Robust sliding‐window reconstruction for Accelerating the acquisition of MR fingerprinting

Purpose To develop a method for accelerated and robust MR fingerprinting (MRF) with improved image reconstruction and parameter matching processes. Theory and Methods A sliding‐window (SW) strategy was applied to MRF, in which signal and dictionary matching was conducted between fingerprints consist...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 78; no. 4; pp. 1579 - 1588
Main Authors Cao, Xiaozhi, Liao, Congyu, Wang, Zhixing, Chen, Ying, Ye, Huihui, He, Hongjian, Zhong, Jianhui
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.10.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose To develop a method for accelerated and robust MR fingerprinting (MRF) with improved image reconstruction and parameter matching processes. Theory and Methods A sliding‐window (SW) strategy was applied to MRF, in which signal and dictionary matching was conducted between fingerprints consisting of mixed‐contrast image series reconstructed from consecutive data frames segmented by a sliding window, and a precalculated mixed‐contrast dictionary. The effectiveness and performance of this new method, dubbed SW‐MRF, was evaluated in both phantom and in vivo. Error quantifications were conducted on results obtained with various settings of SW reconstruction parameters. Results Compared with the original MRF strategy, the results of both phantom and in vivo experiments demonstrate that the proposed SW‐MRF strategy either provided similar accuracy with reduced acquisition time, or improved accuracy with equal acquisition time. Parametric maps of T1, T2, and proton density of comparable quality could be achieved with a two‐fold or more reduction in acquisition time. The effect of sliding‐window width on dictionary sensitivity was also estimated. Conclusion The novel SW‐MRF recovers high quality image frames from highly undersampled MRF data, which enables more robust dictionary matching with reduced numbers of data frames. This time efficiency may facilitate MRF applications in time‐critical clinical settings. Magn Reson Med 78:1579–1588, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
AbstractList To develop a method for accelerated and robust MR fingerprinting (MRF) with improved image reconstruction and parameter matching processes. A sliding-window (SW) strategy was applied to MRF, in which signal and dictionary matching was conducted between fingerprints consisting of mixed-contrast image series reconstructed from consecutive data frames segmented by a sliding window, and a precalculated mixed-contrast dictionary. The effectiveness and performance of this new method, dubbed SW-MRF, was evaluated in both phantom and in vivo. Error quantifications were conducted on results obtained with various settings of SW reconstruction parameters. Compared with the original MRF strategy, the results of both phantom and in vivo experiments demonstrate that the proposed SW-MRF strategy either provided similar accuracy with reduced acquisition time, or improved accuracy with equal acquisition time. Parametric maps of T , T , and proton density of comparable quality could be achieved with a two-fold or more reduction in acquisition time. The effect of sliding-window width on dictionary sensitivity was also estimated. The novel SW-MRF recovers high quality image frames from highly undersampled MRF data, which enables more robust dictionary matching with reduced numbers of data frames. This time efficiency may facilitate MRF applications in time-critical clinical settings. Magn Reson Med 78:1579-1588, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Purpose To develop a method for accelerated and robust MR fingerprinting (MRF) with improved image reconstruction and parameter matching processes. Theory and Methods A sliding-window (SW) strategy was applied to MRF, in which signal and dictionary matching was conducted between fingerprints consisting of mixed-contrast image series reconstructed from consecutive data frames segmented by a sliding window, and a precalculated mixed-contrast dictionary. The effectiveness and performance of this new method, dubbed SW-MRF, was evaluated in both phantom and in vivo. Error quantifications were conducted on results obtained with various settings of SW reconstruction parameters. Results Compared with the original MRF strategy, the results of both phantom and in vivo experiments demonstrate that the proposed SW-MRF strategy either provided similar accuracy with reduced acquisition time, or improved accuracy with equal acquisition time. Parametric maps of T1, T2, and proton density of comparable quality could be achieved with a two-fold or more reduction in acquisition time. The effect of sliding-window width on dictionary sensitivity was also estimated. Conclusion The novel SW-MRF recovers high quality image frames from highly undersampled MRF data, which enables more robust dictionary matching with reduced numbers of data frames. This time efficiency may facilitate MRF applications in time-critical clinical settings. Magn Reson Med 78:1579-1588, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Purpose To develop a method for accelerated and robust MR fingerprinting (MRF) with improved image reconstruction and parameter matching processes. Theory and Methods A sliding‐window (SW) strategy was applied to MRF, in which signal and dictionary matching was conducted between fingerprints consisting of mixed‐contrast image series reconstructed from consecutive data frames segmented by a sliding window, and a precalculated mixed‐contrast dictionary. The effectiveness and performance of this new method, dubbed SW‐MRF, was evaluated in both phantom and in vivo. Error quantifications were conducted on results obtained with various settings of SW reconstruction parameters. Results Compared with the original MRF strategy, the results of both phantom and in vivo experiments demonstrate that the proposed SW‐MRF strategy either provided similar accuracy with reduced acquisition time, or improved accuracy with equal acquisition time. Parametric maps of T1, T2, and proton density of comparable quality could be achieved with a two‐fold or more reduction in acquisition time. The effect of sliding‐window width on dictionary sensitivity was also estimated. Conclusion The novel SW‐MRF recovers high quality image frames from highly undersampled MRF data, which enables more robust dictionary matching with reduced numbers of data frames. This time efficiency may facilitate MRF applications in time‐critical clinical settings. Magn Reson Med 78:1579–1588, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Purpose To develop a method for accelerated and robust MR fingerprinting (MRF) with improved image reconstruction and parameter matching processes. Theory and Methods A sliding‐window (SW) strategy was applied to MRF, in which signal and dictionary matching was conducted between fingerprints consisting of mixed‐contrast image series reconstructed from consecutive data frames segmented by a sliding window, and a precalculated mixed‐contrast dictionary. The effectiveness and performance of this new method, dubbed SW‐MRF, was evaluated in both phantom and in vivo. Error quantifications were conducted on results obtained with various settings of SW reconstruction parameters. Results Compared with the original MRF strategy, the results of both phantom and in vivo experiments demonstrate that the proposed SW‐MRF strategy either provided similar accuracy with reduced acquisition time, or improved accuracy with equal acquisition time. Parametric maps of T 1 , T 2 , and proton density of comparable quality could be achieved with a two‐fold or more reduction in acquisition time. The effect of sliding‐window width on dictionary sensitivity was also estimated. Conclusion The novel SW‐MRF recovers high quality image frames from highly undersampled MRF data, which enables more robust dictionary matching with reduced numbers of data frames. This time efficiency may facilitate MRF applications in time‐critical clinical settings. Magn Reson Med 78:1579–1588, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
PURPOSETo develop a method for accelerated and robust MR fingerprinting (MRF) with improved image reconstruction and parameter matching processes.THEORY AND METHODSA sliding-window (SW) strategy was applied to MRF, in which signal and dictionary matching was conducted between fingerprints consisting of mixed-contrast image series reconstructed from consecutive data frames segmented by a sliding window, and a precalculated mixed-contrast dictionary. The effectiveness and performance of this new method, dubbed SW-MRF, was evaluated in both phantom and in vivo. Error quantifications were conducted on results obtained with various settings of SW reconstruction parameters.RESULTSCompared with the original MRF strategy, the results of both phantom and in vivo experiments demonstrate that the proposed SW-MRF strategy either provided similar accuracy with reduced acquisition time, or improved accuracy with equal acquisition time. Parametric maps of T1 , T2 , and proton density of comparable quality could be achieved with a two-fold or more reduction in acquisition time. The effect of sliding-window width on dictionary sensitivity was also estimated.CONCLUSIONThe novel SW-MRF recovers high quality image frames from highly undersampled MRF data, which enables more robust dictionary matching with reduced numbers of data frames. This time efficiency may facilitate MRF applications in time-critical clinical settings. Magn Reson Med 78:1579-1588, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Author Ye, Huihui
Cao, Xiaozhi
He, Hongjian
Wang, Zhixing
Chen, Ying
Liao, Congyu
Zhong, Jianhui
Author_xml – sequence: 1
  givenname: Xiaozhi
  surname: Cao
  fullname: Cao, Xiaozhi
  organization: Zhejiang University
– sequence: 2
  givenname: Congyu
  surname: Liao
  fullname: Liao, Congyu
  organization: Zhejiang University
– sequence: 3
  givenname: Zhixing
  surname: Wang
  fullname: Wang, Zhixing
  organization: Zhejiang University
– sequence: 4
  givenname: Ying
  surname: Chen
  fullname: Chen, Ying
  email: pansychen@zju.edu.cn
  organization: Zhejiang University
– sequence: 5
  givenname: Huihui
  surname: Ye
  fullname: Ye, Huihui
  organization: Zhejiang University
– sequence: 6
  givenname: Hongjian
  surname: He
  fullname: He, Hongjian
  organization: Zhejiang University
– sequence: 7
  givenname: Jianhui
  surname: Zhong
  fullname: Zhong, Jianhui
  email: jzhong3@gmail.com
  organization: University of Rochester, Rochester
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27851871$$D View this record in MEDLINE/PubMed
BookMark eNp10M9KxDAQBvAgiq6rB19ACl70UJ1JkzY9ivgPXIRFb0LopqlG2kSTlsWbj-Az-iRm3dWDIATmkB8fM982WbfOakL2EI4RgJ50vjumOae4RkbIKU0pL9k6GUHBIM2wZFtkO4RnACjLgm2SLVoIjqLAEXmYutkQ-iS0pjb28fP9Y25s7eaJ18rZ0PtB9cbZpHE-OVVKt9pXfYRJ_6STSr0OJphv4JpkMk2a-KX9izd2gXbIRlO1Qe-u5pjcX5zfnV2lN7eX12enN6linGEqBFIQOo8Pco11xjjWkJUlB8hEPItxWsw05hqqCqoCQQnBWMkEZooJno3J4TL3xbvXQYdedibEXdvKajcEiYIhZhz5gh78oc9u8DZuJ2NPwESOVER1tFTKuxC8bmQ8qav8m0SQi8plrFx-Vx7t_ipxmHW6_pU_HUdwsgRz0-q3_5PkZDpZRn4BXxSL1g
CitedBy_id crossref_primary_10_1002_acn3_50851
crossref_primary_10_1002_mrm_29194
crossref_primary_10_1148_radiol_2018172131
crossref_primary_10_1002_mp_17001
crossref_primary_10_1002_hbm_26203
crossref_primary_10_1002_mrm_29990
crossref_primary_10_1109_TRPMS_2019_2897425
crossref_primary_10_1016_j_clinimag_2023_07_004
crossref_primary_10_1002_mrm_27812
crossref_primary_10_1002_mrm_28301
crossref_primary_10_1109_JPROC_2019_2936998
crossref_primary_10_1016_j_cobme_2017_11_001
crossref_primary_10_1049_ipr2_12526
crossref_primary_10_1109_TIM_2023_3291785
crossref_primary_10_3390_bioengineering10091012
crossref_primary_10_1109_TBME_2018_2874992
crossref_primary_10_1002_nbm_4082
crossref_primary_10_1002_mp_15254
crossref_primary_10_1002_mrm_27448
crossref_primary_10_1007_s10334_022_01012_8
crossref_primary_10_1002_mrm_28136
crossref_primary_10_1002_mrm_27726
crossref_primary_10_1007_s10334_023_01140_9
crossref_primary_10_1109_TMI_2019_2932961
crossref_primary_10_1038_s41598_020_70789_2
crossref_primary_10_1016_j_mri_2023_02_002
crossref_primary_10_1002_mrm_27198
crossref_primary_10_1002_mrm_29135
crossref_primary_10_1016_j_mri_2022_05_015
crossref_primary_10_1016_j_ijrobp_2023_04_015
crossref_primary_10_3389_fcvm_2022_1009131
crossref_primary_10_1002_nbm_4670
crossref_primary_10_1002_mp_14513
crossref_primary_10_1109_TRPMS_2019_2905366
crossref_primary_10_1097_RMR_0000000000000221
crossref_primary_10_1016_j_neuroimage_2019_01_034
crossref_primary_10_1038_s41598_020_74462_6
crossref_primary_10_1002_jmri_26877
crossref_primary_10_2200_S00959ED1V01Y201910BME059
crossref_primary_10_1002_jmri_26836
crossref_primary_10_1002_mrm_29969
crossref_primary_10_1109_TMI_2018_2873704
crossref_primary_10_1016_j_mri_2021_06_009
crossref_primary_10_1002_mp_13967
crossref_primary_10_1002_mp_13727
crossref_primary_10_1016_j_ejmp_2022_102514
crossref_primary_10_1016_j_mri_2018_11_001
crossref_primary_10_1002_mrm_27665
crossref_primary_10_1002_mrm_29721
crossref_primary_10_2463_mrms_tn_2018_0157
Cites_doi 10.1007/11424925_121
10.1002/nbm.755
10.1002/mrm.25439
10.1002/mrm.25776
10.1002/mrm.25558
10.1002/mrm.26199
10.1109/TMI.2014.2337321
10.1002/mrm.21701
10.1002/mrm.22714
10.1109/ISBI.2015.7164017
10.1002/mrm.25799
10.1016/j.neuroimage.2011.02.010
10.1002/mrm.20288
10.1002/jmri.1880060408
10.1002/mrm.22059
10.1002/jmri.24619
10.1109/ICASSP.2014.6854937
10.1137/130947246
10.1002/(SICI)1522-2586(199904)9:4<531::AID-JMRI4>3.0.CO;2-L
10.1002/mrm.25156
10.1038/nature11971
10.1002/mrm.24225
10.1002/mrm.25559
10.1002/mrm.25119
10.1016/j.jmr.2007.06.012
10.1002/mrm.24980
10.1002/mrm.22209
10.1002/mrm.10493
10.1016/j.jmr.2010.05.011
10.1002/(SICI)1522-2594(200005)43:5<682::AID-MRM10>3.0.CO;2-G
10.1007/978-1-61737-992-5_4
ContentType Journal Article
Copyright 2016 International Society for Magnetic Resonance in Medicine
2016 International Society for Magnetic Resonance in Medicine.
2017 International Society for Magnetic Resonance in Medicine
Copyright_xml – notice: 2016 International Society for Magnetic Resonance in Medicine
– notice: 2016 International Society for Magnetic Resonance in Medicine.
– notice: 2017 International Society for Magnetic Resonance in Medicine
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.26521
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Biochemistry Abstracts 1

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1588
ExternalDocumentID 10_1002_mrm_26521
27851871
MRM26521
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Nature Science Foundation of China
  funderid: 81401473
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
G8K
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
8FD
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c4541-881208e68e606e1d3451d0399500385214527be16e0aa0a710c884494813c4853
IEDL.DBID DR2
ISSN 0740-3194
IngestDate Fri Aug 16 08:03:08 EDT 2024
Thu Oct 10 22:49:01 EDT 2024
Fri Aug 23 00:46:44 EDT 2024
Wed Oct 16 00:59:53 EDT 2024
Sat Aug 24 00:41:09 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords MR fingerprinting
sliding-window reconstruction
spiral trajectory
Language English
License 2016 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4541-881208e68e606e1d3451d0399500385214527be16e0aa0a710c884494813c4853
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.26521
PMID 27851871
PQID 1940486128
PQPubID 1016391
PageCount 10
ParticipantIDs proquest_miscellaneous_1841135155
proquest_journals_1940486128
crossref_primary_10_1002_mrm_26521
pubmed_primary_27851871
wiley_primary_10_1002_mrm_26521_MRM26521
PublicationCentury 2000
PublicationDate October 2017
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: October 2017
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2002; 15
2013; 69
2009; 62
2011; 711
2015; 73
2010; 205
2000; 43
2015; 74
2007; 188
2009
2016; 75
2005
2011; 56
2003; 50
2010; 63
1999; 9
2004; 52
2017; 77
2015; 41
2011; 65
2015
2013; 495
2014
2014; 7
2014; 72
2008; 60
2014; 33
1996; 6
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 52
  start-page: 1388
  year: 2004
  end-page: 1396
  article-title: Self‐navigated interleaved spiral (SNAILS): application to high‐resolution diffusion tensor imaging
  publication-title: Magn Reson Med
– year: 2009
– volume: 72
  start-page: 707
  year: 2014
  end-page: 717
  article-title: Golden‐angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden‐angle radial sampling for fast and flexible dynamic volumetric MRI
  publication-title: Magn Reson Med
– volume: 73
  start-page: 126
  year: 2015
  end-page: 138
  article-title: Acceleration of high angular and spatial resolution diffusion imaging using compressed sensing with multichannel spiral data
  publication-title: Magn Reson Med
– volume: 75
  start-page: 2078
  year: 2016
  end-page: 2085
  article-title: Accelerating magnetic resonance fingerprinting (MRF) using t‐blipped simultaneous multislice (SMS) acquisition
  publication-title: Magn Reson Med
– volume: 7
  start-page: 2623
  year: 2014
  end-page: 2656
  article-title: A compressed sensing framework for magnetic resonance fingerprinting
  publication-title: SIAM J Imaging Sci
– start-page: 905
  year: 2015
  end-page: 909
– volume: 6
  start-page: 603
  year: 1996
  end-page: 607
  article-title: Comparison of conventional single echo and multi‐echo sequences with a fast spin‐echo sequence for quantitative T2 mapping: application to the prostate
  publication-title: J Magn Reson Imaging
– volume: 74
  start-page: 523
  year: 2015
  end-page: 528
  article-title: Fast group matching for MR fingerprinting reconstruction
  publication-title: Magn Reson Med
– volume: 60
  start-page: 1090
  year: 2008
  end-page: 1103
  article-title: Sliding‐window sensitivity encoding (SENSE) calibration for reducing noise in functional MRI (fMRI)
  publication-title: Magn Reson Med
– volume: 33
  start-page: 2311
  year: 2014
  end-page: 2322
  article-title: SVD compression for magnetic resonance fingerprinting in the time domain
  publication-title: IEEE Trans Med Imaging
– volume: 188
  start-page: 191
  year: 2007
  end-page: 195
  article-title: On NUFFT‐based gridding for non‐Cartesian MRI
  publication-title: J Magn Reson
– volume: 63
  start-page: 828
  year: 2010
  end-page: 834
  article-title: A three‐dimensional variable‐density spiral spatial‐spectral RF pulse with rotated gradients
  publication-title: Magn Reson Med
– start-page: 1159
  year: 2005
  end-page: 1168
– volume: 75
  start-page: 1346
  year: 2016
  end-page: 1354
  article-title: Accelerated and motion‐robust in vivo T2 mapping from radially undersampled data using bloch‐simulation‐based iterative reconstruction
  publication-title: Magn Reson Med
– volume: 43
  start-page: 682
  year: 2000
  end-page: 690
  article-title: Adaptive reconstruction of phased array MR imagery
  publication-title: Magn Reson Med
– volume: 75
  start-page: 2481
  year: 2016
  end-page: 2492
  article-title: Multiscale reconstruction for MR fingerprinting
  publication-title: Magn Reson Med
– volume: 41
  start-page: 266
  year: 2015
  end-page: 295
  article-title: Extended phase graphs: dephasing, RF pulses, and echoes ‐ pure and simple
  publication-title: J Magn Reson Imaging
– volume: 65
  start-page: 1365
  year: 2011
  end-page: 1371
  article-title: Flexible retrospective selection of temporal resolution in real‐time speech MRI using a golden‐ratio spiral view order
  publication-title: Magn Reson Med
– volume: 495
  start-page: 187
  year: 2013
  end-page: 192
  article-title: Magnetic resonance fingerprinting
  publication-title: Nature
– volume: 711
  start-page: 65
  year: 2011
  end-page: 108
  article-title: Magnetic resonance relaxation and quantitative measurement in the brain
  publication-title: Methods Mol Biol
– volume: 74
  start-page: 1621
  year: 2015
  end-page: 1631
  article-title: MR fingerprinting using fast imaging with steady state precession (FISP) with spiral readout
  publication-title: Magn Reson Med
– volume: 62
  start-page: 835
  year: 2009
  end-page: 839
  article-title: Myocardial perfusion MRI with sliding‐window conjugate‐gradient HYPR
  publication-title: Magn Reson Med
– volume: 73
  start-page: 809
  year: 2015
  end-page: 817
  article-title: Rapid and accurate T2 mapping from multi‐spin‐echo data using Bloch‐simulation‐based reconstruction
  publication-title: Magn Reson Med
– volume: 15
  start-page: 174
  year: 2002
  end-page: 183
  article-title: Applications of sliding window reconstruction with cartesian sampling for dynamic contrast enhanced MRI
  publication-title: NMR Biomed
– volume: 56
  start-page: 1398
  year: 2011
  end-page: 1411
  article-title: Quantification of accuracy and precision of multi‐center DTI measurements: a diffusion phantom and human brain study
  publication-title: Neuroimage
– volume: 69
  start-page: 71
  year: 2013
  end-page: 81
  article-title: IR TrueFISP with a golden‐ratio‐based radial readout: fast quantification of T1, T2, and proton density
  publication-title: Magn Reson Med
– start-page: 225
  year: 2005
  end-page: 228
– volume: 50
  start-page: 214
  year: 2003
  end-page: 219
  article-title: Simple analytic variable density spiral design
  publication-title: Magn Reson Med
– volume: 205
  start-page: 276
  year: 2010
  end-page: 285
  article-title: Extended phase graphs with anisotropic diffusion
  publication-title: J Magn Reson
– volume: 77
  start-page: 1359
  year: 2017
  end-page: 1366
  article-title: Efficient parallel reconstruction for high resolution multishot spiral diffusion data with low rank constraint
  publication-title: Magn Reson Med
– start-page: 6899
  year: 2014
  end-page: 6903
– volume: 9
  start-page: 531
  year: 1999
  end-page: 538
  article-title: NMR relaxation times in the human brain at 3.0 tesla
  publication-title: J Magn Reson Imaging
– ident: e_1_2_8_17_1
  doi: 10.1007/11424925_121
– ident: e_1_2_8_15_1
  doi: 10.1002/nbm.755
– ident: e_1_2_8_13_1
  doi: 10.1002/mrm.25439
– ident: e_1_2_8_11_1
  doi: 10.1002/mrm.25776
– ident: e_1_2_8_4_1
  doi: 10.1002/mrm.25558
– ident: e_1_2_8_32_1
  doi: 10.1002/mrm.26199
– ident: e_1_2_8_12_1
  doi: 10.1109/TMI.2014.2337321
– ident: e_1_2_8_33_1
  doi: 10.1002/mrm.21701
– ident: e_1_2_8_34_1
  doi: 10.1002/mrm.22714
– ident: e_1_2_8_10_1
  doi: 10.1109/ISBI.2015.7164017
– ident: e_1_2_8_25_1
– ident: e_1_2_8_5_1
  doi: 10.1002/mrm.25799
– ident: e_1_2_8_23_1
  doi: 10.1016/j.neuroimage.2011.02.010
– ident: e_1_2_8_31_1
  doi: 10.1002/mrm.20288
– ident: e_1_2_8_26_1
  doi: 10.1002/jmri.1880060408
– ident: e_1_2_8_16_1
– ident: e_1_2_8_14_1
  doi: 10.1002/mrm.22059
– ident: e_1_2_8_21_1
  doi: 10.1002/jmri.24619
– ident: e_1_2_8_24_1
– ident: e_1_2_8_8_1
  doi: 10.1109/ICASSP.2014.6854937
– ident: e_1_2_8_9_1
  doi: 10.1137/130947246
– ident: e_1_2_8_29_1
  doi: 10.1002/(SICI)1522-2586(199904)9:4<531::AID-JMRI4>3.0.CO;2-L
– ident: e_1_2_8_3_1
  doi: 10.1002/mrm.25156
– ident: e_1_2_8_2_1
  doi: 10.1038/nature11971
– ident: e_1_2_8_6_1
  doi: 10.1002/mrm.24225
– ident: e_1_2_8_7_1
  doi: 10.1002/mrm.25559
– ident: e_1_2_8_30_1
  doi: 10.1002/mrm.25119
– ident: e_1_2_8_20_1
  doi: 10.1016/j.jmr.2007.06.012
– ident: e_1_2_8_28_1
  doi: 10.1002/mrm.24980
– ident: e_1_2_8_35_1
  doi: 10.1002/mrm.22209
– ident: e_1_2_8_18_1
  doi: 10.1002/mrm.10493
– ident: e_1_2_8_22_1
  doi: 10.1016/j.jmr.2010.05.011
– ident: e_1_2_8_19_1
  doi: 10.1002/(SICI)1522-2594(200005)43:5<682::AID-MRM10>3.0.CO;2-G
– ident: e_1_2_8_27_1
  doi: 10.1007/978-1-61737-992-5_4
SSID ssj0009974
Score 2.508502
Snippet Purpose To develop a method for accelerated and robust MR fingerprinting (MRF) with improved image reconstruction and parameter matching processes. Theory and...
To develop a method for accelerated and robust MR fingerprinting (MRF) with improved image reconstruction and parameter matching processes. A sliding-window...
Purpose To develop a method for accelerated and robust MR fingerprinting (MRF) with improved image reconstruction and parameter matching processes. Theory and...
PURPOSETo develop a method for accelerated and robust MR fingerprinting (MRF) with improved image reconstruction and parameter matching processes.THEORY AND...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 1579
SubjectTerms Algorithms
Brain - diagnostic imaging
Dictionaries
Fingerprinting
Fingerprints
Frames
Humans
Image contrast
Image processing
Image Processing, Computer-Assisted - methods
Image quality
Image reconstruction
In vivo methods and tests
Magnetic resonance
Magnetic Resonance Imaging - methods
Matching
MR fingerprinting
Phantoms, Imaging
Proton density (concentration)
Robustness
Sliding
sliding‐window reconstruction
spiral trajectory
Strategy
Windows (intervals)
Title Robust sliding‐window reconstruction for Accelerating the acquisition of MR fingerprinting
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.26521
https://www.ncbi.nlm.nih.gov/pubmed/27851871
https://www.proquest.com/docview/1940486128
https://search.proquest.com/docview/1841135155
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PSx0xEB9EUHqpVtu6rZZYeuhln0k22T94ElsRYXt4KHgQliSbFBF31fceQk9-BD9jP4mT7NsVWwQR9hDYLNlkMpnfJDO_AHzLhPWotoh1rWksaplgiZvY1Y4a5kSdhKSw8ld6eCKOTuXpAuz2uTAdP8Sw4eY1I6zXXsGVnuw8koZe3lyOeCpDEjlLMh_O9WP8SB1VFB0Dcyb8OlOInlWI8p3hy6e26D-A-RSvBoNzsAJn_a92cSYXo9lUj8yff1gcX9mXVXg7B6Jkr5s572DBNmuwXM6P2tdgKcSGmsk6nI1bPZtMCSJSb-j-3t3foiPf3pLgTA8EtAThL9kzBu2Yn1XNb4LYkihzPTvv4sJI60g5Ji5sJPr9RF_pPZwc_DzeP4znlzLERkjB4hwRAc1tig9NLasTIVlNfYJsOGT0xOc805allipFFQIYk-fCk9CwxAgEBx9gsWkbuwFECkWZY4XTthC1cQXLnVJc6gy9Vl3wCL724qmuOu6NqmNZ5hWOWBVGLILNXnDVXP0mFcrbUwmi7Y1ge3iNiuNPQ1Rj2xnWyQXz1xNKGcHHTuBDKzxDIIquZATfg9ieb74qx2UofHp51c_whntwEEICN2ER5WS3ENpM9Zcwhx8AXejzzA
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRTwuPAqUlAIGceCSre3YeUhcKqBaoOlh1Uo9gKLYsVGFmgC7q0o98RP4jfwSZpxNqoKQEFIOluIoicfj-WY88xngeaYcodoiNo3hsWp0gi1pY994boVXTRKKwsqDdHqk3h3r4zV4OdTC9PwQY8CNNCOs16TgFJDeuWANPf12OpGppiryK6juCR3c8Hp2QR5VFD0Hc6ZopSnUwCvE5c746GVr9AfEvIxYg8nZuwUfh4_tM00-T5YLM7Hnv_E4_u_f3IabKyzKdvvJcwfWXLsB18rVbvsGXA3poXZ-Fz7MOrOcLxiCUrJ1P7__OENfvjtjwZ8eOWgZImC2ay2aMppY7SeG8JLV9uvypE8NY51n5Yz5EEukkCJ1ugdHe28OX03j1bkMsVVaiThHUMBzl-LFUyeaRGnRcKqRDfuMxH0uM-NE6nhd8xoxjM1zRTw0IrEK8cF9WG-71j0AplXNhReFN65QjfWFyH1dS20ydFxNISN4Nsin-tLTb1Q90bKscMSqMGIRbA-Sq1YaOK9Q4MQmiOY3gqfjbdQd2hCpW9ctsU-uBJ1QqHUEm73Ex7fIDLEoepMRvAhy-_vrq3JWhsbWv3d9Atenh-V-tf_24P1DuCEJK4QMwW1YR5m5R4h0FuZxmNC_AJCH9-Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1faxQxEB9KxeKL1vpvtdYoPviy1ySX7B98KrVHtd0ih4U-FJZNNhGR7lbvjoJPfoR-xn4SZ7K3W6oIIuxDYLNkk8lkfpPM_ALwOlWOUG0em9rwWNV6jCVpY197boVX9TgkhRVHyf6x-nCiT1bgbZ8L0_FDDBtupBlhvSYFP6_99jVp6Nn3s5FMNCWR31IJIl9CRNNr7qg87yiYU0ULTa56WiEut4dPbxqjPxDmTcAaLM7kHpz2_9oFmnwdLeZmZH_8RuP4n51Zh7tLJMp2uqlzH1ZcswFrxfKsfQNuh-BQO3sAp9PWLGZzhpCULN3Vz8sL9OTbCxa86YGBliH-ZTvWoiGjadV8ZgguWWW_Lb50gWGs9ayYMh92EmlDkSo9hOPJ3qfd_Xh5K0NslVYizhAS8Mwl-PDEiXqstKg5ZciGU0ZiPpepcSJxvKp4hQjGZpkiFhoxtgrRwSNYbdrGPQGmVcWFF7k3Lle19bnIfFVJbVJ0W00uI3jVi6c878g3yo5mWZY4YmUYsQg2e8GVS_2blShv4hJE4xvBy-E1ag4dh1SNaxdYJ1OC7ifUOoLHncCHVmSKSBR9yQjeBLH9vfmymBah8PTfq76AtY_vJuXh-6ODZ3BHElAI4YGbsIoic88R5szNVpjOvwCyv_aT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+sliding-window+reconstruction+for+Accelerating+the+acquisition+of+MR+fingerprinting&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Cao%2C+Xiaozhi&rft.au=Liao%2C+Congyu&rft.au=Wang%2C+Zhixing&rft.au=Chen%2C+Ying&rft.date=2017-10-01&rft.eissn=1522-2594&rft.volume=78&rft.issue=4&rft.spage=1579&rft.epage=1588&rft_id=info:doi/10.1002%2Fmrm.26521&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon