643499
  year: 2021
  article-title: Virus‐mediated transient expression techniques enable functional genomics studies and modulations of betalain biosynthesis and plant height in quinoa
  publication-title: Frontiers in Plant Science
– volume: 167
  start-page: 313
  year: 2016
  end-page: 324
  article-title: Abiotic stress signaling and responses in plants
  publication-title: Cell
– volume: 9
  year: 2014
  article-title: A root specific induction of carotenoid biosynthesis contributes to ABA production upon salt stress in Arabidopsis
  publication-title: PLoS ONE
– volume: 71
  start-page: 5333
  year: 2020
  end-page: 5347
  article-title: Prospects for the accelerated improvement of the resilient crop quinoa
  publication-title: Journal of Experimental Botany
– volume: 114
  start-page: 4822
  year: 2017
  end-page: 4827
  article-title: Insect haptoelectrical stimulation of Venus flytrap triggers exocytosis in gland cells
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 572
  start-page: 341
  year: 2019
  end-page: 346
  article-title: Plant cell‐surface GIPC sphingolipids sense salt to trigger Ca influx
  publication-title: Nature
– volume: 30
  start-page: 472
  year: 2006
  end-page: 486
  article-title: Non‐invasive microelectrode ion flux measurements to study adaptive responses of microorganisms to the environment
  publication-title: FEMS Microbiology Reviews
– volume: 361
  start-page: 1112
  year: 2018
  end-page: 1115
  article-title: Glutamate triggers long‐distance, calcium‐based plant defense signaling
  publication-title: Science
– volume: 55
  start-page: 746
  year: 2008
  end-page: 759
  article-title: Identification of Arabidopsis thaliana phloem RNAs provides a search criterion for phloem‐based transcripts hidden in complex datasets of microarray experiments
  publication-title: The Plant Journal
– volume: 302
  start-page: 79
  year: 2008
  end-page: 90
  article-title: Effect of salinity on composition, viability and germination of seeds of Willd
  publication-title: Plant and Soil
– volume: 179
  start-page: 945
  year: 2008
  end-page: 963
  article-title: Salinity tolerance in halophytes
  publication-title: New Phytologist
– ident: e_1_2_9_44_1
  doi: 10.1073/pnas.1701860114
– ident: e_1_2_9_10_1
  doi: 10.1186/1746-4811-8-13
– ident: e_1_2_9_28_1
  doi: 10.7554/eLife.44474
– ident: e_1_2_9_25_1
  doi: 10.1007/s11104-007-9457-4
– ident: e_1_2_9_46_1
  doi: 10.1016/j.tplants.2014.09.001
– ident: e_1_2_9_54_1
  doi: 10.1080/15592324.2017.1359365
– ident: e_1_2_9_14_1
  doi: 10.1371/journal.pbio.3000964
– ident: e_1_2_9_18_1
  doi: 10.1038/nature21370
– ident: e_1_2_9_23_1
  doi: 10.3389/fpls.2015.00114
– ident: e_1_2_9_17_1
  doi: 10.1104/pp.108.126979
– ident: e_1_2_9_39_1
  doi: 10.3389/fpls.2012.00022
– ident: e_1_2_9_58_1
  doi: 10.1038/cr.2017.124
– ident: e_1_2_9_26_1
  doi: 10.1006/jsbi.1996.0013
– ident: e_1_2_9_19_1
  doi: 10.1038/s41586-019-1449-z
– ident: e_1_2_9_52_1
  doi: 10.1146/annurev.cellbio.23.090506.123233
– ident: e_1_2_9_49_1
  doi: 10.1126/science.aat7744
– ident: e_1_2_9_24_1
  doi: 10.1046/j.1365-313X.1997.12051067.x
– ident: e_1_2_9_9_1
  doi: 10.1126/scisignal.2001346
– ident: e_1_2_9_35_1
  doi: 10.3389/fpls.2012.00034
– ident: e_1_2_9_43_1
  doi: 10.1016/j.cub.2013.07.028
– ident: e_1_2_9_8_1
  doi: 10.1111/j.1469-8137.2008.02531.x
– ident: e_1_2_9_45_1
  doi: 10.1111/j.1574-6976.2006.00019.x
– ident: e_1_2_9_15_1
  doi: 10.1046/j.1365-313X.2003.01931.x
– ident: e_1_2_9_2_1
  doi: 10.1016/S0014-5793(00)02248-1
– ident: e_1_2_9_13_1
  doi: 10.1111/nph.14685
– ident: e_1_2_9_37_1
  doi: 10.1016/j.pbi.2015.05.011
– ident: e_1_2_9_34_1
  doi: 10.3389/fpls.2021.643499
– ident: e_1_2_9_40_1
  doi: 10.1186/1471-2229-5-13
– ident: e_1_2_9_41_1
  doi: 10.1371/journal.pone.0090765
– ident: e_1_2_9_55_1
  doi: 10.1105/tpc.17.00714
– ident: e_1_2_9_57_1
  doi: 10.1111/plb.12884
– ident: e_1_2_9_6_1
  doi: 10.1111/j.1365-313X.2008.03555.x
– ident: e_1_2_9_32_1
  doi: 10.1073/pnas.1807049115
– ident: e_1_2_9_33_1
  doi: 10.1016/j.molp.2019.07.003
– ident: e_1_2_9_51_1
  doi: 10.1046/j.1365-313X.1995.7020321.x
– ident: e_1_2_9_5_1
  doi: 10.1016/j.cub.2016.06.045
– ident: e_1_2_9_12_1
  doi: 10.1152/physrev.00038.2011
– ident: e_1_2_9_20_1
  doi: 10.1016/j.arthro.2020.02.043
– ident: e_1_2_9_4_1
  doi: 10.1016/j.ceb.2004.08.002
– ident: e_1_2_9_36_1
  doi: 10.1038/s41467-019-11201-0
– ident: e_1_2_9_21_1
  doi: 10.1016/bs.mcb.2017.03.006
– ident: e_1_2_9_31_1
  doi: 10.1016/j.pbi.2017.08.002
– ident: e_1_2_9_38_1
  doi: 10.1080/21688370.2015.1037417
– ident: e_1_2_9_50_1
  doi: 10.1007/BF00239980
– ident: e_1_2_9_42_1
  doi: 10.1073/pnas.1507810112
– ident: e_1_2_9_11_1
  doi: 10.1093/jxb/erq257
– ident: e_1_2_9_47_1
  doi: 10.1104/pp.106.089003
– ident: e_1_2_9_48_1
  doi: 10.1111/j.1365-313X.2004.02016.x
– ident: e_1_2_9_56_1
  doi: 10.1016/j.cell.2016.08.029
– ident: e_1_2_9_7_1
  doi: 10.1038/s41467-018-03582-5
– ident: e_1_2_9_22_1
  doi: 10.1111/pce.12995
– ident: e_1_2_9_30_1
  doi: 10.1007/s00425-005-1551-3
– ident: e_1_2_9_3_1
  doi: 10.1016/j.cub.2018.08.004
– ident: e_1_2_9_29_1
  doi: 10.1093/jxb/eraa285
– ident: e_1_2_9_27_1
  doi: 10.1016/j.molp.2019.10.013
– ident: e_1_2_9_53_1
  doi: 10.1093/dnares/dsw037
– ident: e_1_2_9_16_1
  doi: 10.1111/nph.13841
SSID ssj0009562
Score 2.4615195
Snippet Summary Chenopodium quinoa uses epidermal bladder cells (EBCs) to sequester excess salt. Each EBC complex consists of a leaf epidermal cell, a stalk cell, and...
Chenopodium quinoa uses epidermal bladder cells (EBCs) to sequester excess salt. Each EBC complex consists of a leaf epidermal cell, a stalk cell, and the...
Chenopodium quinoa uses epidermal bladder cells (EBCs) to sequester excess salt. Each EBC complex consists of a leaf epidermal cell, a stalk cell, and the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1822
SubjectTerms Bladder
Cells
Chenopodium quinoa
Cluster analysis
Electrophysiology
Fluorescence
Gene expression
Gene sequencing
halophyte
Ion channels
Ion transport
Leaves
Metabolites
polar ion transport
Potassium
Quinoa
RNA sequencing
Saccharides
Salinity tolerance
salt tolerance
Selectivity
Sodium
Solutes
stalk cell
Tomography
Tracers
Title Stalk cell polar ion transport provide for bladder‐based salinity tolerance in Chenopodium quinoa
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.18205
https://www.ncbi.nlm.nih.gov/pubmed/35510810
https://www.proquest.com/docview/2697019287
https://www.proquest.com/docview/2660102001
Volume 235
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB7BikMvLW1pu7BFpuqBS1aJ43g34kRR0aoSCKEi7aFSZDuOWO022bLJAU48As_IkzDj_Aj6I1XcLHkiOx6P5xtr5jPAZ5npKIw19zKeGU9kKfeU0YEX2TAd-ZlWxlEpnZzKyYX4No2ma3DQ1sLU_BDdhRtZhjuvycCVXj0y8nx5OST2cSowp1wtAkTn_BHhruQtA7MUctqwClEWT_flU1_0B8B8iledwzl-BT_aqdZ5JvNhVeqhufmNxfGZ_7IJLxsgyg7rnfMa1mz-Bja-FAgWr9-CQRC6mDO61mdLin4Z6o-VLRM6awr4GEJephd0el3d396RS0zZSlG1ZXnNymJh6d0Oy2Y5O7q0ebEs0ln1k_2qZnmhtuDi-Ov3o4nXvMfgGYFAy3NVtej0grHFMEOqUFjFsTn2baj9sRJZOIqDVI1kNraBMiStIyVFrBH2WBu-g15e5PYDsNjnKot5IE2EfUYoPOck18YEKYIGGfdhv9VMYhqycnozY5G0QQsuWeKWrA-fOtFlzdDxN6FBq96kMdJVwmVMZPQYM_Zhr-tG86LFVbktKpKhiJUSz_rwvt4W3SgI1QJEVD5O1in338Mnp2cT19j-f9EdeMGp1MLlsw2gV15V9iMCoFLvwjoXZ7tuvz8A8jYCsQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RQCoXXn0tj9ateuCSVeIk3o3Ehae2FFZVBdJeqsh2HLFiSbaQHOipP4HfyC9hxnkICpWq3ix5Ijsej-cby_MNwGeRqtCPFHdSnmonSBPuSK08JzR-0nNTJbWlUjoZisFZcDQKRzOw3eTCVPwQ7YUbWYY9r8nA6UL6gZVn0_Mu0Y-HL2COKnoTc_7-d_6AclfwhoNZBGJU8wrRO57208fe6AnEfIxYrcs5XIIfzWSrlyYX3bJQXf3rDx7H__2bZVissSjbqTbPCsyYbBXmd3PEizevQCMOnVwwutlnUwqAGaqQFQ0ZOqtz-BiiXqYmdIBd3f2-Ja-YsGtJCZfFDSvyiaHSHYaNM7Z3brJ8mifj8pL9LMdZLl_D2eHB6d7AqUsyODpArOXYxFr0e17fYKQhpB8YybHZd42v3L4MUr8XeYnsibRvPKlJWoVSBJFC5GOM_wZmszwz74BFLpdpxD2hQ-zTgcSjTnCltZcgbhBRB7Ya1cS65iunshmTuIlbcMliu2Qd-NSKTiuSjueENhr9xrWdXsdcRMRHj2FjBz623WhhtLgyM3lJMhS00tuzDryt9kU7CqI1D0GVi5O12v378PHw28A21v5d9AO8HJyeHMfHX4Zf12GBU-aFfd62AbPFVWk2EQ8V6r3d9vf6UgX2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwEB5RqCouFfSHbqGtizj0kipxHO9GnIB2tf1htQeQ9hbZjq1dsU0CZA_ceASekSfpjDeJQG2l3ix5IkczGc83zsxngAPpdBKnmgeOOxMIl_NAGR0FiY3zfui0Mp5K6XQsR-fi-zSZrsFh2wuz4ofoDtzIM_x-TQ5e5e6BkxfV7DOxjydPYIN-9lE9FxeTB4y7krcUzFLIaUMrRGU83aOPg9EfCPMxYPURZ7gFzxuoyI5Wtt2GNVu8gKfHJcK5m5dgECYuLhgdvLOK8lOGGmZ1y1XOmhY7hqCU6QXtL1f3t3cUtHJ2ragfsr5hdbmwdLOGZfOCncxsUVZlPl_-YpfLeVGqV3A-_Hp2MgqaGxMCIxAKBb7vFcNSNLCYCEgVC6s4DgehjXU4UMLF_TTKVV-6gY2UIWmdKClSjcDE2vg1rBdlYd8AS0OuXMojaRKcM0LhTiS5NibKMazLtAefWtVlpqETp1stFlmbVqCWM6_lHux3otWKQ-NvQnut_rPGja4zLlOii8esrgcfu2l0AFKuKmy5JBnKKak0rAc7K7t1qyCYihDzhPiy3pD_Xj4bT0Z-8Pb_RT_As8mXYfbz2_jHLmxy6ovwxWd7sF5fLe07RCu1fu-_yt-Rx-Re
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stalk+cell+polar+ion+transport+provide+for+bladder-based+salinity+tolerance+in+Chenopodium+quinoa&rft.jtitle=The+New+phytologist&rft.au=Bazihizina%2C+Nadia&rft.au=B%C3%B6hm%2C+Jennifer&rft.au=Messerer%2C+Maxim&rft.au=Stigloher%2C+Christian&rft.date=2022-09-01&rft.eissn=1469-8137&rft_id=info:doi/10.1111%2Fnph.18205&rft_id=info%3Apmid%2F35510810&rft.externalDocID=35510810
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon