Automatic segmentation of the right ventricle from cardiac MRI using a learning‐based approach
Purpose This study aims to accurately segment the right ventricle (RV) from cardiac MRI using a fully automatic learning‐based method. Methods The proposed method uses deep learning algorithms, i.e., convolutional neural networks and stacked autoencoders, for automatic detection and initial segmenta...
Saved in:
Published in | Magnetic resonance in medicine Vol. 78; no. 6; pp. 2439 - 2448 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.12.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0740-3194 1522-2594 1522-2594 |
DOI | 10.1002/mrm.26631 |
Cover
Loading…
Abstract | Purpose
This study aims to accurately segment the right ventricle (RV) from cardiac MRI using a fully automatic learning‐based method.
Methods
The proposed method uses deep learning algorithms, i.e., convolutional neural networks and stacked autoencoders, for automatic detection and initial segmentation of the RV chamber. The initial segmentation is then combined with the deformable models to improve the accuracy and robustness of the process. We trained our algorithm using 16 cardiac MRI datasets of the MICCAI 2012 RV Segmentation Challenge database and validated our technique using the rest of the dataset (32 subjects).
Results
An average Dice metric of 82.5% along with an average Hausdorff distance of 7.85 mm were achieved for all the studied subjects. Furthermore, a high correlation and level of agreement with the ground truth contours for end‐diastolic volume (0.98), end‐systolic volume (0.99), and ejection fraction (0.93) were observed.
Conclusion
Our results show that deep learning algorithms can be effectively used for automatic segmentation of the RV. Computed quantitative metrics of our method outperformed that of the existing techniques participated in the MICCAI 2012 challenge, as reported by the challenge organizers. Magn Reson Med 78:2439–2448, 2017. © 2017 International Society for Magnetic Resonance in Medicine. |
---|---|
AbstractList | This study aims to accurately segment the right ventricle (RV) from cardiac MRI using a fully automatic learning-based method.PURPOSEThis study aims to accurately segment the right ventricle (RV) from cardiac MRI using a fully automatic learning-based method.The proposed method uses deep learning algorithms, i.e., convolutional neural networks and stacked autoencoders, for automatic detection and initial segmentation of the RV chamber. The initial segmentation is then combined with the deformable models to improve the accuracy and robustness of the process. We trained our algorithm using 16 cardiac MRI datasets of the MICCAI 2012 RV Segmentation Challenge database and validated our technique using the rest of the dataset (32 subjects).METHODSThe proposed method uses deep learning algorithms, i.e., convolutional neural networks and stacked autoencoders, for automatic detection and initial segmentation of the RV chamber. The initial segmentation is then combined with the deformable models to improve the accuracy and robustness of the process. We trained our algorithm using 16 cardiac MRI datasets of the MICCAI 2012 RV Segmentation Challenge database and validated our technique using the rest of the dataset (32 subjects).An average Dice metric of 82.5% along with an average Hausdorff distance of 7.85 mm were achieved for all the studied subjects. Furthermore, a high correlation and level of agreement with the ground truth contours for end-diastolic volume (0.98), end-systolic volume (0.99), and ejection fraction (0.93) were observed.RESULTSAn average Dice metric of 82.5% along with an average Hausdorff distance of 7.85 mm were achieved for all the studied subjects. Furthermore, a high correlation and level of agreement with the ground truth contours for end-diastolic volume (0.98), end-systolic volume (0.99), and ejection fraction (0.93) were observed.Our results show that deep learning algorithms can be effectively used for automatic segmentation of the RV. Computed quantitative metrics of our method outperformed that of the existing techniques participated in the MICCAI 2012 challenge, as reported by the challenge organizers. Magn Reson Med 78:2439-2448, 2017. © 2017 International Society for Magnetic Resonance in Medicine.CONCLUSIONOur results show that deep learning algorithms can be effectively used for automatic segmentation of the RV. Computed quantitative metrics of our method outperformed that of the existing techniques participated in the MICCAI 2012 challenge, as reported by the challenge organizers. Magn Reson Med 78:2439-2448, 2017. © 2017 International Society for Magnetic Resonance in Medicine. This study aims to accurately segment the right ventricle (RV) from cardiac MRI using a fully automatic learning-based method. The proposed method uses deep learning algorithms, i.e., convolutional neural networks and stacked autoencoders, for automatic detection and initial segmentation of the RV chamber. The initial segmentation is then combined with the deformable models to improve the accuracy and robustness of the process. We trained our algorithm using 16 cardiac MRI datasets of the MICCAI 2012 RV Segmentation Challenge database and validated our technique using the rest of the dataset (32 subjects). An average Dice metric of 82.5% along with an average Hausdorff distance of 7.85 mm were achieved for all the studied subjects. Furthermore, a high correlation and level of agreement with the ground truth contours for end-diastolic volume (0.98), end-systolic volume (0.99), and ejection fraction (0.93) were observed. Our results show that deep learning algorithms can be effectively used for automatic segmentation of the RV. Computed quantitative metrics of our method outperformed that of the existing techniques participated in the MICCAI 2012 challenge, as reported by the challenge organizers. Magn Reson Med 78:2439-2448, 2017. © 2017 International Society for Magnetic Resonance in Medicine. Purpose This study aims to accurately segment the right ventricle (RV) from cardiac MRI using a fully automatic learning‐based method. Methods The proposed method uses deep learning algorithms, i.e., convolutional neural networks and stacked autoencoders, for automatic detection and initial segmentation of the RV chamber. The initial segmentation is then combined with the deformable models to improve the accuracy and robustness of the process. We trained our algorithm using 16 cardiac MRI datasets of the MICCAI 2012 RV Segmentation Challenge database and validated our technique using the rest of the dataset (32 subjects). Results An average Dice metric of 82.5% along with an average Hausdorff distance of 7.85 mm were achieved for all the studied subjects. Furthermore, a high correlation and level of agreement with the ground truth contours for end‐diastolic volume (0.98), end‐systolic volume (0.99), and ejection fraction (0.93) were observed. Conclusion Our results show that deep learning algorithms can be effectively used for automatic segmentation of the RV. Computed quantitative metrics of our method outperformed that of the existing techniques participated in the MICCAI 2012 challenge, as reported by the challenge organizers. Magn Reson Med 78:2439–2448, 2017. © 2017 International Society for Magnetic Resonance in Medicine. Purpose This study aims to accurately segment the right ventricle (RV) from cardiac MRI using a fully automatic learning-based method. Methods The proposed method uses deep learning algorithms, i.e., convolutional neural networks and stacked autoencoders, for automatic detection and initial segmentation of the RV chamber. The initial segmentation is then combined with the deformable models to improve the accuracy and robustness of the process. We trained our algorithm using 16 cardiac MRI datasets of the MICCAI 2012 RV Segmentation Challenge database and validated our technique using the rest of the dataset (32 subjects). Results An average Dice metric of 82.5% along with an average Hausdorff distance of 7.85mm were achieved for all the studied subjects. Furthermore, a high correlation and level of agreement with the ground truth contours for end-diastolic volume (0.98), end-systolic volume (0.99), and ejection fraction (0.93) were observed. Conclusion Our results show that deep learning algorithms can be effectively used for automatic segmentation of the RV. Computed quantitative metrics of our method outperformed that of the existing techniques participated in the MICCAI 2012 challenge, as reported by the challenge organizers. Magn Reson Med 78:2439-2448, 2017. © 2017 International Society for Magnetic Resonance in Medicine. |
Author | Kheradvar, Arash Avendi, Michael R. Jafarkhani, Hamid |
Author_xml | – sequence: 1 givenname: Michael R. surname: Avendi fullname: Avendi, Michael R. organization: University of California – sequence: 2 givenname: Arash surname: Kheradvar fullname: Kheradvar, Arash organization: University of California – sequence: 3 givenname: Hamid surname: Jafarkhani fullname: Jafarkhani, Hamid email: hamidj@uci.edu organization: University of California |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28205298$$D View this record in MEDLINE/PubMed |
BookMark | eNp90c1OGzEQAGALgUpCe-AFKku9wGHBf_vjI0L8SURIEZxdr3ecGO2uU3u3FTceoc_YJ8EhwCFSOXlsfTO2Z6Zot_c9IHRIyQklhJ12oTthRcHpDprQnLGM5VLsogkpBck4lWIfTWN8JIRIWYovaJ9VjORMVhP082wcfKcHZ3CERQf9kGLfY2_xsAQc3GI54N_pODjTArbBd9jo0Dht8Gx-g8fo-gXWuAUd-hT-e_5b6wgN1qtV8Nosv6I9q9sI397WA_RweXF_fp3d3l3dnJ_dZkbkgmZQ14RoSuumltJIojlUjeXQFDnU6Qe0BGYLBpqXNm0lK5nlhSU1qwrJRcUP0NGmbrr21whxUJ2LBtpW9-DHqGhypOCCremPLfrox9Cn1ykqC04Ep7RM6vubGusOGrUKrtPhSb33LoHjDTDBxxjAfhBK1HouKs1Fvc4l2dMta9ym00PQrv0s449r4en_pdVsPttkvADdeZ56 |
CitedBy_id | crossref_primary_10_3389_fcvm_2021_787614 crossref_primary_10_3390_jimaging8050149 crossref_primary_10_1002_cnm_3891 crossref_primary_10_1007_s40747_023_00968_x crossref_primary_10_1016_j_smhl_2020_100138 crossref_primary_10_1007_s10278_024_01019_8 crossref_primary_10_1016_j_media_2020_101723 crossref_primary_10_1097_HCO_0000000000000559 crossref_primary_10_3389_fcvm_2023_1167500 crossref_primary_10_1016_j_health_2023_100162 crossref_primary_10_1186_s12968_020_00678_0 crossref_primary_10_1002_mp_13245 crossref_primary_10_1016_j_cmpb_2021_106373 crossref_primary_10_1097_RTI_0000000000000385 crossref_primary_10_1109_ACCESS_2019_2897131 crossref_primary_10_1016_j_compbiomed_2021_105147 crossref_primary_10_1016_j_compbiomed_2023_106998 crossref_primary_10_1007_s11517_020_02305_7 crossref_primary_10_1148_ryai_2020190064 crossref_primary_10_3390_ijerph19031401 crossref_primary_10_1016_j_healun_2021_07_020 crossref_primary_10_1007_s00530_021_00776_8 crossref_primary_10_1016_j_diii_2019_03_001 crossref_primary_10_2174_1573405617666210127154257 crossref_primary_10_1007_s00246_020_02518_5 crossref_primary_10_1016_j_jcmg_2021_08_011 crossref_primary_10_1007_s10278_018_0061_3 crossref_primary_10_1038_s41598_021_89636_z crossref_primary_10_1016_j_compmedimag_2019_101690 crossref_primary_10_1186_s12968_018_0516_1 crossref_primary_10_23919_CJEE_2023_000008 crossref_primary_10_3390_life14010145 crossref_primary_10_1093_eurheartj_ehy404 crossref_primary_10_1016_j_cmpb_2021_106142 crossref_primary_10_3390_jimaging6070065 crossref_primary_10_1109_ACCESS_2020_2984630 crossref_primary_10_1186_s12968_019_0532_9 crossref_primary_10_1002_mp_16547 crossref_primary_10_1016_j_bspc_2020_102299 crossref_primary_10_1016_j_jocs_2020_101211 crossref_primary_10_1007_s11517_024_03039_6 crossref_primary_10_1093_ehjimp_qyae094 crossref_primary_10_31083_j_rcm2204121 crossref_primary_10_1016_j_neucom_2024_129326 crossref_primary_10_1002_ima_22929 crossref_primary_10_1016_j_media_2019_101591 crossref_primary_10_1109_TMI_2017_2743464 crossref_primary_10_3389_fcvm_2023_1147581 crossref_primary_10_3389_fcvm_2020_00086 crossref_primary_10_1038_s41598_020_65153_3 crossref_primary_10_11834_jig_230027 crossref_primary_10_1007_s13369_020_05309_5 crossref_primary_10_1259_bjro_20220021 crossref_primary_10_1038_s41598_019_38848_5 crossref_primary_10_1007_s12410_020_09550_2 crossref_primary_10_1080_08839514_2022_2031816 crossref_primary_10_1109_JBHI_2023_3267857 crossref_primary_10_1098_rsif_2020_0267 crossref_primary_10_2217_fca_2020_0128 crossref_primary_10_1002_mp_13264 crossref_primary_10_1109_TBME_2019_2906667 crossref_primary_10_1148_ryai_2019190034 crossref_primary_10_1016_j_asoc_2023_110060 crossref_primary_10_1155_2020_4972346 crossref_primary_10_1186_s12968_022_00861_5 crossref_primary_10_1186_s13741_023_00351_x crossref_primary_10_1259_bjr_20190812 crossref_primary_10_1109_JBHI_2020_3046449 crossref_primary_10_1007_s42979_022_01144_7 crossref_primary_10_1016_j_jvir_2019_11_032 crossref_primary_10_1007_s42979_021_00784_5 crossref_primary_10_1109_TBME_2022_3151819 crossref_primary_10_3390_diagnostics10121004 crossref_primary_10_1080_17434440_2020_1777855 crossref_primary_10_47164_ijngc_v13i3_825 crossref_primary_10_1007_s11042_024_19313_6 crossref_primary_10_1080_21681163_2022_2125697 crossref_primary_10_1093_bjr_tqae002 crossref_primary_10_1049_ipr2_12165 crossref_primary_10_3389_fcvm_2020_00025 crossref_primary_10_1016_j_bspc_2020_101866 crossref_primary_10_1016_j_acra_2023_07_008 crossref_primary_10_1177_2045894019841990 crossref_primary_10_1007_s12265_017_9778_5 crossref_primary_10_1016_j_compmedimag_2022_102168 crossref_primary_10_1109_ACCESS_2018_2886644 crossref_primary_10_1002_mrm_27627 crossref_primary_10_1109_JTEHM_2018_2804947 crossref_primary_10_3390_jpm11070602 |
Cites_doi | 10.1007/s10278-014-9705-0 10.1016/j.media.2005.12.001 10.1109/42.906421 10.1007/s00330-011-2152-0 10.1016/j.media.2016.01.005 10.1109/TPAMI.2013.50 10.1109/TMI.2013.2256922 10.1016/j.media.2004.06.015 10.1007/978-3-642-38899-6_21 10.1016/j.media.2013.05.002 10.1007/978-3-642-21028-0_31 10.1016/j.media.2014.10.004 10.1161/CIRCIMAGING.113.000553 10.1016/j.compmedimag.2013.12.011 10.1109/TMI.2008.929106 10.1016/j.acra.2012.03.022 10.1016/j.ccl.2012.03.001 10.1561/2200000006 10.1002/mrm.23143 10.1016/j.media.2009.05.004 10.1002/jmri.10030 10.1145/1390156.1390294 10.1161/CIRCULATIONAHA.107.653584 10.1016/S0735-1097(00)01089-5 10.1093/bjaceaccp/mkm016 10.1016/j.jacc.2004.06.033 10.1016/j.cviu.2013.01.014 10.1007/s10741-009-9154-x 10.1016/j.media.2010.12.004 10.1016/j.cviu.2012.11.017 |
ContentType | Journal Article |
Copyright | 2017 International Society for Magnetic Resonance in Medicine 2017 International Society for Magnetic Resonance in Medicine. |
Copyright_xml | – notice: 2017 International Society for Magnetic Resonance in Medicine – notice: 2017 International Society for Magnetic Resonance in Medicine. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 |
DOI | 10.1002/mrm.26631 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Biochemistry Abstracts 1 |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 2448 |
ExternalDocumentID | 28205298 10_1002_mrm_26631 MRM26631 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Conexant‐Broadcom Endowed Chair – fundername: American Heart Association Grant‐in‐Aid Award funderid: 14GRNT18800013 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 K9. M7Z P64 7X8 |
ID | FETCH-LOGICAL-c4541-ebb00a11bdb99c90a3e8df3ed65eb19417e2f62ea37f1949272f36f0b28693483 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Fri Jul 11 15:50:27 EDT 2025 Fri Jul 25 12:08:22 EDT 2025 Wed Feb 19 02:43:02 EST 2025 Tue Jul 01 01:21:02 EDT 2025 Thu Apr 24 23:08:21 EDT 2025 Wed Jan 22 16:54:03 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | deep learning segmentation cardiac MRI right ventricle deformable models |
Language | English |
License | 2017 International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4541-ebb00a11bdb99c90a3e8df3ed65eb19417e2f62ea37f1949272f36f0b28693483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://escholarship.org/content/qt48q058fq/qt48q058fq.pdf |
PMID | 28205298 |
PQID | 1963043117 |
PQPubID | 1016391 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1869063428 proquest_journals_1963043117 pubmed_primary_28205298 crossref_primary_10_1002_mrm_26631 crossref_citationtrail_10_1002_mrm_26631 wiley_primary_10_1002_mrm_26631_MRM26631 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2017 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: December 2017 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn Reson Med |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2004; 44 2011; 6666 2010; 11 2013; 26 2010; 15 2012; 2012 2015; 19 2012 2010 2006; 10 2004; 8 2014; 27 2008 2016; 30 2012; 19 2011; 15 2012; 30 2001; 20 2009; 13 2013; 17 2013; 7945 2013; 32 2013; 2013 2013; 35 2008; 27 2013; 117 2014; 38 2008; 117 2007; 7 2011; 21 2001; 37 2001; 15 2016 2014 2012; 27 2013 2009; 2 2014; 7 2012; 67 1988 Ou Y (e_1_2_6_17_1) 2012 Rumelhart DE (e_1_2_6_41_1) 1988 e_1_2_6_10_1 Szegedy C (e_1_2_6_30_1) 2013; 26 Sermanet P (e_1_2_6_31_1) 2014 Krizhevsky A (e_1_2_6_32_1) 2012 e_1_2_6_19_1 Maier OMO (e_1_2_6_22_1) 2012; 2012 Baldi P (e_1_2_6_36_1) 2012; 27 e_1_2_6_13_1 Mahapatra D (e_1_2_6_26_1) 2013; 2013 Moolan‐Feroze O (e_1_2_6_27_1) 2014 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 Maier OMO (e_1_2_6_45_1) 2012 e_1_2_6_42_1 Nambakhsh C (e_1_2_6_20_1) 2012 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_40_1 Vincent P (e_1_2_6_38_1) 2010; 11 Goodfellow I (e_1_2_6_39_1) 2016 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 LeCun Y (e_1_2_6_29_1) 2010 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 Deng L (e_1_2_6_37_1) 2014 Wang C (e_1_2_6_24_1) 2012 e_1_2_6_44_1 e_1_2_6_28_1 e_1_2_6_46_1 e_1_2_6_47_1 |
References_xml | – volume: 27 start-page: 37 year: 2012 end-page: 50 article-title: Autoencoders, unsupervised learning, and deep architectures publication-title: ICML Unsupervised and Transfer Learning – volume: 8 start-page: 245 year: 2004 end-page: 254 article-title: Automated segmentation of the left ventricle in cardiac MRI publication-title: Med Image Anal – volume: 117 start-page: 966 year: 2013 end-page: 989 article-title: A survey of shaped‐based registration and segmentation techniques for cardiac images publication-title: Comput Vis Image Underst – volume: 67 start-page: 1740 year: 2012 end-page: 1746 article-title: Assessment of right ventricle volumes and function by cardiac MRI: quantification of the regional and global interobserver variability publication-title: Magn Reson Med – volume: 15 start-page: 169 year: 2011 end-page: 184 article-title: A review of segmentation methods in short axis cardiac MR images publication-title: Med Image Anal – volume: 19 start-page: 187 year: 2015 end-page: 202 article-title: Right ventricle segmentation from cardiac MRI: a collation study publication-title: Med Image Anal – volume: 7 start-page: 89 year: 2007 end-page: 94 article-title: Right ventricular failure publication-title: Continuing Education in Anaesthesia, Critical Care & Pain – volume: 30 start-page: 108 year: 2016 end-page: 119 article-title: A combined deep‐learning and deformable model approach to fully automatic segmentation of the left ventricle in cardiac MRI publication-title: Med Image Anal – volume: 26 start-page: 2553 year: 2013 end-page: 2561 article-title: Deep neural networks for object detection publication-title: Adv Neural Inf Process Syst – volume: 117 start-page: 1717 year: 2008 end-page: 1731 article-title: Right ventricular function in cardiovascular disease, part II. Pathophysiology, clinical importance, and management of right ventricular failure publication-title: Circulation – volume: 19 start-page: 991 year: 2012 end-page: 1002 article-title: Cardiac MRI assessment of right ventricular function in acquired heart disease: factors of variability publication-title: Acad Radiol – start-page: 174 year: 2013 end-page: 181 – volume: 44 start-page: 1164 year: 2004 end-page: 1171 article-title: Cardiovascular magnetic resonance imaging: current and emerging applications publication-title: J Am Coll Cardiol – year: 2016 – volume: 37 start-page: 37 year: 2001 end-page: 43 article-title: Impact of right ventricular involvement on mortality and morbidity in patients with inferior myocardial infarction1 publication-title: J Am Coll Cardiol – volume: 2013 start-page: 1106 year: 2013 end-page: 1109 article-title: Automatic cardiac RV segmentation using semantic information with graph cuts publication-title: IEEE 10th International Symposium on Biomedical Imaging (ISBI). – volume: 15 start-page: 62 year: 2001 end-page: 67 article-title: Contrast‐enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization publication-title: J Magn Reson Imaging – volume: 13 start-page: 543 year: 2009 end-page: 563 article-title: Statistical shape models for 3D medical image segmentation: a review publication-title: Med Image Anal – volume: 7945 start-page: 174 year: 2013 end-page: 181 article-title: Multi‐atlas propagation whole heart segmentation from MRI and CTA using a local normalised correlation coefficient criterion publication-title: Funct Imaging Model Heart – year: 2014 – volume: 30 start-page: 189 year: 2012 end-page: 203 article-title: Imaging of the right ventricle publication-title: Cardiol Clin – year: 2012 – volume: 117 start-page: 1027 year: 2013 end-page: 1035 article-title: Graph cut segmentation with a statistical shape model in cardiac MRI publication-title: Comput Vis Image Underst – volume: 2 start-page: 1 year: 2009 end-page: 127 article-title: Learning deep architectures for AI publication-title: Found Trends Mach Learn – start-page: 5 year: 1988 article-title: Learning representations by back‐propagating errors publication-title: Cogn Model – start-page: 697 year: 2012 end-page: 700 article-title: Ledesma‐Carbayo MJ. Segmentation of RV in 4D cardiac MR volumes using region‐merging graph cuts publication-title: Comput Cardiol – volume: 27 start-page: 1643 year: 2008 end-page: 1654 article-title: Methods of artificial enlargement of the training set for statistical shape models publication-title: IEEE Trans Med Imaging – start-page: 1097 year: 2012 end-page: 1105 article-title: Image net classification with deep convolutional neural networks publication-title: Adv Neural Inf Process Syst – volume: 6666 start-page: 250 year: 2011 end-page: 258 article-title: Automatic delineation of left and right ventricles in cardiac MRI sequences using a joint ventricular model publication-title: Funct Imaging Model Heart – volume: 7 start-page: 190 year: 2014 end-page: 197 article-title: MRI is the preferred method for evaluating right ventricular size and function in patients with congenital heart disease publication-title: Circ Cardiovasc Imaging – volume: 35 start-page: 1798 year: 2013 end-page: 1828 article-title: Representation learning: a review and new perspectives publication-title: IEEE Trans Pattern Anal Mach Intell – start-page: 253 year: 2010 end-page: 256 – volume: 38 start-page: 190 year: 2014 end-page: 201 article-title: Fast, accurate, and fully automatic segmentation of the right ventricle in short‐axis cardiac MRI publication-title: Comput Med Imaging Graph – start-page: 682 year: 2014 end-page: 689 – volume: 17 start-page: 1010 year: 2013 end-page: 1024 article-title: Left ventricle segmentation in MRI via convex relaxed distribution matching publication-title: Med Image Anal – volume: 10 start-page: 286 year: 2006 end-page: 303 article-title: Spasm: a 3D‐ASM for segmentation of sparse and arbitrarily oriented cardiac MRI data publication-title: Med Image Anal – volume: 20 start-page: 2 year: 2001 end-page: 5 article-title: Three‐dimensional modeling for functional analysis of cardiac images, a review publication-title: IEEE Trans Med Imaging – volume: 32 start-page: 1302 year: 2013 end-page: 1315 article-title: A probabilistic patch‐based label fusion model for multi‐atlas segmentation with registration refinement: application to cardiac MR images publication-title: IEEE Trans Med Imaging – start-page: 1096 year: 2008 end-page: 1103 – volume: 11 start-page: 3371 year: 2010 end-page: 3408 article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion publication-title: J Mach Learn Res – volume: 21 start-page: 2111 year: 2011 end-page: 2120 article-title: Diagnostic accuracy and variability of three semi‐quantitative methods for assessing right ventricular systolic function from cardiac MRI in patients with acquired heart disease publication-title: Eur Radiol – volume: 2012 start-page: 697 year: 2012 end-page: 700 article-title: Segmentation of RV in 4D cardiac MR volumes using region‐merging graph cuts publication-title: Comput Cardiol – volume: 15 start-page: 39 year: 2010 end-page: 61 article-title: Do we have two hearts?. new insights in right ventricular function supported by myocardial imaging echocardiography publication-title: Heart Fail Rev – volume: 27 start-page: 794 year: 2014 end-page: 804 article-title: Automatic cardiac segmentation using semantic information from random forests publication-title: J Digit Imaging – ident: e_1_2_6_28_1 doi: 10.1007/s10278-014-9705-0 – start-page: 253 volume-title: Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS) year: 2010 ident: e_1_2_6_29_1 – volume-title: Deep learning (adaptive computation and machine learning series) year: 2016 ident: e_1_2_6_39_1 – ident: e_1_2_6_47_1 doi: 10.1016/j.media.2005.12.001 – ident: e_1_2_6_10_1 doi: 10.1109/42.906421 – volume: 26 start-page: 2553 year: 2013 ident: e_1_2_6_30_1 article-title: Deep neural networks for object detection publication-title: Adv Neural Inf Process Syst – ident: e_1_2_6_14_1 doi: 10.1007/s00330-011-2152-0 – ident: e_1_2_6_40_1 doi: 10.1016/j.media.2016.01.005 – volume-title: Proc MICCAI RV Segmentation Challenge year: 2012 ident: e_1_2_6_20_1 – ident: e_1_2_6_33_1 doi: 10.1109/TPAMI.2013.50 – ident: e_1_2_6_18_1 doi: 10.1109/TMI.2013.2256922 – volume: 27 start-page: 37 year: 2012 ident: e_1_2_6_36_1 article-title: Autoencoders, unsupervised learning, and deep architectures publication-title: ICML Unsupervised and Transfer Learning – ident: e_1_2_6_48_1 doi: 10.1016/j.media.2004.06.015 – ident: e_1_2_6_44_1 doi: 10.1007/978-3-642-38899-6_21 – volume: 2012 start-page: 697 year: 2012 ident: e_1_2_6_22_1 article-title: Segmentation of RV in 4D cardiac MR volumes using region‐merging graph cuts publication-title: Comput Cardiol – start-page: 1097 year: 2012 ident: e_1_2_6_32_1 article-title: Image net classification with deep convolutional neural networks publication-title: Adv Neural Inf Process Syst – ident: e_1_2_6_46_1 doi: 10.1016/j.media.2013.05.002 – ident: e_1_2_6_16_1 doi: 10.1007/978-3-642-38899-6_21 – start-page: 682 volume-title: Medical image computing and computer‐assisted intervention–MICCAI 2014 year: 2014 ident: e_1_2_6_27_1 – ident: e_1_2_6_25_1 doi: 10.1007/978-3-642-21028-0_31 – ident: e_1_2_6_7_1 doi: 10.1016/j.media.2014.10.004 – start-page: 697 year: 2012 ident: e_1_2_6_45_1 article-title: Ledesma‐Carbayo MJ. Segmentation of RV in 4D cardiac MR volumes using region‐merging graph cuts publication-title: Comput Cardiol – ident: e_1_2_6_13_1 doi: 10.1161/CIRCIMAGING.113.000553 – ident: e_1_2_6_23_1 doi: 10.1016/j.compmedimag.2013.12.011 – start-page: 5 year: 1988 ident: e_1_2_6_41_1 article-title: Learning representations by back‐propagating errors publication-title: Cogn Model – ident: e_1_2_6_42_1 doi: 10.1109/TMI.2008.929106 – ident: e_1_2_6_43_1 doi: 10.1016/j.acra.2012.03.022 – volume: 2013 start-page: 1106 year: 2013 ident: e_1_2_6_26_1 article-title: Automatic cardiac RV segmentation using semantic information with graph cuts publication-title: IEEE 10th International Symposium on Biomedical Imaging (ISBI). – ident: e_1_2_6_3_1 doi: 10.1016/j.ccl.2012.03.001 – ident: e_1_2_6_34_1 doi: 10.1561/2200000006 – ident: e_1_2_6_15_1 doi: 10.1002/mrm.23143 – ident: e_1_2_6_12_1 doi: 10.1016/j.media.2009.05.004 – ident: e_1_2_6_8_1 doi: 10.1002/jmri.10030 – ident: e_1_2_6_35_1 doi: 10.1145/1390156.1390294 – ident: e_1_2_6_2_1 doi: 10.1161/CIRCULATIONAHA.107.653584 – ident: e_1_2_6_4_1 doi: 10.1016/S0735-1097(00)01089-5 – ident: e_1_2_6_5_1 doi: 10.1093/bjaceaccp/mkm016 – volume-title: International Conference on Learning Representations (ICLR2014) year: 2014 ident: e_1_2_6_31_1 – volume-title: Foundations and trends in signal processing year: 2014 ident: e_1_2_6_37_1 – ident: e_1_2_6_9_1 doi: 10.1016/j.jacc.2004.06.033 – volume-title: Multi‐atlas segmentation of the cardiac MR right ventricle year: 2012 ident: e_1_2_6_17_1 – ident: e_1_2_6_21_1 doi: 10.1016/j.cviu.2013.01.014 – volume: 11 start-page: 3371 year: 2010 ident: e_1_2_6_38_1 article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion publication-title: J Mach Learn Res – ident: e_1_2_6_6_1 doi: 10.1007/s10741-009-9154-x – ident: e_1_2_6_19_1 doi: 10.1016/j.media.2010.12.004 – ident: e_1_2_6_11_1 doi: 10.1016/j.cviu.2012.11.017 – volume-title: Proc of 3D Cardiovascular Imaging: a MICCAI Segmentation Challenge year: 2012 ident: e_1_2_6_24_1 |
SSID | ssj0009974 |
Score | 2.5667243 |
Snippet | Purpose
This study aims to accurately segment the right ventricle (RV) from cardiac MRI using a fully automatic learning‐based method.
Methods
The proposed... This study aims to accurately segment the right ventricle (RV) from cardiac MRI using a fully automatic learning-based method. The proposed method uses deep... Purpose This study aims to accurately segment the right ventricle (RV) from cardiac MRI using a fully automatic learning-based method. Methods The proposed... This study aims to accurately segment the right ventricle (RV) from cardiac MRI using a fully automatic learning-based method.PURPOSEThis study aims to... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2439 |
SubjectTerms | Algorithms Artificial neural networks Automation Blood pressure cardiac MRI Correlation analysis deep learning deformable models Deformation Formability Ground truth Heart Heart - diagnostic imaging Heart diseases Heart Ventricles - diagnostic imaging Humans Image Interpretation, Computer-Assisted Image processing Image Processing, Computer-Assisted Learning algorithms Machine Learning Magnetic Resonance Imaging Model accuracy Models, Statistical Neural networks Neural Networks (Computer) Pattern Recognition, Automated Reproducibility of Results right ventricle Segmentation Ventricle |
Title | Automatic segmentation of the right ventricle from cardiac MRI using a learning‐based approach |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.26631 https://www.ncbi.nlm.nih.gov/pubmed/28205298 https://www.proquest.com/docview/1963043117 https://www.proquest.com/docview/1869063428 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VlVpxgVJeS0vlIg69ZJs4jhOLU4Wo2krhsKJSD0jBduw9wGbRPi6c-An8Rn5JZ5xHVaBS1UuUyE6c2PNyZuYbgHdII-Qc8lFh8YAUIqMik8hXOvGokDJuFCUnl5_k2aW4uMquNuB9nwvT4kMMP9yIM4K8JgbXZnl8Axo6W8zGqF1CDjXFapFBNLmBjlKqRWDOBckZJXpUoZgfD3fe1kX_GJi37dWgcE6fwJf-Vds4k2_j9cqM7c-_UBwf-C078LgzRNlJSzlPYcM1u7Bddq72XdgKsaF2-Qy-nqxX84DsypZuOuuSlRo29wytRxa294zCJhf0JEYJK8wGwrOsnJwzCq2fMs26AhXTP79-k-6sWY9n_hwuTz9-_nAWdYUZIisykUTOILPqJDG1UcqqWKeuqH3qapmh6FciyR33kjud5h4vFc-5T6WPDS-kSkWRvoDNZt64V8CMc7nQdeJjXouidkVspa5xE6RjyzOTjeCoX6LKdqjlVDzje9XiLfMK564KczeCt0PXHy1Ux_867ffrXHXcuqxIChHIUJKP4HBoRj4j54lu3HyNfah0l0xxtzaCly19DKPgtpUcpthyFFb57uGrclKGk9f377oHjzjZEiGGZh82V4u1e4OW0MocBJK_BvPgA-k |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRTwuPMproYBBHHrJNnEcJ5a4VEC1haaHVSv1goLt2HuAzaJ9XDjxE_iN_BJmnEdVHhLiEiXyJE7iedme-QbgJfIIbQ75qLB4QA6RUZFJlCudeDRIGTeKkpPLEzk5E-_Os_MteNXnwrT4EMOCG0lG0Nck4LQgvX-BGjpfzsdoXiiJ-gpV9Kb6BW-mF-BRSrUYzLkgTaNEjysU8_3h1svW6DcX87LHGkzO4S340L9sG2nyabxZm7H9-guO4_9-zW242fmi7KBlnjuw5ZoduFZ2u-07cDWEh9rVXfh4sFkvArgrW7nZvMtXatjCM3QgWZjhM4qcXNKTGOWsMBt4z7JyesQoun7GNOtqVMx-fPtO5rNmPaT5PTg7fHv6ehJ1tRkiKzKRRM6gvOokMbVRyqpYp66ofepqmaH2VyLJHfeSO53mHi8Vz7lPpY8NL6RKRZHeh-1m0biHwIxzudB14mNei6J2RWylrnEepGPLM5ONYK8fo8p2wOVUP-Nz1UIu8wr_XRX-3QheDKRfWrSOPxHt9gNddQK7qkgREc5Qko_g-dCMokb7J7pxiw3SUPUumeKEbQQPWgYZesGZK-2ZYsteGOa_d1-V0zKcPPp30mdwfXJaHlfHRyfvH8MNTq5FCKnZhe31cuOeoGO0Nk8D__8EIRoIAw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRVRceJTXQgGDOPSSbeI4TixOFbBqgVRoRaUekEL82gNsttrHhRM_gd_IL2HGeVTlISEuUSI7cWLPy5mZbwCeI42Qc8hHhcEDUoiMikwiX9WJR4WUca0oObk8kUen4s1ZdrYFL_pcmBYfYvjhRpwR5DUx-Ln1BxegofPlfIzahXKorwiJzEIW0fQCO0qpFoI5FyRolOhhhWJ-MNx6WRn9ZmFeNliDxpncgI_9u7aBJp_Hm7Uem6-_wDj-58fchOudJcoOW9K5BVuu2YWdsvO178LVEBxqVrfh0-FmvQjQrmzlZvMuW6lhC8_QfGRhf88obnJJT2KUscJMoDzDyukxo9j6GatZV6Fi9uPbd1KelvWA5nfgdPL6w8ujqKvMEBmRiSRyGrm1ThJttVJGxXXqCutTZ2WGsl-JJHfcS-7qNPd4qXjOfSp9rHkhVSqK9C5sN4vG3QemnctFbRMfcysK64rYyNriLqiODc90NoL9fokq08GWU_WML1ULuMwrnLsqzN0Ing1dz1usjj912uvXuerYdVWRGCKUoSQfwdOhGRmNvCd14xYb7EO1u2SK27UR3GvpYxgF963kMcWW_bDKfx--KqdlOHnw712fwM77V5Pq3fHJ24dwjZNdEeJp9mB7vdy4R2gVrfXjQP0_ASPcBrs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+segmentation+of+the+right+ventricle+from+cardiac+MRI+using+a+learning-based+approach&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Avendi%2C+Michael+R&rft.au=Kheradvar%2C+Arash&rft.au=Jafarkhani%2C+Hamid&rft.date=2017-12-01&rft.issn=1522-2594&rft.eissn=1522-2594&rft.volume=78&rft.issue=6&rft.spage=2439&rft_id=info:doi/10.1002%2Fmrm.26631&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |