Cell wall modification by the xyloglucan endotransglucosylase/hydrolase XTH19 influences freezing tolerance after cold and sub‐zero acclimation
Freezing triggers extracellular ice formation leading to cell dehydration and deformation during a freeze–thaw cycle. Many plant species increase their freezing tolerance during exposure to low, non‐freezing temperatures, a process termed cold acclimation. In addition, exposure to mild freezing temp...
Saved in:
Published in | Plant, cell and environment Vol. 44; no. 3; pp. 915 - 930 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.03.2021
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Freezing triggers extracellular ice formation leading to cell dehydration and deformation during a freeze–thaw cycle. Many plant species increase their freezing tolerance during exposure to low, non‐freezing temperatures, a process termed cold acclimation. In addition, exposure to mild freezing temperatures after cold acclimation evokes a further increase in freezing tolerance (sub‐zero acclimation). Previous transcriptome and proteome analyses indicate that cell wall remodelling may be particularly important for sub‐zero acclimation. In the present study, we used a combination of immunohistochemical, chemical and spectroscopic analyses to characterize the cell walls of Arabidopsis thaliana and characterized a mutant in the XTH19 gene, encoding a xyloglucan endotransglucosylase/hydrolase (XTH). The mutant showed reduced freezing tolerance after both cold and sub‐zero acclimation, compared to the Col‐0 wild type, which was associated with differences in cell wall composition and structure. Most strikingly, immunohistochemistry in combination with 3D reconstruction of centres of rosette indicated that epitopes of the xyloglucan‐specific antibody LM25 were highly abundant in the vasculature of Col‐0 plants after sub‐zero acclimation but absent in the XTH19 mutant. Taken together, our data shed new light on the potential roles of cell wall remodelling for the increased freezing tolerance observed after low temperature acclimation.
xth19 mutant had reduced freezing tolerance after cold or sub‐zero acclimation. Microscopic and biochemical characterization of the cell wall indicated altered xyloglucan deposition in xth19 after sub‐zero acclimation showing the importance of cell wall remodelling for increased freezing tolerance. |
---|---|
AbstractList | Freezing triggers extracellular ice formation leading to cell dehydration and deformation during a freeze–thaw cycle. Many plant species increase their freezing tolerance during exposure to low, non‐freezing temperatures, a process termed cold acclimation. In addition, exposure to mild freezing temperatures after cold acclimation evokes a further increase in freezing tolerance (sub‐zero acclimation). Previous transcriptome and proteome analyses indicate that cell wall remodelling may be particularly important for sub‐zero acclimation. In the present study, we used a combination of immunohistochemical, chemical and spectroscopic analyses to characterize the cell walls of
Arabidopsis thaliana
and characterized a mutant in the
XTH19
gene, encoding a xyloglucan endotransglucosylase/hydrolase (XTH). The mutant showed reduced freezing tolerance after both cold and sub‐zero acclimation, compared to the Col‐0 wild type, which was associated with differences in cell wall composition and structure. Most strikingly, immunohistochemistry in combination with 3D reconstruction of centres of rosette indicated that epitopes of the xyloglucan‐specific antibody LM25 were highly abundant in the vasculature of Col‐0 plants after sub‐zero acclimation but absent in the
XTH19
mutant. Taken together, our data shed new light on the potential roles of cell wall remodelling for the increased freezing tolerance observed after low temperature acclimation.
xth19
mutant had reduced freezing tolerance after cold or sub‐zero acclimation. Microscopic and biochemical characterization of the cell wall indicated altered xyloglucan deposition in
xth19
after sub‐zero acclimation showing the importance of cell wall remodelling for increased freezing tolerance. Freezing triggers extracellular ice formation leading to cell dehydration and deformation during a freeze-thaw cycle. Many plant species increase their freezing tolerance during exposure to low, non-freezing temperatures, a process termed cold acclimation. In addition, exposure to mild freezing temperatures after cold acclimation evokes a further increase in freezing tolerance (sub-zero acclimation). Previous transcriptome and proteome analyses indicate that cell wall remodelling may be particularly important for sub-zero acclimation. In the present study, we used a combination of immunohistochemical, chemical and spectroscopic analyses to characterize the cell walls of Arabidopsis thaliana and characterized a mutant in the XTH19 gene, encoding a xyloglucan endotransglucosylase/hydrolase (XTH). The mutant showed reduced freezing tolerance after both cold and sub-zero acclimation, compared to the Col-0 wild type, which was associated with differences in cell wall composition and structure. Most strikingly, immunohistochemistry in combination with 3D reconstruction of centres of rosette indicated that epitopes of the xyloglucan-specific antibody LM25 were highly abundant in the vasculature of Col-0 plants after sub-zero acclimation but absent in the XTH19 mutant. Taken together, our data shed new light on the potential roles of cell wall remodelling for the increased freezing tolerance observed after low temperature acclimation. Freezing triggers extracellular ice formation leading to cell dehydration and deformation during a freeze–thaw cycle. Many plant species increase their freezing tolerance during exposure to low, non‐freezing temperatures, a process termed cold acclimation. In addition, exposure to mild freezing temperatures after cold acclimation evokes a further increase in freezing tolerance (sub‐zero acclimation). Previous transcriptome and proteome analyses indicate that cell wall remodelling may be particularly important for sub‐zero acclimation. In the present study, we used a combination of immunohistochemical, chemical and spectroscopic analyses to characterize the cell walls of Arabidopsis thaliana and characterized a mutant in the XTH19 gene, encoding a xyloglucan endotransglucosylase/hydrolase (XTH). The mutant showed reduced freezing tolerance after both cold and sub‐zero acclimation, compared to the Col‐0 wild type, which was associated with differences in cell wall composition and structure. Most strikingly, immunohistochemistry in combination with 3D reconstruction of centres of rosette indicated that epitopes of the xyloglucan‐specific antibody LM25 were highly abundant in the vasculature of Col‐0 plants after sub‐zero acclimation but absent in the XTH19 mutant. Taken together, our data shed new light on the potential roles of cell wall remodelling for the increased freezing tolerance observed after low temperature acclimation. xth19 mutant had reduced freezing tolerance after cold or sub‐zero acclimation. Microscopic and biochemical characterization of the cell wall indicated altered xyloglucan deposition in xth19 after sub‐zero acclimation showing the importance of cell wall remodelling for increased freezing tolerance. |
Author | Takahashi, Daisuke Livingston, David P. Nishitani, Kazuhiko Yokoyama, Ryusuke Tuong, Tan Bacic, Antony Kuroha, Takeshi Zuther, Ellen Erban, Alexander Hao, Pengfei Hincha, Dirk K. Johnson, Kim L. Kopka, Joachim Sampathkumar, Arun |
Author_xml | – sequence: 1 givenname: Daisuke surname: Takahashi fullname: Takahashi, Daisuke email: dtakahashi@mail.saitama-u.ac.jp organization: Saitama University – sequence: 2 givenname: Kim L. surname: Johnson fullname: Johnson, Kim L. organization: Zhejiang A&F University – sequence: 3 givenname: Pengfei surname: Hao fullname: Hao, Pengfei organization: Zhejiang A&F University – sequence: 4 givenname: Tan surname: Tuong fullname: Tuong, Tan organization: North Carolina State University – sequence: 5 givenname: Alexander surname: Erban fullname: Erban, Alexander organization: Max‐Planck‐Institut für Molekulare Pflanzenphysiologie – sequence: 6 givenname: Arun surname: Sampathkumar fullname: Sampathkumar, Arun organization: Max‐Planck‐Institut für Molekulare Pflanzenphysiologie – sequence: 7 givenname: Antony surname: Bacic fullname: Bacic, Antony organization: Zhejiang A&F University – sequence: 8 givenname: David P. surname: Livingston fullname: Livingston, David P. organization: North Carolina State University – sequence: 9 givenname: Joachim surname: Kopka fullname: Kopka, Joachim organization: Max‐Planck‐Institut für Molekulare Pflanzenphysiologie – sequence: 10 givenname: Takeshi surname: Kuroha fullname: Kuroha, Takeshi organization: National Agriculture and Food Organization (NARO) – sequence: 11 givenname: Ryusuke surname: Yokoyama fullname: Yokoyama, Ryusuke organization: Tohoku University – sequence: 12 givenname: Kazuhiko surname: Nishitani fullname: Nishitani, Kazuhiko organization: Kanagawa University – sequence: 13 givenname: Ellen orcidid: 0000-0002-7446-0515 surname: Zuther fullname: Zuther, Ellen email: zuther@mpimp-golm.mpg.de organization: Max‐Planck‐Institut für Molekulare Pflanzenphysiologie – sequence: 14 givenname: Dirk K. orcidid: 0000-0001-6887-4933 surname: Hincha fullname: Hincha, Dirk K. organization: Max‐Planck‐Institut für Molekulare Pflanzenphysiologie |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33190295$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kcFO3DAQhq0KVBbaQ1-gstRLOYT1xHYsH6sVLZWQ2gNI3CLHnkCQ197aiSCc-gjtK_Ik9bK0h0r4YHusb37PzH9I9kIMSMg7YCdQ1nJj8QS4lvwVWQBvZMWZYHtkwUCwSikNB-Qw51vGyoPSr8kB56BZreWC_F6h9_TOlG0d3dAP1oxDDLSb6XiD9H728dpP1gSKwcUxmZC3ccyzNxmXN7NLcXujVxdnoOkQej9hsJhpnxAfhnBNx-ix5Fmkph8xURu9oyY4mqfu8eevB0yRGmv9sH76-g3Z743P-Pb5PCKXn08vVmfV-bcvX1efzisrpOCV4A64tdww06ieaelq2YhGCWTSCIvKSQThuLGlU1AcjGG1gM51CpiFhh-RjzvdTYo_Jsxjux6yLdMwAeOU21o0sB2YlAX98B96G6cUSnWF0kxpreu6UMc7yqaYc8K-3aTSU5pbYO3Wp7b41D75VNj3z4pTt0b3j_xrTAGWO-Bu8Di_rNR-X53uJP8AqNKgxA |
CitedBy_id | crossref_primary_10_1016_j_plaphy_2022_11_002 crossref_primary_10_3390_plants11081015 crossref_primary_10_3390_ijms24076603 crossref_primary_10_3390_plants10010122 crossref_primary_10_1111_pbi_13729 crossref_primary_10_3390_ijms242115892 crossref_primary_10_3390_ijms24010775 crossref_primary_10_3390_su141811170 crossref_primary_10_3389_fpls_2021_730718 crossref_primary_10_3390_ijms232416104 crossref_primary_10_1007_s10265_021_01361_w crossref_primary_10_1111_ppl_13876 crossref_primary_10_1111_pce_14611 crossref_primary_10_1111_ppl_13837 crossref_primary_10_3389_fpls_2022_1099677 crossref_primary_10_3389_fgene_2022_968494 crossref_primary_10_1016_j_ijbiomac_2023_126891 crossref_primary_10_1111_ppl_13793 crossref_primary_10_1111_ppl_14167 crossref_primary_10_1016_j_cub_2024_01_045 crossref_primary_10_1186_s12870_024_05121_5 crossref_primary_10_3390_ijms23031656 crossref_primary_10_7717_peerj_13546 crossref_primary_10_1007_s00122_022_04207_8 crossref_primary_10_1093_pcp_pcab103 crossref_primary_10_3390_plants10081712 crossref_primary_10_1111_pce_14917 crossref_primary_10_1186_s12870_024_05370_4 crossref_primary_10_3389_fpls_2024_1340867 crossref_primary_10_1093_icb_icae004 crossref_primary_10_1111_ppl_13865 crossref_primary_10_1111_ppl_14217 crossref_primary_10_3389_fpls_2023_1069055 crossref_primary_10_1111_ppl_13820 crossref_primary_10_3389_fpls_2021_751372 crossref_primary_10_3389_fpls_2024_1343787 crossref_primary_10_54680_fr24410110512 crossref_primary_10_1111_ppl_14231 crossref_primary_10_1093_jxb_erac108 crossref_primary_10_1016_j_scienta_2023_112628 crossref_primary_10_1038_s41467_022_31022_y crossref_primary_10_1111_ppl_13740 crossref_primary_10_1515_biol_2022_0613 crossref_primary_10_1016_j_lssr_2024_02_004 |
Cites_doi | 10.1093/jxb/ert107 10.1111/j.1365-313X.2004.02018.x 10.1093/aob/mcm329 10.1038/s41598-019-38688-3 10.1002/j.1460-2075.1987.tb02730.x 10.1111/pce.12838 10.2135/cropsci1996.0011183X003600060027x 10.1007/s11103-014-0256-z 10.1111/j.1365-3040.2012.02522.x 10.1006/cryo.1993.1031 10.1111/pce.13502 10.1093/jxb/ern164 10.1146/annurev.pp.35.060184.002551 10.1371/journal.pone.0053468 10.1006/anbo.1999.0924 10.1016/j.tplants.2008.05.008 10.1104/pp.110.156844 10.1007/BF01297350 10.3389/fpls.2013.00090 10.1093/pcp/pcg117 10.2135/cropsci2009.02.0077 10.1093/jxb/erx450 10.1146/annurev-arplant-043015-112222 10.1038/nprot.2012.081 10.1016/j.phytochem.2012.09.001 10.1074/jbc.M112.396598 10.3389/fcell.2015.00010 10.1093/jxb/erq263 10.1016/j.jplph.2018.01.003 10.1016/j.copbio.2017.08.013 10.1016/S0168-9452(99)00122-3 10.1093/pcp/pci013 10.1111/nph.15696 10.1007/s10265-006-0262-6 10.1105/tpc.112.106039 10.1104/pp.116.1.403 10.3389/fpls.2014.00771 10.1104/pp.111.189779 10.1104/pp.98.2.646 10.1007/s00425-017-2823-4 10.1093/pcp/pcu204 10.1016/0008-6215(96)00142-5 10.1111/j.1399-3054.2007.00999.x 10.1093/glycob/cww029 10.1111/tpj.14519 10.1007/s00425-007-0591-2 10.3109/10520298509113928 10.1111/nph.16209 10.1093/pcp/pcf171 10.1016/j.cryobiol.2008.06.004 10.1371/journal.pgen.1005471 10.1021/jf100242z 10.1007/978-1-0716-0660-5_17 10.1007/BF00395139 10.1093/treephys/tpq059 10.1111/nph.12812 10.1016/j.tplants.2004.06.007 10.1104/pp.109.1.15 10.1002/9783527632930.ch11 10.1007/s00018-019-03388-8 10.1016/S0003-2697(69)80009-6 10.1104/pp.113.2.327 10.1104/pp.111.2.597 10.1016/S0008-6215(00)80510-8 10.1104/pp.93.3.1021 10.1007/BF01160398 10.1186/1471-2229-8-60 10.1007/s004250000393 10.1105/tpc.108.059873 10.1104/pp.111.2.605 10.1093/treephys/27.12.1661 10.2135/cropsci1984.0011183X002400010012x 10.1007/978-1-4939-0844-8_3 10.1016/j.actbio.2015.10.032 10.1007/978-1-4939-0844-8_11 10.1111/tpj.12654 10.1104/pp.110.161794 10.1016/j.cryobiol.2006.12.004 10.1007/BF00396336 10.1104/pp.106.081141 10.1111/j.1469-8137.2012.04239.x |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by John Wiley & Sons Ltd. 2020 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd. 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. published by John Wiley & Sons Ltd. – notice: 2020 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd. – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN NPM AAYXX CITATION 7QP 7ST C1K SOI 7X8 |
DOI | 10.1111/pce.13953 |
DatabaseName | Wiley Open Access Wiley Online Library Open Access PubMed CrossRef Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Calcium & Calcified Tissue Abstracts |
Database_xml | – sequence: 1 dbid: 24P name: Wiley-Blackwell Open Access Collection url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Botany |
EISSN | 1365-3040 |
EndPage | 930 |
ExternalDocumentID | 10_1111_pce_13953 33190295 PCE13953 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Japan Society for the Promotion of Science funderid: 27328, 20K15494 – fundername: Alexander von Humboldt‐Stiftung funderid: Postdoctoral Fellowship – fundername: Deutsche Forschungsgemeinschaft funderid: CRC 973, A3 – fundername: Deutsche Forschungsgemeinschaft grantid: CRC 973, A3 – fundername: Alexander von Humboldt-Stiftung grantid: Postdoctoral Fellowship – fundername: Japan Society for the Promotion of Science grantid: 27328, 20K15494 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 186 1OB 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AETEA AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BIYOS BMNLL BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FIJ FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ UB1 W8V W99 WBKPD WH7 WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XSW YNT ZZTAW ~02 ~IA ~KM ~WT NPM AAMNL AAYXX ACRPL CITATION 7QP 7ST C1K SOI 7X8 |
ID | FETCH-LOGICAL-c4543-43d13cc3a0a67f095d2564674e05a4ce7d5e14d3ac9021731aa0241bdb710c163 |
IEDL.DBID | 24P |
ISSN | 0140-7791 |
IngestDate | Wed Dec 04 14:54:42 EST 2024 Thu Oct 10 17:34:28 EDT 2024 Fri Dec 06 03:44:19 EST 2024 Sat Sep 28 08:28:42 EDT 2024 Sat Aug 24 01:02:26 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Arabidopsis thaliana cell wall remodeling apoplast Abiotic stress xyloglucan immunohistochemistry extracellular matrix |
Language | English |
License | Attribution 2020 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4543-43d13cc3a0a67f095d2564674e05a4ce7d5e14d3ac9021731aa0241bdb710c163 |
Notes | Funding information Alexander von Humboldt‐Stiftung, Grant/Award Number: Postdoctoral Fellowship; Deutsche Forschungsgemeinschaft, Grant/Award Number: CRC 973, A3; Japan Society for the Promotion of Science, Grant/Award Number: 27328, 20K15494 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6887-4933 0000-0002-7446-0515 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.13953 |
PMID | 33190295 |
PQID | 2490799922 |
PQPubID | 37957 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2461001455 proquest_journals_2490799922 crossref_primary_10_1111_pce_13953 pubmed_primary_33190295 wiley_primary_10_1111_pce_13953_PCE13953 |
PublicationCentury | 2000 |
PublicationDate | March 2021 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
PublicationDecade | 2020 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: United States – name: Oxford |
PublicationTitle | Plant, cell and environment |
PublicationTitleAlternate | Plant Cell Environ |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc |
References | 2017; 40 1997; 113 2012; 287 2013; 4 1965; 12 2007; 226 2010; 58 1987; 6 2011; 62 2013; 64 1969; 32 2004; 9 1984; 24 1985; 125 1990; 180 2008; 8 1985; 60 1999; 84 1998; 116 1996; 36 2008; 101 1992; 98 2013; 8 2018; 49 2009; 49 1985; 163 2001; 212 2004; 38 2018a; 139 2002; 43 1993; 30 2015; 87 2010; 154 1996; 293 2010; 153 1988; 175 2008; 20 2012; 24 2020; 2156 2010; 30 2014; 203 2003; 44 1990; 93 2007; 27 2015; 56 2019; 9 2006; 119 2015; 5 2015; 3 2012 2010 2018; 222 2015; 11 2013; 85 2008; 59 2008; 57 2019; 224 2008; 13 2014; 1166 2020; 77 2007; 54 2012; 35 1999; 148 2019; 100 2019; 222 2005; 46 2018; 69 2014; 86 2012; 195 2014; 80 2019; 42 1967; 5 1984; 35 1995; 109 2006; 142 1996; 111 2016; 29 2012; 158 2012; 7 2008; 132 2016; 26 2018b; 247 2016; 67 e_1_2_7_5_1 e_1_2_7_3_1 Livingston D. P. (e_1_2_7_37_1) 2018; 139 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 Crosby K. (e_1_2_7_9_1) 2014; 86 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 Neumetzler L. (e_1_2_7_44_1) 2010 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 Trunova T. (e_1_2_7_72_1) 1965; 12 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_65_1 e_1_2_7_86_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 |
References_xml | – volume: 222 start-page: 67 year: 2018 end-page: 78 article-title: A cold‐induced pectin methyl‐esterase inhibitor gene contributes negatively to freezing tolerance but positively to salt tolerance in publication-title: Journal of Plant Physiology – volume: 5 start-page: 771 year: 2015 article-title: Cell wall remodeling under abiotic stress publication-title: Frontiers in Plant Science – volume: 9 start-page: 2289 year: 2019 article-title: Both cold and sub‐zero acclimation induce cell wall modification and changes in the extracellular proteome in publication-title: Scientific Reports – volume: 42 start-page: 854 issue: 3 year: 2019 end-page: 873 article-title: Molecular signatures associated with increased freezing tolerance due to low temperature memory in publication-title: Plant, Cell & Environment – volume: 148 start-page: 59 issue: 1 year: 1999 end-page: 67 article-title: Low temperature‐induced modifications of cell wall content and polysaccharide composition in leaves of winter oilseed rape ( L. var. L.) publication-title: Plant Science – volume: 87 start-page: 1 year: 2015 end-page: 15 article-title: Global changes in gene expression, assayed by microarray hybridization and quantitative RT‐PCR, during acclimation of three accessions to sub‐zero temperatures after cold acclimation publication-title: Plant Molecular Biology – volume: 64 start-page: 2481 issue: 8 year: 2013 end-page: 2497 article-title: Xyloglucan endotransglucosylase/hydrolase (XTH) overexpression affects growth and cell wall mechanics in etiolated hypocotyls publication-title: Journal of Experimental Botany – volume: 35 start-page: 1860 issue: 10 year: 2012 end-page: 1878 article-title: Clinal variation in the non‐acclimated and cold‐acclimated freezing tolerance of accessions publication-title: Plant, Cell & Environment – volume: 139 year: 2018a article-title: Protocol for producing three‐dimensional infrared video of freezing in plants publication-title: Journal of Visualized Experiments – volume: 287 start-page: 39429 issue: 47 year: 2012 end-page: 39438 article-title: Versatile high resolution oligosaccharide microarrays for plant glycobiology and cell wall research publication-title: Journal of Biological Chemistry – volume: 93 start-page: 1021 issue: 3 year: 1990 end-page: 1026 article-title: Cell wall and extensin mRNA changes during cold acclimation of pea seedlings publication-title: Plant Physiology – volume: 98 start-page: 646 issue: 2 year: 1992 end-page: 653 article-title: Changes in esterification of the uronic acid groups of cell wall polysaccharides during elongation of maize coleoptiles publication-title: Plant Physiology – volume: 54 start-page: 154 issue: 2 year: 2007 end-page: 163 article-title: Using as a model to study subzero acclimation in small grains publication-title: Cryobiology – volume: 40 start-page: 108 issue: 1 year: 2017 end-page: 120 article-title: is a transcription factor gene of required for freezing tolerance and cold acclimation publication-title: Plant, Cell & Environment – volume: 3 start-page: 10 year: 2015 article-title: Multi‐omics analysis identifies genes mediating the extension of cell walls in the root elongation zone publication-title: Frontiers in Cell and Development Biology – volume: 226 start-page: 1547 year: 2007 end-page: 1560 article-title: A xyloglucan endotransglucosylase/hydrolase involves in growth of primary root and alters the deposition of cellulose in publication-title: Planta – start-page: 255 year: 2012 end-page: 287 – volume: 5 start-page: 340 issue: 3 year: 1967 end-page: 345 article-title: A method for the analysis of sugars in plant cell‐wall polysaccharides by gas‐liquid chromatography publication-title: Carbohydrate Research – volume: 24 start-page: 51 issue: 1 year: 1984 end-page: 54 article-title: An adaptive response of rye to freezing publication-title: Crop Science – volume: 30 start-page: 322 issue: 3 year: 1993 end-page: 328 article-title: Thermal hysteresis protein activity in bacteria, fungi, and phylogenetically diverse plants publication-title: Cryobiology – volume: 86 start-page: e50641 year: 2014 end-page: 50646 article-title: Immunohistochemistry protocol for paraffin‐embedded tissue sections advertisement publication-title: Cell Signal.Technol – volume: 111 start-page: 597 issue: 2 year: 1996 end-page: 603 article-title: Freezing characteristics of rigid plant tissues (development of cell tension during extracellular freezing) publication-title: Plant Physiology – volume: 58 start-page: 5708 issue: 9 year: 2010 end-page: 5713 article-title: Overexpression of a cell wall enzyme reduces xyloglucan depolymerization and softening of transgenic tomato fruits publication-title: Journal of Agricultural and Food Chemistry – volume: 222 start-page: 1690 issue: 4 year: 2019 end-page: 1704 article-title: Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants publication-title: New Phytologist – volume: 12 start-page: 70 year: 1965 end-page: 77 article-title: Light and temperature systems in the hardening of winter wheat and the significance of oligosaccharides for frost resistance publication-title: Soviet Plant Physiology – volume: 100 start-page: 1101 issue: 6 year: 2019 end-page: 1117 article-title: Disentangling loosening from softening: Insights into primary cell wall structure publication-title: Plant Journal – volume: 247 start-page: 791 issue: 4 year: 2018b end-page: 806 article-title: High‐definition infrared thermography of ice nucleation and propagation in wheat under natural frost conditions and controlled freezing publication-title: Planta – volume: 125 start-page: 53 issue: 1–2 year: 1985 end-page: 64 article-title: Lipid polymers accumulate in the epidermis and mestome sheath cell walls during low temperature development of winter rye leaves publication-title: Protoplasma – volume: 132 start-page: 220 issue: 2 year: 2008 end-page: 235 article-title: Metabolomics of temperature stress publication-title: Physiologia Plantarum – volume: 293 start-page: 147 issue: 2 year: 1996 end-page: 172 article-title: Structural characterisation of xyloglucan secreted by suspension‐cultured cells of publication-title: Carbohydrate Research – volume: 13 start-page: 409 issue: 8 year: 2008 end-page: 414 article-title: Freezing tolerance by vesicle‐mediated fructan transport publication-title: Trends in Plant Science – volume: 46 start-page: 192 issue: 1 year: 2005 end-page: 200 article-title: Differential expression of , , and genes in roots. Physiological roles in specification in cell wall construction publication-title: Plant and Cell Physiology – volume: 24 start-page: 4731 issue: 11 year: 2012 end-page: 4747 article-title: , encoding an in vitro XEH/XET‐active enzyme, regulates aluminum sensitivity by modulating in vivo XET action, cell wall xyloglucan content, and aluminum binding capacity in publication-title: Plant Cell – volume: 85 start-page: 51 year: 2013 end-page: 61 article-title: Cell wall compositional modifications of ecotypes in response to cold acclimation publication-title: Phytochemistry – volume: 26 start-page: 950 issue: 9 year: 2016 end-page: 960 article-title: Cell wall integrity signaling in plants: “To grow or not to grow that's the question” publication-title: Glycobiology – volume: 35 start-page: 543 year: 1984 end-page: 584 article-title: Role of the plasma membrane in freezing injury and cold acclimation publication-title: Annual Review of Plant Physiology – volume: 8 start-page: e53468 issue: 1 year: 2013 article-title: Histological analysis and 3D reconstruction of winter cereal crowns recovering from freezing: A unique response in oat ( L.) publication-title: PLoS One – volume: 29 start-page: 149 year: 2016 end-page: 160 article-title: Micromechanical model of biphasic biomaterials with internal adhesion: Application to nanocellulose hydrogel composites publication-title: Acta Biomaterialia – volume: 36 start-page: 1568 issue: 6 year: 1996 end-page: 1573 article-title: The second phase of cold hardening: Freezing tolerance and fructan isomer changes in winter cereal crowns publication-title: Crop Science – volume: 7 start-page: 1590 issue: 9 year: 2012 end-page: 1607 article-title: Determining the polysaccharide composition of plant cell walls publication-title: Nature Protocols – volume: 224 start-page: 1518 issue: 4 year: 2019 end-page: 1531 article-title: MUR1‐mediated cell‐wall fucosylation is required for freezing tolerance in publication-title: New Phytologist – volume: 44 start-page: 922 issue: 9 year: 2003 end-page: 931 article-title: The leaf‐order‐dependent enhancement of freezing tolerance in cold‐acclimated rosettes is not correlated with the transcript levels of the cold‐inducible transcription factors of publication-title: Plant and Cell Physiology – volume: 6 start-page: 3901 issue: 13 year: 1987 end-page: 3907 article-title: GUS fusions: Beta‐glucuronidase as a sensitive and versatile gene fusion marker in higher plants publication-title: EMBO Journal – volume: 56 start-page: 180 issue: 2 year: 2015 end-page: 194 article-title: Xyloglucan and its interactions with other components of the growing cell wall publication-title: Plant and Cell Physiology – volume: 9 start-page: 399 issue: 8 year: 2004 end-page: 405 article-title: Antifreeze proteins in overwintering plants: A tale of two activities publication-title: Trends in Plant Science – volume: 80 start-page: 604 issue: 4 year: 2014 end-page: 614 article-title: and regulated by ANAC071 under auxin flow are involved in cell proliferation in incised inflorescence stems publication-title: Plant Journal – volume: 180 start-page: 416 issue: 3 year: 1990 end-page: 419 article-title: Proteins from frost‐hardy leaves protect thylakoids against mechanical freeze‐thaw damage in vitro publication-title: Planta – volume: 203 start-page: 554 year: 2014 end-page: 567 article-title: AtHAP5A modulates freezing stress resistance in Arabidopsis through binding to CCAAT motif of publication-title: New Phytologist – volume: 212 start-page: 279 issue: 2 year: 2001 end-page: 287 article-title: Functional characterisation of xyloglucan endotransglucosylase (Nt XET‐1): Generation of transgenic tobacco plants and changes in cell wall xyloglucan publication-title: Planta – volume: 30 start-page: 1037 issue: 8 year: 2010 end-page: 1045 article-title: Velocity and pattern of ice propagation and deep supercooling in woody stems of , and measured by IDTA publication-title: Tree Physiology – volume: 77 start-page: 2049 year: 2020 end-page: 2077 article-title: Plant cell wall integrity maintenance in model plants and crop species‐relevant cell wall components and underlying guiding principles publication-title: Cellular and Molecular Life Sciences – volume: 158 start-page: 465 issue: 1 year: 2012 end-page: 475 article-title: Changes in cell wall biomechanical properties in the xyloglucan‐deficient mutant of Arabidopsis publication-title: Plant Physiology – volume: 32 start-page: 420 issue: 3 year: 1969 end-page: 424 article-title: Semimicro determination of cellulose inbiological materials publication-title: Analytical Biochemistry – volume: 69 start-page: 1221 issue: 5 year: 2018 end-page: 1234 article-title: Tissue‐specific changes in apoplastic proteins and cell wall structure during cold acclimation of winter wheat crowns publication-title: Journal of Experimental Botany – volume: 38 start-page: 27 issue: 1 year: 2004 end-page: 37 article-title: Mechanical effects of plant cell wall enzymes on cellulose/xyloglucan composites publication-title: Plant Journal – volume: 11 issue: 9 year: 2015 article-title: The RCC1 family protein TCF1 regulates freezing tolerance and cold acclimation through modulating lignin biosynthesis publication-title: PLoS Genetics – volume: 8 start-page: 60 issue: 1 year: 2008 article-title: Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls publication-title: BMC Plant Biology – volume: 154 start-page: 571 issue: 2 year: 2010 end-page: 577 article-title: Molecular basis of plant cold acclimation: Insights gained from studying the CBF cold response pathway publication-title: Plant Physiology – volume: 153 start-page: 456 issue: 2 year: 2010 end-page: 466 article-title: The gene family: An update on enzyme structure, function, and phylogeny in xyloglucan remodeling publication-title: Plant Physiology – volume: 60 start-page: 299 issue: 5 year: 1985 end-page: 304 article-title: Detection of impervious tissue in tree bark with selective histochemistry and fluorescence microscopy publication-title: Stain Technology – volume: 49 start-page: 1837 issue: 5 year: 2009 end-page: 1842 article-title: Rapid microwave processing of winter cereals for histology allows identification of separate zones of freezing injury in the crown publication-title: Crop Science – volume: 163 start-page: 295 issue: 3 year: 1985 end-page: 303 article-title: Wheat tissues freeze‐etched during exposure to extracellular freezing: distribution of ice publication-title: Planta – volume: 175 start-page: 313 issue: 3 year: 1988 end-page: 324 article-title: Extracellular ice and cell shape in frost‐stressed cereal leaves: A low‐temperature scanning‐electron‐microscopy study publication-title: Planta – year: 2010 – volume: 119 start-page: 153 issue: 2 year: 2006 end-page: 162 article-title: A principal role for AtXTH18 in root growth: A functional analysis using RNAi plants publication-title: Journal of Plant Research – volume: 113 start-page: 327 issue: 2 year: 1997 end-page: 334 article-title: Observations of ice nucleation and propagation in plants using infrared video thermography publication-title: Plant Physiology – volume: 109 start-page: 15 issue: 1 year: 1995 end-page: 30 article-title: Cold acclimation of (effect on plasma membrane lipid composition and freeze‐induced lesions) publication-title: Plant Physiology – volume: 142 start-page: 98 issue: 1 year: 2006 end-page: 112 article-title: Natural genetic variation of freezing tolerance in publication-title: Plant Physiology – volume: 20 start-page: 1519 issue: 6 year: 2008 end-page: 1537 article-title: Disrupting two xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component publication-title: Plant Cell – volume: 67 start-page: 235 issue: 1 year: 2016 end-page: 259 article-title: Biosynthesis of the plant cell wall matrix polysaccharide xyloglucan publication-title: Annual Review of Plant Biology – volume: 2156 start-page: 255 year: 2020 end-page: 268 – volume: 57 start-page: 104 issue: 2 year: 2008 end-page: 112 article-title: Natural genetic variation in acclimation capacity at sub‐zero temperatures after cold acclimation at 4°C in different accessions publication-title: Cryobiology – volume: 1166 start-page: 117 year: 2014 end-page: 137 – volume: 116 start-page: 403 issue: 1 year: 1998 end-page: 408 article-title: Apoplastic sugars, fructans, fructan exohydrolase, and invertase in winter oat: Responses to second‐phase cold hardening publication-title: Plant Physiology – volume: 62 start-page: 261 issue: 1 year: 2011 end-page: 271 article-title: Differences in enzymic properties of five recombinant xyloglucan endotransglucosylase/hydrolase (XTH) proteins of publication-title: Journal of Experimental Botany – volume: 195 start-page: 737 issue: 4 year: 2012 end-page: 751 article-title: Low‐temperature perception leading to gene expression and cold tolerance in higher plants publication-title: New Phytologist – volume: 101 start-page: 521 issue: 4 year: 2008 end-page: 530 article-title: Are pectins involved in cold acclimation and de‐acclimation of winter oil‐seed rape plants? publication-title: Annals of Botany – volume: 27 start-page: 1661 issue: 12 year: 2007 end-page: 1670 article-title: Ice propagation in plants visualized at the tissue level by infrared differential thermal analysis (IDTA) publication-title: Tree Physiology – volume: 49 start-page: 163 year: 2018 end-page: 171 article-title: Cell wall biomechanics: A tractable challenge in manipulating plant cell walls ‘fit for purpose’! publication-title: Current Opinion in Biotechnology – volume: 111 start-page: 605 issue: 2 year: 1996 end-page: 612 article-title: Cell wall changes and cell tension in response to cold acclimation and exogenous abscisic acid in leaves and cell cultures publication-title: Plant Physiology – volume: 4 start-page: 90 year: 2013 article-title: Plant plasma membrane proteomics for improving cold tolerance publication-title: Frontiers in Plant Science – volume: 43 start-page: 1421 issue: 12 year: 2002 end-page: 1435 article-title: The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: Current perspectives and a new unifying nomenclature publication-title: Plant and Cell Physiology – volume: 84 start-page: 313 issue: 3 year: 1999 end-page: 319 article-title: Low temperature affects pattern of leaf growth and structure of cell walls in winter oilseed rape ( L., var. L.) publication-title: Annals of Botany – volume: 1166 start-page: 15 year: 2014 end-page: 24 – volume: 59 start-page: 2905 issue: 11 year: 2008 end-page: 2916 article-title: Plant fructans in stress environments: Emerging concepts and future prospects publication-title: Journal of Experimental Botany – ident: e_1_2_7_43_1 doi: 10.1093/jxb/ert107 – volume: 139 start-page: e58025 year: 2018 ident: e_1_2_7_37_1 article-title: Protocol for producing three‐dimensional infrared video of freezing in plants publication-title: Journal of Visualized Experiments contributor: fullname: Livingston D. P. – ident: e_1_2_7_7_1 doi: 10.1111/j.1365-313X.2004.02018.x – ident: e_1_2_7_62_1 doi: 10.1093/aob/mcm329 – volume: 86 start-page: e50641 year: 2014 ident: e_1_2_7_9_1 article-title: Immunohistochemistry protocol for paraffin‐embedded tissue sections advertisement publication-title: Cell Signal.Technol contributor: fullname: Crosby K. – ident: e_1_2_7_66_1 doi: 10.1038/s41598-019-38688-3 – ident: e_1_2_7_23_1 doi: 10.1002/j.1460-2075.1987.tb02730.x – ident: e_1_2_7_4_1 doi: 10.1111/pce.12838 – ident: e_1_2_7_32_1 doi: 10.2135/cropsci1996.0011183X003600060027x – ident: e_1_2_7_30_1 doi: 10.1007/s11103-014-0256-z – ident: e_1_2_7_86_1 doi: 10.1111/j.1365-3040.2012.02522.x – ident: e_1_2_7_12_1 doi: 10.1006/cryo.1993.1031 – volume: 12 start-page: 70 year: 1965 ident: e_1_2_7_72_1 article-title: Light and temperature systems in the hardening of winter wheat and the significance of oligosaccharides for frost resistance publication-title: Soviet Plant Physiology contributor: fullname: Trunova T. – ident: e_1_2_7_85_1 doi: 10.1111/pce.13502 – ident: e_1_2_7_76_1 doi: 10.1093/jxb/ern164 – ident: e_1_2_7_64_1 doi: 10.1146/annurev.pp.35.060184.002551 – ident: e_1_2_7_34_1 doi: 10.1371/journal.pone.0053468 – ident: e_1_2_7_63_1 doi: 10.1006/anbo.1999.0924 – ident: e_1_2_7_75_1 doi: 10.1016/j.tplants.2008.05.008 – ident: e_1_2_7_13_1 doi: 10.1104/pp.110.156844 – ident: e_1_2_7_15_1 doi: 10.1007/BF01297350 – ident: e_1_2_7_67_1 doi: 10.3389/fpls.2013.00090 – ident: e_1_2_7_65_1 doi: 10.1093/pcp/pcg117 – ident: e_1_2_7_36_1 doi: 10.2135/cropsci2009.02.0077 – ident: e_1_2_7_80_1 doi: 10.1093/jxb/erx450 – ident: e_1_2_7_51_1 doi: 10.1146/annurev-arplant-043015-112222 – ident: e_1_2_7_55_1 doi: 10.1038/nprot.2012.081 – ident: e_1_2_7_11_1 doi: 10.1016/j.phytochem.2012.09.001 – ident: e_1_2_7_54_1 doi: 10.1074/jbc.M112.396598 – ident: e_1_2_7_81_1 doi: 10.3389/fcell.2015.00010 – ident: e_1_2_7_41_1 doi: 10.1093/jxb/erq263 – ident: e_1_2_7_8_1 doi: 10.1016/j.jplph.2018.01.003 – ident: e_1_2_7_25_1 doi: 10.1016/j.copbio.2017.08.013 – ident: e_1_2_7_28_1 doi: 10.1016/S0168-9452(99)00122-3 – ident: e_1_2_7_77_1 doi: 10.1093/pcp/pci013 – ident: e_1_2_7_10_1 doi: 10.1111/nph.15696 – ident: e_1_2_7_47_1 doi: 10.1007/s10265-006-0262-6 – ident: e_1_2_7_84_1 doi: 10.1105/tpc.112.106039 – ident: e_1_2_7_33_1 doi: 10.1104/pp.116.1.403 – ident: e_1_2_7_69_1 doi: 10.3389/fpls.2014.00771 – ident: e_1_2_7_49_1 doi: 10.1104/pp.111.189779 – ident: e_1_2_7_26_1 doi: 10.1104/pp.98.2.646 – ident: e_1_2_7_38_1 doi: 10.1007/s00425-017-2823-4 – ident: e_1_2_7_50_1 doi: 10.1093/pcp/pcu204 – ident: e_1_2_7_61_1 doi: 10.1016/0008-6215(96)00142-5 – ident: e_1_2_7_17_1 doi: 10.1111/j.1399-3054.2007.00999.x – ident: e_1_2_7_78_1 doi: 10.1093/glycob/cww029 – ident: e_1_2_7_83_1 doi: 10.1111/tpj.14519 – ident: e_1_2_7_31_1 doi: 10.1007/s00425-007-0591-2 – ident: e_1_2_7_3_1 doi: 10.3109/10520298509113928 – ident: e_1_2_7_48_1 doi: 10.1111/nph.16209 – ident: e_1_2_7_59_1 doi: 10.1093/pcp/pcf171 – volume-title: Identification and characterization of Arabidopsis mutants associated with xyloglucan metabolism year: 2010 ident: e_1_2_7_44_1 contributor: fullname: Neumetzler L. – ident: e_1_2_7_29_1 doi: 10.1016/j.cryobiol.2008.06.004 – ident: e_1_2_7_24_1 doi: 10.1371/journal.pgen.1005471 – ident: e_1_2_7_42_1 doi: 10.1021/jf100242z – ident: e_1_2_7_68_1 doi: 10.1007/978-1-0716-0660-5_17 – ident: e_1_2_7_53_1 doi: 10.1007/BF00395139 – ident: e_1_2_7_45_1 doi: 10.1093/treephys/tpq059 – ident: e_1_2_7_60_1 doi: 10.1111/nph.12812 – ident: e_1_2_7_16_1 doi: 10.1016/j.tplants.2004.06.007 – ident: e_1_2_7_73_1 doi: 10.1104/pp.109.1.15 – ident: e_1_2_7_21_1 doi: 10.1002/9783527632930.ch11 – ident: e_1_2_7_14_1 doi: 10.1007/s00018-019-03388-8 – ident: e_1_2_7_74_1 doi: 10.1016/S0003-2697(69)80009-6 – ident: e_1_2_7_82_1 doi: 10.1104/pp.113.2.327 – ident: e_1_2_7_57_1 doi: 10.1104/pp.111.2.597 – ident: e_1_2_7_2_1 doi: 10.1016/S0008-6215(00)80510-8 – ident: e_1_2_7_79_1 doi: 10.1104/pp.93.3.1021 – ident: e_1_2_7_22_1 doi: 10.1007/BF01160398 – ident: e_1_2_7_40_1 doi: 10.1186/1471-2229-8-60 – ident: e_1_2_7_20_1 doi: 10.1007/s004250000393 – ident: e_1_2_7_6_1 doi: 10.1105/tpc.108.059873 – ident: e_1_2_7_58_1 doi: 10.1104/pp.111.2.605 – ident: e_1_2_7_18_1 doi: 10.1093/treephys/27.12.1661 – ident: e_1_2_7_46_1 doi: 10.2135/cropsci1984.0011183X002400010012x – ident: e_1_2_7_70_1 doi: 10.1007/978-1-4939-0844-8_3 – ident: e_1_2_7_5_1 doi: 10.1016/j.actbio.2015.10.032 – ident: e_1_2_7_35_1 doi: 10.1007/978-1-4939-0844-8_11 – ident: e_1_2_7_56_1 doi: 10.1111/tpj.12654 – ident: e_1_2_7_71_1 doi: 10.1104/pp.110.161794 – ident: e_1_2_7_39_1 doi: 10.1016/j.cryobiol.2006.12.004 – ident: e_1_2_7_52_1 doi: 10.1007/BF00396336 – ident: e_1_2_7_19_1 doi: 10.1104/pp.106.081141 – ident: e_1_2_7_27_1 doi: 10.1111/j.1469-8137.2012.04239.x |
SSID | ssj0001479 |
Score | 2.5843132 |
Snippet | Freezing triggers extracellular ice formation leading to cell dehydration and deformation during a freeze–thaw cycle. Many plant species increase their... Freezing triggers extracellular ice formation leading to cell dehydration and deformation during a freeze-thaw cycle. Many plant species increase their... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 915 |
SubjectTerms | Abiotic stress Acclimation Acclimatization Antibodies apoplast Arabidopsis thaliana cell wall remodeling Cell walls Cold Cold acclimation Cold tolerance Deformation Dehydration Epitopes Exposure extracellular matrix Freeze-thawing Freezing Gene expression Hydrolase Ice formation Immunohistochemistry Immunological tolerance Low temperature Mutants Plant species Proteomes Rosette Temperature tolerance Transcriptomes Xyloglucan |
Title | Cell wall modification by the xyloglucan endotransglucosylase/hydrolase XTH19 influences freezing tolerance after cold and sub‐zero acclimation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.13953 https://www.ncbi.nlm.nih.gov/pubmed/33190295 https://www.proquest.com/docview/2490799922 https://search.proquest.com/docview/2461001455 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LixQxEC7WVWEvoutrdJUoHry0djrJZBpPOu4yCMoiuzC3Jo9qXBi7l3mw9p78CfoX_SVWdU83LiJ4CYGkCeRLVX2VrlQBvIhp8KXFkhDwJtG5MonPlUxwIp1xsrQ28IX-x0_j2an-MDfzHXjTv4Xp8kMMF24sGa2-ZgF3fvWHkJ8HfEX0xahrcJ1ozZjLF2T6eFDDUneJ9jh-0dpcbtMKcRjP8OlVY_QXw7xKWFuLc3Qbbm2ponjbYXsHdrDah5td8chmH268q4nYNXfh5xQXC3HhqPlaRw79aXdb-EYQuxPfyCXnwHRXCazIB2Xj1AWqN8Sc8fWXJi5r7on5yUzm4qwvW7IS5RLxkmybWNcL5AocKNqa4oJOTxSuimK18b--_7jEZS1cCIuz7iHkPTg9OjyZzpJtpYUkaKNVolWUKgTlUje2JbGuSEyI65BgapwOaKNBqaNyIWcfRknnyLZLHz0RlECU7j7sVnWFD0FMGF2iCWaCqDWpU-0zlfvUeum1sW4Ez_stL867hBpF74gQLkWLywgOejCKrUytCnIUU5tzHt0RPBuGSRr4F4ersN7wnDEnldLGjOBBB-KwiiJtk2Y5jbxsUf338sXx9LDtPPr_qY9hL-NwlzY87QB218sNPiG-svZP23NJ7fvP2W_CY-eK |
link.rule.ids | 314,780,784,1375,11562,27924,27925,46052,46294,46476,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VAioXHuUVKLAgDlwcvNndOJa4QGgVoK0QSqVckLWPsVoR7CoPQXLiJ8Bf5JcwY8eBgpAQF2slr7X2zszON-tvZwAeh9i7PMGcJOBMpFNlIpcqGWFPWmNlniSeN_QPDruDI_16ZEYb8Kw5C1Pnh1hvuLFlVOs1GzhvSP9i5ace24RfjDoH58ncJRO6Xr77mTxK6jrTHhMYkySVq7xCzONZP3rWG_0BMc8i1srl7F2B983L1kyTD-35zLX98rc8jv_7NVfh8gqLiue18lyDDSy24WJdnXKxDRdelIQcF9fhWx_HY_HJ0uVjGZhbVIlTuIUg-Cg-U8zPzHdbCCwoyGXvVzPhFwTN8enxIkxKbonRcCBTcdLURZmKfIK4JOcpZuUYucQHiqpouSD1DMIWQUzn7vuXr0uclMJ6Pz6pT1regKO93WF_EK1KOUReG60irYJU3isb226SE6wLBLW40AnGxmqPSTAodVDWpxwkKWktgQfpgiME5Akz3oTNoizwNogeqw_hENND1JrWa-06KnVx4qTTJrEteNSINDutM3ZkTaRDk5xVk9yCnUbY2cpopxlFonGScqLeFjxc3yZz438otsByzn26nLVKG9OCW7WSrEdRtJzFnZTuPKlE_ffhs7f93apx59-7PoCtwfBgP9t_dfjmLlzqMLem4sLtwOZsMsd7BI5m7n5lAz8ASsYK1g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V8hAXHuXRLQUM4sAlS7y21xtxgm1Xy6uqUCvtASnyYyIqtslqH6LZEz8B_iK_hHGyWSgICXGJLMWRE8-M5xtn_A3AEx87m2nMSAJWRTIRKrKJ4BH2uFGGZ1q7sKH_7qA7PJavR2q0Ac-bszA1P8R6wy1YRrVeBwOf-OwXI584bBN8UeICXJTdThKI8_fe_-SO4rIm2gv5i1onfEUrFNJ41o-ed0Z_IMzzgLXyOIPr8KF51zrR5FN7Mbdtt_yNxvE_P-YGXFshUfaiVp2bsIH5Flyua1OWW3DpZUG4sbwF3_o4HrPPhi6nhQ-ZRZUwmS0ZgUd2RhF_yHs3OcOcQtzg--o8-JKAOT77WPppEVpsdDTkCTtpqqLMWDZFXJLrZPNijKHAB7KqZDkj5fTM5J7NFvb7l69LnBbMODc-qc9Z3objwf5RfxitCjlETiopIik8F84JE5uuzgjUeQJaocwJxspIh9or5NIL45IQIgluDEEHbr0l_OMIMd6BzbzIcRtYLygPoRDVQ5SSVmtpOyKxsbbcSqVNCx43Ek0nNV9H2sQ5NMlpNckt2G1kna5MdpZSHBrrJND0tuDR-jYZW_iDYnIsFqFPN3BWSaVacLfWkfUoghazuJPQnaeVpP8-fHrY368aO__e9SFcOdwbpG9fHby5B1c7IbGmSoTbhc35dIH3CRnN7YPKAn4AKdMJhQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cell+wall+modification+by+the+xyloglucan+endotransglucosylase%2Fhydrolase+XTH19+influences+freezing+tolerance+after+cold+and+sub-zero+acclimation&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Takahashi%2C+Daisuke&rft.au=Johnson%2C+Kim+L&rft.au=Hao%2C+Pengfei&rft.au=Tuong%2C+Tan&rft.date=2021-03-01&rft.eissn=1365-3040&rft.volume=44&rft.issue=3&rft.spage=915&rft.epage=930&rft_id=info:doi/10.1111%2Fpce.13953&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon |