Connexin 43 upregulation by dioscin inhibits melanoma progression via suppressing malignancy and inducing M1 polarization

Connexin 43 (Cx43), a vital gap junction protein in tumor microenvironment (TME), is a novel molecular target for melanoma chemotherapeutics due to its tumor suppressive function. Dioscin, an herbal steroidal saponin, exerts anti‐tumor effects while the underlying mechanism is unclear. Using WB, FAC...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of cancer Vol. 141; no. 8; pp. 1690 - 1703
Main Authors Kou, Yu, Ji, Liyan, Wang, Haojia, Wang, Wensheng, Zheng, Hongming, Zou, Juan, Liu, Linxin, Qi, Xiaoxiao, Liu, Zhongqiu, Du, Biaoyan, Lu, Linlin
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 15.10.2017
Subjects
Online AccessGet full text
ISSN0020-7136
1097-0215
1097-0215
DOI10.1002/ijc.30872

Cover

Loading…
Abstract Connexin 43 (Cx43), a vital gap junction protein in tumor microenvironment (TME), is a novel molecular target for melanoma chemotherapeutics due to its tumor suppressive function. Dioscin, an herbal steroidal saponin, exerts anti‐tumor effects while the underlying mechanism is unclear. Using WB, FACS, and immunofluorescence methodologies, we found dioscin significantly activated the transcription and translation of Cx43 via the retinoid acid signaling pathway and simultaneously enhanced the transporting function of Cx43. Through stimulating Cx43, dioscin remarkably suppressed the migratory and invasive capacities of B16 cells, and notably decreased pluripotency markers of cancer stem cells and epithelial‐to‐mesenchymal transition in B16 cells and animal tumor tissues. Conversely, dioscin improved the secretion of pro‐inflammatory cytokines (IL‐6, TNFα, and IL‐1β), and the phagocytic capacity of tumor‐associated macrophages by increasing M2‐to‐M1 phenotype transition. More strikingly, even in Cx43 functional deficient B16 and RAW264.7 cells, dioscin still dramatically reversed the aggravated tumor malignancy and reduced macrophage phagocytic activity. Two classical metastasis animal models were utilized in vivo and results showed that dioscin showed significant anti‐metastatic effects, which is closely related to the expression of Cx43 either in in situ tumor or metastatic lung nodes. In conclusion, dioscin targets Cx43 to suppress the tumor cell malignancy and activate macrophage sensitivity, thereby targeting melanoma microenvironment. What's new? New results reveal how an Chinese herbal medicine component acts against melanoma. Dioscin, a natural steroidal saponin, induces apoptosis in breast cancer as well as boosting production of pro‐inflammatory cytokines. These authors investigated the chemical's effect on connexin 43, a tumor suppressing protein found in the microenvironment that is frequently silenced in metastatic melanoma. Dioscin remarkably enhanced the expression of connexin 43, as well as boosting its ability to reverse the metastatic transition. Treatment with dioscin also enhanced the immune response, spurring macrophages to attack the tumor cells.
AbstractList Connexin 43 (Cx43), a vital gap junction protein in tumor microenvironment (TME), is a novel molecular target for melanoma chemotherapeutics due to its tumor suppressive function. Dioscin, an herbal steroidal saponin, exerts anti‐tumor effects while the underlying mechanism is unclear. Using WB, FACS, and immunofluorescence methodologies, we found dioscin significantly activated the transcription and translation of Cx43 via the retinoid acid signaling pathway and simultaneously enhanced the transporting function of Cx43. Through stimulating Cx43, dioscin remarkably suppressed the migratory and invasive capacities of B16 cells, and notably decreased pluripotency markers of cancer stem cells and epithelial‐to‐mesenchymal transition in B16 cells and animal tumor tissues. Conversely, dioscin improved the secretion of pro‐inflammatory cytokines (IL‐6, TNFα, and IL‐1β), and the phagocytic capacity of tumor‐associated macrophages by increasing M2‐to‐M1 phenotype transition. More strikingly, even in Cx43 functional deficient B16 and RAW264.7 cells, dioscin still dramatically reversed the aggravated tumor malignancy and reduced macrophage phagocytic activity. Two classical metastasis animal models were utilized in vivo and results showed that dioscin showed significant anti‐metastatic effects, which is closely related to the expression of Cx43 either in in situ tumor or metastatic lung nodes. In conclusion, dioscin targets Cx43 to suppress the tumor cell malignancy and activate macrophage sensitivity, thereby targeting melanoma microenvironment.
Connexin 43 (Cx43), a vital gap junction protein in tumor microenvironment (TME), is a novel molecular target for melanoma chemotherapeutics due to its tumor suppressive function. Dioscin, an herbal steroidal saponin, exerts anti‐tumor effects while the underlying mechanism is unclear. Using WB, FACS, and immunofluorescence methodologies, we found dioscin significantly activated the transcription and translation of Cx43 via the retinoid acid signaling pathway and simultaneously enhanced the transporting function of Cx43. Through stimulating Cx43, dioscin remarkably suppressed the migratory and invasive capacities of B16 cells, and notably decreased pluripotency markers of cancer stem cells and epithelial‐to‐mesenchymal transition in B16 cells and animal tumor tissues. Conversely, dioscin improved the secretion of pro‐inflammatory cytokines (IL‐6, TNFα, and IL‐1β), and the phagocytic capacity of tumor‐associated macrophages by increasing M2‐to‐M1 phenotype transition. More strikingly, even in Cx43 functional deficient B16 and RAW264.7 cells, dioscin still dramatically reversed the aggravated tumor malignancy and reduced macrophage phagocytic activity. Two classical metastasis animal models were utilized in vivo and results showed that dioscin showed significant anti‐metastatic effects, which is closely related to the expression of Cx43 either in in situ tumor or metastatic lung nodes. In conclusion, dioscin targets Cx43 to suppress the tumor cell malignancy and activate macrophage sensitivity, thereby targeting melanoma microenvironment. What's new? New results reveal how an Chinese herbal medicine component acts against melanoma. Dioscin, a natural steroidal saponin, induces apoptosis in breast cancer as well as boosting production of pro‐inflammatory cytokines. These authors investigated the chemical's effect on connexin 43, a tumor suppressing protein found in the microenvironment that is frequently silenced in metastatic melanoma. Dioscin remarkably enhanced the expression of connexin 43, as well as boosting its ability to reverse the metastatic transition. Treatment with dioscin also enhanced the immune response, spurring macrophages to attack the tumor cells.
Connexin 43 (Cx43), a vital gap junction protein in tumor microenvironment (TME), is a novel molecular target for melanoma chemotherapeutics due to its tumor suppressive function. Dioscin, an herbal steroidal saponin, exerts anti‐tumor effects while the underlying mechanism is unclear. Using WB, FACS, and immunofluorescence methodologies, we found dioscin significantly activated the transcription and translation of Cx43 via the retinoid acid signaling pathway and simultaneously enhanced the transporting function of Cx43. Through stimulating Cx43, dioscin remarkably suppressed the migratory and invasive capacities of B16 cells, and notably decreased pluripotency markers of cancer stem cells and epithelial‐to‐mesenchymal transition in B16 cells and animal tumor tissues. Conversely, dioscin improved the secretion of pro‐inflammatory cytokines (IL‐6, TNFα, and IL‐1β), and the phagocytic capacity of tumor‐associated macrophages by increasing M2‐to‐M1 phenotype transition. More strikingly, even in Cx43 functional deficient B16 and RAW264.7 cells, dioscin still dramatically reversed the aggravated tumor malignancy and reduced macrophage phagocytic activity. Two classical metastasis animal models were utilized in vivo and results showed that dioscin showed significant anti‐metastatic effects, which is closely related to the expression of Cx43 either in in situ tumor or metastatic lung nodes. In conclusion, dioscin targets Cx43 to suppress the tumor cell malignancy and activate macrophage sensitivity, thereby targeting melanoma microenvironment. What's new? New results reveal how an Chinese herbal medicine component acts against melanoma. Dioscin, a natural steroidal saponin, induces apoptosis in breast cancer as well as boosting production of pro‐inflammatory cytokines. These authors investigated the chemical's effect on connexin 43, a tumor suppressing protein found in the microenvironment that is frequently silenced in metastatic melanoma. Dioscin remarkably enhanced the expression of connexin 43, as well as boosting its ability to reverse the metastatic transition. Treatment with dioscin also enhanced the immune response, spurring macrophages to attack the tumor cells.
Connexin 43 (Cx43), a vital gap junction protein in tumor microenvironment (TME), is a novel molecular target for melanoma chemotherapeutics due to its tumor suppressive function. Dioscin, an herbal steroidal saponin, exerts anti-tumor effects while the underlying mechanism is unclear. Using WB, FACS, and immunofluorescence methodologies, we found dioscin significantly activated the transcription and translation of Cx43 via the retinoid acid signaling pathway and simultaneously enhanced the transporting function of Cx43. Through stimulating Cx43, dioscin remarkably suppressed the migratory and invasive capacities of B16 cells, and notably decreased pluripotency markers of cancer stem cells and epithelial-to-mesenchymal transition in B16 cells and animal tumor tissues. Conversely, dioscin improved the secretion of pro-inflammatory cytokines (IL-6, TNFα, and IL-1β), and the phagocytic capacity of tumor-associated macrophages by increasing M2-to-M1 phenotype transition. More strikingly, even in Cx43 functional deficient B16 and RAW264.7 cells, dioscin still dramatically reversed the aggravated tumor malignancy and reduced macrophage phagocytic activity. Two classical metastasis animal models were utilized in vivo and results showed that dioscin showed significant anti-metastatic effects, which is closely related to the expression of Cx43 either in in situ tumor or metastatic lung nodes. In conclusion, dioscin targets Cx43 to suppress the tumor cell malignancy and activate macrophage sensitivity, thereby targeting melanoma microenvironment.Connexin 43 (Cx43), a vital gap junction protein in tumor microenvironment (TME), is a novel molecular target for melanoma chemotherapeutics due to its tumor suppressive function. Dioscin, an herbal steroidal saponin, exerts anti-tumor effects while the underlying mechanism is unclear. Using WB, FACS, and immunofluorescence methodologies, we found dioscin significantly activated the transcription and translation of Cx43 via the retinoid acid signaling pathway and simultaneously enhanced the transporting function of Cx43. Through stimulating Cx43, dioscin remarkably suppressed the migratory and invasive capacities of B16 cells, and notably decreased pluripotency markers of cancer stem cells and epithelial-to-mesenchymal transition in B16 cells and animal tumor tissues. Conversely, dioscin improved the secretion of pro-inflammatory cytokines (IL-6, TNFα, and IL-1β), and the phagocytic capacity of tumor-associated macrophages by increasing M2-to-M1 phenotype transition. More strikingly, even in Cx43 functional deficient B16 and RAW264.7 cells, dioscin still dramatically reversed the aggravated tumor malignancy and reduced macrophage phagocytic activity. Two classical metastasis animal models were utilized in vivo and results showed that dioscin showed significant anti-metastatic effects, which is closely related to the expression of Cx43 either in in situ tumor or metastatic lung nodes. In conclusion, dioscin targets Cx43 to suppress the tumor cell malignancy and activate macrophage sensitivity, thereby targeting melanoma microenvironment.
Author Du, Biaoyan
Wang, Wensheng
Wang, Haojia
Kou, Yu
Lu, Linlin
Ji, Liyan
Zheng, Hongming
Zou, Juan
Liu, Linxin
Qi, Xiaoxiao
Liu, Zhongqiu
Author_xml – sequence: 1
  givenname: Yu
  surname: Kou
  fullname: Kou, Yu
  organization: School of Basic Medical Sciences, Guangzhou University of Chinese Medicine
– sequence: 2
  givenname: Liyan
  surname: Ji
  fullname: Ji, Liyan
  organization: International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine
– sequence: 3
  givenname: Haojia
  surname: Wang
  fullname: Wang, Haojia
  organization: International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine
– sequence: 4
  givenname: Wensheng
  surname: Wang
  fullname: Wang, Wensheng
  organization: International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine
– sequence: 5
  givenname: Hongming
  surname: Zheng
  fullname: Zheng, Hongming
  organization: International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine
– sequence: 6
  givenname: Juan
  surname: Zou
  fullname: Zou, Juan
  organization: International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine
– sequence: 7
  givenname: Linxin
  surname: Liu
  fullname: Liu, Linxin
  organization: International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine
– sequence: 8
  givenname: Xiaoxiao
  surname: Qi
  fullname: Qi, Xiaoxiao
  organization: International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine
– sequence: 9
  givenname: Zhongqiu
  surname: Liu
  fullname: Liu, Zhongqiu
  organization: International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine
– sequence: 10
  givenname: Biaoyan
  surname: Du
  fullname: Du, Biaoyan
  email: dubiaoyan@gzucm.edu.cn
  organization: School of Basic Medical Sciences, Guangzhou University of Chinese Medicine
– sequence: 11
  givenname: Linlin
  orcidid: 0000-0002-8221-4613
  surname: Lu
  fullname: Lu, Linlin
  email: lllu@gzucm.edu.cn
  organization: International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28677156$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi1URLeFA38AWeICh7R2_JkjWvFRVMQFzpFjTxavEjvYSSH8ery7hUMlOI0887wz43kv0FmIARB6TskVJaS-9nt7xYhW9SO0oaRRFampOEObUiOVokyeo4uc94RQKgh_gs5rLZWiQm7Quo0hwE8fMGd4mRLslsHMPgbcrdj5mG0p-fDNd37OeITBhDgaPKW4S5DzAbzzBudlmo7vsMOjGfwumGBXbIIrYrfYQ_4TxVMcTPK_jgOeose9GTI8u4-X6Ou7t1-2H6rbz-9vtm9uK8sFryvHRW962oOTrCE17xuQXHdSEOesAdmLnpOmA1C6oYwrJYRSjDhoaMOcEOwSvTr1LTt_XyDP7eizhaH8BOKSW9pQyZTWWhX05QN0H5cUynaFYkQqzTQp1It7aulGcO2U_GjS2v45agFenwCbYs4J-r8IJe3BsLYY1h4NK-z1A9b6-XifORk__E_xww-w_rt1e_Nxe1L8Bhmup2E
CitedBy_id crossref_primary_10_1002_jcp_29197
crossref_primary_10_1016_j_lfs_2020_118182
crossref_primary_10_1016_j_lfs_2018_08_039
crossref_primary_10_1002_cam4_2108
crossref_primary_10_1016_j_phymed_2019_152968
crossref_primary_10_3389_fonc_2021_593587
crossref_primary_10_1007_s10616_021_00454_7
crossref_primary_10_1016_j_intimp_2023_109839
crossref_primary_10_1111_pcmr_12945
crossref_primary_10_3390_ijms23115918
crossref_primary_10_1016_j_phrs_2021_105983
crossref_primary_10_3389_fonc_2019_01209
crossref_primary_10_3390_ijms19041159
crossref_primary_10_3389_fmed_2022_880326
crossref_primary_10_3748_wjg_v28_i40_5845
crossref_primary_10_1016_j_phymed_2022_154559
crossref_primary_10_1155_2022_6422500
crossref_primary_10_1016_j_phrs_2018_09_022
crossref_primary_10_2174_1389450124666230719105147
crossref_primary_10_1111_jcmm_15563
crossref_primary_10_1016_j_biopha_2022_112973
crossref_primary_10_1186_s12964_024_01642_6
crossref_primary_10_1016_j_bbcan_2020_188380
crossref_primary_10_3389_fphar_2023_1186712
crossref_primary_10_3390_cells14060403
crossref_primary_10_1007_s12032_024_02572_6
crossref_primary_10_3389_fvets_2021_670451
crossref_primary_10_53879_id_60_04_11812
crossref_primary_10_1016_j_prmcm_2024_100423
crossref_primary_10_4103_2311_8571_353503
crossref_primary_10_3390_ijms24032600
crossref_primary_10_1177_1074248418801567
crossref_primary_10_1097_CAD_0000000000001179
crossref_primary_10_3390_biology12020204
crossref_primary_10_7717_peerj_7760
crossref_primary_10_1371_journal_pone_0272781
crossref_primary_10_1002_biof_1815
crossref_primary_10_1080_08923973_2024_2425028
crossref_primary_10_1002_jcp_29969
crossref_primary_10_1136_jitc_2020_001341
crossref_primary_10_3390_molecules24122222
crossref_primary_10_1139_bcb_2019_0137
crossref_primary_10_1016_j_heliyon_2024_e29215
crossref_primary_10_3389_fphar_2023_1159985
crossref_primary_10_1021_acsabm_0c01388
crossref_primary_10_1007_s11101_020_09661_0
crossref_primary_10_1016_j_ejphar_2019_03_050
crossref_primary_10_1016_j_intimp_2021_108015
crossref_primary_10_1016_j_phrs_2021_105796
crossref_primary_10_3390_ijms21239119
crossref_primary_10_3892_etm_2022_11577
Cites_doi 10.4049/jimmunol.181.12.8534
10.1016/j.ejca.2015.09.013
10.1002/(SICI)1096-9098(199901)70:1<21::AID-JSO4>3.0.CO;2-0
10.1038/cddis.2013.560
10.1254/jphs.FP0051023
10.1016/j.biochi.2013.11.015
10.4049/jimmunol.1301297
10.1038/bjc.2015.162
10.1016/j.molonc.2013.02.009
10.1016/S0140-6736(13)60802-8
10.1002/jcp.24235
10.1007/s00204-013-1148-8
10.1007/s00418-009-0654-5
10.1200/JCO.2013.53.1590
10.3322/caac.21332
10.1016/j.toxlet.2012.08.005
10.1158/0008-5472.CAN-08-0041
10.2174/1381612821666141211115611
10.4049/jimmunol.1202884
10.1016/j.yexcr.2007.09.010
10.1159/000362978
10.1146/annurev.bi.65.070196.002355
10.1002/jcp.24241
10.1074/jbc.M305072200
10.1097/PAT.0b013e328363b3bd
10.1097/PGP.0b013e3181c3c57f
10.1177/107327480901600307
10.1074/jbc.M409564200
10.18632/oncotarget.1764
10.1016/j.jid.2015.11.013
10.1158/1078-0432.CCR-14-1554
10.1016/j.canlet.2014.05.008
10.1007/978-3-319-22539-5_8
10.1111/pcmr.12120
10.1002/1098-2744(200006)28:2<119::AID-MC8>3.0.CO;2-N
10.1038/nm.2667
10.1007/s10495-014-0994-z
10.1074/jbc.M109.053348
10.1101/gad.191999.112
10.1200/JCO.2004.08.140
10.1023/B:HIJO.0000032362.35354.bb
10.1038/nrc2841
10.18632/oncotarget.3449
10.1074/jbc.M113.507228
ContentType Journal Article
Copyright 2017 UICC
2017 UICC.
Copyright_xml – notice: 2017 UICC
– notice: 2017 UICC.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TO
7U9
H94
K9.
7X8
DOI 10.1002/ijc.30872
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
MEDLINE - Academic
DatabaseTitleList AIDS and Cancer Research Abstracts
CrossRef

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1097-0215
EndPage 1703
ExternalDocumentID 28677156
10_1002_ijc_30872
IJC30872
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Bureau for Science and Information Technology of Guangzhou Municipality
  funderid: ID# 201509010004
– fundername: Natural Science Foundation of Guangdong Province, China
  funderid: ID # 2015A030312012; #2016A050502052; # 2015B020233015
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
EMOBN
F00
F01
F04
F5P
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IH2
IX1
J0M
JPC
KBYEO
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RX1
RYL
SUPJJ
TEORI
UB1
UDS
V2E
V8K
V9Y
W2D
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WWO
WXI
WXSBR
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TO
7U9
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
H94
K9.
7X8
ID FETCH-LOGICAL-c4542-d45faf1fed639024f9e648b650ddcae6f5f409bee78913477557730de9193d553
IEDL.DBID DR2
ISSN 0020-7136
1097-0215
IngestDate Fri Jul 11 00:59:21 EDT 2025
Sun Jul 13 03:25:03 EDT 2025
Thu Apr 03 07:03:12 EDT 2025
Thu Apr 24 22:53:42 EDT 2025
Tue Jul 01 02:28:21 EDT 2025
Wed Jan 22 16:28:33 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords melanoma
dioscin
connexin 43
macrophage-induced epithelial-to-mesenchymal transition
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 UICC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4542-d45faf1fed639024f9e648b650ddcae6f5f409bee78913477557730de9193d553
Notes All authors declare that no conflicts of interest exist.
Conflict of Interest
Contributed equally to this paper.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8221-4613
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ijc.30872
PMID 28677156
PQID 1930678380
PQPubID 105430
PageCount 14
ParticipantIDs proquest_miscellaneous_1916378887
proquest_journals_1930678380
pubmed_primary_28677156
crossref_primary_10_1002_ijc_30872
crossref_citationtrail_10_1002_ijc_30872
wiley_primary_10_1002_ijc_30872_IJC30872
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 October 2017
PublicationDateYYYYMMDD 2017-10-15
PublicationDate_xml – month: 10
  year: 2017
  text: 15 October 2017
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle International journal of cancer
PublicationTitleAlternate Int J Cancer
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 22
2010; 10
2013; 26
2015; 6
2000; 28
2013; 45
2013; 228
2016; 53
2016; 167
2010; 285
2012; 18
2014; 192
2013; 7
2014; 352
2003; 278
2014; 88
2008; 181
2007; 313
2005; 280
2014; 5
2012; 1
2015; 113
2010; 29
2004; 35
2015; 21
2010; 133
2008; 68
2014; 19
2016; 136
2012; 26
1999; 70
2012; 214
2012; 4
2014; 383
2009; 16
2006; 101
2014; 34
1996; 65
2014; 101
2013; 190
2014; 32
2016; 66
2014; 289
Quatromoni JG (e_1_2_6_8_1) 2012; 4
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_33_1
Kolarcik CL (e_1_2_6_34_1) 2012; 1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_26_1
e_1_2_6_47_1
References_xml – volume: 32
  start-page: 3771
  year: 2014
  end-page: 8
  article-title: Southwest oncology group S0008: a phase III trial of high‐dose interferon Alfa‐2b versus cisplatin, vinblastine, and dacarbazine, plus interleukin‐2 and interferon in patients with high‐risk melanoma—an intergroup study of cancer and leukemia Group B, Children's Oncology Group, Eastern Cooperative Oncology Group, and Southwest Oncology Group
  publication-title: JCO.
– volume: 35
  start-page: 309
  year: 2004
  end-page: 18
  article-title: The role of altered cell‐cell communication in melanoma progression
  publication-title: J Mol Histol.
– volume: 6
  start-page: 11640
  year: 2015
  end-page: 51
  article-title: Connexin 43 expression is associated with increased malignancy in prostate cancer cell lines and functions to promote migration
  publication-title: Oncotarget
– volume: 181
  start-page: 8534
  year: 2008
  end-page: 43
  article-title: A role for connexin43 in macrophage phagocytosis and host survival after bacterial peritoneal infection
  publication-title: J Immunol.
– volume: 34
  start-page: 213
  year: 2014
  end-page: 43
  article-title: Cell‐cell communication in the tumor microenvironment, carcinogenesis, and anticancer treatment
  publication-title: Cell Physiol Biochem.
– volume: 10
  start-page: 435
  year: 2010
  end-page: 41
  article-title: Implications and challenges of connexin connections to cancer
  publication-title: Nat Rev Cancer.
– volume: 22
  start-page: 1293
  year: 2004
  end-page: 300
  article-title: Determinants of outcome in melanoma patients with cerebral metastases
  publication-title: JCO.
– volume: 228
  start-page: 853
  year: 2013
  end-page: 9
  article-title: A dominant negative Cx43 mutant differentially affects tumorigenic and invasive properties in human metastatic melanoma cells
  publication-title: J Cell Physiol.
– volume: 88
  start-page: 739
  year: 2014
  end-page: 53
  article-title: Protective effects of dioscin against alcohol‐induced liver injury
  publication-title: Arch Toxicol.
– volume: 5
  start-page: e1023
  year: 2014
  article-title: A cell‐penetrating peptide based on the interaction between c‐Src and connexin43 reverses glioma stem cell phenotype
  publication-title: Cell Death Dis.
– volume: 26
  start-page: 746
  year: 2013
  end-page: 54
  article-title: Could pericytic mimicry represent another type of melanoma cell plasticity with embryonic properties?
  publication-title: Pigment Cell Melanoma Res.
– volume: 7
  start-page: 283
  year: 2013
  end-page: 96
  article-title: Rebuilding cancer metastasis in the mouse
  publication-title: Mol Oncol.
– volume: 313
  start-page: 4083
  year: 2007
  end-page: 90
  article-title: Phosphorylation of connexin43 induced by Src: regulation of gap junctional communication between transformed cells
  publication-title: Exp Cell Res.
– volume: 167
  start-page: 209
  year: 2016
  end-page: 29
  article-title: Chemotherapy for Melanoma
  publication-title: Cancer Treat Res.
– volume: 285
  start-page: 10761
  year: 2010
  end-page: 76
  article-title: E‐cadherin differentially regulates the assembly of Connexin 43 and Connexin 32 into gap junctions in human squamous carcinoma cells
  publication-title: J Biol Chem.
– volume: 53
  start-page: 125
  year: 2016
  end-page: 34
  article-title: Survival of patients with advanced metastatic melanoma: the impact of novel therapies
  publication-title: Eur J Cancer
– volume: 4
  start-page: 376
  year: 2012
  end-page: 89
  article-title: Tumor‐associated macrophages: function, phenotype, and link to prognosis in human lung cancer
  publication-title: Am J Translat Res.
– volume: 45
  start-page: 443
  year: 2013
  end-page: 52
  article-title: Melanoma's connections to the tumour microenvironment
  publication-title: Pathology
– volume: 228
  start-page: 903
  year: 2013
  end-page: 10
  article-title: Retinoic acid regulates gap junction intercellular communication in human endometrial stromal cells through modulation of the phosphorylation status of connexin 43
  publication-title: J Cell Physiol.
– volume: 26
  start-page: 1131
  year: 2012
  end-page: 55
  article-title: Melanoma: from mutations to medicine
  publication-title: Genes Dev.
– volume: 192
  start-page: 1313
  year: 2014
  end-page: 9
  article-title: Gap junction intercellular communications regulate NK cell activation and modulate NK cytotoxic capacity
  publication-title: J Immunol.
– volume: 113
  start-page: 259
  year: 2015
  end-page: 67
  article-title: Overexpression of connexin 43 reduces melanoma proliferative and metastatic capacity
  publication-title: Br J Cancer
– volume: 19
  start-page: 1165
  year: 2014
  end-page: 75
  article-title: Dioscin induces caspase‐independent apoptosis through activation of apoptosis‐inducing factor in breast cancer cells
  publication-title: Apoptosis Int J Program Cell Death
– volume: 101
  start-page: 1
  year: 2014
  end-page: 9
  article-title: Connexin a check‐point component of cell apoptosis in normal and physiopathological conditions
  publication-title: Biochimie
– volume: 190
  start-page: 4830
  year: 2013
  end-page: 5
  article-title: Connexin43 is dispensable for phagocytosis
  publication-title: J Immunol.
– volume: 214
  start-page: 69
  year: 2012
  end-page: 80
  article-title: Dioscin, a natural steroid saponin, shows remarkable protective effect against acetaminophen‐induced liver damage in vitro and in vivo
  publication-title: Toxicol Lett.
– volume: 5
  start-page: 1621
  year: 2014
  end-page: 34
  article-title: Sulforaphane counteracts aggressiveness of pancreatic cancer driven by dysregulated Cx43‐mediated gap junctional intercellular communication
  publication-title: Oncotarget
– volume: 21
  start-page: 1279
  year: 2015
  end-page: 91
  article-title: The epithelial‐mesenchymal transition and cancer stem cells: functional and mechanistic links
  publication-title: CPD.
– volume: 352
  start-page: 160
  year: 2014
  end-page: 8
  article-title: Tumor‐associated macrophages promote cancer stem cell‐like properties via transforming growth factor‐beta1‐induced epithelial‐mesenchymal transition in hepatocellular carcinoma
  publication-title: Cancer Lett.
– volume: 289
  start-page: 1592
  year: 2014
  end-page: 603
  article-title: Connexin43 reduces melanoma growth within a keratinocyte microenvironment and during tumorigenesis in vivo
  publication-title: J Biol Chem.
– volume: 65
  start-page: 475
  year: 1996
  end-page: 502
  article-title: Connexins, connexons, and intercellular communication
  publication-title: Annu Rev Biochem.
– volume: 29
  start-page: 358
  year: 2010
  end-page: 65
  article-title: Aberrant distributions and relationships among E‐cadherin, beta‐catenin, and connexin 26 and 43 in endometrioid adenocarcinomas
  publication-title: Int J Gynecol Pathol.
– volume: 21
  start-page: 1652
  year: 2015
  end-page: 64
  article-title: BRAF inhibition stimulates melanoma‐associated macrophages to drive tumor growth
  publication-title: Clin Cancer Res.
– volume: 383
  start-page: 816
  year: 2014
  end-page: 27
  article-title: Cutaneous melanoma
  publication-title: Lancet
– volume: 68
  start-page: 4500
  year: 2008
  end-page: 5
  article-title: Development of a preclinical model of spontaneous human melanoma central nervous system metastasis
  publication-title: Cancer Res.
– volume: 280
  start-page: 11458
  year: 2005
  end-page: 66
  article-title: Oculodentodigital dysplasia‐causing connexin 43 mutants are non‐functional and exhibit dominant effects on wild‐type connexin 43
  publication-title: J Biol Chem.
– volume: 133
  start-page: 113
  year: 2010
  end-page: 24
  article-title: Melanoma progression exhibits a significant impact on connexin expression patterns in the epidermal tumor microenvironment
  publication-title: Histochem Cell Biol.
– volume: 136
  start-page: 372
  year: 2016
  end-page: 7
  article-title: The role of neutrophilic inflammation, angiotropism, and pericytic mimicry in melanoma progression and metastasis
  publication-title: J Invest Dermatol.
– volume: 278
  start-page: 44852
  year: 2003
  end-page: 6
  article-title: The gap junction‐independent tumor‐suppressing effect of connexin 43
  publication-title: J Biol Chem.
– volume: 1
  start-page: 130
  year: 2012
  end-page: 45
  article-title: Retinoid signaling alterations in amyotrophic lateral sclerosis
  publication-title: Am J Neurodegen Dis.
– volume: 28
  start-page: 119
  year: 2000
  end-page: 27
  article-title: Identification of tumor‐suppressor genes using human melanoma cell lines UACC903, UACC903(+6), and SRS3 by comparison of expression profiles
  publication-title: Mol Carcinog.
– volume: 18
  start-page: 572
  year: 2012
  end-page: 9
  article-title: Macrophage‐derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease
  publication-title: Nat Med.
– volume: 66
  start-page: 7
  year: 2016
  end-page: 30
  article-title: Cancer statistics, 2016
  publication-title: CA Cancer J Clin.
– volume: 101
  start-page: 214
  year: 2006
  end-page: 22
  article-title: Acetylcholine inhibits the hypoxia‐induced reduction of connexin43 protein in rat cardiomyocytes
  publication-title: J Pharmacol Sci.
– volume: 16
  start-page: 248
  year: 2009
  end-page: 55
  article-title: Diagnosis and treatment of melanoma brain metastasis: a literature review
  publication-title: Cancer Control
– volume: 70
  start-page: 21
  year: 1999
  end-page: 4
  article-title: Reduced connexin43 expression in high‐grade human brain glioma cells
  publication-title: J Surg Oncol.
– ident: e_1_2_6_12_1
  doi: 10.4049/jimmunol.181.12.8534
– ident: e_1_2_6_20_1
  doi: 10.1016/j.ejca.2015.09.013
– ident: e_1_2_6_13_1
  doi: 10.1002/(SICI)1096-9098(199901)70:1<21::AID-JSO4>3.0.CO;2-0
– ident: e_1_2_6_42_1
  doi: 10.1038/cddis.2013.560
– ident: e_1_2_6_30_1
  doi: 10.1254/jphs.FP0051023
– ident: e_1_2_6_37_1
  doi: 10.1016/j.biochi.2013.11.015
– ident: e_1_2_6_11_1
  doi: 10.4049/jimmunol.1301297
– ident: e_1_2_6_19_1
  doi: 10.1038/bjc.2015.162
– ident: e_1_2_6_25_1
  doi: 10.1016/j.molonc.2013.02.009
– ident: e_1_2_6_47_1
  doi: 10.1016/S0140-6736(13)60802-8
– ident: e_1_2_6_18_1
  doi: 10.1002/jcp.24235
– ident: e_1_2_6_24_1
  doi: 10.1007/s00204-013-1148-8
– ident: e_1_2_6_6_1
  doi: 10.1007/s00418-009-0654-5
– ident: e_1_2_6_46_1
  doi: 10.1200/JCO.2013.53.1590
– ident: e_1_2_6_2_1
  doi: 10.3322/caac.21332
– ident: e_1_2_6_22_1
  doi: 10.1016/j.toxlet.2012.08.005
– ident: e_1_2_6_26_1
  doi: 10.1158/0008-5472.CAN-08-0041
– ident: e_1_2_6_41_1
  doi: 10.2174/1381612821666141211115611
– ident: e_1_2_6_43_1
  doi: 10.4049/jimmunol.1202884
– ident: e_1_2_6_9_1
  doi: 10.1016/j.yexcr.2007.09.010
– ident: e_1_2_6_35_1
  doi: 10.1159/000362978
– ident: e_1_2_6_36_1
  doi: 10.1146/annurev.bi.65.070196.002355
– ident: e_1_2_6_33_1
  doi: 10.1002/jcp.24241
– ident: e_1_2_6_14_1
  doi: 10.1074/jbc.M305072200
– ident: e_1_2_6_10_1
  doi: 10.1097/PAT.0b013e328363b3bd
– ident: e_1_2_6_39_1
  doi: 10.1097/PGP.0b013e3181c3c57f
– ident: e_1_2_6_4_1
  doi: 10.1177/107327480901600307
– ident: e_1_2_6_27_1
  doi: 10.1074/jbc.M409564200
– ident: e_1_2_6_38_1
  doi: 10.18632/oncotarget.1764
– ident: e_1_2_6_5_1
  doi: 10.1016/j.jid.2015.11.013
– ident: e_1_2_6_21_1
  doi: 10.1158/1078-0432.CCR-14-1554
– ident: e_1_2_6_31_1
  doi: 10.1016/j.canlet.2014.05.008
– ident: e_1_2_6_45_1
  doi: 10.1007/978-3-319-22539-5_8
– ident: e_1_2_6_7_1
  doi: 10.1111/pcmr.12120
– ident: e_1_2_6_17_1
  doi: 10.1002/1098-2744(200006)28:2<119::AID-MC8>3.0.CO;2-N
– volume: 4
  start-page: 376
  year: 2012
  ident: e_1_2_6_8_1
  article-title: Tumor‐associated macrophages: function, phenotype, and link to prognosis in human lung cancer
  publication-title: Am J Translat Res.
– ident: e_1_2_6_29_1
  doi: 10.1038/nm.2667
– ident: e_1_2_6_23_1
  doi: 10.1007/s10495-014-0994-z
– volume: 1
  start-page: 130
  year: 2012
  ident: e_1_2_6_34_1
  article-title: Retinoid signaling alterations in amyotrophic lateral sclerosis
  publication-title: Am J Neurodegen Dis.
– ident: e_1_2_6_40_1
  doi: 10.1074/jbc.M109.053348
– ident: e_1_2_6_44_1
  doi: 10.1101/gad.191999.112
– ident: e_1_2_6_3_1
  doi: 10.1200/JCO.2004.08.140
– ident: e_1_2_6_15_1
  doi: 10.1023/B:HIJO.0000032362.35354.bb
– ident: e_1_2_6_16_1
  doi: 10.1038/nrc2841
– ident: e_1_2_6_28_1
  doi: 10.18632/oncotarget.3449
– ident: e_1_2_6_32_1
  doi: 10.1074/jbc.M113.507228
SSID ssj0011504
Score 2.4744773
Snippet Connexin 43 (Cx43), a vital gap junction protein in tumor microenvironment (TME), is a novel molecular target for melanoma chemotherapeutics due to its tumor...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1690
SubjectTerms Animal models
Animals
Apoptosis
Breast cancer
Cancer
Connexin 43
Connexin 43 - metabolism
Cytokines
dioscin
Diosgenin - analogs & derivatives
Diosgenin - pharmacology
Female
Flow cytometry
Herbal medicine
Immune response
Immunofluorescence
Inflammation
Interleukin 1
Interleukin 6
Invasiveness
Macrophages
macrophage‐induced epithelial‐to‐mesenchymal transition
Malignancy
Medical research
Melanoma
Melanoma, Experimental - drug therapy
Melanoma, Experimental - metabolism
Melanoma, Experimental - pathology
Mesenchyme
Metastases
Metastasis
Mice
Mice, Inbred C57BL
Molecular Targeted Therapy
Phagocytes
Pluripotency
Polarization
RAW 264.7 Cells
Signal transduction
Stem cells
Transcription
Tumor cells
Up-Regulation - drug effects
Title Connexin 43 upregulation by dioscin inhibits melanoma progression via suppressing malignancy and inducing M1 polarization
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fijc.30872
https://www.ncbi.nlm.nih.gov/pubmed/28677156
https://www.proquest.com/docview/1930678380
https://www.proquest.com/docview/1916378887
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hDhWXlpY-FmhlUA-9ZMkmdrIRpwoVAdJyqIrEoVLkJ03LelfsBnX765mJk1T0ISFuUWInjsfj-cYefwPw3spUUjrySKkRj7jT40gWKo10EWtlheaZpgPOk_Ps5IKfXYrLNTjszsIEfoh-wY00o5mvScGlWhz8Jg2tvush0dnR_EuxWgSIPvfUUQR0WgbmOEJHLOtYheLkoK953xb9BTDv49XG4Bw_g69dU0OcyY9hvVRD_esPFsdH_ssmPG2BKPsYRs5zWLP-BTyZtFvtW7BqQmB-Vp7xlNXzm5CzHqXI1IqZijgwPav8t0pVywWb2mvpZ1PJmnivwPXBbivJFvU8hNr6KzZFzH9FBB8rJr3ByqbWdH8yYnPysNsjoS_h4vjTl6OTqM3TEGkueBIZLpx0I2cNwh20-a6wGR8rxH7GaGkzJxx6kcranPZEeZ4LkePEYmyB6NEIkb6CdT_z9g0wa7EblEoTh69A41qYOMUhw1ODbtnYyQF86CRW6pbEnHJpXJeBfjkpsSvLpisHsN8XnQfmjn8V2u3EXrbKuyixVWTD03E8gL3-Maod7aVIb2c1lUEgS8sH-QBeh-HSfyUhjkD0i7GxjdD___ny9Oyoudh-eNEd2EgIWlBUjdiF9eVNbd8iMFqqd40G3AF27QqU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRQIu5Q0LBQziwCXbbGInG4kLKlTb0u0BtVIvKPKzhHa9q-4Gsfx6ZuIkqDwkxC1K7MTxeDzf2ONvAF5ZmUpKRx4pNeIRd3ocyUKlkS5irazQPNN0wHl6lE1O-MGpON2AN91ZmMAP0S-4kWY08zUpOC1I7_xkDa2-6CHx2eEEfI0yelP-gncfe_IogjotB3McoSuWdbxCcbLTV71qjX6DmFcRa2Ny9m7Bp66xIdLkfFiv1FB__4XH8X__5jZstViUvQ2D5w5sWH8Xrk_b3fZ7sG6iYL5VnvGU1YvLkLYeBcnUmpmKaDA9q_znSlWrJZvZC-nnM8makK9A98G-VpIt60WItvVnbIaw_4w4PtZMeoOVTa3p_nTEFuRkt6dC78PJ3vvj3UnUpmqINBc8iQwXTrqRswYRD5p9V9iMjxXCP2O0tJkTDh1JZW1O26I8z4XIcW4xtkAAaYRIH8Cmn3v7CJi12A1KpYnDV6B9LUyc4qjhqUHPbOzkAF53Iit1y2NO6TQuysDAnJTYlWXTlQN42RddBPKOPxXa7uRetvq7LLFVZMbTcTyAF_1j1DzaTpHezmsqg1iWVhDyATwM46X_SkI0gegaY2Mbqf_98-X-wW5z8fjfiz6HG5Pj6WF5uH_04QncTAhpUJCN2IbN1WVtnyJOWqlnjTr8AAowDq4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VrVRxgfLstgUM4sAl22xiJxtxqgqrtrAVQlTqASnyswS63qi7QSy_vjN5ofKQELcosRPH4_F8Y4-_AXhhZSwpHXmg1IgH3OlxIDMVBzoLtbJC80TTAefpaXJ0xk_OxfkavOrOwjT8EP2CG2lGPV-TgpfG7f8kDS2-6CHR2eH8u8ETVBZCRB967ihCOi0FcxigJ5Z0tEJhtN9XvWmMfkOYNwFrbXEmd-BT19Ym0OTrsFqqof7xC43jf_7MFtxukSg7aIbOXViz_h5sTtu99vuwqmNgvhee8ZhV5VWTtB7FyNSKmYJIMD0r_OdCFcsFm9lL6eczyeqAr4bsg30rJFtUZRNr6y_YDEH_BTF8rJj0BiubStP96YiV5GK3Z0IfwNnkzcfDo6BN1BBoLngUGC6cdCNnDeIdNPouswkfKwR_xmhpEyccupHK2pQ2RXmaCpHizGJshvDRCBE_hHU_93YbmLXYDUrFkcNXoHXNTBjjmOGxQb9s7OQAXnYSy3XLYk7JNC7zhn85yrEr87orB_C8L1o21B1_KrTXiT1vtXeRY6vIiMfjcADP-seod7SZIr2dV1QGkSytH6QDeNQMl_4rEZEEomOMja2F_vfP58cnh_XFzr8XfQqb719P8nfHp2934VZEMIMibMQerC-vKvsYQdJSPamV4Rr1ig1m
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Connexin+43+upregulation+by+dioscin+inhibits+melanoma+progression+via+suppressing+malignancy+and+inducing+M1+polarization&rft.jtitle=International+journal+of+cancer&rft.au=Kou%2C+Yu&rft.au=Ji%2C+Liyan&rft.au=Wang%2C+Haojia&rft.au=Wang%2C+Wensheng&rft.date=2017-10-15&rft.issn=0020-7136&rft.eissn=1097-0215&rft.volume=141&rft.issue=8&rft.spage=1690&rft.epage=1703&rft_id=info:doi/10.1002%2Fijc.30872&rft.externalDBID=10.1002%252Fijc.30872&rft.externalDocID=IJC30872
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7136&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7136&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7136&client=summon