Automatic segmentation of the right ventricle from cardiac MRI using a learning‐based approach

Purpose This study aims to accurately segment the right ventricle (RV) from cardiac MRI using a fully automatic learning‐based method. Methods The proposed method uses deep learning algorithms, i.e., convolutional neural networks and stacked autoencoders, for automatic detection and initial segmenta...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 78; no. 6; pp. 2439 - 2448
Main Authors Avendi, Michael R., Kheradvar, Arash, Jafarkhani, Hamid
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.12.2017
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.26631

Cover

Loading…
Abstract Purpose This study aims to accurately segment the right ventricle (RV) from cardiac MRI using a fully automatic learning‐based method. Methods The proposed method uses deep learning algorithms, i.e., convolutional neural networks and stacked autoencoders, for automatic detection and initial segmentation of the RV chamber. The initial segmentation is then combined with the deformable models to improve the accuracy and robustness of the process. We trained our algorithm using 16 cardiac MRI datasets of the MICCAI 2012 RV Segmentation Challenge database and validated our technique using the rest of the dataset (32 subjects). Results An average Dice metric of 82.5% along with an average Hausdorff distance of 7.85 mm were achieved for all the studied subjects. Furthermore, a high correlation and level of agreement with the ground truth contours for end‐diastolic volume (0.98), end‐systolic volume (0.99), and ejection fraction (0.93) were observed. Conclusion Our results show that deep learning algorithms can be effectively used for automatic segmentation of the RV. Computed quantitative metrics of our method outperformed that of the existing techniques participated in the MICCAI 2012 challenge, as reported by the challenge organizers. Magn Reson Med 78:2439–2448, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
AbstractList This study aims to accurately segment the right ventricle (RV) from cardiac MRI using a fully automatic learning-based method.PURPOSEThis study aims to accurately segment the right ventricle (RV) from cardiac MRI using a fully automatic learning-based method.The proposed method uses deep learning algorithms, i.e., convolutional neural networks and stacked autoencoders, for automatic detection and initial segmentation of the RV chamber. The initial segmentation is then combined with the deformable models to improve the accuracy and robustness of the process. We trained our algorithm using 16 cardiac MRI datasets of the MICCAI 2012 RV Segmentation Challenge database and validated our technique using the rest of the dataset (32 subjects).METHODSThe proposed method uses deep learning algorithms, i.e., convolutional neural networks and stacked autoencoders, for automatic detection and initial segmentation of the RV chamber. The initial segmentation is then combined with the deformable models to improve the accuracy and robustness of the process. We trained our algorithm using 16 cardiac MRI datasets of the MICCAI 2012 RV Segmentation Challenge database and validated our technique using the rest of the dataset (32 subjects).An average Dice metric of 82.5% along with an average Hausdorff distance of 7.85 mm were achieved for all the studied subjects. Furthermore, a high correlation and level of agreement with the ground truth contours for end-diastolic volume (0.98), end-systolic volume (0.99), and ejection fraction (0.93) were observed.RESULTSAn average Dice metric of 82.5% along with an average Hausdorff distance of 7.85 mm were achieved for all the studied subjects. Furthermore, a high correlation and level of agreement with the ground truth contours for end-diastolic volume (0.98), end-systolic volume (0.99), and ejection fraction (0.93) were observed.Our results show that deep learning algorithms can be effectively used for automatic segmentation of the RV. Computed quantitative metrics of our method outperformed that of the existing techniques participated in the MICCAI 2012 challenge, as reported by the challenge organizers. Magn Reson Med 78:2439-2448, 2017. © 2017 International Society for Magnetic Resonance in Medicine.CONCLUSIONOur results show that deep learning algorithms can be effectively used for automatic segmentation of the RV. Computed quantitative metrics of our method outperformed that of the existing techniques participated in the MICCAI 2012 challenge, as reported by the challenge organizers. Magn Reson Med 78:2439-2448, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
This study aims to accurately segment the right ventricle (RV) from cardiac MRI using a fully automatic learning-based method. The proposed method uses deep learning algorithms, i.e., convolutional neural networks and stacked autoencoders, for automatic detection and initial segmentation of the RV chamber. The initial segmentation is then combined with the deformable models to improve the accuracy and robustness of the process. We trained our algorithm using 16 cardiac MRI datasets of the MICCAI 2012 RV Segmentation Challenge database and validated our technique using the rest of the dataset (32 subjects). An average Dice metric of 82.5% along with an average Hausdorff distance of 7.85 mm were achieved for all the studied subjects. Furthermore, a high correlation and level of agreement with the ground truth contours for end-diastolic volume (0.98), end-systolic volume (0.99), and ejection fraction (0.93) were observed. Our results show that deep learning algorithms can be effectively used for automatic segmentation of the RV. Computed quantitative metrics of our method outperformed that of the existing techniques participated in the MICCAI 2012 challenge, as reported by the challenge organizers. Magn Reson Med 78:2439-2448, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Purpose This study aims to accurately segment the right ventricle (RV) from cardiac MRI using a fully automatic learning‐based method. Methods The proposed method uses deep learning algorithms, i.e., convolutional neural networks and stacked autoencoders, for automatic detection and initial segmentation of the RV chamber. The initial segmentation is then combined with the deformable models to improve the accuracy and robustness of the process. We trained our algorithm using 16 cardiac MRI datasets of the MICCAI 2012 RV Segmentation Challenge database and validated our technique using the rest of the dataset (32 subjects). Results An average Dice metric of 82.5% along with an average Hausdorff distance of 7.85 mm were achieved for all the studied subjects. Furthermore, a high correlation and level of agreement with the ground truth contours for end‐diastolic volume (0.98), end‐systolic volume (0.99), and ejection fraction (0.93) were observed. Conclusion Our results show that deep learning algorithms can be effectively used for automatic segmentation of the RV. Computed quantitative metrics of our method outperformed that of the existing techniques participated in the MICCAI 2012 challenge, as reported by the challenge organizers. Magn Reson Med 78:2439–2448, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Purpose This study aims to accurately segment the right ventricle (RV) from cardiac MRI using a fully automatic learning-based method. Methods The proposed method uses deep learning algorithms, i.e., convolutional neural networks and stacked autoencoders, for automatic detection and initial segmentation of the RV chamber. The initial segmentation is then combined with the deformable models to improve the accuracy and robustness of the process. We trained our algorithm using 16 cardiac MRI datasets of the MICCAI 2012 RV Segmentation Challenge database and validated our technique using the rest of the dataset (32 subjects). Results An average Dice metric of 82.5% along with an average Hausdorff distance of 7.85mm were achieved for all the studied subjects. Furthermore, a high correlation and level of agreement with the ground truth contours for end-diastolic volume (0.98), end-systolic volume (0.99), and ejection fraction (0.93) were observed. Conclusion Our results show that deep learning algorithms can be effectively used for automatic segmentation of the RV. Computed quantitative metrics of our method outperformed that of the existing techniques participated in the MICCAI 2012 challenge, as reported by the challenge organizers. Magn Reson Med 78:2439-2448, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Author Kheradvar, Arash
Avendi, Michael R.
Jafarkhani, Hamid
Author_xml – sequence: 1
  givenname: Michael R.
  surname: Avendi
  fullname: Avendi, Michael R.
  organization: University of California
– sequence: 2
  givenname: Arash
  surname: Kheradvar
  fullname: Kheradvar, Arash
  organization: University of California
– sequence: 3
  givenname: Hamid
  surname: Jafarkhani
  fullname: Jafarkhani, Hamid
  email: hamidj@uci.edu
  organization: University of California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28205298$$D View this record in MEDLINE/PubMed
BookMark eNp90c1OGzEQAGALgUpCe-AFKku9wGHBf_vjI0L8SURIEZxdr3ecGO2uU3u3FTceoc_YJ8EhwCFSOXlsfTO2Z6Zot_c9IHRIyQklhJ12oTthRcHpDprQnLGM5VLsogkpBck4lWIfTWN8JIRIWYovaJ9VjORMVhP082wcfKcHZ3CERQf9kGLfY2_xsAQc3GI54N_pODjTArbBd9jo0Dht8Gx-g8fo-gXWuAUd-hT-e_5b6wgN1qtV8Nosv6I9q9sI397WA_RweXF_fp3d3l3dnJ_dZkbkgmZQ14RoSuumltJIojlUjeXQFDnU6Qe0BGYLBpqXNm0lK5nlhSU1qwrJRcUP0NGmbrr21whxUJ2LBtpW9-DHqGhypOCCremPLfrox9Cn1ykqC04Ep7RM6vubGusOGrUKrtPhSb33LoHjDTDBxxjAfhBK1HouKs1Fvc4l2dMta9ym00PQrv0s449r4en_pdVsPttkvADdeZ56
CitedBy_id crossref_primary_10_3389_fcvm_2021_787614
crossref_primary_10_3390_jimaging8050149
crossref_primary_10_1002_cnm_3891
crossref_primary_10_1007_s40747_023_00968_x
crossref_primary_10_1016_j_smhl_2020_100138
crossref_primary_10_1007_s10278_024_01019_8
crossref_primary_10_1016_j_media_2020_101723
crossref_primary_10_1097_HCO_0000000000000559
crossref_primary_10_3389_fcvm_2023_1167500
crossref_primary_10_1016_j_health_2023_100162
crossref_primary_10_1186_s12968_020_00678_0
crossref_primary_10_1002_mp_13245
crossref_primary_10_1016_j_cmpb_2021_106373
crossref_primary_10_1097_RTI_0000000000000385
crossref_primary_10_1109_ACCESS_2019_2897131
crossref_primary_10_1016_j_compbiomed_2021_105147
crossref_primary_10_1016_j_compbiomed_2023_106998
crossref_primary_10_1007_s11517_020_02305_7
crossref_primary_10_1148_ryai_2020190064
crossref_primary_10_3390_ijerph19031401
crossref_primary_10_1016_j_healun_2021_07_020
crossref_primary_10_1007_s00530_021_00776_8
crossref_primary_10_1016_j_diii_2019_03_001
crossref_primary_10_2174_1573405617666210127154257
crossref_primary_10_1007_s00246_020_02518_5
crossref_primary_10_1016_j_jcmg_2021_08_011
crossref_primary_10_1007_s10278_018_0061_3
crossref_primary_10_1038_s41598_021_89636_z
crossref_primary_10_1016_j_compmedimag_2019_101690
crossref_primary_10_1186_s12968_018_0516_1
crossref_primary_10_23919_CJEE_2023_000008
crossref_primary_10_3390_life14010145
crossref_primary_10_1093_eurheartj_ehy404
crossref_primary_10_1016_j_cmpb_2021_106142
crossref_primary_10_3390_jimaging6070065
crossref_primary_10_1109_ACCESS_2020_2984630
crossref_primary_10_1186_s12968_019_0532_9
crossref_primary_10_1002_mp_16547
crossref_primary_10_1016_j_bspc_2020_102299
crossref_primary_10_1016_j_jocs_2020_101211
crossref_primary_10_1007_s11517_024_03039_6
crossref_primary_10_1093_ehjimp_qyae094
crossref_primary_10_31083_j_rcm2204121
crossref_primary_10_1016_j_neucom_2024_129326
crossref_primary_10_1002_ima_22929
crossref_primary_10_1016_j_media_2019_101591
crossref_primary_10_1109_TMI_2017_2743464
crossref_primary_10_3389_fcvm_2023_1147581
crossref_primary_10_3389_fcvm_2020_00086
crossref_primary_10_1038_s41598_020_65153_3
crossref_primary_10_11834_jig_230027
crossref_primary_10_1007_s13369_020_05309_5
crossref_primary_10_1259_bjro_20220021
crossref_primary_10_1038_s41598_019_38848_5
crossref_primary_10_1007_s12410_020_09550_2
crossref_primary_10_1080_08839514_2022_2031816
crossref_primary_10_1109_JBHI_2023_3267857
crossref_primary_10_1098_rsif_2020_0267
crossref_primary_10_2217_fca_2020_0128
crossref_primary_10_1002_mp_13264
crossref_primary_10_1109_TBME_2019_2906667
crossref_primary_10_1148_ryai_2019190034
crossref_primary_10_1016_j_asoc_2023_110060
crossref_primary_10_1155_2020_4972346
crossref_primary_10_1186_s12968_022_00861_5
crossref_primary_10_1186_s13741_023_00351_x
crossref_primary_10_1259_bjr_20190812
crossref_primary_10_1109_JBHI_2020_3046449
crossref_primary_10_1007_s42979_022_01144_7
crossref_primary_10_1016_j_jvir_2019_11_032
crossref_primary_10_1007_s42979_021_00784_5
crossref_primary_10_1109_TBME_2022_3151819
crossref_primary_10_3390_diagnostics10121004
crossref_primary_10_1080_17434440_2020_1777855
crossref_primary_10_47164_ijngc_v13i3_825
crossref_primary_10_1007_s11042_024_19313_6
crossref_primary_10_1080_21681163_2022_2125697
crossref_primary_10_1093_bjr_tqae002
crossref_primary_10_1049_ipr2_12165
crossref_primary_10_3389_fcvm_2020_00025
crossref_primary_10_1016_j_bspc_2020_101866
crossref_primary_10_1016_j_acra_2023_07_008
crossref_primary_10_1177_2045894019841990
crossref_primary_10_1007_s12265_017_9778_5
crossref_primary_10_1016_j_compmedimag_2022_102168
crossref_primary_10_1109_ACCESS_2018_2886644
crossref_primary_10_1002_mrm_27627
crossref_primary_10_1109_JTEHM_2018_2804947
crossref_primary_10_3390_jpm11070602
Cites_doi 10.1007/s10278-014-9705-0
10.1016/j.media.2005.12.001
10.1109/42.906421
10.1007/s00330-011-2152-0
10.1016/j.media.2016.01.005
10.1109/TPAMI.2013.50
10.1109/TMI.2013.2256922
10.1016/j.media.2004.06.015
10.1007/978-3-642-38899-6_21
10.1016/j.media.2013.05.002
10.1007/978-3-642-21028-0_31
10.1016/j.media.2014.10.004
10.1161/CIRCIMAGING.113.000553
10.1016/j.compmedimag.2013.12.011
10.1109/TMI.2008.929106
10.1016/j.acra.2012.03.022
10.1016/j.ccl.2012.03.001
10.1561/2200000006
10.1002/mrm.23143
10.1016/j.media.2009.05.004
10.1002/jmri.10030
10.1145/1390156.1390294
10.1161/CIRCULATIONAHA.107.653584
10.1016/S0735-1097(00)01089-5
10.1093/bjaceaccp/mkm016
10.1016/j.jacc.2004.06.033
10.1016/j.cviu.2013.01.014
10.1007/s10741-009-9154-x
10.1016/j.media.2010.12.004
10.1016/j.cviu.2012.11.017
ContentType Journal Article
Copyright 2017 International Society for Magnetic Resonance in Medicine
2017 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2017 International Society for Magnetic Resonance in Medicine
– notice: 2017 International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.26631
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Biochemistry Abstracts 1
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 2448
ExternalDocumentID 28205298
10_1002_mrm_26631
MRM26631
Genre article
Journal Article
GrantInformation_xml – fundername: Conexant‐Broadcom Endowed Chair
– fundername: American Heart Association Grant‐in‐Aid Award
  funderid: 14GRNT18800013
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c4541-ebb00a11bdb99c90a3e8df3ed65eb19417e2f62ea37f1949272f36f0b28693483
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Fri Jul 11 15:50:27 EDT 2025
Fri Jul 25 12:08:22 EDT 2025
Wed Feb 19 02:43:02 EST 2025
Tue Jul 01 01:21:02 EDT 2025
Thu Apr 24 23:08:21 EDT 2025
Wed Jan 22 16:54:03 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords deep learning
segmentation
cardiac MRI
right ventricle
deformable models
Language English
License 2017 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4541-ebb00a11bdb99c90a3e8df3ed65eb19417e2f62ea37f1949272f36f0b28693483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://escholarship.org/content/qt48q058fq/qt48q058fq.pdf
PMID 28205298
PQID 1963043117
PQPubID 1016391
PageCount 10
ParticipantIDs proquest_miscellaneous_1869063428
proquest_journals_1963043117
pubmed_primary_28205298
crossref_primary_10_1002_mrm_26631
crossref_citationtrail_10_1002_mrm_26631
wiley_primary_10_1002_mrm_26631_MRM26631
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2017
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: December 2017
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 44
2011; 6666
2010; 11
2013; 26
2010; 15
2012; 2012
2015; 19
2012
2010
2006; 10
2004; 8
2014; 27
2008
2016; 30
2012; 19
2011; 15
2012; 30
2001; 20
2009; 13
2013; 17
2013; 7945
2013; 32
2013; 2013
2013; 35
2008; 27
2013; 117
2014; 38
2008; 117
2007; 7
2011; 21
2001; 37
2001; 15
2016
2014
2012; 27
2013
2009; 2
2014; 7
2012; 67
1988
Ou Y (e_1_2_6_17_1) 2012
Rumelhart DE (e_1_2_6_41_1) 1988
e_1_2_6_10_1
Szegedy C (e_1_2_6_30_1) 2013; 26
Sermanet P (e_1_2_6_31_1) 2014
Krizhevsky A (e_1_2_6_32_1) 2012
e_1_2_6_19_1
Maier OMO (e_1_2_6_22_1) 2012; 2012
Baldi P (e_1_2_6_36_1) 2012; 27
e_1_2_6_13_1
Mahapatra D (e_1_2_6_26_1) 2013; 2013
Moolan‐Feroze O (e_1_2_6_27_1) 2014
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
Maier OMO (e_1_2_6_45_1) 2012
e_1_2_6_42_1
Nambakhsh C (e_1_2_6_20_1) 2012
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_40_1
Vincent P (e_1_2_6_38_1) 2010; 11
Goodfellow I (e_1_2_6_39_1) 2016
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
LeCun Y (e_1_2_6_29_1) 2010
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
Deng L (e_1_2_6_37_1) 2014
Wang C (e_1_2_6_24_1) 2012
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_46_1
e_1_2_6_47_1
References_xml – volume: 27
  start-page: 37
  year: 2012
  end-page: 50
  article-title: Autoencoders, unsupervised learning, and deep architectures
  publication-title: ICML Unsupervised and Transfer Learning
– volume: 8
  start-page: 245
  year: 2004
  end-page: 254
  article-title: Automated segmentation of the left ventricle in cardiac MRI
  publication-title: Med Image Anal
– volume: 117
  start-page: 966
  year: 2013
  end-page: 989
  article-title: A survey of shaped‐based registration and segmentation techniques for cardiac images
  publication-title: Comput Vis Image Underst
– volume: 67
  start-page: 1740
  year: 2012
  end-page: 1746
  article-title: Assessment of right ventricle volumes and function by cardiac MRI: quantification of the regional and global interobserver variability
  publication-title: Magn Reson Med
– volume: 15
  start-page: 169
  year: 2011
  end-page: 184
  article-title: A review of segmentation methods in short axis cardiac MR images
  publication-title: Med Image Anal
– volume: 19
  start-page: 187
  year: 2015
  end-page: 202
  article-title: Right ventricle segmentation from cardiac MRI: a collation study
  publication-title: Med Image Anal
– volume: 7
  start-page: 89
  year: 2007
  end-page: 94
  article-title: Right ventricular failure
  publication-title: Continuing Education in Anaesthesia, Critical Care & Pain
– volume: 30
  start-page: 108
  year: 2016
  end-page: 119
  article-title: A combined deep‐learning and deformable model approach to fully automatic segmentation of the left ventricle in cardiac MRI
  publication-title: Med Image Anal
– volume: 26
  start-page: 2553
  year: 2013
  end-page: 2561
  article-title: Deep neural networks for object detection
  publication-title: Adv Neural Inf Process Syst
– volume: 117
  start-page: 1717
  year: 2008
  end-page: 1731
  article-title: Right ventricular function in cardiovascular disease, part II. Pathophysiology, clinical importance, and management of right ventricular failure
  publication-title: Circulation
– volume: 19
  start-page: 991
  year: 2012
  end-page: 1002
  article-title: Cardiac MRI assessment of right ventricular function in acquired heart disease: factors of variability
  publication-title: Acad Radiol
– start-page: 174
  year: 2013
  end-page: 181
– volume: 44
  start-page: 1164
  year: 2004
  end-page: 1171
  article-title: Cardiovascular magnetic resonance imaging: current and emerging applications
  publication-title: J Am Coll Cardiol
– year: 2016
– volume: 37
  start-page: 37
  year: 2001
  end-page: 43
  article-title: Impact of right ventricular involvement on mortality and morbidity in patients with inferior myocardial infarction1
  publication-title: J Am Coll Cardiol
– volume: 2013
  start-page: 1106
  year: 2013
  end-page: 1109
  article-title: Automatic cardiac RV segmentation using semantic information with graph cuts
  publication-title: IEEE 10th International Symposium on Biomedical Imaging (ISBI).
– volume: 15
  start-page: 62
  year: 2001
  end-page: 67
  article-title: Contrast‐enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization
  publication-title: J Magn Reson Imaging
– volume: 13
  start-page: 543
  year: 2009
  end-page: 563
  article-title: Statistical shape models for 3D medical image segmentation: a review
  publication-title: Med Image Anal
– volume: 7945
  start-page: 174
  year: 2013
  end-page: 181
  article-title: Multi‐atlas propagation whole heart segmentation from MRI and CTA using a local normalised correlation coefficient criterion
  publication-title: Funct Imaging Model Heart
– year: 2014
– volume: 30
  start-page: 189
  year: 2012
  end-page: 203
  article-title: Imaging of the right ventricle
  publication-title: Cardiol Clin
– year: 2012
– volume: 117
  start-page: 1027
  year: 2013
  end-page: 1035
  article-title: Graph cut segmentation with a statistical shape model in cardiac MRI
  publication-title: Comput Vis Image Underst
– volume: 2
  start-page: 1
  year: 2009
  end-page: 127
  article-title: Learning deep architectures for AI
  publication-title: Found Trends Mach Learn
– start-page: 5
  year: 1988
  article-title: Learning representations by back‐propagating errors
  publication-title: Cogn Model
– start-page: 697
  year: 2012
  end-page: 700
  article-title: Ledesma‐Carbayo MJ. Segmentation of RV in 4D cardiac MR volumes using region‐merging graph cuts
  publication-title: Comput Cardiol
– volume: 27
  start-page: 1643
  year: 2008
  end-page: 1654
  article-title: Methods of artificial enlargement of the training set for statistical shape models
  publication-title: IEEE Trans Med Imaging
– start-page: 1097
  year: 2012
  end-page: 1105
  article-title: Image net classification with deep convolutional neural networks
  publication-title: Adv Neural Inf Process Syst
– volume: 6666
  start-page: 250
  year: 2011
  end-page: 258
  article-title: Automatic delineation of left and right ventricles in cardiac MRI sequences using a joint ventricular model
  publication-title: Funct Imaging Model Heart
– volume: 7
  start-page: 190
  year: 2014
  end-page: 197
  article-title: MRI is the preferred method for evaluating right ventricular size and function in patients with congenital heart disease
  publication-title: Circ Cardiovasc Imaging
– volume: 35
  start-page: 1798
  year: 2013
  end-page: 1828
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Trans Pattern Anal Mach Intell
– start-page: 253
  year: 2010
  end-page: 256
– volume: 38
  start-page: 190
  year: 2014
  end-page: 201
  article-title: Fast, accurate, and fully automatic segmentation of the right ventricle in short‐axis cardiac MRI
  publication-title: Comput Med Imaging Graph
– start-page: 682
  year: 2014
  end-page: 689
– volume: 17
  start-page: 1010
  year: 2013
  end-page: 1024
  article-title: Left ventricle segmentation in MRI via convex relaxed distribution matching
  publication-title: Med Image Anal
– volume: 10
  start-page: 286
  year: 2006
  end-page: 303
  article-title: Spasm: a 3D‐ASM for segmentation of sparse and arbitrarily oriented cardiac MRI data
  publication-title: Med Image Anal
– volume: 20
  start-page: 2
  year: 2001
  end-page: 5
  article-title: Three‐dimensional modeling for functional analysis of cardiac images, a review
  publication-title: IEEE Trans Med Imaging
– volume: 32
  start-page: 1302
  year: 2013
  end-page: 1315
  article-title: A probabilistic patch‐based label fusion model for multi‐atlas segmentation with registration refinement: application to cardiac MR images
  publication-title: IEEE Trans Med Imaging
– start-page: 1096
  year: 2008
  end-page: 1103
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– volume: 21
  start-page: 2111
  year: 2011
  end-page: 2120
  article-title: Diagnostic accuracy and variability of three semi‐quantitative methods for assessing right ventricular systolic function from cardiac MRI in patients with acquired heart disease
  publication-title: Eur Radiol
– volume: 2012
  start-page: 697
  year: 2012
  end-page: 700
  article-title: Segmentation of RV in 4D cardiac MR volumes using region‐merging graph cuts
  publication-title: Comput Cardiol
– volume: 15
  start-page: 39
  year: 2010
  end-page: 61
  article-title: Do we have two hearts?. new insights in right ventricular function supported by myocardial imaging echocardiography
  publication-title: Heart Fail Rev
– volume: 27
  start-page: 794
  year: 2014
  end-page: 804
  article-title: Automatic cardiac segmentation using semantic information from random forests
  publication-title: J Digit Imaging
– ident: e_1_2_6_28_1
  doi: 10.1007/s10278-014-9705-0
– start-page: 253
  volume-title: Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS)
  year: 2010
  ident: e_1_2_6_29_1
– volume-title: Deep learning (adaptive computation and machine learning series)
  year: 2016
  ident: e_1_2_6_39_1
– ident: e_1_2_6_47_1
  doi: 10.1016/j.media.2005.12.001
– ident: e_1_2_6_10_1
  doi: 10.1109/42.906421
– volume: 26
  start-page: 2553
  year: 2013
  ident: e_1_2_6_30_1
  article-title: Deep neural networks for object detection
  publication-title: Adv Neural Inf Process Syst
– ident: e_1_2_6_14_1
  doi: 10.1007/s00330-011-2152-0
– ident: e_1_2_6_40_1
  doi: 10.1016/j.media.2016.01.005
– volume-title: Proc MICCAI RV Segmentation Challenge
  year: 2012
  ident: e_1_2_6_20_1
– ident: e_1_2_6_33_1
  doi: 10.1109/TPAMI.2013.50
– ident: e_1_2_6_18_1
  doi: 10.1109/TMI.2013.2256922
– volume: 27
  start-page: 37
  year: 2012
  ident: e_1_2_6_36_1
  article-title: Autoencoders, unsupervised learning, and deep architectures
  publication-title: ICML Unsupervised and Transfer Learning
– ident: e_1_2_6_48_1
  doi: 10.1016/j.media.2004.06.015
– ident: e_1_2_6_44_1
  doi: 10.1007/978-3-642-38899-6_21
– volume: 2012
  start-page: 697
  year: 2012
  ident: e_1_2_6_22_1
  article-title: Segmentation of RV in 4D cardiac MR volumes using region‐merging graph cuts
  publication-title: Comput Cardiol
– start-page: 1097
  year: 2012
  ident: e_1_2_6_32_1
  article-title: Image net classification with deep convolutional neural networks
  publication-title: Adv Neural Inf Process Syst
– ident: e_1_2_6_46_1
  doi: 10.1016/j.media.2013.05.002
– ident: e_1_2_6_16_1
  doi: 10.1007/978-3-642-38899-6_21
– start-page: 682
  volume-title: Medical image computing and computer‐assisted intervention–MICCAI 2014
  year: 2014
  ident: e_1_2_6_27_1
– ident: e_1_2_6_25_1
  doi: 10.1007/978-3-642-21028-0_31
– ident: e_1_2_6_7_1
  doi: 10.1016/j.media.2014.10.004
– start-page: 697
  year: 2012
  ident: e_1_2_6_45_1
  article-title: Ledesma‐Carbayo MJ. Segmentation of RV in 4D cardiac MR volumes using region‐merging graph cuts
  publication-title: Comput Cardiol
– ident: e_1_2_6_13_1
  doi: 10.1161/CIRCIMAGING.113.000553
– ident: e_1_2_6_23_1
  doi: 10.1016/j.compmedimag.2013.12.011
– start-page: 5
  year: 1988
  ident: e_1_2_6_41_1
  article-title: Learning representations by back‐propagating errors
  publication-title: Cogn Model
– ident: e_1_2_6_42_1
  doi: 10.1109/TMI.2008.929106
– ident: e_1_2_6_43_1
  doi: 10.1016/j.acra.2012.03.022
– volume: 2013
  start-page: 1106
  year: 2013
  ident: e_1_2_6_26_1
  article-title: Automatic cardiac RV segmentation using semantic information with graph cuts
  publication-title: IEEE 10th International Symposium on Biomedical Imaging (ISBI).
– ident: e_1_2_6_3_1
  doi: 10.1016/j.ccl.2012.03.001
– ident: e_1_2_6_34_1
  doi: 10.1561/2200000006
– ident: e_1_2_6_15_1
  doi: 10.1002/mrm.23143
– ident: e_1_2_6_12_1
  doi: 10.1016/j.media.2009.05.004
– ident: e_1_2_6_8_1
  doi: 10.1002/jmri.10030
– ident: e_1_2_6_35_1
  doi: 10.1145/1390156.1390294
– ident: e_1_2_6_2_1
  doi: 10.1161/CIRCULATIONAHA.107.653584
– ident: e_1_2_6_4_1
  doi: 10.1016/S0735-1097(00)01089-5
– ident: e_1_2_6_5_1
  doi: 10.1093/bjaceaccp/mkm016
– volume-title: International Conference on Learning Representations (ICLR2014)
  year: 2014
  ident: e_1_2_6_31_1
– volume-title: Foundations and trends in signal processing
  year: 2014
  ident: e_1_2_6_37_1
– ident: e_1_2_6_9_1
  doi: 10.1016/j.jacc.2004.06.033
– volume-title: Multi‐atlas segmentation of the cardiac MR right ventricle
  year: 2012
  ident: e_1_2_6_17_1
– ident: e_1_2_6_21_1
  doi: 10.1016/j.cviu.2013.01.014
– volume: 11
  start-page: 3371
  year: 2010
  ident: e_1_2_6_38_1
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– ident: e_1_2_6_6_1
  doi: 10.1007/s10741-009-9154-x
– ident: e_1_2_6_19_1
  doi: 10.1016/j.media.2010.12.004
– ident: e_1_2_6_11_1
  doi: 10.1016/j.cviu.2012.11.017
– volume-title: Proc of 3D Cardiovascular Imaging: a MICCAI Segmentation Challenge
  year: 2012
  ident: e_1_2_6_24_1
SSID ssj0009974
Score 2.5667243
Snippet Purpose This study aims to accurately segment the right ventricle (RV) from cardiac MRI using a fully automatic learning‐based method. Methods The proposed...
This study aims to accurately segment the right ventricle (RV) from cardiac MRI using a fully automatic learning-based method. The proposed method uses deep...
Purpose This study aims to accurately segment the right ventricle (RV) from cardiac MRI using a fully automatic learning-based method. Methods The proposed...
This study aims to accurately segment the right ventricle (RV) from cardiac MRI using a fully automatic learning-based method.PURPOSEThis study aims to...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2439
SubjectTerms Algorithms
Artificial neural networks
Automation
Blood pressure
cardiac MRI
Correlation analysis
deep learning
deformable models
Deformation
Formability
Ground truth
Heart
Heart - diagnostic imaging
Heart diseases
Heart Ventricles - diagnostic imaging
Humans
Image Interpretation, Computer-Assisted
Image processing
Image Processing, Computer-Assisted
Learning algorithms
Machine Learning
Magnetic Resonance Imaging
Model accuracy
Models, Statistical
Neural networks
Neural Networks (Computer)
Pattern Recognition, Automated
Reproducibility of Results
right ventricle
Segmentation
Ventricle
Title Automatic segmentation of the right ventricle from cardiac MRI using a learning‐based approach
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.26631
https://www.ncbi.nlm.nih.gov/pubmed/28205298
https://www.proquest.com/docview/1963043117
https://www.proquest.com/docview/1869063428
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VlVpxgVJeS0vlIg69ZJs4jhOLU4Wo2krhsKJSD0jBduw9wGbRPi6c-An8Rn5JZ5xHVaBS1UuUyE6c2PNyZuYbgHdII-Qc8lFh8YAUIqMik8hXOvGokDJuFCUnl5_k2aW4uMquNuB9nwvT4kMMP9yIM4K8JgbXZnl8Axo6W8zGqF1CDjXFapFBNLmBjlKqRWDOBckZJXpUoZgfD3fe1kX_GJi37dWgcE6fwJf-Vds4k2_j9cqM7c-_UBwf-C078LgzRNlJSzlPYcM1u7Bddq72XdgKsaF2-Qy-nqxX84DsypZuOuuSlRo29wytRxa294zCJhf0JEYJK8wGwrOsnJwzCq2fMs26AhXTP79-k-6sWY9n_hwuTz9-_nAWdYUZIisykUTOILPqJDG1UcqqWKeuqH3qapmh6FciyR33kjud5h4vFc-5T6WPDS-kSkWRvoDNZt64V8CMc7nQdeJjXouidkVspa5xE6RjyzOTjeCoX6LKdqjlVDzje9XiLfMK564KczeCt0PXHy1Ux_867ffrXHXcuqxIChHIUJKP4HBoRj4j54lu3HyNfah0l0xxtzaCly19DKPgtpUcpthyFFb57uGrclKGk9f377oHjzjZEiGGZh82V4u1e4OW0MocBJK_BvPgA-k
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRTwuPMproYBBHHrJNnEcJ5a4VEC1haaHVSv1goLt2HuAzaJ9XDjxE_iN_BJmnEdVHhLiEiXyJE7iedme-QbgJfIIbQ75qLB4QA6RUZFJlCudeDRIGTeKkpPLEzk5E-_Os_MteNXnwrT4EMOCG0lG0Nck4LQgvX-BGjpfzsdoXiiJ-gpV9Kb6BW-mF-BRSrUYzLkgTaNEjysU8_3h1svW6DcX87LHGkzO4S340L9sG2nyabxZm7H9-guO4_9-zW242fmi7KBlnjuw5ZoduFZ2u-07cDWEh9rVXfh4sFkvArgrW7nZvMtXatjCM3QgWZjhM4qcXNKTGOWsMBt4z7JyesQoun7GNOtqVMx-fPtO5rNmPaT5PTg7fHv6ehJ1tRkiKzKRRM6gvOokMbVRyqpYp66ofepqmaH2VyLJHfeSO53mHi8Vz7lPpY8NL6RKRZHeh-1m0biHwIxzudB14mNei6J2RWylrnEepGPLM5ONYK8fo8p2wOVUP-Nz1UIu8wr_XRX-3QheDKRfWrSOPxHt9gNddQK7qkgREc5Qko_g-dCMokb7J7pxiw3SUPUumeKEbQQPWgYZesGZK-2ZYsteGOa_d1-V0zKcPPp30mdwfXJaHlfHRyfvH8MNTq5FCKnZhe31cuOeoGO0Nk8D__8EIRoIAw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRVRceJTXQgGDOPSSbeI4TixOFbBqgVRoRaUekEL82gNsttrHhRM_gd_IL2HGeVTlISEuUSI7cWLPy5mZbwCeI42Qc8hHhcEDUoiMikwiX9WJR4WUca0oObk8kUen4s1ZdrYFL_pcmBYfYvjhRpwR5DUx-Ln1BxegofPlfIzahXKorwiJzEIW0fQCO0qpFoI5FyRolOhhhWJ-MNx6WRn9ZmFeNliDxpncgI_9u7aBJp_Hm7Uem6-_wDj-58fchOudJcoOW9K5BVuu2YWdsvO178LVEBxqVrfh0-FmvQjQrmzlZvMuW6lhC8_QfGRhf88obnJJT2KUscJMoDzDyukxo9j6GatZV6Fi9uPbd1KelvWA5nfgdPL6w8ujqKvMEBmRiSRyGrm1ThJttVJGxXXqCutTZ2WGsl-JJHfcS-7qNPd4qXjOfSp9rHkhVSqK9C5sN4vG3QemnctFbRMfcysK64rYyNriLqiODc90NoL9fokq08GWU_WML1ULuMwrnLsqzN0Ing1dz1usjj912uvXuerYdVWRGCKUoSQfwdOhGRmNvCd14xYb7EO1u2SK27UR3GvpYxgF963kMcWW_bDKfx--KqdlOHnw712fwM77V5Pq3fHJ24dwjZNdEeJp9mB7vdy4R2gVrfXjQP0_ASPcBrs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+segmentation+of+the+right+ventricle+from+cardiac+MRI+using+a+learning-based+approach&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Avendi%2C+Michael+R&rft.au=Kheradvar%2C+Arash&rft.au=Jafarkhani%2C+Hamid&rft.date=2017-12-01&rft.issn=1522-2594&rft.eissn=1522-2594&rft.volume=78&rft.issue=6&rft.spage=2439&rft_id=info:doi/10.1002%2Fmrm.26631&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon