Cell wall modification by the xyloglucan endotransglucosylase/hydrolase XTH19 influences freezing tolerance after cold and sub‐zero acclimation

Freezing triggers extracellular ice formation leading to cell dehydration and deformation during a freeze–thaw cycle. Many plant species increase their freezing tolerance during exposure to low, non‐freezing temperatures, a process termed cold acclimation. In addition, exposure to mild freezing temp...

Full description

Saved in:
Bibliographic Details
Published inPlant, cell and environment Vol. 44; no. 3; pp. 915 - 930
Main Authors Takahashi, Daisuke, Johnson, Kim L., Hao, Pengfei, Tuong, Tan, Erban, Alexander, Sampathkumar, Arun, Bacic, Antony, Livingston, David P., Kopka, Joachim, Kuroha, Takeshi, Yokoyama, Ryusuke, Nishitani, Kazuhiko, Zuther, Ellen, Hincha, Dirk K.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.03.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Freezing triggers extracellular ice formation leading to cell dehydration and deformation during a freeze–thaw cycle. Many plant species increase their freezing tolerance during exposure to low, non‐freezing temperatures, a process termed cold acclimation. In addition, exposure to mild freezing temperatures after cold acclimation evokes a further increase in freezing tolerance (sub‐zero acclimation). Previous transcriptome and proteome analyses indicate that cell wall remodelling may be particularly important for sub‐zero acclimation. In the present study, we used a combination of immunohistochemical, chemical and spectroscopic analyses to characterize the cell walls of Arabidopsis thaliana and characterized a mutant in the XTH19 gene, encoding a xyloglucan endotransglucosylase/hydrolase (XTH). The mutant showed reduced freezing tolerance after both cold and sub‐zero acclimation, compared to the Col‐0 wild type, which was associated with differences in cell wall composition and structure. Most strikingly, immunohistochemistry in combination with 3D reconstruction of centres of rosette indicated that epitopes of the xyloglucan‐specific antibody LM25 were highly abundant in the vasculature of Col‐0 plants after sub‐zero acclimation but absent in the XTH19 mutant. Taken together, our data shed new light on the potential roles of cell wall remodelling for the increased freezing tolerance observed after low temperature acclimation. xth19 mutant had reduced freezing tolerance after cold or sub‐zero acclimation. Microscopic and biochemical characterization of the cell wall indicated altered xyloglucan deposition in xth19 after sub‐zero acclimation showing the importance of cell wall remodelling for increased freezing tolerance.
AbstractList Freezing triggers extracellular ice formation leading to cell dehydration and deformation during a freeze–thaw cycle. Many plant species increase their freezing tolerance during exposure to low, non‐freezing temperatures, a process termed cold acclimation. In addition, exposure to mild freezing temperatures after cold acclimation evokes a further increase in freezing tolerance (sub‐zero acclimation). Previous transcriptome and proteome analyses indicate that cell wall remodelling may be particularly important for sub‐zero acclimation. In the present study, we used a combination of immunohistochemical, chemical and spectroscopic analyses to characterize the cell walls of Arabidopsis thaliana and characterized a mutant in the XTH19 gene, encoding a xyloglucan endotransglucosylase/hydrolase (XTH). The mutant showed reduced freezing tolerance after both cold and sub‐zero acclimation, compared to the Col‐0 wild type, which was associated with differences in cell wall composition and structure. Most strikingly, immunohistochemistry in combination with 3D reconstruction of centres of rosette indicated that epitopes of the xyloglucan‐specific antibody LM25 were highly abundant in the vasculature of Col‐0 plants after sub‐zero acclimation but absent in the XTH19 mutant. Taken together, our data shed new light on the potential roles of cell wall remodelling for the increased freezing tolerance observed after low temperature acclimation. xth19 mutant had reduced freezing tolerance after cold or sub‐zero acclimation. Microscopic and biochemical characterization of the cell wall indicated altered xyloglucan deposition in xth19 after sub‐zero acclimation showing the importance of cell wall remodelling for increased freezing tolerance.
Freezing triggers extracellular ice formation leading to cell dehydration and deformation during a freeze-thaw cycle. Many plant species increase their freezing tolerance during exposure to low, non-freezing temperatures, a process termed cold acclimation. In addition, exposure to mild freezing temperatures after cold acclimation evokes a further increase in freezing tolerance (sub-zero acclimation). Previous transcriptome and proteome analyses indicate that cell wall remodelling may be particularly important for sub-zero acclimation. In the present study, we used a combination of immunohistochemical, chemical and spectroscopic analyses to characterize the cell walls of Arabidopsis thaliana and characterized a mutant in the XTH19 gene, encoding a xyloglucan endotransglucosylase/hydrolase (XTH). The mutant showed reduced freezing tolerance after both cold and sub-zero acclimation, compared to the Col-0 wild type, which was associated with differences in cell wall composition and structure. Most strikingly, immunohistochemistry in combination with 3D reconstruction of centres of rosette indicated that epitopes of the xyloglucan-specific antibody LM25 were highly abundant in the vasculature of Col-0 plants after sub-zero acclimation but absent in the XTH19 mutant. Taken together, our data shed new light on the potential roles of cell wall remodelling for the increased freezing tolerance observed after low temperature acclimation.
Freezing triggers extracellular ice formation leading to cell dehydration and deformation during a freeze–thaw cycle. Many plant species increase their freezing tolerance during exposure to low, non‐freezing temperatures, a process termed cold acclimation. In addition, exposure to mild freezing temperatures after cold acclimation evokes a further increase in freezing tolerance (sub‐zero acclimation). Previous transcriptome and proteome analyses indicate that cell wall remodelling may be particularly important for sub‐zero acclimation. In the present study, we used a combination of immunohistochemical, chemical and spectroscopic analyses to characterize the cell walls of Arabidopsis thaliana and characterized a mutant in the XTH19 gene, encoding a xyloglucan endotransglucosylase/hydrolase (XTH). The mutant showed reduced freezing tolerance after both cold and sub‐zero acclimation, compared to the Col‐0 wild type, which was associated with differences in cell wall composition and structure. Most strikingly, immunohistochemistry in combination with 3D reconstruction of centres of rosette indicated that epitopes of the xyloglucan‐specific antibody LM25 were highly abundant in the vasculature of Col‐0 plants after sub‐zero acclimation but absent in the XTH19 mutant. Taken together, our data shed new light on the potential roles of cell wall remodelling for the increased freezing tolerance observed after low temperature acclimation. xth19 mutant had reduced freezing tolerance after cold or sub‐zero acclimation. Microscopic and biochemical characterization of the cell wall indicated altered xyloglucan deposition in xth19 after sub‐zero acclimation showing the importance of cell wall remodelling for increased freezing tolerance.
Author Takahashi, Daisuke
Livingston, David P.
Nishitani, Kazuhiko
Yokoyama, Ryusuke
Tuong, Tan
Bacic, Antony
Kuroha, Takeshi
Zuther, Ellen
Erban, Alexander
Hao, Pengfei
Hincha, Dirk K.
Johnson, Kim L.
Kopka, Joachim
Sampathkumar, Arun
Author_xml – sequence: 1
  givenname: Daisuke
  surname: Takahashi
  fullname: Takahashi, Daisuke
  email: dtakahashi@mail.saitama-u.ac.jp
  organization: Saitama University
– sequence: 2
  givenname: Kim L.
  surname: Johnson
  fullname: Johnson, Kim L.
  organization: Zhejiang A&F University
– sequence: 3
  givenname: Pengfei
  surname: Hao
  fullname: Hao, Pengfei
  organization: Zhejiang A&F University
– sequence: 4
  givenname: Tan
  surname: Tuong
  fullname: Tuong, Tan
  organization: North Carolina State University
– sequence: 5
  givenname: Alexander
  surname: Erban
  fullname: Erban, Alexander
  organization: Max‐Planck‐Institut für Molekulare Pflanzenphysiologie
– sequence: 6
  givenname: Arun
  surname: Sampathkumar
  fullname: Sampathkumar, Arun
  organization: Max‐Planck‐Institut für Molekulare Pflanzenphysiologie
– sequence: 7
  givenname: Antony
  surname: Bacic
  fullname: Bacic, Antony
  organization: Zhejiang A&F University
– sequence: 8
  givenname: David P.
  surname: Livingston
  fullname: Livingston, David P.
  organization: North Carolina State University
– sequence: 9
  givenname: Joachim
  surname: Kopka
  fullname: Kopka, Joachim
  organization: Max‐Planck‐Institut für Molekulare Pflanzenphysiologie
– sequence: 10
  givenname: Takeshi
  surname: Kuroha
  fullname: Kuroha, Takeshi
  organization: National Agriculture and Food Organization (NARO)
– sequence: 11
  givenname: Ryusuke
  surname: Yokoyama
  fullname: Yokoyama, Ryusuke
  organization: Tohoku University
– sequence: 12
  givenname: Kazuhiko
  surname: Nishitani
  fullname: Nishitani, Kazuhiko
  organization: Kanagawa University
– sequence: 13
  givenname: Ellen
  orcidid: 0000-0002-7446-0515
  surname: Zuther
  fullname: Zuther, Ellen
  email: zuther@mpimp-golm.mpg.de
  organization: Max‐Planck‐Institut für Molekulare Pflanzenphysiologie
– sequence: 14
  givenname: Dirk K.
  orcidid: 0000-0001-6887-4933
  surname: Hincha
  fullname: Hincha, Dirk K.
  organization: Max‐Planck‐Institut für Molekulare Pflanzenphysiologie
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33190295$$D View this record in MEDLINE/PubMed
BookMark eNp1kcFO3DAQhq0KVBbaQ1-gstRLOYT1xHYsH6sVLZWQ2gNI3CLHnkCQ197aiSCc-gjtK_Ik9bK0h0r4YHusb37PzH9I9kIMSMg7YCdQ1nJj8QS4lvwVWQBvZMWZYHtkwUCwSikNB-Qw51vGyoPSr8kB56BZreWC_F6h9_TOlG0d3dAP1oxDDLSb6XiD9H728dpP1gSKwcUxmZC3ccyzNxmXN7NLcXujVxdnoOkQej9hsJhpnxAfhnBNx-ix5Fmkph8xURu9oyY4mqfu8eevB0yRGmv9sH76-g3Z743P-Pb5PCKXn08vVmfV-bcvX1efzisrpOCV4A64tdww06ieaelq2YhGCWTSCIvKSQThuLGlU1AcjGG1gM51CpiFhh-RjzvdTYo_Jsxjux6yLdMwAeOU21o0sB2YlAX98B96G6cUSnWF0kxpreu6UMc7yqaYc8K-3aTSU5pbYO3Wp7b41D75VNj3z4pTt0b3j_xrTAGWO-Bu8Di_rNR-X53uJP8AqNKgxA
CitedBy_id crossref_primary_10_1016_j_plaphy_2022_11_002
crossref_primary_10_3390_plants11081015
crossref_primary_10_3390_ijms24076603
crossref_primary_10_3390_plants10010122
crossref_primary_10_1111_pbi_13729
crossref_primary_10_3390_ijms242115892
crossref_primary_10_3390_ijms24010775
crossref_primary_10_3390_su141811170
crossref_primary_10_3389_fpls_2021_730718
crossref_primary_10_3390_ijms232416104
crossref_primary_10_1007_s10265_021_01361_w
crossref_primary_10_1111_ppl_13876
crossref_primary_10_1111_pce_14611
crossref_primary_10_1111_ppl_13837
crossref_primary_10_3389_fpls_2022_1099677
crossref_primary_10_3389_fgene_2022_968494
crossref_primary_10_1016_j_ijbiomac_2023_126891
crossref_primary_10_1111_ppl_13793
crossref_primary_10_1111_ppl_14167
crossref_primary_10_1016_j_cub_2024_01_045
crossref_primary_10_1186_s12870_024_05121_5
crossref_primary_10_3390_ijms23031656
crossref_primary_10_7717_peerj_13546
crossref_primary_10_1007_s00122_022_04207_8
crossref_primary_10_1093_pcp_pcab103
crossref_primary_10_3390_plants10081712
crossref_primary_10_1111_pce_14917
crossref_primary_10_1186_s12870_024_05370_4
crossref_primary_10_3389_fpls_2024_1340867
crossref_primary_10_1093_icb_icae004
crossref_primary_10_1111_ppl_13865
crossref_primary_10_1111_ppl_14217
crossref_primary_10_3389_fpls_2023_1069055
crossref_primary_10_1111_ppl_13820
crossref_primary_10_3389_fpls_2021_751372
crossref_primary_10_3389_fpls_2024_1343787
crossref_primary_10_54680_fr24410110512
crossref_primary_10_1111_ppl_14231
crossref_primary_10_1093_jxb_erac108
crossref_primary_10_1016_j_scienta_2023_112628
crossref_primary_10_1038_s41467_022_31022_y
crossref_primary_10_1111_ppl_13740
crossref_primary_10_1515_biol_2022_0613
crossref_primary_10_1016_j_lssr_2024_02_004
Cites_doi 10.1093/jxb/ert107
10.1111/j.1365-313X.2004.02018.x
10.1093/aob/mcm329
10.1038/s41598-019-38688-3
10.1002/j.1460-2075.1987.tb02730.x
10.1111/pce.12838
10.2135/cropsci1996.0011183X003600060027x
10.1007/s11103-014-0256-z
10.1111/j.1365-3040.2012.02522.x
10.1006/cryo.1993.1031
10.1111/pce.13502
10.1093/jxb/ern164
10.1146/annurev.pp.35.060184.002551
10.1371/journal.pone.0053468
10.1006/anbo.1999.0924
10.1016/j.tplants.2008.05.008
10.1104/pp.110.156844
10.1007/BF01297350
10.3389/fpls.2013.00090
10.1093/pcp/pcg117
10.2135/cropsci2009.02.0077
10.1093/jxb/erx450
10.1146/annurev-arplant-043015-112222
10.1038/nprot.2012.081
10.1016/j.phytochem.2012.09.001
10.1074/jbc.M112.396598
10.3389/fcell.2015.00010
10.1093/jxb/erq263
10.1016/j.jplph.2018.01.003
10.1016/j.copbio.2017.08.013
10.1016/S0168-9452(99)00122-3
10.1093/pcp/pci013
10.1111/nph.15696
10.1007/s10265-006-0262-6
10.1105/tpc.112.106039
10.1104/pp.116.1.403
10.3389/fpls.2014.00771
10.1104/pp.111.189779
10.1104/pp.98.2.646
10.1007/s00425-017-2823-4
10.1093/pcp/pcu204
10.1016/0008-6215(96)00142-5
10.1111/j.1399-3054.2007.00999.x
10.1093/glycob/cww029
10.1111/tpj.14519
10.1007/s00425-007-0591-2
10.3109/10520298509113928
10.1111/nph.16209
10.1093/pcp/pcf171
10.1016/j.cryobiol.2008.06.004
10.1371/journal.pgen.1005471
10.1021/jf100242z
10.1007/978-1-0716-0660-5_17
10.1007/BF00395139
10.1093/treephys/tpq059
10.1111/nph.12812
10.1016/j.tplants.2004.06.007
10.1104/pp.109.1.15
10.1002/9783527632930.ch11
10.1007/s00018-019-03388-8
10.1016/S0003-2697(69)80009-6
10.1104/pp.113.2.327
10.1104/pp.111.2.597
10.1016/S0008-6215(00)80510-8
10.1104/pp.93.3.1021
10.1007/BF01160398
10.1186/1471-2229-8-60
10.1007/s004250000393
10.1105/tpc.108.059873
10.1104/pp.111.2.605
10.1093/treephys/27.12.1661
10.2135/cropsci1984.0011183X002400010012x
10.1007/978-1-4939-0844-8_3
10.1016/j.actbio.2015.10.032
10.1007/978-1-4939-0844-8_11
10.1111/tpj.12654
10.1104/pp.110.161794
10.1016/j.cryobiol.2006.12.004
10.1007/BF00396336
10.1104/pp.106.081141
10.1111/j.1469-8137.2012.04239.x
ContentType Journal Article
Copyright 2020 The Authors. published by John Wiley & Sons Ltd.
2020 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. published by John Wiley & Sons Ltd.
– notice: 2020 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
NPM
AAYXX
CITATION
7QP
7ST
C1K
SOI
7X8
DOI 10.1111/pce.13953
DatabaseName Wiley Open Access
Wiley Online Library Open Access
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
Calcium & Calcified Tissue Abstracts

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Botany
EISSN 1365-3040
EndPage 930
ExternalDocumentID 10_1111_pce_13953
33190295
PCE13953
Genre article
Journal Article
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  funderid: 27328, 20K15494
– fundername: Alexander von Humboldt‐Stiftung
  funderid: Postdoctoral Fellowship
– fundername: Deutsche Forschungsgemeinschaft
  funderid: CRC 973, A3
– fundername: Deutsche Forschungsgemeinschaft
  grantid: CRC 973, A3
– fundername: Alexander von Humboldt-Stiftung
  grantid: Postdoctoral Fellowship
– fundername: Japan Society for the Promotion of Science
  grantid: 27328, 20K15494
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
186
1OB
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FIJ
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XSW
YNT
ZZTAW
~02
~IA
~KM
~WT
NPM
AAMNL
AAYXX
ACRPL
CITATION
7QP
7ST
C1K
SOI
7X8
ID FETCH-LOGICAL-c4543-43d13cc3a0a67f095d2564674e05a4ce7d5e14d3ac9021731aa0241bdb710c163
IEDL.DBID 24P
ISSN 0140-7791
IngestDate Wed Dec 04 14:54:42 EST 2024
Thu Oct 10 17:34:28 EDT 2024
Fri Dec 06 03:44:19 EST 2024
Sat Sep 28 08:28:42 EDT 2024
Sat Aug 24 01:02:26 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Arabidopsis thaliana
cell wall remodeling
apoplast
Abiotic stress
xyloglucan
immunohistochemistry
extracellular matrix
Language English
License Attribution
2020 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4543-43d13cc3a0a67f095d2564674e05a4ce7d5e14d3ac9021731aa0241bdb710c163
Notes Funding information
Alexander von Humboldt‐Stiftung, Grant/Award Number: Postdoctoral Fellowship; Deutsche Forschungsgemeinschaft, Grant/Award Number: CRC 973, A3; Japan Society for the Promotion of Science, Grant/Award Number: 27328, 20K15494
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6887-4933
0000-0002-7446-0515
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.13953
PMID 33190295
PQID 2490799922
PQPubID 37957
PageCount 16
ParticipantIDs proquest_miscellaneous_2461001455
proquest_journals_2490799922
crossref_primary_10_1111_pce_13953
pubmed_primary_33190295
wiley_primary_10_1111_pce_13953_PCE13953
PublicationCentury 2000
PublicationDate March 2021
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: United States
– name: Oxford
PublicationTitle Plant, cell and environment
PublicationTitleAlternate Plant Cell Environ
PublicationYear 2021
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References 2017; 40
1997; 113
2012; 287
2013; 4
1965; 12
2007; 226
2010; 58
1987; 6
2011; 62
2013; 64
1969; 32
2004; 9
1984; 24
1985; 125
1990; 180
2008; 8
1985; 60
1999; 84
1998; 116
1996; 36
2008; 101
1992; 98
2013; 8
2018; 49
2009; 49
1985; 163
2001; 212
2004; 38
2018a; 139
2002; 43
1993; 30
2015; 87
2010; 154
1996; 293
2010; 153
1988; 175
2008; 20
2012; 24
2020; 2156
2010; 30
2014; 203
2003; 44
1990; 93
2007; 27
2015; 56
2019; 9
2006; 119
2015; 5
2015; 3
2012
2010
2018; 222
2015; 11
2013; 85
2008; 59
2008; 57
2019; 224
2008; 13
2014; 1166
2020; 77
2007; 54
2012; 35
1999; 148
2019; 100
2019; 222
2005; 46
2018; 69
2014; 86
2012; 195
2014; 80
2019; 42
1967; 5
1984; 35
1995; 109
2006; 142
1996; 111
2016; 29
2012; 158
2012; 7
2008; 132
2016; 26
2018b; 247
2016; 67
e_1_2_7_5_1
e_1_2_7_3_1
Livingston D. P. (e_1_2_7_37_1) 2018; 139
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
Crosby K. (e_1_2_7_9_1) 2014; 86
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
Neumetzler L. (e_1_2_7_44_1) 2010
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
Trunova T. (e_1_2_7_72_1) 1965; 12
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_65_1
e_1_2_7_86_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
References_xml – volume: 222
  start-page: 67
  year: 2018
  end-page: 78
  article-title: A cold‐induced pectin methyl‐esterase inhibitor gene contributes negatively to freezing tolerance but positively to salt tolerance in
  publication-title: Journal of Plant Physiology
– volume: 5
  start-page: 771
  year: 2015
  article-title: Cell wall remodeling under abiotic stress
  publication-title: Frontiers in Plant Science
– volume: 9
  start-page: 2289
  year: 2019
  article-title: Both cold and sub‐zero acclimation induce cell wall modification and changes in the extracellular proteome in
  publication-title: Scientific Reports
– volume: 42
  start-page: 854
  issue: 3
  year: 2019
  end-page: 873
  article-title: Molecular signatures associated with increased freezing tolerance due to low temperature memory in
  publication-title: Plant, Cell & Environment
– volume: 148
  start-page: 59
  issue: 1
  year: 1999
  end-page: 67
  article-title: Low temperature‐induced modifications of cell wall content and polysaccharide composition in leaves of winter oilseed rape ( L. var. L.)
  publication-title: Plant Science
– volume: 87
  start-page: 1
  year: 2015
  end-page: 15
  article-title: Global changes in gene expression, assayed by microarray hybridization and quantitative RT‐PCR, during acclimation of three accessions to sub‐zero temperatures after cold acclimation
  publication-title: Plant Molecular Biology
– volume: 64
  start-page: 2481
  issue: 8
  year: 2013
  end-page: 2497
  article-title: Xyloglucan endotransglucosylase/hydrolase (XTH) overexpression affects growth and cell wall mechanics in etiolated hypocotyls
  publication-title: Journal of Experimental Botany
– volume: 35
  start-page: 1860
  issue: 10
  year: 2012
  end-page: 1878
  article-title: Clinal variation in the non‐acclimated and cold‐acclimated freezing tolerance of accessions
  publication-title: Plant, Cell & Environment
– volume: 139
  year: 2018a
  article-title: Protocol for producing three‐dimensional infrared video of freezing in plants
  publication-title: Journal of Visualized Experiments
– volume: 287
  start-page: 39429
  issue: 47
  year: 2012
  end-page: 39438
  article-title: Versatile high resolution oligosaccharide microarrays for plant glycobiology and cell wall research
  publication-title: Journal of Biological Chemistry
– volume: 93
  start-page: 1021
  issue: 3
  year: 1990
  end-page: 1026
  article-title: Cell wall and extensin mRNA changes during cold acclimation of pea seedlings
  publication-title: Plant Physiology
– volume: 98
  start-page: 646
  issue: 2
  year: 1992
  end-page: 653
  article-title: Changes in esterification of the uronic acid groups of cell wall polysaccharides during elongation of maize coleoptiles
  publication-title: Plant Physiology
– volume: 54
  start-page: 154
  issue: 2
  year: 2007
  end-page: 163
  article-title: Using as a model to study subzero acclimation in small grains
  publication-title: Cryobiology
– volume: 40
  start-page: 108
  issue: 1
  year: 2017
  end-page: 120
  article-title: is a transcription factor gene of required for freezing tolerance and cold acclimation
  publication-title: Plant, Cell & Environment
– volume: 3
  start-page: 10
  year: 2015
  article-title: Multi‐omics analysis identifies genes mediating the extension of cell walls in the root elongation zone
  publication-title: Frontiers in Cell and Development Biology
– volume: 226
  start-page: 1547
  year: 2007
  end-page: 1560
  article-title: A xyloglucan endotransglucosylase/hydrolase involves in growth of primary root and alters the deposition of cellulose in
  publication-title: Planta
– start-page: 255
  year: 2012
  end-page: 287
– volume: 5
  start-page: 340
  issue: 3
  year: 1967
  end-page: 345
  article-title: A method for the analysis of sugars in plant cell‐wall polysaccharides by gas‐liquid chromatography
  publication-title: Carbohydrate Research
– volume: 24
  start-page: 51
  issue: 1
  year: 1984
  end-page: 54
  article-title: An adaptive response of rye to freezing
  publication-title: Crop Science
– volume: 30
  start-page: 322
  issue: 3
  year: 1993
  end-page: 328
  article-title: Thermal hysteresis protein activity in bacteria, fungi, and phylogenetically diverse plants
  publication-title: Cryobiology
– volume: 86
  start-page: e50641
  year: 2014
  end-page: 50646
  article-title: Immunohistochemistry protocol for paraffin‐embedded tissue sections advertisement
  publication-title: Cell Signal.Technol
– volume: 111
  start-page: 597
  issue: 2
  year: 1996
  end-page: 603
  article-title: Freezing characteristics of rigid plant tissues (development of cell tension during extracellular freezing)
  publication-title: Plant Physiology
– volume: 58
  start-page: 5708
  issue: 9
  year: 2010
  end-page: 5713
  article-title: Overexpression of a cell wall enzyme reduces xyloglucan depolymerization and softening of transgenic tomato fruits
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 222
  start-page: 1690
  issue: 4
  year: 2019
  end-page: 1704
  article-title: Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants
  publication-title: New Phytologist
– volume: 12
  start-page: 70
  year: 1965
  end-page: 77
  article-title: Light and temperature systems in the hardening of winter wheat and the significance of oligosaccharides for frost resistance
  publication-title: Soviet Plant Physiology
– volume: 100
  start-page: 1101
  issue: 6
  year: 2019
  end-page: 1117
  article-title: Disentangling loosening from softening: Insights into primary cell wall structure
  publication-title: Plant Journal
– volume: 247
  start-page: 791
  issue: 4
  year: 2018b
  end-page: 806
  article-title: High‐definition infrared thermography of ice nucleation and propagation in wheat under natural frost conditions and controlled freezing
  publication-title: Planta
– volume: 125
  start-page: 53
  issue: 1–2
  year: 1985
  end-page: 64
  article-title: Lipid polymers accumulate in the epidermis and mestome sheath cell walls during low temperature development of winter rye leaves
  publication-title: Protoplasma
– volume: 132
  start-page: 220
  issue: 2
  year: 2008
  end-page: 235
  article-title: Metabolomics of temperature stress
  publication-title: Physiologia Plantarum
– volume: 293
  start-page: 147
  issue: 2
  year: 1996
  end-page: 172
  article-title: Structural characterisation of xyloglucan secreted by suspension‐cultured cells of
  publication-title: Carbohydrate Research
– volume: 13
  start-page: 409
  issue: 8
  year: 2008
  end-page: 414
  article-title: Freezing tolerance by vesicle‐mediated fructan transport
  publication-title: Trends in Plant Science
– volume: 46
  start-page: 192
  issue: 1
  year: 2005
  end-page: 200
  article-title: Differential expression of , , and genes in roots. Physiological roles in specification in cell wall construction
  publication-title: Plant and Cell Physiology
– volume: 24
  start-page: 4731
  issue: 11
  year: 2012
  end-page: 4747
  article-title: , encoding an in vitro XEH/XET‐active enzyme, regulates aluminum sensitivity by modulating in vivo XET action, cell wall xyloglucan content, and aluminum binding capacity in
  publication-title: Plant Cell
– volume: 85
  start-page: 51
  year: 2013
  end-page: 61
  article-title: Cell wall compositional modifications of ecotypes in response to cold acclimation
  publication-title: Phytochemistry
– volume: 26
  start-page: 950
  issue: 9
  year: 2016
  end-page: 960
  article-title: Cell wall integrity signaling in plants: “To grow or not to grow that's the question”
  publication-title: Glycobiology
– volume: 35
  start-page: 543
  year: 1984
  end-page: 584
  article-title: Role of the plasma membrane in freezing injury and cold acclimation
  publication-title: Annual Review of Plant Physiology
– volume: 8
  start-page: e53468
  issue: 1
  year: 2013
  article-title: Histological analysis and 3D reconstruction of winter cereal crowns recovering from freezing: A unique response in oat ( L.)
  publication-title: PLoS One
– volume: 29
  start-page: 149
  year: 2016
  end-page: 160
  article-title: Micromechanical model of biphasic biomaterials with internal adhesion: Application to nanocellulose hydrogel composites
  publication-title: Acta Biomaterialia
– volume: 36
  start-page: 1568
  issue: 6
  year: 1996
  end-page: 1573
  article-title: The second phase of cold hardening: Freezing tolerance and fructan isomer changes in winter cereal crowns
  publication-title: Crop Science
– volume: 7
  start-page: 1590
  issue: 9
  year: 2012
  end-page: 1607
  article-title: Determining the polysaccharide composition of plant cell walls
  publication-title: Nature Protocols
– volume: 224
  start-page: 1518
  issue: 4
  year: 2019
  end-page: 1531
  article-title: MUR1‐mediated cell‐wall fucosylation is required for freezing tolerance in
  publication-title: New Phytologist
– volume: 44
  start-page: 922
  issue: 9
  year: 2003
  end-page: 931
  article-title: The leaf‐order‐dependent enhancement of freezing tolerance in cold‐acclimated rosettes is not correlated with the transcript levels of the cold‐inducible transcription factors of
  publication-title: Plant and Cell Physiology
– volume: 6
  start-page: 3901
  issue: 13
  year: 1987
  end-page: 3907
  article-title: GUS fusions: Beta‐glucuronidase as a sensitive and versatile gene fusion marker in higher plants
  publication-title: EMBO Journal
– volume: 56
  start-page: 180
  issue: 2
  year: 2015
  end-page: 194
  article-title: Xyloglucan and its interactions with other components of the growing cell wall
  publication-title: Plant and Cell Physiology
– volume: 9
  start-page: 399
  issue: 8
  year: 2004
  end-page: 405
  article-title: Antifreeze proteins in overwintering plants: A tale of two activities
  publication-title: Trends in Plant Science
– volume: 80
  start-page: 604
  issue: 4
  year: 2014
  end-page: 614
  article-title: and regulated by ANAC071 under auxin flow are involved in cell proliferation in incised inflorescence stems
  publication-title: Plant Journal
– volume: 180
  start-page: 416
  issue: 3
  year: 1990
  end-page: 419
  article-title: Proteins from frost‐hardy leaves protect thylakoids against mechanical freeze‐thaw damage in vitro
  publication-title: Planta
– volume: 203
  start-page: 554
  year: 2014
  end-page: 567
  article-title: AtHAP5A modulates freezing stress resistance in Arabidopsis through binding to CCAAT motif of
  publication-title: New Phytologist
– volume: 212
  start-page: 279
  issue: 2
  year: 2001
  end-page: 287
  article-title: Functional characterisation of xyloglucan endotransglucosylase (Nt XET‐1): Generation of transgenic tobacco plants and changes in cell wall xyloglucan
  publication-title: Planta
– volume: 30
  start-page: 1037
  issue: 8
  year: 2010
  end-page: 1045
  article-title: Velocity and pattern of ice propagation and deep supercooling in woody stems of , and measured by IDTA
  publication-title: Tree Physiology
– volume: 77
  start-page: 2049
  year: 2020
  end-page: 2077
  article-title: Plant cell wall integrity maintenance in model plants and crop species‐relevant cell wall components and underlying guiding principles
  publication-title: Cellular and Molecular Life Sciences
– volume: 158
  start-page: 465
  issue: 1
  year: 2012
  end-page: 475
  article-title: Changes in cell wall biomechanical properties in the xyloglucan‐deficient mutant of Arabidopsis
  publication-title: Plant Physiology
– volume: 32
  start-page: 420
  issue: 3
  year: 1969
  end-page: 424
  article-title: Semimicro determination of cellulose inbiological materials
  publication-title: Analytical Biochemistry
– volume: 69
  start-page: 1221
  issue: 5
  year: 2018
  end-page: 1234
  article-title: Tissue‐specific changes in apoplastic proteins and cell wall structure during cold acclimation of winter wheat crowns
  publication-title: Journal of Experimental Botany
– volume: 38
  start-page: 27
  issue: 1
  year: 2004
  end-page: 37
  article-title: Mechanical effects of plant cell wall enzymes on cellulose/xyloglucan composites
  publication-title: Plant Journal
– volume: 11
  issue: 9
  year: 2015
  article-title: The RCC1 family protein TCF1 regulates freezing tolerance and cold acclimation through modulating lignin biosynthesis
  publication-title: PLoS Genetics
– volume: 8
  start-page: 60
  issue: 1
  year: 2008
  article-title: Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls
  publication-title: BMC Plant Biology
– volume: 154
  start-page: 571
  issue: 2
  year: 2010
  end-page: 577
  article-title: Molecular basis of plant cold acclimation: Insights gained from studying the CBF cold response pathway
  publication-title: Plant Physiology
– volume: 153
  start-page: 456
  issue: 2
  year: 2010
  end-page: 466
  article-title: The gene family: An update on enzyme structure, function, and phylogeny in xyloglucan remodeling
  publication-title: Plant Physiology
– volume: 60
  start-page: 299
  issue: 5
  year: 1985
  end-page: 304
  article-title: Detection of impervious tissue in tree bark with selective histochemistry and fluorescence microscopy
  publication-title: Stain Technology
– volume: 49
  start-page: 1837
  issue: 5
  year: 2009
  end-page: 1842
  article-title: Rapid microwave processing of winter cereals for histology allows identification of separate zones of freezing injury in the crown
  publication-title: Crop Science
– volume: 163
  start-page: 295
  issue: 3
  year: 1985
  end-page: 303
  article-title: Wheat tissues freeze‐etched during exposure to extracellular freezing: distribution of ice
  publication-title: Planta
– volume: 175
  start-page: 313
  issue: 3
  year: 1988
  end-page: 324
  article-title: Extracellular ice and cell shape in frost‐stressed cereal leaves: A low‐temperature scanning‐electron‐microscopy study
  publication-title: Planta
– year: 2010
– volume: 119
  start-page: 153
  issue: 2
  year: 2006
  end-page: 162
  article-title: A principal role for AtXTH18 in root growth: A functional analysis using RNAi plants
  publication-title: Journal of Plant Research
– volume: 113
  start-page: 327
  issue: 2
  year: 1997
  end-page: 334
  article-title: Observations of ice nucleation and propagation in plants using infrared video thermography
  publication-title: Plant Physiology
– volume: 109
  start-page: 15
  issue: 1
  year: 1995
  end-page: 30
  article-title: Cold acclimation of (effect on plasma membrane lipid composition and freeze‐induced lesions)
  publication-title: Plant Physiology
– volume: 142
  start-page: 98
  issue: 1
  year: 2006
  end-page: 112
  article-title: Natural genetic variation of freezing tolerance in
  publication-title: Plant Physiology
– volume: 20
  start-page: 1519
  issue: 6
  year: 2008
  end-page: 1537
  article-title: Disrupting two xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component
  publication-title: Plant Cell
– volume: 67
  start-page: 235
  issue: 1
  year: 2016
  end-page: 259
  article-title: Biosynthesis of the plant cell wall matrix polysaccharide xyloglucan
  publication-title: Annual Review of Plant Biology
– volume: 2156
  start-page: 255
  year: 2020
  end-page: 268
– volume: 57
  start-page: 104
  issue: 2
  year: 2008
  end-page: 112
  article-title: Natural genetic variation in acclimation capacity at sub‐zero temperatures after cold acclimation at 4°C in different accessions
  publication-title: Cryobiology
– volume: 1166
  start-page: 117
  year: 2014
  end-page: 137
– volume: 116
  start-page: 403
  issue: 1
  year: 1998
  end-page: 408
  article-title: Apoplastic sugars, fructans, fructan exohydrolase, and invertase in winter oat: Responses to second‐phase cold hardening
  publication-title: Plant Physiology
– volume: 62
  start-page: 261
  issue: 1
  year: 2011
  end-page: 271
  article-title: Differences in enzymic properties of five recombinant xyloglucan endotransglucosylase/hydrolase (XTH) proteins of
  publication-title: Journal of Experimental Botany
– volume: 195
  start-page: 737
  issue: 4
  year: 2012
  end-page: 751
  article-title: Low‐temperature perception leading to gene expression and cold tolerance in higher plants
  publication-title: New Phytologist
– volume: 101
  start-page: 521
  issue: 4
  year: 2008
  end-page: 530
  article-title: Are pectins involved in cold acclimation and de‐acclimation of winter oil‐seed rape plants?
  publication-title: Annals of Botany
– volume: 27
  start-page: 1661
  issue: 12
  year: 2007
  end-page: 1670
  article-title: Ice propagation in plants visualized at the tissue level by infrared differential thermal analysis (IDTA)
  publication-title: Tree Physiology
– volume: 49
  start-page: 163
  year: 2018
  end-page: 171
  article-title: Cell wall biomechanics: A tractable challenge in manipulating plant cell walls ‘fit for purpose’!
  publication-title: Current Opinion in Biotechnology
– volume: 111
  start-page: 605
  issue: 2
  year: 1996
  end-page: 612
  article-title: Cell wall changes and cell tension in response to cold acclimation and exogenous abscisic acid in leaves and cell cultures
  publication-title: Plant Physiology
– volume: 4
  start-page: 90
  year: 2013
  article-title: Plant plasma membrane proteomics for improving cold tolerance
  publication-title: Frontiers in Plant Science
– volume: 43
  start-page: 1421
  issue: 12
  year: 2002
  end-page: 1435
  article-title: The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: Current perspectives and a new unifying nomenclature
  publication-title: Plant and Cell Physiology
– volume: 84
  start-page: 313
  issue: 3
  year: 1999
  end-page: 319
  article-title: Low temperature affects pattern of leaf growth and structure of cell walls in winter oilseed rape ( L., var. L.)
  publication-title: Annals of Botany
– volume: 1166
  start-page: 15
  year: 2014
  end-page: 24
– volume: 59
  start-page: 2905
  issue: 11
  year: 2008
  end-page: 2916
  article-title: Plant fructans in stress environments: Emerging concepts and future prospects
  publication-title: Journal of Experimental Botany
– ident: e_1_2_7_43_1
  doi: 10.1093/jxb/ert107
– volume: 139
  start-page: e58025
  year: 2018
  ident: e_1_2_7_37_1
  article-title: Protocol for producing three‐dimensional infrared video of freezing in plants
  publication-title: Journal of Visualized Experiments
  contributor:
    fullname: Livingston D. P.
– ident: e_1_2_7_7_1
  doi: 10.1111/j.1365-313X.2004.02018.x
– ident: e_1_2_7_62_1
  doi: 10.1093/aob/mcm329
– volume: 86
  start-page: e50641
  year: 2014
  ident: e_1_2_7_9_1
  article-title: Immunohistochemistry protocol for paraffin‐embedded tissue sections advertisement
  publication-title: Cell Signal.Technol
  contributor:
    fullname: Crosby K.
– ident: e_1_2_7_66_1
  doi: 10.1038/s41598-019-38688-3
– ident: e_1_2_7_23_1
  doi: 10.1002/j.1460-2075.1987.tb02730.x
– ident: e_1_2_7_4_1
  doi: 10.1111/pce.12838
– ident: e_1_2_7_32_1
  doi: 10.2135/cropsci1996.0011183X003600060027x
– ident: e_1_2_7_30_1
  doi: 10.1007/s11103-014-0256-z
– ident: e_1_2_7_86_1
  doi: 10.1111/j.1365-3040.2012.02522.x
– ident: e_1_2_7_12_1
  doi: 10.1006/cryo.1993.1031
– volume: 12
  start-page: 70
  year: 1965
  ident: e_1_2_7_72_1
  article-title: Light and temperature systems in the hardening of winter wheat and the significance of oligosaccharides for frost resistance
  publication-title: Soviet Plant Physiology
  contributor:
    fullname: Trunova T.
– ident: e_1_2_7_85_1
  doi: 10.1111/pce.13502
– ident: e_1_2_7_76_1
  doi: 10.1093/jxb/ern164
– ident: e_1_2_7_64_1
  doi: 10.1146/annurev.pp.35.060184.002551
– ident: e_1_2_7_34_1
  doi: 10.1371/journal.pone.0053468
– ident: e_1_2_7_63_1
  doi: 10.1006/anbo.1999.0924
– ident: e_1_2_7_75_1
  doi: 10.1016/j.tplants.2008.05.008
– ident: e_1_2_7_13_1
  doi: 10.1104/pp.110.156844
– ident: e_1_2_7_15_1
  doi: 10.1007/BF01297350
– ident: e_1_2_7_67_1
  doi: 10.3389/fpls.2013.00090
– ident: e_1_2_7_65_1
  doi: 10.1093/pcp/pcg117
– ident: e_1_2_7_36_1
  doi: 10.2135/cropsci2009.02.0077
– ident: e_1_2_7_80_1
  doi: 10.1093/jxb/erx450
– ident: e_1_2_7_51_1
  doi: 10.1146/annurev-arplant-043015-112222
– ident: e_1_2_7_55_1
  doi: 10.1038/nprot.2012.081
– ident: e_1_2_7_11_1
  doi: 10.1016/j.phytochem.2012.09.001
– ident: e_1_2_7_54_1
  doi: 10.1074/jbc.M112.396598
– ident: e_1_2_7_81_1
  doi: 10.3389/fcell.2015.00010
– ident: e_1_2_7_41_1
  doi: 10.1093/jxb/erq263
– ident: e_1_2_7_8_1
  doi: 10.1016/j.jplph.2018.01.003
– ident: e_1_2_7_25_1
  doi: 10.1016/j.copbio.2017.08.013
– ident: e_1_2_7_28_1
  doi: 10.1016/S0168-9452(99)00122-3
– ident: e_1_2_7_77_1
  doi: 10.1093/pcp/pci013
– ident: e_1_2_7_10_1
  doi: 10.1111/nph.15696
– ident: e_1_2_7_47_1
  doi: 10.1007/s10265-006-0262-6
– ident: e_1_2_7_84_1
  doi: 10.1105/tpc.112.106039
– ident: e_1_2_7_33_1
  doi: 10.1104/pp.116.1.403
– ident: e_1_2_7_69_1
  doi: 10.3389/fpls.2014.00771
– ident: e_1_2_7_49_1
  doi: 10.1104/pp.111.189779
– ident: e_1_2_7_26_1
  doi: 10.1104/pp.98.2.646
– ident: e_1_2_7_38_1
  doi: 10.1007/s00425-017-2823-4
– ident: e_1_2_7_50_1
  doi: 10.1093/pcp/pcu204
– ident: e_1_2_7_61_1
  doi: 10.1016/0008-6215(96)00142-5
– ident: e_1_2_7_17_1
  doi: 10.1111/j.1399-3054.2007.00999.x
– ident: e_1_2_7_78_1
  doi: 10.1093/glycob/cww029
– ident: e_1_2_7_83_1
  doi: 10.1111/tpj.14519
– ident: e_1_2_7_31_1
  doi: 10.1007/s00425-007-0591-2
– ident: e_1_2_7_3_1
  doi: 10.3109/10520298509113928
– ident: e_1_2_7_48_1
  doi: 10.1111/nph.16209
– ident: e_1_2_7_59_1
  doi: 10.1093/pcp/pcf171
– volume-title: Identification and characterization of Arabidopsis mutants associated with xyloglucan metabolism
  year: 2010
  ident: e_1_2_7_44_1
  contributor:
    fullname: Neumetzler L.
– ident: e_1_2_7_29_1
  doi: 10.1016/j.cryobiol.2008.06.004
– ident: e_1_2_7_24_1
  doi: 10.1371/journal.pgen.1005471
– ident: e_1_2_7_42_1
  doi: 10.1021/jf100242z
– ident: e_1_2_7_68_1
  doi: 10.1007/978-1-0716-0660-5_17
– ident: e_1_2_7_53_1
  doi: 10.1007/BF00395139
– ident: e_1_2_7_45_1
  doi: 10.1093/treephys/tpq059
– ident: e_1_2_7_60_1
  doi: 10.1111/nph.12812
– ident: e_1_2_7_16_1
  doi: 10.1016/j.tplants.2004.06.007
– ident: e_1_2_7_73_1
  doi: 10.1104/pp.109.1.15
– ident: e_1_2_7_21_1
  doi: 10.1002/9783527632930.ch11
– ident: e_1_2_7_14_1
  doi: 10.1007/s00018-019-03388-8
– ident: e_1_2_7_74_1
  doi: 10.1016/S0003-2697(69)80009-6
– ident: e_1_2_7_82_1
  doi: 10.1104/pp.113.2.327
– ident: e_1_2_7_57_1
  doi: 10.1104/pp.111.2.597
– ident: e_1_2_7_2_1
  doi: 10.1016/S0008-6215(00)80510-8
– ident: e_1_2_7_79_1
  doi: 10.1104/pp.93.3.1021
– ident: e_1_2_7_22_1
  doi: 10.1007/BF01160398
– ident: e_1_2_7_40_1
  doi: 10.1186/1471-2229-8-60
– ident: e_1_2_7_20_1
  doi: 10.1007/s004250000393
– ident: e_1_2_7_6_1
  doi: 10.1105/tpc.108.059873
– ident: e_1_2_7_58_1
  doi: 10.1104/pp.111.2.605
– ident: e_1_2_7_18_1
  doi: 10.1093/treephys/27.12.1661
– ident: e_1_2_7_46_1
  doi: 10.2135/cropsci1984.0011183X002400010012x
– ident: e_1_2_7_70_1
  doi: 10.1007/978-1-4939-0844-8_3
– ident: e_1_2_7_5_1
  doi: 10.1016/j.actbio.2015.10.032
– ident: e_1_2_7_35_1
  doi: 10.1007/978-1-4939-0844-8_11
– ident: e_1_2_7_56_1
  doi: 10.1111/tpj.12654
– ident: e_1_2_7_71_1
  doi: 10.1104/pp.110.161794
– ident: e_1_2_7_39_1
  doi: 10.1016/j.cryobiol.2006.12.004
– ident: e_1_2_7_52_1
  doi: 10.1007/BF00396336
– ident: e_1_2_7_19_1
  doi: 10.1104/pp.106.081141
– ident: e_1_2_7_27_1
  doi: 10.1111/j.1469-8137.2012.04239.x
SSID ssj0001479
Score 2.5843132
Snippet Freezing triggers extracellular ice formation leading to cell dehydration and deformation during a freeze–thaw cycle. Many plant species increase their...
Freezing triggers extracellular ice formation leading to cell dehydration and deformation during a freeze-thaw cycle. Many plant species increase their...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 915
SubjectTerms Abiotic stress
Acclimation
Acclimatization
Antibodies
apoplast
Arabidopsis thaliana
cell wall remodeling
Cell walls
Cold
Cold acclimation
Cold tolerance
Deformation
Dehydration
Epitopes
Exposure
extracellular matrix
Freeze-thawing
Freezing
Gene expression
Hydrolase
Ice formation
Immunohistochemistry
Immunological tolerance
Low temperature
Mutants
Plant species
Proteomes
Rosette
Temperature tolerance
Transcriptomes
Xyloglucan
Title Cell wall modification by the xyloglucan endotransglucosylase/hydrolase XTH19 influences freezing tolerance after cold and sub‐zero acclimation
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.13953
https://www.ncbi.nlm.nih.gov/pubmed/33190295
https://www.proquest.com/docview/2490799922
https://search.proquest.com/docview/2461001455
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LixQxEC7WVWEvoutrdJUoHry0djrJZBpPOu4yCMoiuzC3Jo9qXBi7l3mw9p78CfoX_SVWdU83LiJ4CYGkCeRLVX2VrlQBvIhp8KXFkhDwJtG5MonPlUxwIp1xsrQ28IX-x0_j2an-MDfzHXjTv4Xp8kMMF24sGa2-ZgF3fvWHkJ8HfEX0xahrcJ1ozZjLF2T6eFDDUneJ9jh-0dpcbtMKcRjP8OlVY_QXw7xKWFuLc3Qbbm2ponjbYXsHdrDah5td8chmH268q4nYNXfh5xQXC3HhqPlaRw79aXdb-EYQuxPfyCXnwHRXCazIB2Xj1AWqN8Sc8fWXJi5r7on5yUzm4qwvW7IS5RLxkmybWNcL5AocKNqa4oJOTxSuimK18b--_7jEZS1cCIuz7iHkPTg9OjyZzpJtpYUkaKNVolWUKgTlUje2JbGuSEyI65BgapwOaKNBqaNyIWcfRknnyLZLHz0RlECU7j7sVnWFD0FMGF2iCWaCqDWpU-0zlfvUeum1sW4Ez_stL867hBpF74gQLkWLywgOejCKrUytCnIUU5tzHt0RPBuGSRr4F4ersN7wnDEnldLGjOBBB-KwiiJtk2Y5jbxsUf338sXx9LDtPPr_qY9hL-NwlzY87QB218sNPiG-svZP23NJ7fvP2W_CY-eK
link.rule.ids 314,780,784,1375,11562,27924,27925,46052,46294,46476,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VAioXHuUVKLAgDlwcvNndOJa4QGgVoK0QSqVckLWPsVoR7CoPQXLiJ8Bf5JcwY8eBgpAQF2slr7X2zszON-tvZwAeh9i7PMGcJOBMpFNlIpcqGWFPWmNlniSeN_QPDruDI_16ZEYb8Kw5C1Pnh1hvuLFlVOs1GzhvSP9i5ace24RfjDoH58ncJRO6Xr77mTxK6jrTHhMYkySVq7xCzONZP3rWG_0BMc8i1srl7F2B983L1kyTD-35zLX98rc8jv_7NVfh8gqLiue18lyDDSy24WJdnXKxDRdelIQcF9fhWx_HY_HJ0uVjGZhbVIlTuIUg-Cg-U8zPzHdbCCwoyGXvVzPhFwTN8enxIkxKbonRcCBTcdLURZmKfIK4JOcpZuUYucQHiqpouSD1DMIWQUzn7vuXr0uclMJ6Pz6pT1regKO93WF_EK1KOUReG60irYJU3isb226SE6wLBLW40AnGxmqPSTAodVDWpxwkKWktgQfpgiME5Akz3oTNoizwNogeqw_hENND1JrWa-06KnVx4qTTJrEteNSINDutM3ZkTaRDk5xVk9yCnUbY2cpopxlFonGScqLeFjxc3yZz438otsByzn26nLVKG9OCW7WSrEdRtJzFnZTuPKlE_ffhs7f93apx59-7PoCtwfBgP9t_dfjmLlzqMLem4sLtwOZsMsd7BI5m7n5lAz8ASsYK1g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V8hAXHuXRLQUM4sAlS7y21xtxgm1Xy6uqUCvtASnyYyIqtslqH6LZEz8B_iK_hHGyWSgICXGJLMWRE8-M5xtn_A3AEx87m2nMSAJWRTIRKrKJ4BH2uFGGZ1q7sKH_7qA7PJavR2q0Ac-bszA1P8R6wy1YRrVeBwOf-OwXI584bBN8UeICXJTdThKI8_fe_-SO4rIm2gv5i1onfEUrFNJ41o-ed0Z_IMzzgLXyOIPr8KF51zrR5FN7Mbdtt_yNxvE_P-YGXFshUfaiVp2bsIH5Flyua1OWW3DpZUG4sbwF3_o4HrPPhi6nhQ-ZRZUwmS0ZgUd2RhF_yHs3OcOcQtzg--o8-JKAOT77WPppEVpsdDTkCTtpqqLMWDZFXJLrZPNijKHAB7KqZDkj5fTM5J7NFvb7l69LnBbMODc-qc9Z3objwf5RfxitCjlETiopIik8F84JE5uuzgjUeQJaocwJxspIh9or5NIL45IQIgluDEEHbr0l_OMIMd6BzbzIcRtYLygPoRDVQ5SSVmtpOyKxsbbcSqVNCx43Ek0nNV9H2sQ5NMlpNckt2G1kna5MdpZSHBrrJND0tuDR-jYZW_iDYnIsFqFPN3BWSaVacLfWkfUoghazuJPQnaeVpP8-fHrY368aO__e9SFcOdwbpG9fHby5B1c7IbGmSoTbhc35dIH3CRnN7YPKAn4AKdMJhQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cell+wall+modification+by+the+xyloglucan+endotransglucosylase%2Fhydrolase+XTH19+influences+freezing+tolerance+after+cold+and+sub-zero+acclimation&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Takahashi%2C+Daisuke&rft.au=Johnson%2C+Kim+L&rft.au=Hao%2C+Pengfei&rft.au=Tuong%2C+Tan&rft.date=2021-03-01&rft.eissn=1365-3040&rft.volume=44&rft.issue=3&rft.spage=915&rft.epage=930&rft_id=info:doi/10.1111%2Fpce.13953&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon