Statistical analysis of rare sequence variants: an overview of collapsing methods

With the advent of novel sequencing technologies, interest in the identification of rare variants that influence common traits has increased rapidly. Standard statistical methods, such as the Cochrane‐Armitage trend test or logistic regression, fail in this setting for the analysis of unrelated subj...

Full description

Saved in:
Bibliographic Details
Published inGenetic epidemiology Vol. 35; no. S1; pp. S12 - S17
Main Authors Dering, Carmen, Hemmelmann, Claudia, Pugh, Elizabeth, Ziegler, Andreas
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the advent of novel sequencing technologies, interest in the identification of rare variants that influence common traits has increased rapidly. Standard statistical methods, such as the Cochrane‐Armitage trend test or logistic regression, fail in this setting for the analysis of unrelated subjects because of the rareness of the variants. Recently, various alternative approaches have been proposed that circumvent the rareness problem by collapsing rare variants in a defined genetic region or sets of regions. We provide an overview of these collapsing methods for association analysis and discuss the use of permutation approaches for significance testing of the data‐adaptive methods. Genet. Epidemiol. 35:S12–S17, 2011. © 2011 Wiley Periodicals, Inc.
AbstractList With the advent of novel sequencing technologies, interest in the identification of rare variants that influence common traits has increased rapidly. Standard statistical methods, such as the Cochrane-Armitage trend test or logistic regression, fail in this setting for the analysis of unrelated subjects because of the rareness of the variants. Recently, various alternative approaches have been proposed that circumvent the rareness problem by collapsing rare variants in a defined genetic region or sets of regions. We provide an overview of these collapsing methods for association analysis and discuss the use of permutation approaches for significance testing of the data-adaptive methods.
With the advent of novel sequencing technologies, interest in the identification of rare variants that influence common traits has increased rapidly. Standard statistical methods, such as the Cochrane-Armitage trend test or logistic regression, fail in this setting for the analysis of unrelated subjects because of the rareness of the variants. Recently, various alternative approaches have been proposed that circumvent the rareness problem by collapsing rare variants in a defined genetic region or sets of regions. We provide an overview of these collapsing methods for association analysis and discuss the use of permutation approaches for significance testing of the data-adaptive methods. Genet. Epidemiol. 35:S12-S17, 2011. copyright 2011 Wiley Periodicals, Inc.
With the advent of novel sequencing technologies, interest in the identification of rare variants that influence common traits has increased rapidly. Standard statistical methods, such as the Cochrane‐Armitage trend test or logistic regression, fail in this setting for the analysis of unrelated subjects because of the rareness of the variants. Recently, various alternative approaches have been proposed that circumvent the rareness problem by collapsing rare variants in a defined genetic region or sets of regions. We provide an overview of these collapsing methods for association analysis and discuss the use of permutation approaches for significance testing of the data‐adaptive methods. Genet. Epidemiol . 35:S12–S17, 2011. © 2011 Wiley Periodicals, Inc.
With the advent of novel sequencing technologies, interest in the identification of rare variants that influence common traits has increased rapidly. Standard statistical methods, such as the Cochrane-Armitage trend test or logistic regression, fail in this setting for the analysis of unrelated subjects because of the rareness of the variants. Recently, various alternative approaches have been proposed that circumvent the rareness problem by collapsing rare variants in a defined genetic region or sets of regions. We provide an overview of these collapsing methods for association analysis and discuss the use of permutation approaches for significance testing of the data-adaptive methods.With the advent of novel sequencing technologies, interest in the identification of rare variants that influence common traits has increased rapidly. Standard statistical methods, such as the Cochrane-Armitage trend test or logistic regression, fail in this setting for the analysis of unrelated subjects because of the rareness of the variants. Recently, various alternative approaches have been proposed that circumvent the rareness problem by collapsing rare variants in a defined genetic region or sets of regions. We provide an overview of these collapsing methods for association analysis and discuss the use of permutation approaches for significance testing of the data-adaptive methods.
With the advent of novel sequencing technologies, interest in the identification of rare variants that influence common traits has increased rapidly. Standard statistical methods, such as the Cochrane‐Armitage trend test or logistic regression, fail in this setting for the analysis of unrelated subjects because of the rareness of the variants. Recently, various alternative approaches have been proposed that circumvent the rareness problem by collapsing rare variants in a defined genetic region or sets of regions. We provide an overview of these collapsing methods for association analysis and discuss the use of permutation approaches for significance testing of the data‐adaptive methods. Genet. Epidemiol. 35:S12–S17, 2011. © 2011 Wiley Periodicals, Inc.
Author Dering, Carmen
Ziegler, Andreas
Hemmelmann, Claudia
Pugh, Elizabeth
AuthorAffiliation 2 Center for Inherited Disease Research, School of Medicine, Johns Hopkins University, Baltimore, MD
1 Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
AuthorAffiliation_xml – name: 1 Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
– name: 2 Center for Inherited Disease Research, School of Medicine, Johns Hopkins University, Baltimore, MD
Author_xml – sequence: 1
  givenname: Carmen
  surname: Dering
  fullname: Dering, Carmen
  organization: Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
– sequence: 2
  givenname: Claudia
  surname: Hemmelmann
  fullname: Hemmelmann, Claudia
  organization: Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
– sequence: 3
  givenname: Elizabeth
  surname: Pugh
  fullname: Pugh, Elizabeth
  organization: Center for Inherited Disease Research, School of Medicine, Johns Hopkins University, Baltimore, MD
– sequence: 4
  givenname: Andreas
  surname: Ziegler
  fullname: Ziegler, Andreas
  email: ziegler@imbs.uni-luebeck.de
  organization: Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22128052$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9vEzEQxS3UiqaBCx8A7Q2EtO3YXq9tDkgoatNKVflX1KPleGdTw2Yd7E1Kvn13mzYChHrywb_3NG_eHJK9NrRIyCsKRxSAHc9x6Y8YlAV_RkYUtMoZk2yPjEAWNAeuxQE5TOkHAKWFFs_JAWOUKRBsRL5862znU-edbTLb2maTfMpCnUUbMUv4a4Wtw2xto7dtl973TBbWGNcebwfMhaaxy-TbebbA7iZU6QXZr22T8OXDOybfT0-uJmf5xafp-eTjRe4KUfAcBTjU9QwKW9ZYAEhWcRASkZWlrikFVymFqKtKUF7NeInKKVmLAmZYVJKPyYet73I1W2DlsO2ibcwy-oWNGxOsN3__tP7GzMPacCal0rQ3ePNgEEMfM3Vm4ZPDPk-LYZWMplQzJfu1jsnbJ0kKVOpSKQE9-vrPqXbjPG68B95tARdDShHrHULBDHWaoU5zX2cPwz-w80NfYUjkm_9L6FZy6xvcPGFupiefzx81-VbTHwL-3mls_GlKyaUw15dTI6-uT6eTr9xM-B0BF8LH
CitedBy_id crossref_primary_10_1186_1753_6561_5_S9_S120
crossref_primary_10_1002_gepi_21722
crossref_primary_10_1093_aje_kwac058
crossref_primary_10_1136_jmedgenet_2014_102697
crossref_primary_10_1177_1176934320944932
crossref_primary_10_1186_1753_6561_5_S9_S83
crossref_primary_10_1214_21_AOAS1491
crossref_primary_10_1109_TCBB_2014_2322371
crossref_primary_10_1146_annurev_genom_083115_022609
crossref_primary_10_1186_1753_6561_5_S9_S121
crossref_primary_10_3390_genes9050240
crossref_primary_10_1159_000381286
crossref_primary_10_7717_peerj_3187
crossref_primary_10_1186_1753_6561_5_S9_S119
crossref_primary_10_1186_1753_6561_5_S9_S118
crossref_primary_10_1158_1078_0432_CCR_16_0623
crossref_primary_10_1038_nbt_2422
crossref_primary_10_1038_s10038_019_0577_5
crossref_primary_10_1093_bib_bbu050
crossref_primary_10_1186_s12919_016_0043_8
crossref_primary_10_1016_j_hlpt_2014_08_007
crossref_primary_10_1093_bib_bbaf044
crossref_primary_10_1016_j_gene_2018_03_006
crossref_primary_10_1210_jc_2014_3340
crossref_primary_10_1016_j_stueduc_2021_101084
crossref_primary_10_1134_S1022795421020125
crossref_primary_10_1002_gepi_21714
crossref_primary_10_1186_1753_6561_5_S9_S116
crossref_primary_10_1176_appi_ajp_2013_12091163
crossref_primary_10_1186_1753_6561_5_S9_S115
crossref_primary_10_1016_j_expneurol_2014_04_013
crossref_primary_10_1371_journal_pone_0217314
crossref_primary_10_1186_1753_6561_5_S9_S111
crossref_primary_10_1111_andr_12625
crossref_primary_10_1093_bioinformatics_btz172
crossref_primary_10_1159_000493543
crossref_primary_10_3389_fgene_2014_00062
crossref_primary_10_1186_1471_2105_15_10
crossref_primary_10_1186_1753_6561_8_S1_S49
crossref_primary_10_1002_gepi_22037
crossref_primary_10_1002_gepi_20651
crossref_primary_10_1002_gepi_21783
crossref_primary_10_1186_s12863_015_0182_3
crossref_primary_10_1002_gepi_20655
crossref_primary_10_1002_gepi_21820
crossref_primary_10_1002_gepi_21983
crossref_primary_10_1002_gepi_20658
crossref_primary_10_1007_s00439_013_1377_1
crossref_primary_10_1186_1753_6561_5_S9_S106
crossref_primary_10_1038_s41598_017_15752_4
crossref_primary_10_1186_1753_6561_5_S9_S105
crossref_primary_10_1186_1753_6561_5_S9_S104
crossref_primary_10_1002_gepi_20657
crossref_primary_10_1093_bioinformatics_btw160
crossref_primary_10_1186_1753_6561_5_S9_S103
crossref_primary_10_1186_1753_6561_5_S9_S100
crossref_primary_10_1002_gepi_21826
crossref_primary_10_1158_1055_9965_EPI_23_0634
crossref_primary_10_1038_s41416_021_01589_2
crossref_primary_10_1186_s12885_017_3722_6
crossref_primary_10_1002_sim_8111
crossref_primary_10_1186_1753_6561_8_S1_S109
crossref_primary_10_1515_sagmb_2016_0061
crossref_primary_10_1007_s00439_012_1198_7
crossref_primary_10_3390_brainsci13091233
crossref_primary_10_1002_0471142905_hg0126s78
crossref_primary_10_1016_j_jmb_2020_04_011
crossref_primary_10_1093_bioinformatics_btu496
crossref_primary_10_1186_1753_6561_8_S1_S68
crossref_primary_10_1038_ejhg_2015_25
crossref_primary_10_1186_1753_6561_5_S9_S15
crossref_primary_10_1002_gepi_20647
crossref_primary_10_1371_journal_pone_0190486
crossref_primary_10_3389_fendo_2014_00226
crossref_primary_10_1002_bimj_202300278
crossref_primary_10_1002_gepi_20648
crossref_primary_10_1186_1753_6561_8_S1_S60
crossref_primary_10_1371_journal_pone_0102312
crossref_primary_10_1111_j_1469_1809_2012_00718_x
crossref_primary_10_1002_gepi_20649
crossref_primary_10_1016_j_neucom_2021_08_150
crossref_primary_10_1186_1753_6561_5_S9_S53
crossref_primary_10_1038_ng_2827
crossref_primary_10_1142_S1793524518500948
crossref_primary_10_1586_ern_12_165
crossref_primary_10_1177_1099800416633296
crossref_primary_10_1186_s13059_017_1212_4
crossref_primary_10_1016_j_ajhg_2012_06_018
crossref_primary_10_1186_1753_6561_8_S1_S8
crossref_primary_10_1371_journal_pone_0071775
crossref_primary_10_1002_gepi_21691
crossref_primary_10_1093_bib_bbv072
crossref_primary_10_3390_genes15091174
Cites_doi 10.1016/j.ajhg.2010.10.014
10.1146/annurev-genet-102209-163421
10.1093/bioinformatics/btn435
10.1056/NEJMra0905980
10.1016/j.mrfmmm.2006.09.003
10.1186/1471-2105-7-166
10.1038/nrg2626
10.1371/journal.pgen.1001156
10.1002/9783527633654
10.1002/gepi.20450
10.1038/456018a
10.1038/nrg2809
10.1093/nar/gkf493
10.1093/nar/gkg509
10.1371/journal.pone.0013584
10.1093/bioinformatics/btp211
10.1371/journal.pgen.1000384
10.1016/j.ajhg.2008.06.024
10.1038/nature08494
10.1038/nrg2579
10.1007/978-1-4757-2346-5
10.1038/nrg2841
10.1038/nrg2867
10.1016/S0140-6736(02)08218-1
10.1016/j.ajhg.2010.04.005
10.1159/000288704
10.1038/nature09230
10.1086/521032
10.1002/gepi.20005
ContentType Journal Article
Copyright 2011 Wiley Periodicals, Inc.
Copyright_xml – notice: 2011 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
P64
RC3
7X8
5PM
DOI 10.1002/gepi.20643
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Genetics Abstracts
CrossRef
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Statistics
EISSN 1098-2272
EndPage S17
ExternalDocumentID PMC3277891
22128052
10_1002_gepi_20643
GEPI20643
ark_67375_WNG_7TWFGCR3_C
Genre article
Research Support, N.I.H., Intramural
Review
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Intramural NIH HHS
– fundername: NIGMS NIH HHS
  grantid: R01 GM031575
– fundername: National Institute of General Medical Sciences : NIGMS
  grantid: R01 GM031575-25 || GM
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DVXWH
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M66
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWV
RX1
RYL
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WTM
WXSBR
WYISQ
XG1
XV2
ZGI
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c4543-e50ce9fb04a6fe40072d3057ee2669f110cd88ee9dd513db36e8c87f540be4d73
IEDL.DBID DR2
ISSN 0741-0395
1098-2272
IngestDate Thu Aug 21 18:28:46 EDT 2025
Fri Jul 11 05:29:20 EDT 2025
Fri Jul 11 00:53:43 EDT 2025
Mon Jul 21 06:07:32 EDT 2025
Thu Apr 24 23:10:49 EDT 2025
Tue Jul 01 02:45:07 EDT 2025
Wed Jan 22 16:19:19 EST 2025
Wed Oct 30 09:49:27 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue S1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2011 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4543-e50ce9fb04a6fe40072d3057ee2669f110cd88ee9dd513db36e8c87f540be4d73
Notes ark:/67375/WNG-7TWFGCR3-C
ArticleID:GEPI20643
istex:831A6BA5E4CA3A1529C8CE5E41E16D7FDC716FB2
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ObjectType-Review-3
PMID 22128052
PQID 1017968850
PQPubID 23462
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3277891
proquest_miscellaneous_911928764
proquest_miscellaneous_1017968850
pubmed_primary_22128052
crossref_primary_10_1002_gepi_20643
crossref_citationtrail_10_1002_gepi_20643
wiley_primary_10_1002_gepi_20643_GEPI20643
istex_primary_ark_67375_WNG_7TWFGCR3_C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011
2011-01-00
2011-00-00
20110101
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – year: 2011
  text: 2011
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Genetic epidemiology
PublicationTitleAlternate Genet. Epidemiol
PublicationYear 2011
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Morgenthaler S, Thilly WG. 2007. A strategy to discover genes that carry multi-allelic or mono-allelic risk for common diseases: a cohort allelic sums test (CAST). Mutat Res 615:28-56.
Yue P, Melamud E, Moult J. 2006. SNPs3D: candidate gene and SNP selection for association studies. BMC Bioinform 7:166.
Metzker ML. 2009. Sequencing technologies: the next generation. Nat Rev Genet 11:31-46.
Li Y, Byrnes AE, Li M. 2010. To identify associations with rare variants, just WHaIT: weighted haplotype and imputation-based tests. Am J Hum Genet 87:728-735.
Han F, Pan W. 2010. A data-adaptive sum test for disease association with multiple common or rare variants. Hum Hered 70:42-54.
Madsen BE, Browning SR. 2009. A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet 5:e1000384.
Petronis A. 2010. Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature 465:721-727.
Ziegler A, König IR. 2010. A Statistical Approach to Genetic Epidemiology: Concepts and Applications, 2nd ed. Weinheim, Germany: Wiley-VCH.
Easton DF, Deffenbaugh AM, Pruss D, Frye C, Wenstrup RJ, Allen-Brady K, Tavtigian SV, Monteiro AN, Iversen ES, Couch FJ, et al. 2007. A systematic genetic assessment of 1,433 sequence variants of unknown clinical significance in the BRCA1 and BRCA2 breast cancer-predisposition genes. Am J Hum Genet 81:873-883.
Li B, Leal SM. 2008. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J Hum Genet 83:311-321.
Liu DJ, Leal SM. 2010. A novel adaptive method for the analysis of next-generation sequencing data to detect complex trait associations with rare variants due to gene main effects and interactions. PLoS Genet 6:e1001156.
Cordell HJ. 2009. Genome-wide association studies: detecting gene-gene interactions that underlie human diseases. Nat Rev Genet 10:392-404.
Maher B. 2008. Personal genomes: the case of the missing heritability. Nature 456:18-21.
Qian D. 2004. Haplotype sharing correlation analysis using family data: a comparison with family-based association test in the presence of allelic heterogeneity. Genet Epidemiol 27:43-52.
Hoffmann TJ, Marini NJ, Witte JS. 2010. Comprehensive approach to analyzing rare genetic variants. PLoS One 5:e13584.
Asimit J, Zeggini E. 2010. Rare variant association analysis methods for complex traits. Annu Rev Genet 44:293-308.
Meyerson M, Gabriel S, Getz G. 2010. Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet 11:685-696.
Tintle N, Aschard H, Hu I, Nock N, Wang H, Pugh E. 2011. Inflated type I error rates when using aggregation methods to analyze rare variants in the 1000 Genomes Project exon sequencing data in unrelated individuals: summary results from Group 7 at Genetic Analysis Workshop 17. Genet Epidemiol X:X-X.
Bansal V, Libiger O, Torkamani A, Schork NJ. 2010. Statistical analysis strategies for association studies involving rare variants. Nat Rev Genet 11:773-785.
Morris AP, Zeggini E. 2010. An evaluation of statistical approaches to rare variant analysis in genetic association studies. Genet Epidemiol 34:188-193.
Bromberg Y, Yachdav G, Rost B. 2008. SNAP predicts effect of mutations on protein function. Bioinformatics 24:2397-2398.
Ramensky V, Bork P, Sunyaev S. 2002. Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30:3894-3900.
Ng PC, Henikoff S. 2003. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res 31:3812-3814.
Fitze G, Cramer J, Ziegler A, Schierz M, Schreiber M, Kuhlisch E, Roesner D, Schackert HK. 2002. Association between c135G/A genotype and RET proto-oncogene germline mutations and phenotype of Hirschsprung's disease. Lancet 359:1200-1205.
Price AL, Kryukov GV, de Bakker PI, Purcell SM, Staples J, Wei LJ, Sunyaev SR. 2010. Pooled association tests for rare variants in exon-resequencing studies. Am J Hum Genet 86:832-838.
Good P. 1994. Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses. New York: Springer.
Sun YV, Sung YJ, Tintle N, Ziegler A. 2011. Identification of genetic association of multiple rare variants using collapsing methods. Genet Epidemiol X:X-X.
Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, Nadeau JH. 2010. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 11:446-450.
Manolio TA. 2010. Genomewide association studies and assessment of the risk of disease. New Engl J Med 363:166-176.
Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, et al. 2009. Finding the missing heritability of complex diseases. Nature 461:747-753.
Knijnenburg TA, Wessels LF, Reinders MJ, Shmulevich I. 2009. Fewer permutations, more accurate P-values. Bioinformatics 25:161-168.
2010; 34
2010; 11
2009; 25
2002; 30
2004; 27
2010
2010; 465
2002; 359
2010; 363
2006; 7
1994
2003; 31
2010; 44
2009; 11
2010; 87
2010; 86
2009; 10
2008; 24
2007; 81
2008; 456
2009; 5
2009; 461
2010; 70
2008; 83
2010; 5
2007; 615
2011; X
2010; 6
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
Sun YV (e_1_2_7_29_1) 2011
Tintle N (e_1_2_7_30_1) 2011
References_xml – reference: Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, Nadeau JH. 2010. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 11:446-450.
– reference: Morris AP, Zeggini E. 2010. An evaluation of statistical approaches to rare variant analysis in genetic association studies. Genet Epidemiol 34:188-193.
– reference: Maher B. 2008. Personal genomes: the case of the missing heritability. Nature 456:18-21.
– reference: Ramensky V, Bork P, Sunyaev S. 2002. Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30:3894-3900.
– reference: Bansal V, Libiger O, Torkamani A, Schork NJ. 2010. Statistical analysis strategies for association studies involving rare variants. Nat Rev Genet 11:773-785.
– reference: Meyerson M, Gabriel S, Getz G. 2010. Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet 11:685-696.
– reference: Knijnenburg TA, Wessels LF, Reinders MJ, Shmulevich I. 2009. Fewer permutations, more accurate P-values. Bioinformatics 25:161-168.
– reference: Yue P, Melamud E, Moult J. 2006. SNPs3D: candidate gene and SNP selection for association studies. BMC Bioinform 7:166.
– reference: Li B, Leal SM. 2008. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J Hum Genet 83:311-321.
– reference: Bromberg Y, Yachdav G, Rost B. 2008. SNAP predicts effect of mutations on protein function. Bioinformatics 24:2397-2398.
– reference: Han F, Pan W. 2010. A data-adaptive sum test for disease association with multiple common or rare variants. Hum Hered 70:42-54.
– reference: Sun YV, Sung YJ, Tintle N, Ziegler A. 2011. Identification of genetic association of multiple rare variants using collapsing methods. Genet Epidemiol X:X-X.
– reference: Easton DF, Deffenbaugh AM, Pruss D, Frye C, Wenstrup RJ, Allen-Brady K, Tavtigian SV, Monteiro AN, Iversen ES, Couch FJ, et al. 2007. A systematic genetic assessment of 1,433 sequence variants of unknown clinical significance in the BRCA1 and BRCA2 breast cancer-predisposition genes. Am J Hum Genet 81:873-883.
– reference: Hoffmann TJ, Marini NJ, Witte JS. 2010. Comprehensive approach to analyzing rare genetic variants. PLoS One 5:e13584.
– reference: Tintle N, Aschard H, Hu I, Nock N, Wang H, Pugh E. 2011. Inflated type I error rates when using aggregation methods to analyze rare variants in the 1000 Genomes Project exon sequencing data in unrelated individuals: summary results from Group 7 at Genetic Analysis Workshop 17. Genet Epidemiol X:X-X.
– reference: Liu DJ, Leal SM. 2010. A novel adaptive method for the analysis of next-generation sequencing data to detect complex trait associations with rare variants due to gene main effects and interactions. PLoS Genet 6:e1001156.
– reference: Manolio TA. 2010. Genomewide association studies and assessment of the risk of disease. New Engl J Med 363:166-176.
– reference: Ziegler A, König IR. 2010. A Statistical Approach to Genetic Epidemiology: Concepts and Applications, 2nd ed. Weinheim, Germany: Wiley-VCH.
– reference: Morgenthaler S, Thilly WG. 2007. A strategy to discover genes that carry multi-allelic or mono-allelic risk for common diseases: a cohort allelic sums test (CAST). Mutat Res 615:28-56.
– reference: Qian D. 2004. Haplotype sharing correlation analysis using family data: a comparison with family-based association test in the presence of allelic heterogeneity. Genet Epidemiol 27:43-52.
– reference: Cordell HJ. 2009. Genome-wide association studies: detecting gene-gene interactions that underlie human diseases. Nat Rev Genet 10:392-404.
– reference: Madsen BE, Browning SR. 2009. A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet 5:e1000384.
– reference: Good P. 1994. Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses. New York: Springer.
– reference: Petronis A. 2010. Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature 465:721-727.
– reference: Ng PC, Henikoff S. 2003. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res 31:3812-3814.
– reference: Asimit J, Zeggini E. 2010. Rare variant association analysis methods for complex traits. Annu Rev Genet 44:293-308.
– reference: Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, et al. 2009. Finding the missing heritability of complex diseases. Nature 461:747-753.
– reference: Price AL, Kryukov GV, de Bakker PI, Purcell SM, Staples J, Wei LJ, Sunyaev SR. 2010. Pooled association tests for rare variants in exon-resequencing studies. Am J Hum Genet 86:832-838.
– reference: Fitze G, Cramer J, Ziegler A, Schierz M, Schreiber M, Kuhlisch E, Roesner D, Schackert HK. 2002. Association between c135G/A genotype and RET proto-oncogene germline mutations and phenotype of Hirschsprung's disease. Lancet 359:1200-1205.
– reference: Li Y, Byrnes AE, Li M. 2010. To identify associations with rare variants, just WHaIT: weighted haplotype and imputation-based tests. Am J Hum Genet 87:728-735.
– reference: Metzker ML. 2009. Sequencing technologies: the next generation. Nat Rev Genet 11:31-46.
– volume: 87
  start-page: 728
  year: 2010
  end-page: 735
  article-title: To identify associations with rare variants, just WHaIT: weighted haplotype and imputation‐based tests
  publication-title: Am J Hum Genet
– volume: 24
  start-page: 2397
  year: 2008
  end-page: 2398
  article-title: SNAP predicts effect of mutations on protein function
  publication-title: Bioinformatics
– volume: 11
  start-page: 31
  year: 2009
  end-page: 46
  article-title: Sequencing technologies: the next generation
  publication-title: Nat Rev Genet
– volume: 44
  start-page: 293
  year: 2010
  end-page: 308
  article-title: Rare variant association analysis methods for complex traits
  publication-title: Annu Rev Genet
– volume: 615
  start-page: 28
  year: 2007
  end-page: 56
  article-title: A strategy to discover genes that carry multi‐allelic or mono‐allelic risk for common diseases: a cohort allelic sums test (CAST)
  publication-title: Mutat Res
– volume: 70
  start-page: 42
  year: 2010
  end-page: 54
  article-title: A data‐adaptive sum test for disease association with multiple common or rare variants
  publication-title: Hum Hered
– volume: 31
  start-page: 3812
  year: 2003
  end-page: 3814
  article-title: SIFT: Predicting amino acid changes that affect protein function
  publication-title: Nucleic Acids Res
– volume: 7
  start-page: 166
  year: 2006
  article-title: SNPs3D: candidate gene and SNP selection for association studies
  publication-title: BMC Bioinform
– volume: X
  start-page: X
  year: 2011
  end-page: X
  article-title: Inflated type I error rates when using aggregation methods to analyze rare variants in the 1000 Genomes Project exon sequencing data in unrelated individuals: summary results from Group 7 at Genetic Analysis Workshop 17
  publication-title: Genet Epidemiol
– volume: 11
  start-page: 685
  year: 2010
  end-page: 696
  article-title: Advances in understanding cancer genomes through second‐generation sequencing
  publication-title: Nat Rev Genet
– volume: 11
  start-page: 773
  year: 2010
  end-page: 785
  article-title: Statistical analysis strategies for association studies involving rare variants
  publication-title: Nat Rev Genet
– volume: 30
  start-page: 3894
  year: 2002
  end-page: 3900
  article-title: Human non‐synonymous SNPs: server and survey
  publication-title: Nucleic Acids Res
– year: 1994
– volume: 34
  start-page: 188
  year: 2010
  end-page: 193
  article-title: An evaluation of statistical approaches to rare variant analysis in genetic association studies
  publication-title: Genet Epidemiol
– year: 2010
– volume: 83
  start-page: 311
  year: 2008
  end-page: 321
  article-title: Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data
  publication-title: Am J Hum Genet
– volume: 27
  start-page: 43
  year: 2004
  end-page: 52
  article-title: Haplotype sharing correlation analysis using family data: a comparison with family‐based association test in the presence of allelic heterogeneity
  publication-title: Genet Epidemiol
– volume: 6
  start-page: e1001156
  year: 2010
  article-title: A novel adaptive method for the analysis of next‐generation sequencing data to detect complex trait associations with rare variants due to gene main effects and interactions
  publication-title: PLoS Genet
– volume: 11
  start-page: 446
  year: 2010
  end-page: 450
  article-title: Missing heritability and strategies for finding the underlying causes of complex disease
  publication-title: Nat Rev Genet
– volume: 465
  start-page: 721
  year: 2010
  end-page: 727
  article-title: Epigenetics as a unifying principle in the aetiology of complex traits and diseases
  publication-title: Nature
– volume: 363
  start-page: 166
  year: 2010
  end-page: 176
  article-title: Genomewide association studies and assessment of the risk of disease
  publication-title: New Engl J Med
– volume: 5
  start-page: e1000384
  year: 2009
  article-title: A groupwise association test for rare mutations using a weighted sum statistic
  publication-title: PLoS Genet
– volume: 5
  start-page: e13584
  year: 2010
  article-title: Comprehensive approach to analyzing rare genetic variants
  publication-title: PLoS One
– volume: 359
  start-page: 1200
  year: 2002
  end-page: 1205
  article-title: Association between c135G/A genotype and RET proto‐oncogene germline mutations and phenotype of Hirschsprung's disease
  publication-title: Lancet
– volume: X
  start-page: X
  year: 2011
  end-page: X
  article-title: Identification of genetic association of multiple rare variants using collapsing methods
  publication-title: Genet Epidemiol
– volume: 456
  start-page: 18
  year: 2008
  end-page: 21
  article-title: Personal genomes: the case of the missing heritability
  publication-title: Nature
– volume: 86
  start-page: 832
  year: 2010
  end-page: 838
  article-title: Pooled association tests for rare variants in exon‐resequencing studies
  publication-title: Am J Hum Genet
– volume: 461
  start-page: 747
  year: 2009
  end-page: 753
  article-title: Finding the missing heritability of complex diseases
  publication-title: Nature
– volume: 25
  start-page: 161
  year: 2009
  end-page: 168
  article-title: Fewer permutations, more accurate ‐values
  publication-title: Bioinformatics
– volume: 81
  start-page: 873
  year: 2007
  end-page: 883
  article-title: A systematic genetic assessment of 1,433 sequence variants of unknown clinical significance in the and breast cancer‐predisposition genes
  publication-title: Am J Hum Genet
– volume: 10
  start-page: 392
  year: 2009
  end-page: 404
  article-title: Genome‐wide association studies: detecting gene‐gene interactions that underlie human diseases
  publication-title: Nat Rev Genet
– ident: e_1_2_7_14_1
  doi: 10.1016/j.ajhg.2010.10.014
– ident: e_1_2_7_2_1
  doi: 10.1146/annurev-genet-102209-163421
– ident: e_1_2_7_4_1
  doi: 10.1093/bioinformatics/btn435
– ident: e_1_2_7_18_1
  doi: 10.1056/NEJMra0905980
– ident: e_1_2_7_22_1
  doi: 10.1016/j.mrfmmm.2006.09.003
– ident: e_1_2_7_31_1
  doi: 10.1186/1471-2105-7-166
– start-page: X
  year: 2011
  ident: e_1_2_7_29_1
  article-title: Identification of genetic association of multiple rare variants using collapsing methods
  publication-title: Genet Epidemiol
– ident: e_1_2_7_20_1
  doi: 10.1038/nrg2626
– ident: e_1_2_7_15_1
  doi: 10.1371/journal.pgen.1001156
– ident: e_1_2_7_32_1
  doi: 10.1002/9783527633654
– ident: e_1_2_7_23_1
  doi: 10.1002/gepi.20450
– ident: e_1_2_7_17_1
  doi: 10.1038/456018a
– ident: e_1_2_7_7_1
  doi: 10.1038/nrg2809
– ident: e_1_2_7_28_1
  doi: 10.1093/nar/gkf493
– ident: e_1_2_7_24_1
  doi: 10.1093/nar/gkg509
– ident: e_1_2_7_11_1
  doi: 10.1371/journal.pone.0013584
– ident: e_1_2_7_12_1
  doi: 10.1093/bioinformatics/btp211
– ident: e_1_2_7_16_1
  doi: 10.1371/journal.pgen.1000384
– ident: e_1_2_7_13_1
  doi: 10.1016/j.ajhg.2008.06.024
– ident: e_1_2_7_19_1
  doi: 10.1038/nature08494
– ident: e_1_2_7_5_1
  doi: 10.1038/nrg2579
– ident: e_1_2_7_9_1
  doi: 10.1007/978-1-4757-2346-5
– ident: e_1_2_7_21_1
  doi: 10.1038/nrg2841
– start-page: X
  year: 2011
  ident: e_1_2_7_30_1
  article-title: Inflated type I error rates when using aggregation methods to analyze rare variants in the 1000 Genomes Project exon sequencing data in unrelated individuals: summary results from Group 7 at Genetic Analysis Workshop 17
  publication-title: Genet Epidemiol
– ident: e_1_2_7_3_1
  doi: 10.1038/nrg2867
– ident: e_1_2_7_8_1
  doi: 10.1016/S0140-6736(02)08218-1
– ident: e_1_2_7_26_1
  doi: 10.1016/j.ajhg.2010.04.005
– ident: e_1_2_7_10_1
  doi: 10.1159/000288704
– ident: e_1_2_7_25_1
  doi: 10.1038/nature09230
– ident: e_1_2_7_6_1
  doi: 10.1086/521032
– ident: e_1_2_7_27_1
  doi: 10.1002/gepi.20005
SSID ssj0011495
Score 2.2864482
SecondaryResourceType review_article
Snippet With the advent of novel sequencing technologies, interest in the identification of rare variants that influence common traits has increased rapidly. Standard...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage S12
SubjectTerms association
Association analysis
collapsing methods
collection of rare variants
common disease/rare variant hypothesis
contingency table
generalized linear model
Genetic Predisposition to Disease
Humans
Models, Genetic
Models, Statistical
Molecular Epidemiology - methods
next-generation sequencing
pooling methods
Reviews
Sequence Analysis
Statistical analysis
Statistics
Title Statistical analysis of rare sequence variants: an overview of collapsing methods
URI https://api.istex.fr/ark:/67375/WNG-7TWFGCR3-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fgepi.20643
https://www.ncbi.nlm.nih.gov/pubmed/22128052
https://www.proquest.com/docview/1017968850
https://www.proquest.com/docview/911928764
https://pubmed.ncbi.nlm.nih.gov/PMC3277891
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3_a9QwFH-MiSCIX-a3uikRRVDodtcmTSr-IsfupuDQsbH9IqFpX3VMesfuTqZ__d5Lrp2nU9DSH0r70pDkJe-T5OXzAJ71nM6yopJxpSTGTKEVmwR1nNRO0ysmNefDye93s50D-e5IHa3A6_YsTOCH6BbcuGf48Zo7eOGmWxekoZ9xckzzO7KoNACzsxYjor2OO6rP0D9wcLLPUK46btJk6yLpkjW6whV7dhnU_N1j8mck603R8CZ8agsRPFBONuczt1n--IXf8X9LeQtuLDCqeBOU6jasYLMGV0PUyu9rcD0s9YlwgukOfGTA6vmeKVGxIDkR41pQtihaX23xjWbl7HTzimQEO47ypgSLeVWc8JqFCPGsp3fhYLi9P9iJF5Ea4lIqmcaoeiXmtevJIquRQ60nFQ0kGpHsf14TxCgrYxDzqlL9tHJphqY0uiZlcCgrnd6D1Wbc4AMQfeNKPiGrJF2onCtUIktF_yCVqqWL4EXbYrZc0JhzNI2vNhAwJ5arzPoqi-BpJzsJ5B2XSj33Dd-JFKcn7O6mlT3cHVm9fzgcDfZSO4jgSasZljoh76wUDY7nU-vHtcwY1YtA_EGGrEpO09NMRnA_KFOXYUL4gUNLRKCX1KwTYA7w5S_N8RfPBZ4mWpu8H8FLr0V_KaYdbX94658e_ovwOlwLy-h8b8Dq7HSOjwiHzdxj39_OAfc6Lz8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwED7BJgQS4mW8hVcjEBJI2drEjhO-oWptB1sFU6ftmxUnF5iG0mptEfDrubPTjMJAgigfouQcy_bZfnw-PwfwvGN1kuSlDEslMWQKrTCNUIdRZTW9YlJzPpy8N0qGB_LtkTpqfHP4LIznh2gNbtwz3HjNHZwN0ltnrKEfcXpMCzyaUi_COof0diuq_ZY9qsvg37NwstdQplp20mjrLO3KfLTOVfv1PLD5u8_kz1jWTUb96z7i6sxxGLIPysnmYm43i--_MDz-dzlvwLUGpoo3Xq9uwgWsN-CSD1z5bQOuemuf8IeYbsEHxqyO8pkS5Q3PiZhUgvJFsXTXFl9oYc5-N69JRrDvKO9LsJjTximbLYQPaT27DQf97XFvGDbBGsJCKhmHqDoFZpXtyDypkKOtRyWNJRqRIEBWEcooyjRFzMqSWqq0cYJpkeqK9MGiLHV8B9bqSY33QHRTW_AhWSXpQmVtriJZKPoHaVUlbQAvl01miobJnANqfDaegzkyXGXGVVkAz1rZqefvOFfqhWv5ViQ_PWGPN63M4Whg9PiwP-jtx6YXwNOlahjqh7y5ktc4WcyMG9qSNFWdAMQfZGhiyWiFmsgA7nptajOMCEJwdIkA9IqetQJMA776pT7-5OjA40jrNOsG8Mqp0V-KaQbb73fc0_1_EX4Cl4fjvV2zuzN69wCueKs63w9hbX66wEcEy-b2set8PwDDTzNa
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ta9QwGH-YG8pAfJmb1teIIih067VJk4pf5La7zZdjjo3tywhNm-qY9I7tbkz_ep8nuXaeTkFLP5T2aUPSX5Jfkie_B-B5ZGSa5iUPS8FtSBJaoYqtDOPKSLxFoua0OfnjIN3c4-8OxMEcvGn2wnh9iHbCjWqGa6-pgo_Kau1CNPSzHR3h-A571CuwwNNIEabXd1rxqA5xfy_CSU5DmWjFSeO1i3dnuqMFKtnzy7jm7y6TP1NZ1xf1bsJhkwvvgnK8Ohmb1eL7LwKP_5vNW3BjSlLZW4-q2zBn6yW46sNWfluC636uj_ktTHfgEzFWJ_iML-VTlRM2rBgma1njrM3OcFhOXjev0YaR5yitSpCZw-KIJi2YD2h9ugx7vY3d7mY4DdUQFlzwJLQiKmxWmYjnaWUp1npcYksirUUCkFXIMYpSKWuzshSdpDRJalWhZIVoMJaXMlmB-XpY23vAOsoUtEVWcDysMCYXMS8EfgMxVXETwMvmj-liqmNO4TS-aq_AHGsqMu2KLIBnre3Iq3dcavXC_fjWJD85Jn83KfT-oK_l7n6v391JdDeApw0yNNZCWlrJazucnGrXsKVKiSgA9gcb7FYyHJ-mPIC7HkxtgjESCIotEYCcgVlrQCLgs0_qoy9ODDyJpVRZJ4BXDkV_yabub2xvuav7_2L8BK5tr_f0h63B-wew6KfU6XwI8-OTiX2EnGxsHruq9wMpiDIS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+analysis+of+rare+sequence+variants%3A+an+overview+of+collapsing+methods&rft.jtitle=Genetic+epidemiology&rft.au=Dering%2C+Carmen&rft.au=Hemmelmann%2C+Claudia&rft.au=Pugh%2C+Elizabeth&rft.au=Ziegler%2C+Andreas&rft.date=2011&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0741-0395&rft.eissn=1098-2272&rft.volume=35&rft.issue=S1&rft.spage=S12&rft.epage=S17&rft_id=info:doi/10.1002%2Fgepi.20643&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_7TWFGCR3_C
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0741-0395&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0741-0395&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0741-0395&client=summon