Statistical analysis of rare sequence variants: an overview of collapsing methods
With the advent of novel sequencing technologies, interest in the identification of rare variants that influence common traits has increased rapidly. Standard statistical methods, such as the Cochrane‐Armitage trend test or logistic regression, fail in this setting for the analysis of unrelated subj...
Saved in:
Published in | Genetic epidemiology Vol. 35; no. S1; pp. S12 - S17 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the advent of novel sequencing technologies, interest in the identification of rare variants that influence common traits has increased rapidly. Standard statistical methods, such as the Cochrane‐Armitage trend test or logistic regression, fail in this setting for the analysis of unrelated subjects because of the rareness of the variants. Recently, various alternative approaches have been proposed that circumvent the rareness problem by collapsing rare variants in a defined genetic region or sets of regions. We provide an overview of these collapsing methods for association analysis and discuss the use of permutation approaches for significance testing of the data‐adaptive methods. Genet. Epidemiol. 35:S12–S17, 2011. © 2011 Wiley Periodicals, Inc. |
---|---|
AbstractList | With the advent of novel sequencing technologies, interest in the identification of rare variants that influence common traits has increased rapidly. Standard statistical methods, such as the Cochrane-Armitage trend test or logistic regression, fail in this setting for the analysis of unrelated subjects because of the rareness of the variants. Recently, various alternative approaches have been proposed that circumvent the rareness problem by collapsing rare variants in a defined genetic region or sets of regions. We provide an overview of these collapsing methods for association analysis and discuss the use of permutation approaches for significance testing of the data-adaptive methods. With the advent of novel sequencing technologies, interest in the identification of rare variants that influence common traits has increased rapidly. Standard statistical methods, such as the Cochrane-Armitage trend test or logistic regression, fail in this setting for the analysis of unrelated subjects because of the rareness of the variants. Recently, various alternative approaches have been proposed that circumvent the rareness problem by collapsing rare variants in a defined genetic region or sets of regions. We provide an overview of these collapsing methods for association analysis and discuss the use of permutation approaches for significance testing of the data-adaptive methods. Genet. Epidemiol. 35:S12-S17, 2011. copyright 2011 Wiley Periodicals, Inc. With the advent of novel sequencing technologies, interest in the identification of rare variants that influence common traits has increased rapidly. Standard statistical methods, such as the Cochrane‐Armitage trend test or logistic regression, fail in this setting for the analysis of unrelated subjects because of the rareness of the variants. Recently, various alternative approaches have been proposed that circumvent the rareness problem by collapsing rare variants in a defined genetic region or sets of regions. We provide an overview of these collapsing methods for association analysis and discuss the use of permutation approaches for significance testing of the data‐adaptive methods. Genet. Epidemiol . 35:S12–S17, 2011. © 2011 Wiley Periodicals, Inc. With the advent of novel sequencing technologies, interest in the identification of rare variants that influence common traits has increased rapidly. Standard statistical methods, such as the Cochrane-Armitage trend test or logistic regression, fail in this setting for the analysis of unrelated subjects because of the rareness of the variants. Recently, various alternative approaches have been proposed that circumvent the rareness problem by collapsing rare variants in a defined genetic region or sets of regions. We provide an overview of these collapsing methods for association analysis and discuss the use of permutation approaches for significance testing of the data-adaptive methods.With the advent of novel sequencing technologies, interest in the identification of rare variants that influence common traits has increased rapidly. Standard statistical methods, such as the Cochrane-Armitage trend test or logistic regression, fail in this setting for the analysis of unrelated subjects because of the rareness of the variants. Recently, various alternative approaches have been proposed that circumvent the rareness problem by collapsing rare variants in a defined genetic region or sets of regions. We provide an overview of these collapsing methods for association analysis and discuss the use of permutation approaches for significance testing of the data-adaptive methods. With the advent of novel sequencing technologies, interest in the identification of rare variants that influence common traits has increased rapidly. Standard statistical methods, such as the Cochrane‐Armitage trend test or logistic regression, fail in this setting for the analysis of unrelated subjects because of the rareness of the variants. Recently, various alternative approaches have been proposed that circumvent the rareness problem by collapsing rare variants in a defined genetic region or sets of regions. We provide an overview of these collapsing methods for association analysis and discuss the use of permutation approaches for significance testing of the data‐adaptive methods. Genet. Epidemiol. 35:S12–S17, 2011. © 2011 Wiley Periodicals, Inc. |
Author | Dering, Carmen Ziegler, Andreas Hemmelmann, Claudia Pugh, Elizabeth |
AuthorAffiliation | 2 Center for Inherited Disease Research, School of Medicine, Johns Hopkins University, Baltimore, MD 1 Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany |
AuthorAffiliation_xml | – name: 1 Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany – name: 2 Center for Inherited Disease Research, School of Medicine, Johns Hopkins University, Baltimore, MD |
Author_xml | – sequence: 1 givenname: Carmen surname: Dering fullname: Dering, Carmen organization: Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany – sequence: 2 givenname: Claudia surname: Hemmelmann fullname: Hemmelmann, Claudia organization: Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany – sequence: 3 givenname: Elizabeth surname: Pugh fullname: Pugh, Elizabeth organization: Center for Inherited Disease Research, School of Medicine, Johns Hopkins University, Baltimore, MD – sequence: 4 givenname: Andreas surname: Ziegler fullname: Ziegler, Andreas email: ziegler@imbs.uni-luebeck.de organization: Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22128052$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk9vEzEQxS3UiqaBCx8A7Q2EtO3YXq9tDkgoatNKVflX1KPleGdTw2Yd7E1Kvn13mzYChHrywb_3NG_eHJK9NrRIyCsKRxSAHc9x6Y8YlAV_RkYUtMoZk2yPjEAWNAeuxQE5TOkHAKWFFs_JAWOUKRBsRL5862znU-edbTLb2maTfMpCnUUbMUv4a4Wtw2xto7dtl973TBbWGNcebwfMhaaxy-TbebbA7iZU6QXZr22T8OXDOybfT0-uJmf5xafp-eTjRe4KUfAcBTjU9QwKW9ZYAEhWcRASkZWlrikFVymFqKtKUF7NeInKKVmLAmZYVJKPyYet73I1W2DlsO2ibcwy-oWNGxOsN3__tP7GzMPacCal0rQ3ePNgEEMfM3Vm4ZPDPk-LYZWMplQzJfu1jsnbJ0kKVOpSKQE9-vrPqXbjPG68B95tARdDShHrHULBDHWaoU5zX2cPwz-w80NfYUjkm_9L6FZy6xvcPGFupiefzx81-VbTHwL-3mls_GlKyaUw15dTI6-uT6eTr9xM-B0BF8LH |
CitedBy_id | crossref_primary_10_1186_1753_6561_5_S9_S120 crossref_primary_10_1002_gepi_21722 crossref_primary_10_1093_aje_kwac058 crossref_primary_10_1136_jmedgenet_2014_102697 crossref_primary_10_1177_1176934320944932 crossref_primary_10_1186_1753_6561_5_S9_S83 crossref_primary_10_1214_21_AOAS1491 crossref_primary_10_1109_TCBB_2014_2322371 crossref_primary_10_1146_annurev_genom_083115_022609 crossref_primary_10_1186_1753_6561_5_S9_S121 crossref_primary_10_3390_genes9050240 crossref_primary_10_1159_000381286 crossref_primary_10_7717_peerj_3187 crossref_primary_10_1186_1753_6561_5_S9_S119 crossref_primary_10_1186_1753_6561_5_S9_S118 crossref_primary_10_1158_1078_0432_CCR_16_0623 crossref_primary_10_1038_nbt_2422 crossref_primary_10_1038_s10038_019_0577_5 crossref_primary_10_1093_bib_bbu050 crossref_primary_10_1186_s12919_016_0043_8 crossref_primary_10_1016_j_hlpt_2014_08_007 crossref_primary_10_1093_bib_bbaf044 crossref_primary_10_1016_j_gene_2018_03_006 crossref_primary_10_1210_jc_2014_3340 crossref_primary_10_1016_j_stueduc_2021_101084 crossref_primary_10_1134_S1022795421020125 crossref_primary_10_1002_gepi_21714 crossref_primary_10_1186_1753_6561_5_S9_S116 crossref_primary_10_1176_appi_ajp_2013_12091163 crossref_primary_10_1186_1753_6561_5_S9_S115 crossref_primary_10_1016_j_expneurol_2014_04_013 crossref_primary_10_1371_journal_pone_0217314 crossref_primary_10_1186_1753_6561_5_S9_S111 crossref_primary_10_1111_andr_12625 crossref_primary_10_1093_bioinformatics_btz172 crossref_primary_10_1159_000493543 crossref_primary_10_3389_fgene_2014_00062 crossref_primary_10_1186_1471_2105_15_10 crossref_primary_10_1186_1753_6561_8_S1_S49 crossref_primary_10_1002_gepi_22037 crossref_primary_10_1002_gepi_20651 crossref_primary_10_1002_gepi_21783 crossref_primary_10_1186_s12863_015_0182_3 crossref_primary_10_1002_gepi_20655 crossref_primary_10_1002_gepi_21820 crossref_primary_10_1002_gepi_21983 crossref_primary_10_1002_gepi_20658 crossref_primary_10_1007_s00439_013_1377_1 crossref_primary_10_1186_1753_6561_5_S9_S106 crossref_primary_10_1038_s41598_017_15752_4 crossref_primary_10_1186_1753_6561_5_S9_S105 crossref_primary_10_1186_1753_6561_5_S9_S104 crossref_primary_10_1002_gepi_20657 crossref_primary_10_1093_bioinformatics_btw160 crossref_primary_10_1186_1753_6561_5_S9_S103 crossref_primary_10_1186_1753_6561_5_S9_S100 crossref_primary_10_1002_gepi_21826 crossref_primary_10_1158_1055_9965_EPI_23_0634 crossref_primary_10_1038_s41416_021_01589_2 crossref_primary_10_1186_s12885_017_3722_6 crossref_primary_10_1002_sim_8111 crossref_primary_10_1186_1753_6561_8_S1_S109 crossref_primary_10_1515_sagmb_2016_0061 crossref_primary_10_1007_s00439_012_1198_7 crossref_primary_10_3390_brainsci13091233 crossref_primary_10_1002_0471142905_hg0126s78 crossref_primary_10_1016_j_jmb_2020_04_011 crossref_primary_10_1093_bioinformatics_btu496 crossref_primary_10_1186_1753_6561_8_S1_S68 crossref_primary_10_1038_ejhg_2015_25 crossref_primary_10_1186_1753_6561_5_S9_S15 crossref_primary_10_1002_gepi_20647 crossref_primary_10_1371_journal_pone_0190486 crossref_primary_10_3389_fendo_2014_00226 crossref_primary_10_1002_bimj_202300278 crossref_primary_10_1002_gepi_20648 crossref_primary_10_1186_1753_6561_8_S1_S60 crossref_primary_10_1371_journal_pone_0102312 crossref_primary_10_1111_j_1469_1809_2012_00718_x crossref_primary_10_1002_gepi_20649 crossref_primary_10_1016_j_neucom_2021_08_150 crossref_primary_10_1186_1753_6561_5_S9_S53 crossref_primary_10_1038_ng_2827 crossref_primary_10_1142_S1793524518500948 crossref_primary_10_1586_ern_12_165 crossref_primary_10_1177_1099800416633296 crossref_primary_10_1186_s13059_017_1212_4 crossref_primary_10_1016_j_ajhg_2012_06_018 crossref_primary_10_1186_1753_6561_8_S1_S8 crossref_primary_10_1371_journal_pone_0071775 crossref_primary_10_1002_gepi_21691 crossref_primary_10_1093_bib_bbv072 crossref_primary_10_3390_genes15091174 |
Cites_doi | 10.1016/j.ajhg.2010.10.014 10.1146/annurev-genet-102209-163421 10.1093/bioinformatics/btn435 10.1056/NEJMra0905980 10.1016/j.mrfmmm.2006.09.003 10.1186/1471-2105-7-166 10.1038/nrg2626 10.1371/journal.pgen.1001156 10.1002/9783527633654 10.1002/gepi.20450 10.1038/456018a 10.1038/nrg2809 10.1093/nar/gkf493 10.1093/nar/gkg509 10.1371/journal.pone.0013584 10.1093/bioinformatics/btp211 10.1371/journal.pgen.1000384 10.1016/j.ajhg.2008.06.024 10.1038/nature08494 10.1038/nrg2579 10.1007/978-1-4757-2346-5 10.1038/nrg2841 10.1038/nrg2867 10.1016/S0140-6736(02)08218-1 10.1016/j.ajhg.2010.04.005 10.1159/000288704 10.1038/nature09230 10.1086/521032 10.1002/gepi.20005 |
ContentType | Journal Article |
Copyright | 2011 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2011 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 P64 RC3 7X8 5PM |
DOI | 10.1002/gepi.20643 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Statistics |
EISSN | 1098-2272 |
EndPage | S17 |
ExternalDocumentID | PMC3277891 22128052 10_1002_gepi_20643 GEPI20643 ark_67375_WNG_7TWFGCR3_C |
Genre | article Research Support, N.I.H., Intramural Review Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Intramural NIH HHS – fundername: NIGMS NIH HHS grantid: R01 GM031575 – fundername: National Institute of General Medical Sciences : NIGMS grantid: R01 GM031575-25 || GM |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DVXWH EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M66 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWV RX1 RYL SAMSI SUPJJ SV3 UB1 V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WTM WXSBR WYISQ XG1 XV2 ZGI ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 8FD FR3 P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c4543-e50ce9fb04a6fe40072d3057ee2669f110cd88ee9dd513db36e8c87f540be4d73 |
IEDL.DBID | DR2 |
ISSN | 0741-0395 1098-2272 |
IngestDate | Thu Aug 21 18:28:46 EDT 2025 Fri Jul 11 05:29:20 EDT 2025 Fri Jul 11 00:53:43 EDT 2025 Mon Jul 21 06:07:32 EDT 2025 Thu Apr 24 23:10:49 EDT 2025 Tue Jul 01 02:45:07 EDT 2025 Wed Jan 22 16:19:19 EST 2025 Wed Oct 30 09:49:27 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | S1 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2011 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4543-e50ce9fb04a6fe40072d3057ee2669f110cd88ee9dd513db36e8c87f540be4d73 |
Notes | ark:/67375/WNG-7TWFGCR3-C ArticleID:GEPI20643 istex:831A6BA5E4CA3A1529C8CE5E41E16D7FDC716FB2 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 ObjectType-Review-3 |
PMID | 22128052 |
PQID | 1017968850 |
PQPubID | 23462 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3277891 proquest_miscellaneous_911928764 proquest_miscellaneous_1017968850 pubmed_primary_22128052 crossref_primary_10_1002_gepi_20643 crossref_citationtrail_10_1002_gepi_20643 wiley_primary_10_1002_gepi_20643_GEPI20643 istex_primary_ark_67375_WNG_7TWFGCR3_C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011 2011-01-00 2011-00-00 20110101 |
PublicationDateYYYYMMDD | 2011-01-01 |
PublicationDate_xml | – year: 2011 text: 2011 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Genetic epidemiology |
PublicationTitleAlternate | Genet. Epidemiol |
PublicationYear | 2011 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Morgenthaler S, Thilly WG. 2007. A strategy to discover genes that carry multi-allelic or mono-allelic risk for common diseases: a cohort allelic sums test (CAST). Mutat Res 615:28-56. Yue P, Melamud E, Moult J. 2006. SNPs3D: candidate gene and SNP selection for association studies. BMC Bioinform 7:166. Metzker ML. 2009. Sequencing technologies: the next generation. Nat Rev Genet 11:31-46. Li Y, Byrnes AE, Li M. 2010. To identify associations with rare variants, just WHaIT: weighted haplotype and imputation-based tests. Am J Hum Genet 87:728-735. Han F, Pan W. 2010. A data-adaptive sum test for disease association with multiple common or rare variants. Hum Hered 70:42-54. Madsen BE, Browning SR. 2009. A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet 5:e1000384. Petronis A. 2010. Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature 465:721-727. Ziegler A, König IR. 2010. A Statistical Approach to Genetic Epidemiology: Concepts and Applications, 2nd ed. Weinheim, Germany: Wiley-VCH. Easton DF, Deffenbaugh AM, Pruss D, Frye C, Wenstrup RJ, Allen-Brady K, Tavtigian SV, Monteiro AN, Iversen ES, Couch FJ, et al. 2007. A systematic genetic assessment of 1,433 sequence variants of unknown clinical significance in the BRCA1 and BRCA2 breast cancer-predisposition genes. Am J Hum Genet 81:873-883. Li B, Leal SM. 2008. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J Hum Genet 83:311-321. Liu DJ, Leal SM. 2010. A novel adaptive method for the analysis of next-generation sequencing data to detect complex trait associations with rare variants due to gene main effects and interactions. PLoS Genet 6:e1001156. Cordell HJ. 2009. Genome-wide association studies: detecting gene-gene interactions that underlie human diseases. Nat Rev Genet 10:392-404. Maher B. 2008. Personal genomes: the case of the missing heritability. Nature 456:18-21. Qian D. 2004. Haplotype sharing correlation analysis using family data: a comparison with family-based association test in the presence of allelic heterogeneity. Genet Epidemiol 27:43-52. Hoffmann TJ, Marini NJ, Witte JS. 2010. Comprehensive approach to analyzing rare genetic variants. PLoS One 5:e13584. Asimit J, Zeggini E. 2010. Rare variant association analysis methods for complex traits. Annu Rev Genet 44:293-308. Meyerson M, Gabriel S, Getz G. 2010. Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet 11:685-696. Tintle N, Aschard H, Hu I, Nock N, Wang H, Pugh E. 2011. Inflated type I error rates when using aggregation methods to analyze rare variants in the 1000 Genomes Project exon sequencing data in unrelated individuals: summary results from Group 7 at Genetic Analysis Workshop 17. Genet Epidemiol X:X-X. Bansal V, Libiger O, Torkamani A, Schork NJ. 2010. Statistical analysis strategies for association studies involving rare variants. Nat Rev Genet 11:773-785. Morris AP, Zeggini E. 2010. An evaluation of statistical approaches to rare variant analysis in genetic association studies. Genet Epidemiol 34:188-193. Bromberg Y, Yachdav G, Rost B. 2008. SNAP predicts effect of mutations on protein function. Bioinformatics 24:2397-2398. Ramensky V, Bork P, Sunyaev S. 2002. Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30:3894-3900. Ng PC, Henikoff S. 2003. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res 31:3812-3814. Fitze G, Cramer J, Ziegler A, Schierz M, Schreiber M, Kuhlisch E, Roesner D, Schackert HK. 2002. Association between c135G/A genotype and RET proto-oncogene germline mutations and phenotype of Hirschsprung's disease. Lancet 359:1200-1205. Price AL, Kryukov GV, de Bakker PI, Purcell SM, Staples J, Wei LJ, Sunyaev SR. 2010. Pooled association tests for rare variants in exon-resequencing studies. Am J Hum Genet 86:832-838. Good P. 1994. Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses. New York: Springer. Sun YV, Sung YJ, Tintle N, Ziegler A. 2011. Identification of genetic association of multiple rare variants using collapsing methods. Genet Epidemiol X:X-X. Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, Nadeau JH. 2010. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 11:446-450. Manolio TA. 2010. Genomewide association studies and assessment of the risk of disease. New Engl J Med 363:166-176. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, et al. 2009. Finding the missing heritability of complex diseases. Nature 461:747-753. Knijnenburg TA, Wessels LF, Reinders MJ, Shmulevich I. 2009. Fewer permutations, more accurate P-values. Bioinformatics 25:161-168. 2010; 34 2010; 11 2009; 25 2002; 30 2004; 27 2010 2010; 465 2002; 359 2010; 363 2006; 7 1994 2003; 31 2010; 44 2009; 11 2010; 87 2010; 86 2009; 10 2008; 24 2007; 81 2008; 456 2009; 5 2009; 461 2010; 70 2008; 83 2010; 5 2007; 615 2011; X 2010; 6 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 Sun YV (e_1_2_7_29_1) 2011 Tintle N (e_1_2_7_30_1) 2011 |
References_xml | – reference: Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, Nadeau JH. 2010. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 11:446-450. – reference: Morris AP, Zeggini E. 2010. An evaluation of statistical approaches to rare variant analysis in genetic association studies. Genet Epidemiol 34:188-193. – reference: Maher B. 2008. Personal genomes: the case of the missing heritability. Nature 456:18-21. – reference: Ramensky V, Bork P, Sunyaev S. 2002. Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30:3894-3900. – reference: Bansal V, Libiger O, Torkamani A, Schork NJ. 2010. Statistical analysis strategies for association studies involving rare variants. Nat Rev Genet 11:773-785. – reference: Meyerson M, Gabriel S, Getz G. 2010. Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet 11:685-696. – reference: Knijnenburg TA, Wessels LF, Reinders MJ, Shmulevich I. 2009. Fewer permutations, more accurate P-values. Bioinformatics 25:161-168. – reference: Yue P, Melamud E, Moult J. 2006. SNPs3D: candidate gene and SNP selection for association studies. BMC Bioinform 7:166. – reference: Li B, Leal SM. 2008. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J Hum Genet 83:311-321. – reference: Bromberg Y, Yachdav G, Rost B. 2008. SNAP predicts effect of mutations on protein function. Bioinformatics 24:2397-2398. – reference: Han F, Pan W. 2010. A data-adaptive sum test for disease association with multiple common or rare variants. Hum Hered 70:42-54. – reference: Sun YV, Sung YJ, Tintle N, Ziegler A. 2011. Identification of genetic association of multiple rare variants using collapsing methods. Genet Epidemiol X:X-X. – reference: Easton DF, Deffenbaugh AM, Pruss D, Frye C, Wenstrup RJ, Allen-Brady K, Tavtigian SV, Monteiro AN, Iversen ES, Couch FJ, et al. 2007. A systematic genetic assessment of 1,433 sequence variants of unknown clinical significance in the BRCA1 and BRCA2 breast cancer-predisposition genes. Am J Hum Genet 81:873-883. – reference: Hoffmann TJ, Marini NJ, Witte JS. 2010. Comprehensive approach to analyzing rare genetic variants. PLoS One 5:e13584. – reference: Tintle N, Aschard H, Hu I, Nock N, Wang H, Pugh E. 2011. Inflated type I error rates when using aggregation methods to analyze rare variants in the 1000 Genomes Project exon sequencing data in unrelated individuals: summary results from Group 7 at Genetic Analysis Workshop 17. Genet Epidemiol X:X-X. – reference: Liu DJ, Leal SM. 2010. A novel adaptive method for the analysis of next-generation sequencing data to detect complex trait associations with rare variants due to gene main effects and interactions. PLoS Genet 6:e1001156. – reference: Manolio TA. 2010. Genomewide association studies and assessment of the risk of disease. New Engl J Med 363:166-176. – reference: Ziegler A, König IR. 2010. A Statistical Approach to Genetic Epidemiology: Concepts and Applications, 2nd ed. Weinheim, Germany: Wiley-VCH. – reference: Morgenthaler S, Thilly WG. 2007. A strategy to discover genes that carry multi-allelic or mono-allelic risk for common diseases: a cohort allelic sums test (CAST). Mutat Res 615:28-56. – reference: Qian D. 2004. Haplotype sharing correlation analysis using family data: a comparison with family-based association test in the presence of allelic heterogeneity. Genet Epidemiol 27:43-52. – reference: Cordell HJ. 2009. Genome-wide association studies: detecting gene-gene interactions that underlie human diseases. Nat Rev Genet 10:392-404. – reference: Madsen BE, Browning SR. 2009. A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet 5:e1000384. – reference: Good P. 1994. Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses. New York: Springer. – reference: Petronis A. 2010. Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature 465:721-727. – reference: Ng PC, Henikoff S. 2003. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res 31:3812-3814. – reference: Asimit J, Zeggini E. 2010. Rare variant association analysis methods for complex traits. Annu Rev Genet 44:293-308. – reference: Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, et al. 2009. Finding the missing heritability of complex diseases. Nature 461:747-753. – reference: Price AL, Kryukov GV, de Bakker PI, Purcell SM, Staples J, Wei LJ, Sunyaev SR. 2010. Pooled association tests for rare variants in exon-resequencing studies. Am J Hum Genet 86:832-838. – reference: Fitze G, Cramer J, Ziegler A, Schierz M, Schreiber M, Kuhlisch E, Roesner D, Schackert HK. 2002. Association between c135G/A genotype and RET proto-oncogene germline mutations and phenotype of Hirschsprung's disease. Lancet 359:1200-1205. – reference: Li Y, Byrnes AE, Li M. 2010. To identify associations with rare variants, just WHaIT: weighted haplotype and imputation-based tests. Am J Hum Genet 87:728-735. – reference: Metzker ML. 2009. Sequencing technologies: the next generation. Nat Rev Genet 11:31-46. – volume: 87 start-page: 728 year: 2010 end-page: 735 article-title: To identify associations with rare variants, just WHaIT: weighted haplotype and imputation‐based tests publication-title: Am J Hum Genet – volume: 24 start-page: 2397 year: 2008 end-page: 2398 article-title: SNAP predicts effect of mutations on protein function publication-title: Bioinformatics – volume: 11 start-page: 31 year: 2009 end-page: 46 article-title: Sequencing technologies: the next generation publication-title: Nat Rev Genet – volume: 44 start-page: 293 year: 2010 end-page: 308 article-title: Rare variant association analysis methods for complex traits publication-title: Annu Rev Genet – volume: 615 start-page: 28 year: 2007 end-page: 56 article-title: A strategy to discover genes that carry multi‐allelic or mono‐allelic risk for common diseases: a cohort allelic sums test (CAST) publication-title: Mutat Res – volume: 70 start-page: 42 year: 2010 end-page: 54 article-title: A data‐adaptive sum test for disease association with multiple common or rare variants publication-title: Hum Hered – volume: 31 start-page: 3812 year: 2003 end-page: 3814 article-title: SIFT: Predicting amino acid changes that affect protein function publication-title: Nucleic Acids Res – volume: 7 start-page: 166 year: 2006 article-title: SNPs3D: candidate gene and SNP selection for association studies publication-title: BMC Bioinform – volume: X start-page: X year: 2011 end-page: X article-title: Inflated type I error rates when using aggregation methods to analyze rare variants in the 1000 Genomes Project exon sequencing data in unrelated individuals: summary results from Group 7 at Genetic Analysis Workshop 17 publication-title: Genet Epidemiol – volume: 11 start-page: 685 year: 2010 end-page: 696 article-title: Advances in understanding cancer genomes through second‐generation sequencing publication-title: Nat Rev Genet – volume: 11 start-page: 773 year: 2010 end-page: 785 article-title: Statistical analysis strategies for association studies involving rare variants publication-title: Nat Rev Genet – volume: 30 start-page: 3894 year: 2002 end-page: 3900 article-title: Human non‐synonymous SNPs: server and survey publication-title: Nucleic Acids Res – year: 1994 – volume: 34 start-page: 188 year: 2010 end-page: 193 article-title: An evaluation of statistical approaches to rare variant analysis in genetic association studies publication-title: Genet Epidemiol – year: 2010 – volume: 83 start-page: 311 year: 2008 end-page: 321 article-title: Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data publication-title: Am J Hum Genet – volume: 27 start-page: 43 year: 2004 end-page: 52 article-title: Haplotype sharing correlation analysis using family data: a comparison with family‐based association test in the presence of allelic heterogeneity publication-title: Genet Epidemiol – volume: 6 start-page: e1001156 year: 2010 article-title: A novel adaptive method for the analysis of next‐generation sequencing data to detect complex trait associations with rare variants due to gene main effects and interactions publication-title: PLoS Genet – volume: 11 start-page: 446 year: 2010 end-page: 450 article-title: Missing heritability and strategies for finding the underlying causes of complex disease publication-title: Nat Rev Genet – volume: 465 start-page: 721 year: 2010 end-page: 727 article-title: Epigenetics as a unifying principle in the aetiology of complex traits and diseases publication-title: Nature – volume: 363 start-page: 166 year: 2010 end-page: 176 article-title: Genomewide association studies and assessment of the risk of disease publication-title: New Engl J Med – volume: 5 start-page: e1000384 year: 2009 article-title: A groupwise association test for rare mutations using a weighted sum statistic publication-title: PLoS Genet – volume: 5 start-page: e13584 year: 2010 article-title: Comprehensive approach to analyzing rare genetic variants publication-title: PLoS One – volume: 359 start-page: 1200 year: 2002 end-page: 1205 article-title: Association between c135G/A genotype and RET proto‐oncogene germline mutations and phenotype of Hirschsprung's disease publication-title: Lancet – volume: X start-page: X year: 2011 end-page: X article-title: Identification of genetic association of multiple rare variants using collapsing methods publication-title: Genet Epidemiol – volume: 456 start-page: 18 year: 2008 end-page: 21 article-title: Personal genomes: the case of the missing heritability publication-title: Nature – volume: 86 start-page: 832 year: 2010 end-page: 838 article-title: Pooled association tests for rare variants in exon‐resequencing studies publication-title: Am J Hum Genet – volume: 461 start-page: 747 year: 2009 end-page: 753 article-title: Finding the missing heritability of complex diseases publication-title: Nature – volume: 25 start-page: 161 year: 2009 end-page: 168 article-title: Fewer permutations, more accurate ‐values publication-title: Bioinformatics – volume: 81 start-page: 873 year: 2007 end-page: 883 article-title: A systematic genetic assessment of 1,433 sequence variants of unknown clinical significance in the and breast cancer‐predisposition genes publication-title: Am J Hum Genet – volume: 10 start-page: 392 year: 2009 end-page: 404 article-title: Genome‐wide association studies: detecting gene‐gene interactions that underlie human diseases publication-title: Nat Rev Genet – ident: e_1_2_7_14_1 doi: 10.1016/j.ajhg.2010.10.014 – ident: e_1_2_7_2_1 doi: 10.1146/annurev-genet-102209-163421 – ident: e_1_2_7_4_1 doi: 10.1093/bioinformatics/btn435 – ident: e_1_2_7_18_1 doi: 10.1056/NEJMra0905980 – ident: e_1_2_7_22_1 doi: 10.1016/j.mrfmmm.2006.09.003 – ident: e_1_2_7_31_1 doi: 10.1186/1471-2105-7-166 – start-page: X year: 2011 ident: e_1_2_7_29_1 article-title: Identification of genetic association of multiple rare variants using collapsing methods publication-title: Genet Epidemiol – ident: e_1_2_7_20_1 doi: 10.1038/nrg2626 – ident: e_1_2_7_15_1 doi: 10.1371/journal.pgen.1001156 – ident: e_1_2_7_32_1 doi: 10.1002/9783527633654 – ident: e_1_2_7_23_1 doi: 10.1002/gepi.20450 – ident: e_1_2_7_17_1 doi: 10.1038/456018a – ident: e_1_2_7_7_1 doi: 10.1038/nrg2809 – ident: e_1_2_7_28_1 doi: 10.1093/nar/gkf493 – ident: e_1_2_7_24_1 doi: 10.1093/nar/gkg509 – ident: e_1_2_7_11_1 doi: 10.1371/journal.pone.0013584 – ident: e_1_2_7_12_1 doi: 10.1093/bioinformatics/btp211 – ident: e_1_2_7_16_1 doi: 10.1371/journal.pgen.1000384 – ident: e_1_2_7_13_1 doi: 10.1016/j.ajhg.2008.06.024 – ident: e_1_2_7_19_1 doi: 10.1038/nature08494 – ident: e_1_2_7_5_1 doi: 10.1038/nrg2579 – ident: e_1_2_7_9_1 doi: 10.1007/978-1-4757-2346-5 – ident: e_1_2_7_21_1 doi: 10.1038/nrg2841 – start-page: X year: 2011 ident: e_1_2_7_30_1 article-title: Inflated type I error rates when using aggregation methods to analyze rare variants in the 1000 Genomes Project exon sequencing data in unrelated individuals: summary results from Group 7 at Genetic Analysis Workshop 17 publication-title: Genet Epidemiol – ident: e_1_2_7_3_1 doi: 10.1038/nrg2867 – ident: e_1_2_7_8_1 doi: 10.1016/S0140-6736(02)08218-1 – ident: e_1_2_7_26_1 doi: 10.1016/j.ajhg.2010.04.005 – ident: e_1_2_7_10_1 doi: 10.1159/000288704 – ident: e_1_2_7_25_1 doi: 10.1038/nature09230 – ident: e_1_2_7_6_1 doi: 10.1086/521032 – ident: e_1_2_7_27_1 doi: 10.1002/gepi.20005 |
SSID | ssj0011495 |
Score | 2.2864482 |
SecondaryResourceType | review_article |
Snippet | With the advent of novel sequencing technologies, interest in the identification of rare variants that influence common traits has increased rapidly. Standard... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | S12 |
SubjectTerms | association Association analysis collapsing methods collection of rare variants common disease/rare variant hypothesis contingency table generalized linear model Genetic Predisposition to Disease Humans Models, Genetic Models, Statistical Molecular Epidemiology - methods next-generation sequencing pooling methods Reviews Sequence Analysis Statistical analysis Statistics |
Title | Statistical analysis of rare sequence variants: an overview of collapsing methods |
URI | https://api.istex.fr/ark:/67375/WNG-7TWFGCR3-C/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fgepi.20643 https://www.ncbi.nlm.nih.gov/pubmed/22128052 https://www.proquest.com/docview/1017968850 https://www.proquest.com/docview/911928764 https://pubmed.ncbi.nlm.nih.gov/PMC3277891 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3_a9QwFH-MiSCIX-a3uikRRVDodtcmTSr-IsfupuDQsbH9IqFpX3VMesfuTqZ__d5Lrp2nU9DSH0r70pDkJe-T5OXzAJ71nM6yopJxpSTGTKEVmwR1nNRO0ysmNefDye93s50D-e5IHa3A6_YsTOCH6BbcuGf48Zo7eOGmWxekoZ9xckzzO7KoNACzsxYjor2OO6rP0D9wcLLPUK46btJk6yLpkjW6whV7dhnU_N1j8mck603R8CZ8agsRPFBONuczt1n--IXf8X9LeQtuLDCqeBOU6jasYLMGV0PUyu9rcD0s9YlwgukOfGTA6vmeKVGxIDkR41pQtihaX23xjWbl7HTzimQEO47ypgSLeVWc8JqFCPGsp3fhYLi9P9iJF5Ea4lIqmcaoeiXmtevJIquRQ60nFQ0kGpHsf14TxCgrYxDzqlL9tHJphqY0uiZlcCgrnd6D1Wbc4AMQfeNKPiGrJF2onCtUIktF_yCVqqWL4EXbYrZc0JhzNI2vNhAwJ5arzPoqi-BpJzsJ5B2XSj33Dd-JFKcn7O6mlT3cHVm9fzgcDfZSO4jgSasZljoh76wUDY7nU-vHtcwY1YtA_EGGrEpO09NMRnA_KFOXYUL4gUNLRKCX1KwTYA7w5S_N8RfPBZ4mWpu8H8FLr0V_KaYdbX94658e_ovwOlwLy-h8b8Dq7HSOjwiHzdxj39_OAfc6Lz8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwED7BJgQS4mW8hVcjEBJI2drEjhO-oWptB1sFU6ftmxUnF5iG0mptEfDrubPTjMJAgigfouQcy_bZfnw-PwfwvGN1kuSlDEslMWQKrTCNUIdRZTW9YlJzPpy8N0qGB_LtkTpqfHP4LIznh2gNbtwz3HjNHZwN0ltnrKEfcXpMCzyaUi_COof0diuq_ZY9qsvg37NwstdQplp20mjrLO3KfLTOVfv1PLD5u8_kz1jWTUb96z7i6sxxGLIPysnmYm43i--_MDz-dzlvwLUGpoo3Xq9uwgWsN-CSD1z5bQOuemuf8IeYbsEHxqyO8pkS5Q3PiZhUgvJFsXTXFl9oYc5-N69JRrDvKO9LsJjTximbLYQPaT27DQf97XFvGDbBGsJCKhmHqDoFZpXtyDypkKOtRyWNJRqRIEBWEcooyjRFzMqSWqq0cYJpkeqK9MGiLHV8B9bqSY33QHRTW_AhWSXpQmVtriJZKPoHaVUlbQAvl01miobJnANqfDaegzkyXGXGVVkAz1rZqefvOFfqhWv5ViQ_PWGPN63M4Whg9PiwP-jtx6YXwNOlahjqh7y5ktc4WcyMG9qSNFWdAMQfZGhiyWiFmsgA7nptajOMCEJwdIkA9IqetQJMA776pT7-5OjA40jrNOsG8Mqp0V-KaQbb73fc0_1_EX4Cl4fjvV2zuzN69wCueKs63w9hbX66wEcEy-b2set8PwDDTzNa |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ta9QwGH-YG8pAfJmb1teIIih067VJk4pf5La7zZdjjo3tywhNm-qY9I7tbkz_ep8nuXaeTkFLP5T2aUPSX5Jfkie_B-B5ZGSa5iUPS8FtSBJaoYqtDOPKSLxFoua0OfnjIN3c4-8OxMEcvGn2wnh9iHbCjWqGa6-pgo_Kau1CNPSzHR3h-A571CuwwNNIEabXd1rxqA5xfy_CSU5DmWjFSeO1i3dnuqMFKtnzy7jm7y6TP1NZ1xf1bsJhkwvvgnK8Ohmb1eL7LwKP_5vNW3BjSlLZW4-q2zBn6yW46sNWfluC636uj_ktTHfgEzFWJ_iML-VTlRM2rBgma1njrM3OcFhOXjev0YaR5yitSpCZw-KIJi2YD2h9ugx7vY3d7mY4DdUQFlzwJLQiKmxWmYjnaWUp1npcYksirUUCkFXIMYpSKWuzshSdpDRJalWhZIVoMJaXMlmB-XpY23vAOsoUtEVWcDysMCYXMS8EfgMxVXETwMvmj-liqmNO4TS-aq_AHGsqMu2KLIBnre3Iq3dcavXC_fjWJD85Jn83KfT-oK_l7n6v391JdDeApw0yNNZCWlrJazucnGrXsKVKiSgA9gcb7FYyHJ-mPIC7HkxtgjESCIotEYCcgVlrQCLgs0_qoy9ODDyJpVRZJ4BXDkV_yabub2xvuav7_2L8BK5tr_f0h63B-wew6KfU6XwI8-OTiX2EnGxsHruq9wMpiDIS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+analysis+of+rare+sequence+variants%3A+an+overview+of+collapsing+methods&rft.jtitle=Genetic+epidemiology&rft.au=Dering%2C+Carmen&rft.au=Hemmelmann%2C+Claudia&rft.au=Pugh%2C+Elizabeth&rft.au=Ziegler%2C+Andreas&rft.date=2011&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0741-0395&rft.eissn=1098-2272&rft.volume=35&rft.issue=S1&rft.spage=S12&rft.epage=S17&rft_id=info:doi/10.1002%2Fgepi.20643&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_7TWFGCR3_C |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0741-0395&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0741-0395&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0741-0395&client=summon |