A low amyloidogenic E61K transthyretin mutation may cause familial amyloid polyneuropathy

Patients with transthyretin (TTR)‐type familial amyloid polyneuropathy (FAP) typically exhibit sensory dominant polyneuropathy and autonomic neuropathy. However, the molecular pathogenesis of the neuropathy remains unclear. In this study, we characterize the features of FAP TTR the substitution of l...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurochemistry Vol. 156; no. 6; pp. 957 - 966
Main Authors Murakami, Tatsufumi, Yokoyama, Takeshi, Mizuguchi, Mineyuki, Toné, Shigenobu, Takaku, Shizuka, Sango, Kazunori, Nishimura, Hirotake, Watabe, Kazuhiko, Sunada, Yoshihide
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Patients with transthyretin (TTR)‐type familial amyloid polyneuropathy (FAP) typically exhibit sensory dominant polyneuropathy and autonomic neuropathy. However, the molecular pathogenesis of the neuropathy remains unclear. In this study, we characterize the features of FAP TTR the substitution of lysine for glutamic acid at position 61 (E61K). This FAP was late‐onset, with sensory dominant polyneuropathy, autonomic neuropathy, and cardiac amyloidosis. Interestingly, no amyloid deposits were found in the endoneurium of the four nerve specimens examined. Therefore, we examined the amyloidogenic properties of E61K TTR in vitro. Recombinant wild‐type TTR, the substitution of methionine for valine at position 30 (V30M) TTR, and E61K TTR proteins were incubated at 37°C for 72 hr, and amyloid fibril formation was assessed using the thioflavin‐T binding assay. Amyloid fibril formation by E61K TTR was less than that by V30M TTR, and similar to that by wild‐type TTR. E61K TTR did not have an inhibitory effect on neurite outgrowth from adult rat dorsal root ganglion (DRG) neurons, but V30M TTR did. Furthermore, we studied the sural nerve of our patient by terminal deoxynucleotidyl transferase dUTP nick end labeling and electron microscopy. A number of apoptotic cells were observed in the endoneurium of the nerve by transferase dUTP nick end labeling. Chromatin condensation was confirmed in the nucleus of non‐myelinating Schwann cells by electron microscopy. These findings suggest that E61K TTR is low amyloidogenic, in vitro and in vivo. However, TTR aggregates and amyloid fibrils in the DRG may cause sensory impairments in FAP because the DRG has no blood–nerve barrier. Moreover, Schwann cell apoptosis may contribute to the neurodegeneration. Transthyretin (TTR)‐type familial amyloid polyneuropathy (FAP) typically exhibits sensory–dominant polyneuropathy and autonomic neuropathy. However, the molecular pathogenesis of the neuropathy remains unclear. In this study, we characterize the features of FAP TTR E61K. Our findings suggest that E61K TTR is low amyloidogenic in vitro and in vivo. However, TTR aggregates and amyloid fibrils in the DRG may cause sensory impairments in FAP because the DRG has no blood–nerve barrier. In addition, Schwann cell apoptosis was observed in the nerve, and may contribute to the neurodegeneration.
AbstractList Patients with transthyretin (TTR)-type familial amyloid polyneuropathy (FAP) typically exhibit sensory dominant polyneuropathy and autonomic neuropathy. However, the molecular pathogenesis of the neuropathy remains unclear. In this study, we characterize the features of FAP TTR the substitution of lysine for glutamic acid at position 61 (E61K). This FAP was late-onset, with sensory dominant polyneuropathy, autonomic neuropathy, and cardiac amyloidosis. Interestingly, no amyloid deposits were found in the endoneurium of the four nerve specimens examined. Therefore, we examined the amyloidogenic properties of E61K TTR in vitro. Recombinant wild-type TTR, the substitution of methionine for valine at position 30 (V30M) TTR, and E61K TTR proteins were incubated at 37°C for 72 hr, and amyloid fibril formation was assessed using the thioflavin-T binding assay. Amyloid fibril formation by E61K TTR was less than that by V30M TTR, and similar to that by wild-type TTR. E61K TTR did not have an inhibitory effect on neurite outgrowth from adult rat dorsal root ganglion (DRG) neurons, but V30M TTR did. Furthermore, we studied the sural nerve of our patient by terminal deoxynucleotidyl transferase dUTP nick end labeling and electron microscopy. A number of apoptotic cells were observed in the endoneurium of the nerve by transferase dUTP nick end labeling. Chromatin condensation was confirmed in the nucleus of non-myelinating Schwann cells by electron microscopy. These findings suggest that E61K TTR is low amyloidogenic, in vitro and in vivo. However, TTR aggregates and amyloid fibrils in the DRG may cause sensory impairments in FAP because the DRG has no blood-nerve barrier. Moreover, Schwann cell apoptosis may contribute to the neurodegeneration.
Patients with transthyretin (TTR)‐type familial amyloid polyneuropathy (FAP) typically exhibit sensory dominant polyneuropathy and autonomic neuropathy. However, the molecular pathogenesis of the neuropathy remains unclear. In this study, we characterize the features of FAP TTR the substitution of lysine for glutamic acid at position 61 (E61K). This FAP was late‐onset, with sensory dominant polyneuropathy, autonomic neuropathy, and cardiac amyloidosis. Interestingly, no amyloid deposits were found in the endoneurium of the four nerve specimens examined. Therefore, we examined the amyloidogenic properties of E61K TTR in vitro. Recombinant wild‐type TTR, the substitution of methionine for valine at position 30 (V30M) TTR, and E61K TTR proteins were incubated at 37°C for 72 hr, and amyloid fibril formation was assessed using the thioflavin‐T binding assay. Amyloid fibril formation by E61K TTR was less than that by V30M TTR, and similar to that by wild‐type TTR. E61K TTR did not have an inhibitory effect on neurite outgrowth from adult rat dorsal root ganglion (DRG) neurons, but V30M TTR did. Furthermore, we studied the sural nerve of our patient by terminal deoxynucleotidyl transferase dUTP nick end labeling and electron microscopy. A number of apoptotic cells were observed in the endoneurium of the nerve by transferase dUTP nick end labeling. Chromatin condensation was confirmed in the nucleus of non‐myelinating Schwann cells by electron microscopy. These findings suggest that E61K TTR is low amyloidogenic, in vitro and in vivo. However, TTR aggregates and amyloid fibrils in the DRG may cause sensory impairments in FAP because the DRG has no blood–nerve barrier. Moreover, Schwann cell apoptosis may contribute to the neurodegeneration. Transthyretin (TTR)‐type familial amyloid polyneuropathy (FAP) typically exhibits sensory–dominant polyneuropathy and autonomic neuropathy. However, the molecular pathogenesis of the neuropathy remains unclear. In this study, we characterize the features of FAP TTR E61K. Our findings suggest that E61K TTR is low amyloidogenic in vitro and in vivo. However, TTR aggregates and amyloid fibrils in the DRG may cause sensory impairments in FAP because the DRG has no blood–nerve barrier. In addition, Schwann cell apoptosis was observed in the nerve, and may contribute to the neurodegeneration.
Patients with transthyretin (TTR)‐type familial amyloid polyneuropathy (FAP) typically exhibit sensory dominant polyneuropathy and autonomic neuropathy. However, the molecular pathogenesis of the neuropathy remains unclear. In this study, we characterize the features of FAP TTR the substitution of lysine for glutamic acid at position 61 (E61K). This FAP was late‐onset, with sensory dominant polyneuropathy, autonomic neuropathy, and cardiac amyloidosis. Interestingly, no amyloid deposits were found in the endoneurium of the four nerve specimens examined. Therefore, we examined the amyloidogenic properties of E61K TTR in vitro. Recombinant wild‐type TTR, the substitution of methionine for valine at position 30 (V30M) TTR, and E61K TTR proteins were incubated at 37°C for 72 hr, and amyloid fibril formation was assessed using the thioflavin‐T binding assay. Amyloid fibril formation by E61K TTR was less than that by V30M TTR, and similar to that by wild‐type TTR. E61K TTR did not have an inhibitory effect on neurite outgrowth from adult rat dorsal root ganglion (DRG) neurons, but V30M TTR did. Furthermore, we studied the sural nerve of our patient by terminal deoxynucleotidyl transferase dUTP nick end labeling and electron microscopy. A number of apoptotic cells were observed in the endoneurium of the nerve by transferase dUTP nick end labeling. Chromatin condensation was confirmed in the nucleus of non‐myelinating Schwann cells by electron microscopy. These findings suggest that E61K TTR is low amyloidogenic, in vitro and in vivo. However, TTR aggregates and amyloid fibrils in the DRG may cause sensory impairments in FAP because the DRG has no blood–nerve barrier. Moreover, Schwann cell apoptosis may contribute to the neurodegeneration.
Abstract Patients with transthyretin (TTR)‐type familial amyloid polyneuropathy (FAP) typically exhibit sensory dominant polyneuropathy and autonomic neuropathy. However, the molecular pathogenesis of the neuropathy remains unclear. In this study, we characterize the features of FAP TTR the substitution of lysine for glutamic acid at position 61 (E61K). This FAP was late‐onset, with sensory dominant polyneuropathy, autonomic neuropathy, and cardiac amyloidosis. Interestingly, no amyloid deposits were found in the endoneurium of the four nerve specimens examined. Therefore, we examined the amyloidogenic properties of E61K TTR in vitro. Recombinant wild‐type TTR, the substitution of methionine for valine at position 30 (V30M) TTR, and E61K TTR proteins were incubated at 37°C for 72 hr, and amyloid fibril formation was assessed using the thioflavin‐T binding assay. Amyloid fibril formation by E61K TTR was less than that by V30M TTR, and similar to that by wild‐type TTR. E61K TTR did not have an inhibitory effect on neurite outgrowth from adult rat dorsal root ganglion (DRG) neurons, but V30M TTR did. Furthermore, we studied the sural nerve of our patient by terminal deoxynucleotidyl transferase dUTP nick end labeling and electron microscopy. A number of apoptotic cells were observed in the endoneurium of the nerve by transferase dUTP nick end labeling. Chromatin condensation was confirmed in the nucleus of non‐myelinating Schwann cells by electron microscopy. These findings suggest that E61K TTR is low amyloidogenic, in vitro and in vivo. However, TTR aggregates and amyloid fibrils in the DRG may cause sensory impairments in FAP because the DRG has no blood–nerve barrier. Moreover, Schwann cell apoptosis may contribute to the neurodegeneration. image
Author Sango, Kazunori
Nishimura, Hirotake
Murakami, Tatsufumi
Sunada, Yoshihide
Toné, Shigenobu
Takaku, Shizuka
Watabe, Kazuhiko
Yokoyama, Takeshi
Mizuguchi, Mineyuki
Author_xml – sequence: 1
  givenname: Tatsufumi
  orcidid: 0000-0001-7851-6822
  surname: Murakami
  fullname: Murakami, Tatsufumi
  email: tatsum@med.kawasaki-m.ac.jp
  organization: Kawasaki Medical School
– sequence: 2
  givenname: Takeshi
  surname: Yokoyama
  fullname: Yokoyama, Takeshi
  organization: University of Toyama
– sequence: 3
  givenname: Mineyuki
  surname: Mizuguchi
  fullname: Mizuguchi, Mineyuki
  organization: University of Toyama
– sequence: 4
  givenname: Shigenobu
  surname: Toné
  fullname: Toné, Shigenobu
  organization: Tokyo Denki University
– sequence: 5
  givenname: Shizuka
  surname: Takaku
  fullname: Takaku, Shizuka
  organization: Tokyo Metropolitan Institute of Medical Science
– sequence: 6
  givenname: Kazunori
  orcidid: 0000-0002-9750-9596
  surname: Sango
  fullname: Sango, Kazunori
  organization: Tokyo Metropolitan Institute of Medical Science
– sequence: 7
  givenname: Hirotake
  surname: Nishimura
  fullname: Nishimura, Hirotake
  organization: Kawasaki Medical School
– sequence: 8
  givenname: Kazuhiko
  surname: Watabe
  fullname: Watabe, Kazuhiko
  organization: Kyorin University
– sequence: 9
  givenname: Yoshihide
  surname: Sunada
  fullname: Sunada, Yoshihide
  organization: Kawasaki Medical School
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32852783$$D View this record in MEDLINE/PubMed
BookMark eNp1kD1PHDEQhi0EggNS5A9EK6UJxYLHa6_3SnQifARBQ4pU1pzXTnzy2hd7V2j_PSYHKSJlmpnieV-NnmOyH2IwhHwEeg5lLjZBn4OAlu2RBXAJNQex3CcLShmrG8rZETnOeUMptLyFQ3LUsE4w2TUL8uOy8vG5wmH20fXxpwlOV1ctfKvGhCGPv-ZkRheqYRpxdLEcOFcap2wqi4PzDv17uNpGPwczpbjFkjslBxZ9Nh_e9gn5_vXqaXVT3z9e364u72vNBWc1tH1v-66jEnHdWABc9tpIa4UFlBxAU2Os7pCtl72RayaACou6hb5F3rDmhHzZ9W5T_D2ZPKrBZW28x2DilBXjjewELamCfv4H3cQphfKdYoIuGWMSZKHOdpROMedkrNomN2CaFVD16lsV3-qP78J-emuc1oPp_5LvggtwsQOenTfz_5vU3cNqV_kC_F-MOA
CitedBy_id crossref_primary_10_1002_ejhf_2808
crossref_primary_10_1002_prot_26399
crossref_primary_10_1016_j_jns_2022_120329
crossref_primary_10_3389_fnmol_2022_1003303
crossref_primary_10_1007_s00415_023_11754_7
crossref_primary_10_3390_cryst11040354
Cites_doi 10.1080/13506120902879335
10.1111/j.1749-6632.2002.tb02108.x
10.1212/WNL.0000000000003362
10.1016/j.bbapap.2018.10.013
10.1006/excr.1994.1337
10.1016/S1046‐5928(03)00069‐X
10.1016/S1474‐4422(11)70246‐0
10.1021/bi0511484
10.1002/mus.24563
10.1016/S0387‐7604(02)00081‐5
10.1073/pnas.0400062101
10.1006/bbrc.1993.1933
10.1093/brain/94.2.207
10.1016/S0002‐9440(10)63050‐7
10.1016/S0006-291X(02)00465-5
10.1371/journal.pbio.1000412
10.1016/j.brainres.2010.06.017
10.1002/prot.21252
10.1016/j.jns.2017.08.017
10.1523/JNEUROSCI.21‐19‐07576.2001
10.1016/j.expneurol.2014.04.030
10.1016/j.jns.2018.04.003
10.1242/dev.126.7.1397
10.1074/jbc.M101024200
10.1107/S0907444909052925
10.1021/bi00151a036
10.1016/j.neuint.2013.01.008
10.1093/brain/75.3.408
10.1212/01.wnl.0000267338.45673.f4
10.1111/j.1529-8027.2011.00331.x
10.1111/j.1440-1827.1995.tb03373.x
10.1016/0009-8981(91)90344-C
10.1046/j.1471‐4159.1997.68051853.x
10.1097/WCO.0000000000000289
10.1111/jnc.13068
10.1185/03007995.2012.754348
10.1016/j.neulet.2008.03.063
10.1107/S0907444904019158
10.1001/archinte.165.12.1425
10.1021/jm401832j
10.1107/S0907444909047337
10.1093/brain/94.2.199
10.1016/0003-2697(89)90046-8
10.1021/bi048838c
10.3109/13506129.2011.565524
10.1007/s00418-008-0484-x
ContentType Journal Article
Copyright 2020 International Society for Neurochemistry
2020 International Society for Neurochemistry.
Copyright © 2021 International Society for Neurochemistry
Copyright_xml – notice: 2020 International Society for Neurochemistry
– notice: 2020 International Society for Neurochemistry.
– notice: Copyright © 2021 International Society for Neurochemistry
DBID NPM
AAYXX
CITATION
7QR
7TK
7U7
7U9
8FD
C1K
FR3
H94
P64
7X8
DOI 10.1111/jnc.15162
DatabaseName PubMed
CrossRef
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Virology and AIDS Abstracts
Technology Research Database
Toxicology Abstracts
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList PubMed

Virology and AIDS Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1471-4159
EndPage 966
ExternalDocumentID 10_1111_jnc_15162
32852783
JNC15162
Genre article
Journal Article
GrantInformation_xml – fundername: KAKENHI
  funderid: 16K09686
– fundername: Kawasaki Medical School
  funderid: 30‐044
– fundername: Kawasaki Medical School
  grantid: 30-044
– fundername: KAKENHI
  grantid: 16K09686
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
24P
29L
2WC
31~
33P
36B
3SF
4.4
41~
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAYJJ
AAZKR
ABCQN
ABCUV
ABEML
ABIVO
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FIJ
FUBAC
FZ0
G-S
G.N
GAKWD
GODZA
GX1
H.X
HF~
HGLYW
HH5
HVGLF
HZI
HZ~
IH2
IHE
IPNFZ
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TWZ
UB1
V8K
VH1
W8V
W99
WBKPD
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
X7M
XG1
XJT
YFH
YNH
YOC
YUY
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
NPM
AAYXX
CITATION
7QR
7TK
7U7
7U9
8FD
C1K
FR3
H94
P64
7X8
ID FETCH-LOGICAL-c4542-16ddfd8807aab3f11a9dce7ff5f1a7411c0eefc8a2b9de7b25105fac61d6a4323
IEDL.DBID DR2
ISSN 0022-3042
IngestDate Thu Jul 25 09:59:25 EDT 2024
Fri Aug 30 23:11:17 EDT 2024
Fri Aug 23 02:03:45 EDT 2024
Sat Sep 28 08:29:38 EDT 2024
Sat Aug 24 01:04:23 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Schwann cell apoptosis
amyloid deposit
familial amyloid polyneuropathy
transthyretin
dorsal root ganglion
Language English
License 2020 International Society for Neurochemistry.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4542-16ddfd8807aab3f11a9dce7ff5f1a7411c0eefc8a2b9de7b25105fac61d6a4323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7851-6822
0000-0002-9750-9596
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jnc.15162
PMID 32852783
PQID 2509222717
PQPubID 31528
PageCount 10
ParticipantIDs proquest_miscellaneous_2437850105
proquest_journals_2509222717
crossref_primary_10_1111_jnc_15162
pubmed_primary_32852783
wiley_primary_10_1111_jnc_15162_JNC15162
PublicationCentury 2000
PublicationDate March 2021
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Journal of neurochemistry
PublicationTitleAlternate J Neurochem
PublicationYear 2021
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2004; 101
1952; 75
2013; 29
1991; 197
2019; 1867
2017; 80
1994; 215
2004; 60
2002; 294
2013; 62
2015; 52
1997; 68
1989; 177
1971b; 94
2011; 10
1992; 31
1996; 36
2011; 16
2002; 959
1999; 126
2011; 18
2003; 30
2014; 257
2005; 44
2001; 21
2001; 276
2010; 66
2018; 390
2005; 165
2002; 24
2015; 134
1995; 45
2016; 87
1993; 194
2010; 1348
2017; 381
2008; 436
2014; 57
2016; 29
2007; 66
2009; 16
2008; 130
2001; 159
1971a; 94
2007; 69
2010; 8
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
Yamamoto T. (e_1_2_8_47_1) 1996; 36
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Hayashi T. (e_1_2_8_15_1) 2017; 80
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 66
  start-page: 213
  year: 2010
  end-page: 221
  article-title: PHENIX: A comprehensive Python‐based system for macromolecular structure solution
  publication-title: Acta Crystallographica. Section D, Biological Crystallography
– volume: 276
  start-page: 27207
  year: 2001
  end-page: 27213
  article-title: Tetramer dissociation and monomer partial unfolding precedes protofibril formation in amyloidogenic transthyretin variants
  publication-title: Journal of Biological Chemistry
– volume: 94
  start-page: 199
  year: 1971a
  end-page: 206
  article-title: Familial amyloid polyneuropathy: An electron microscope study of the peripheral nerve in five cases. I. Interstitial Changes
  publication-title: Brain
– volume: 60
  start-page: 2126
  year: 2004
  end-page: 2132
  article-title: Coot: Model‐building tools for molecular graphics
  publication-title: Acta Crystallographica. Section D, Biological Crystallography
– volume: 436
  start-page: 335
  year: 2008
  end-page: 339
  article-title: The transthyretin gene is expressed in human and rodent dorsal root ganglia
  publication-title: Neuroscience Letters
– volume: 57
  start-page: 1090
  year: 2014
  end-page: 1096
  article-title: Crystal structures of human transthyretin complexed with glabridin
  publication-title: Journal of Medicinal Chemistry
– volume: 75
  start-page: 408
  year: 1952
  end-page: 427
  article-title: A peculiar form of peripheral neuropathy; familiar atypical generalized amyloidosis with special involvement of the peripheral nerves
  publication-title: Brain
– volume: 18
  start-page: 53
  year: 2011
  end-page: 62
  article-title: Diagnosis of sporadic transthyretin Val30Met familial amyloid polyneuropathy: A practical analysis
  publication-title: Amyloid
– volume: 69
  start-page: 693
  year: 2007
  end-page: 698
  article-title: Diagnostic pitfalls in sporadic transthyretin familial amyloid polyneuropathy (TTR‐FAP)
  publication-title: Neurology
– volume: 44
  start-page: 16612
  year: 2005
  end-page: 16623
  article-title: Partitioning conformational intermediates between competing refolding and aggregation pathways: Insights into transthyretin amyloid disease
  publication-title: Biochemistry
– volume: 29
  start-page: 63
  year: 2013
  end-page: 76
  article-title: THAOS – The Transthyretin Amyloidosis Outcomes Survey: Initial report on clinical manifestations in patients with hereditary and wild‐type transthyretin amyloidosis
  publication-title: Current Medical Research and Opinion
– volume: 94
  start-page: 207
  year: 1971b
  end-page: 212
  article-title: Familial amyloid polyneuropathy: An electron microscope study of the peripheral nerve in five cases. II. Nerve Fibre Changes
  publication-title: Brain
– volume: 36
  start-page: 1065
  year: 1996
  end-page: 1068
  article-title: A late onset familial amyloidotic polyneuropathy (FAP) with a novel variant transthyretin characterized by a basic‐for‐acidic amino acid substitution (Glu61–>Lys)
  publication-title: Rinsho Shinkeigaku
– volume: 10
  start-page: 1086
  year: 2011
  end-page: 1097
  article-title: Familial amyloid polyneuropathy
  publication-title: The Lancet Neurology
– volume: 215
  start-page: 234
  year: 1994
  end-page: 236
  article-title: DNA fragmentation during the programmed cell death in the chick limb buds
  publication-title: Experimental Cell Research
– volume: 29
  start-page: S14
  issue: Suppl 1
  year: 2016
  end-page: S26
  article-title: First European consensus for diagnosis, management, and treatment of transthyretin familial amyloid polyneuropathy
  publication-title: Current Opinion in Neurology
– volume: 31
  start-page: 8654
  year: 1992
  end-page: 8660
  article-title: Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro
  publication-title: Biochemistry
– volume: 959
  start-page: 368
  year: 2002
  end-page: 383
  article-title: Oxidative stress and programmed cell death in diabetic neuropathy
  publication-title: Annals of the New York Academy of Sciences
– volume: 87
  start-page: 2220
  year: 2016
  end-page: 2229
  article-title: Schwann cell and endothelial cell damage in transthyretin familial amyloid polyneuropathy
  publication-title: Neurology
– volume: 177
  start-page: 244
  year: 1989
  end-page: 249
  article-title: Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavin T1
  publication-title: Analytical Biochemistry
– volume: 294
  start-page: 309
  year: 2002
  end-page: 314
  article-title: Only amyloidogenic intermediates of transthyretin induce apoptosis
  publication-title: Biochemical and Biophysical Research Communications
– volume: 68
  start-page: 1853
  year: 1997
  end-page: 1862
  article-title: Apoptosis regulates the number of Schwann cells at the premyelinating stage
  publication-title: Journal of Neurochemistry
– volume: 1348
  start-page: 222
  year: 2010
  end-page: 225
  article-title: The transthyretin gene is expressed in Schwann cells of peripheral nerves
  publication-title: Brain Research
– volume: 30
  start-page: 55
  year: 2003
  end-page: 61
  article-title: Expression of a synthetic gene encoding human transthyretin in Escherichia coli
  publication-title: Protein Expression and Purification
– volume: 130
  start-page: 669
  year: 2008
  end-page: 679
  article-title: Neuroprotective properties of ciliary neurotrophic factor for cultured adult rat dorsal root ganglion neurons
  publication-title: Histochemistry and Cell Biology
– volume: 381
  start-page: 55
  year: 2017
  end-page: 58
  article-title: Clinical and pathological findings in familial amyloid polyneuropathy caused by a transthyretin E61K mutation
  publication-title: Journal of the Neurological Sciences
– volume: 165
  start-page: 1425
  year: 2005
  end-page: 1429
  article-title: Senile systemic amyloidosis presenting with heart failure: A comparison with light chain‐associated amyloidosis
  publication-title: Archives of Internal Medicine
– volume: 21
  start-page: 7576
  year: 2001
  end-page: 7586
  article-title: Familial amyloid polyneuropathy: Receptor for advanced glycation end products‐dependent triggering of neuronal inflammatory and apoptotic pathways
  publication-title: Journal of Neuroscience
– volume: 159
  start-page: 1993
  year: 2001
  end-page: 2000
  article-title: Deposition of transthyretin in early stages of familial amyloidotic polyneuropathy: Evidence for toxicity of nonfibrillar aggregates
  publication-title: American Journal of Pathology
– volume: 197
  start-page: 19
  year: 1991
  end-page: 25
  article-title: A sensitive assay of transthyretin (prealbumin) in human cerebrospinal fluid in nanogram amounts by ELISA
  publication-title: Clinica Chimica Acta
– volume: 66
  start-page: 125
  year: 2010
  end-page: 132
  article-title: Xds
  publication-title: Acta Crystallographica. Section D, Biological Crystallography
– volume: 257
  start-page: 76
  year: 2014
  end-page: 87
  article-title: The inflammatory response to sciatic nerve injury in a familial amyloidotic polyneuropathy mouse model
  publication-title: Experimental Neurology
– volume: 134
  start-page: 66
  year: 2015
  end-page: 74
  article-title: Schwann cells contribute to neurodegeneration in transthyretin amyloidosis
  publication-title: Journal of Neurochemistry
– volume: 16
  start-page: 99
  year: 2009
  end-page: 102
  article-title: Cardiomyopathy in a Japanese family with the Glu61Lys transthyretin variant: A new phenotype
  publication-title: Amyloid
– volume: 16
  start-page: 119
  year: 2011
  end-page: 129
  article-title: Variable presentations of TTR‐related familial amyloid polyneuropathy in seventeen patients
  publication-title: Journal of the Peripheral Nervous System
– volume: 1867
  start-page: 344
  year: 2019
  end-page: 349
  article-title: Two distinct aggregation pathways in transthyretin misfolding and amyloid formation
  publication-title: Biochimica Et Biophysica Acta (BBA) ‐ Proteins and Proteomics
– volume: 45
  start-page: 1
  year: 1995
  end-page: 9
  article-title: Genetic abnormalities and pathogenesis of familial amyloidotic polyneuropathy
  publication-title: Pathology International
– volume: 52
  start-page: 146
  year: 2015
  end-page: 149
  article-title: Amyloid polyneuropathy caused by wild‐type transthyretin
  publication-title: Muscle and Nerve
– volume: 126
  start-page: 1397
  year: 1999
  end-page: 1406
  article-title: Krox‐20 controls SCIP expression, cell cycle exit and susceptibility to apoptosis in developing myelinating Schwann cells
  publication-title: Development
– volume: 101
  start-page: 2817
  year: 2004
  end-page: 2822
  article-title: Tissue damage in the amyloidoses: Transthyretin monomers and nonnative oligomers are the major cytotoxic species in tissue culture
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 194
  start-page: 1090
  year: 1993
  end-page: 1096
  article-title: A basic transthyretin variant (Glu61–>Lys) causes familial amyloidotic polyneuropathy: Protein and DNA sequencing and PCR‐induced mutation restriction analysis
  publication-title: Biochemical and Biophysical Research Communications
– volume: 390
  start-page: 22
  year: 2018
  end-page: 25
  article-title: Two cases of late onset familial amyloid polyneuropathy with a Glu61Lys transthyretin variant
  publication-title: Journal of the Neurological Sciences
– volume: 80
  start-page: 161
  year: 2017
  end-page: 165
  article-title: Familial amyloid polyneuropathy Glu61Lys transthyretin variant from a non‐endemic area
  publication-title: Annals of Kurashiki Central Hospital
– volume: 24
  start-page: 727
  year: 2002
  end-page: 731
  article-title: Phenomenon of Schwann cell apoptosis in a case of congenital hypomyelinating neuropathy with basal lamina onion bulb formation
  publication-title: Brain and Development
– volume: 62
  start-page: 330
  year: 2013
  end-page: 339
  article-title: GDNF promotes neurite outgrowth and upregulates galectin‐1 through the RET/PI3K signaling in cultured adult rat dorsal root ganglion neurons
  publication-title: Neurochemistry International
– volume: 8
  year: 2010
  article-title: Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research
  publication-title: PLoS Biology
– volume: 66
  start-page: 716
  year: 2007
  end-page: 725
  article-title: Destabilization of transthyretin by pathogenic mutations in the DE loop
  publication-title: Proteins
– volume: 44
  start-page: 3280
  year: 2005
  end-page: 3288
  article-title: Dimeric transthyretin variant assembles into spherical neurotoxins
  publication-title: Biochemistry
– ident: e_1_2_8_32_1
  doi: 10.1080/13506120902879335
– ident: e_1_2_8_45_1
  doi: 10.1111/j.1749-6632.2002.tb02108.x
– ident: e_1_2_8_19_1
  doi: 10.1212/WNL.0000000000003362
– volume: 80
  start-page: 161
  year: 2017
  ident: e_1_2_8_15_1
  article-title: Familial amyloid polyneuropathy Glu61Lys transthyretin variant from a non‐endemic area
  publication-title: Annals of Kurashiki Central Hospital
  contributor:
    fullname: Hayashi T.
– ident: e_1_2_8_11_1
  doi: 10.1016/j.bbapap.2018.10.013
– ident: e_1_2_8_43_1
  doi: 10.1006/excr.1994.1337
– ident: e_1_2_8_22_1
  doi: 10.1016/S1046‐5928(03)00069‐X
– ident: e_1_2_8_34_1
  doi: 10.1016/S1474‐4422(11)70246‐0
– ident: e_1_2_8_46_1
  doi: 10.1021/bi0511484
– ident: e_1_2_8_20_1
  doi: 10.1002/mus.24563
– ident: e_1_2_8_13_1
  doi: 10.1016/S0387‐7604(02)00081‐5
– ident: e_1_2_8_36_1
  doi: 10.1073/pnas.0400062101
– ident: e_1_2_8_38_1
  doi: 10.1006/bbrc.1993.1933
– ident: e_1_2_8_9_1
  doi: 10.1093/brain/94.2.207
– ident: e_1_2_8_39_1
  doi: 10.1016/S0002‐9440(10)63050‐7
– ident: e_1_2_8_4_1
  doi: 10.1016/S0006-291X(02)00465-5
– ident: e_1_2_8_17_1
  doi: 10.1371/journal.pbio.1000412
– ident: e_1_2_8_25_1
  doi: 10.1016/j.brainres.2010.06.017
– ident: e_1_2_8_42_1
  doi: 10.1002/prot.21252
– ident: e_1_2_8_23_1
  doi: 10.1016/j.jns.2017.08.017
– ident: e_1_2_8_40_1
  doi: 10.1523/JNEUROSCI.21‐19‐07576.2001
– ident: e_1_2_8_14_1
  doi: 10.1016/j.expneurol.2014.04.030
– ident: e_1_2_8_29_1
  doi: 10.1016/j.jns.2018.04.003
– ident: e_1_2_8_49_1
  doi: 10.1242/dev.126.7.1397
– ident: e_1_2_8_35_1
  doi: 10.1074/jbc.M101024200
– ident: e_1_2_8_3_1
  doi: 10.1107/S0907444909052925
– ident: e_1_2_8_10_1
  doi: 10.1021/bi00151a036
– ident: e_1_2_8_41_1
  doi: 10.1016/j.neuint.2013.01.008
– ident: e_1_2_8_5_1
  doi: 10.1093/brain/75.3.408
– ident: e_1_2_8_33_1
  doi: 10.1212/01.wnl.0000267338.45673.f4
– ident: e_1_2_8_6_1
  doi: 10.1111/j.1529-8027.2011.00331.x
– ident: e_1_2_8_27_1
  doi: 10.1111/j.1440-1827.1995.tb03373.x
– ident: e_1_2_8_44_1
  doi: 10.1016/0009-8981(91)90344-C
– ident: e_1_2_8_30_1
  doi: 10.1046/j.1471‐4159.1997.68051853.x
– ident: e_1_2_8_2_1
  doi: 10.1097/WCO.0000000000000289
– ident: e_1_2_8_26_1
  doi: 10.1111/jnc.13068
– ident: e_1_2_8_7_1
  doi: 10.1185/03007995.2012.754348
– ident: e_1_2_8_24_1
  doi: 10.1016/j.neulet.2008.03.063
– ident: e_1_2_8_12_1
  doi: 10.1107/S0907444904019158
– volume: 36
  start-page: 1065
  year: 1996
  ident: e_1_2_8_47_1
  article-title: A late onset familial amyloidotic polyneuropathy (FAP) with a novel variant transthyretin characterized by a basic‐for‐acidic amino acid substitution (Glu61–>Lys)
  publication-title: Rinsho Shinkeigaku
  contributor:
    fullname: Yamamoto T.
– ident: e_1_2_8_31_1
  doi: 10.1001/archinte.165.12.1425
– ident: e_1_2_8_48_1
  doi: 10.1021/jm401832j
– ident: e_1_2_8_16_1
  doi: 10.1107/S0907444909047337
– ident: e_1_2_8_8_1
  doi: 10.1093/brain/94.2.199
– ident: e_1_2_8_28_1
  doi: 10.1016/0003-2697(89)90046-8
– ident: e_1_2_8_21_1
  doi: 10.1021/bi048838c
– ident: e_1_2_8_18_1
  doi: 10.3109/13506129.2011.565524
– ident: e_1_2_8_37_1
  doi: 10.1007/s00418-008-0484-x
SSID ssj0016461
Score 2.440306
Snippet Patients with transthyretin (TTR)‐type familial amyloid polyneuropathy (FAP) typically exhibit sensory dominant polyneuropathy and autonomic neuropathy....
Patients with transthyretin (TTR)-type familial amyloid polyneuropathy (FAP) typically exhibit sensory dominant polyneuropathy and autonomic neuropathy....
Abstract Patients with transthyretin (TTR)‐type familial amyloid polyneuropathy (FAP) typically exhibit sensory dominant polyneuropathy and autonomic...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 957
SubjectTerms amyloid deposit
Amyloidogenesis
Amyloidosis
Apoptosis
Autonomic nervous system
Axonogenesis
Chromatin
DNA nucleotidylexotransferase
Dorsal root ganglia
dorsal root ganglion
Electron microscopy
familial amyloid polyneuropathy
Fibrils
Glutamic acid
Labelling
Lysine
Methionine
Microscopy
Mutation
Neurodegeneration
Neuropathy
Pathogenesis
Polyneuropathy
Position sensing
Schwann cell apoptosis
Schwann cells
Substitutes
Sural nerve
Transthyretin
Valine
Title A low amyloidogenic E61K transthyretin mutation may cause familial amyloid polyneuropathy
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjnc.15162
https://www.ncbi.nlm.nih.gov/pubmed/32852783
https://www.proquest.com/docview/2509222717/abstract/
https://search.proquest.com/docview/2437850105
Volume 156
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB7Ei1587PqorhJFxEtl00faxdOyKLKiB1FQEEqeILqtuFtk_fVO0m3xgSDeCk1Im5nJfJNMvgE4kFomPJXMDxIl_CjmxhfoFXzGKWWciyR27PyXV-z8NhrexXdzcFLfhan4IZoNN2sZbr22Bs7F-LORo_2gu3LrryXSs4DouqGOsrRZtGEKR82csQq5LJ6651df9ANgfsWrzuGcLcND_alVnsnTcTkRx_L9G4vjP_9lBZZmQJT0K81ZhTmdt6DdzzEIH03JIXGpoW7PvQULg7osXBvu--S5eCN8hJH-oypQ_x4lOWX0gkys20O523uRORmV1SE_GfEpkbwca-I2U1Df687kpXieOkJNWxd5uga3Z6c3g3N_Vp_Bl1EcBT5lShmFC0CCQg0NpbynpE6MiQ3liFSo7GptZMoD0VM6EYEFc4ZLRhXjURiE6zCfF7neBJJyg4GkDLsKA7yeZKmKhWSRjBSz7DZdD_ZrSWUvFQ1H1oQvuczc5HnQqWWYzSxxnCHE69n7vjTxYK95jXNmD0Z4rosS20Rhksa2VqgHG5Xsm1HCII1tNRIPjpwEfx8-G14N3MPW35tuw2Jgk2RcUlsH5ievpd5BlDMRu06dPwBhLfh_
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS_QwEB9ED3rxrV99RhHxUtm0TdoFL8uirK89iIIepKR5gHxuK7pF1r_eSbotPhDEW6EJaTMzmUdmfgOwJ7WMRSK5H8Qq8yMmjJ-hVvC5oJQLkcXMofNf9nnvJjq7ZbcTcFTXwlT4EE3AzUqGO6-tgNuA9EcpRwFCfWUP4CkUd-YcqqsGPMoCZ9EGKxx5c4wr5PJ46qmftdE3E_OzxepUzskc3NcfW2Wa_D8sh9mhfPuC4_jXv5mH2bEtSjoV8yzAhM4XYamTox8-GJF94rJDXdh9Eaa7dWe4JbjrkMfilYgBOvsPqkAWfJDkmNNzMrSaD0lvSyNzMiire34yECMiRfmiiYunIMvXk8lT8ThymJq2NfJoGW5Ojq-7PX_cosGXEYsCn3KljMIzIEa6hoZS0VZSx8YwQwUaK1S2tDYyEUHWVjrOAmvPGSE5VVxEYRCuwGRe5PofkEQY9CVl2FLo47UlTxTLJI9kpLgFuGl5sFuTKn2qkDjSxoPJZeo2z4ONmojpWBhfUrTy2rbkl8Ye7DSvcc_s3YjIdVHimCiME2bbhXqwWhG_WSUMEmYbknhw4Ej48_LpWb_rHtZ-P3QbpnvXlxfpxWn_fB1mApsz43LcNmBy-FzqTTR6htmW4-139c_8oQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS9xAEB5EofqiVqvGnnUrUnzJcZtsNjl8Ok4Pq-0homBBCJv9AaKXHN4FOf_6zm4uQVsKxbdAdtlkZ2bnm93ZbwAOpZaxSCT3g1hlPouE8TP0Cj4XlHIhsjhy7Pw_h_zshp3fRrcLcFzfhan4IZoNN2sZbr22Bj5W5rWRo_2gu7Lr7xLjYWBV-uSq4Y6yvFm0oQpH1ZzTCrk0nrrrW2f0F8J8C1idxxmswV39rVWiyUO7nGZt-fIHjeM7f2YdVudIlPQq1fkICzrfgM1ejlH4aEa-EZcb6jbdN2C5X9eF24RfPfJYPBMxwlD_XhWogPeSnHJ6QabW76Hg7cXInIzK6pSfjMSMSFFONHG7KajwdWcyLh5njlHTFkaefYKbwel1_8yfF2jwJYtY4FOulFG4AsQo1dBQKrpK6tiYyFCBUIXKjtZGJiLIukrHWWDRnBGSU8UFC4NwCxbzItc7QBJhMJKUYUdhhNeVPFFRJjmTTHFLb9Px4KCWVDqueDjSJn7JZeomz4NWLcN0boqTFDFe1174pbEHX5vXOGf2ZETkuiixDQvjJLLFQj3YrmTfjBIGSWTLkXhw5CT47-HT82HfPez-f9N9-HB5Mkh_fB9efIaVwCbMuAS3FixOn0q9h4hnmn1xmv0bCQ77UA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+low+amyloidogenic+E61K+transthyretin+mutation+may+cause+familial+amyloid+polyneuropathy&rft.jtitle=Journal+of+neurochemistry&rft.au=Murakami%2C+Tatsufumi&rft.au=Yokoyama%2C+Takeshi&rft.au=Mizuguchi%2C+Mineyuki&rft.au=Ton%C3%A9%2C+Shigenobu&rft.date=2021-03-01&rft.issn=0022-3042&rft.eissn=1471-4159&rft.volume=156&rft.issue=6&rft.spage=957&rft.epage=966&rft_id=info:doi/10.1111%2Fjnc.15162&rft.externalDBID=10.1111%252Fjnc.15162&rft.externalDocID=JNC15162
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3042&client=summon