Robust sliding‐window reconstruction for Accelerating the acquisition of MR fingerprinting
Purpose To develop a method for accelerated and robust MR fingerprinting (MRF) with improved image reconstruction and parameter matching processes. Theory and Methods A sliding‐window (SW) strategy was applied to MRF, in which signal and dictionary matching was conducted between fingerprints consist...
Saved in:
Published in | Magnetic resonance in medicine Vol. 78; no. 4; pp. 1579 - 1588 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.10.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
To develop a method for accelerated and robust MR fingerprinting (MRF) with improved image reconstruction and parameter matching processes.
Theory and Methods
A sliding‐window (SW) strategy was applied to MRF, in which signal and dictionary matching was conducted between fingerprints consisting of mixed‐contrast image series reconstructed from consecutive data frames segmented by a sliding window, and a precalculated mixed‐contrast dictionary. The effectiveness and performance of this new method, dubbed SW‐MRF, was evaluated in both phantom and in vivo. Error quantifications were conducted on results obtained with various settings of SW reconstruction parameters.
Results
Compared with the original MRF strategy, the results of both phantom and in vivo experiments demonstrate that the proposed SW‐MRF strategy either provided similar accuracy with reduced acquisition time, or improved accuracy with equal acquisition time. Parametric maps of T1, T2, and proton density of comparable quality could be achieved with a two‐fold or more reduction in acquisition time. The effect of sliding‐window width on dictionary sensitivity was also estimated.
Conclusion
The novel SW‐MRF recovers high quality image frames from highly undersampled MRF data, which enables more robust dictionary matching with reduced numbers of data frames. This time efficiency may facilitate MRF applications in time‐critical clinical settings. Magn Reson Med 78:1579–1588, 2017. © 2016 International Society for Magnetic Resonance in Medicine. |
---|---|
AbstractList | To develop a method for accelerated and robust MR fingerprinting (MRF) with improved image reconstruction and parameter matching processes.
A sliding-window (SW) strategy was applied to MRF, in which signal and dictionary matching was conducted between fingerprints consisting of mixed-contrast image series reconstructed from consecutive data frames segmented by a sliding window, and a precalculated mixed-contrast dictionary. The effectiveness and performance of this new method, dubbed SW-MRF, was evaluated in both phantom and in vivo. Error quantifications were conducted on results obtained with various settings of SW reconstruction parameters.
Compared with the original MRF strategy, the results of both phantom and in vivo experiments demonstrate that the proposed SW-MRF strategy either provided similar accuracy with reduced acquisition time, or improved accuracy with equal acquisition time. Parametric maps of T
, T
, and proton density of comparable quality could be achieved with a two-fold or more reduction in acquisition time. The effect of sliding-window width on dictionary sensitivity was also estimated.
The novel SW-MRF recovers high quality image frames from highly undersampled MRF data, which enables more robust dictionary matching with reduced numbers of data frames. This time efficiency may facilitate MRF applications in time-critical clinical settings. Magn Reson Med 78:1579-1588, 2017. © 2016 International Society for Magnetic Resonance in Medicine. Purpose To develop a method for accelerated and robust MR fingerprinting (MRF) with improved image reconstruction and parameter matching processes. Theory and Methods A sliding-window (SW) strategy was applied to MRF, in which signal and dictionary matching was conducted between fingerprints consisting of mixed-contrast image series reconstructed from consecutive data frames segmented by a sliding window, and a precalculated mixed-contrast dictionary. The effectiveness and performance of this new method, dubbed SW-MRF, was evaluated in both phantom and in vivo. Error quantifications were conducted on results obtained with various settings of SW reconstruction parameters. Results Compared with the original MRF strategy, the results of both phantom and in vivo experiments demonstrate that the proposed SW-MRF strategy either provided similar accuracy with reduced acquisition time, or improved accuracy with equal acquisition time. Parametric maps of T1, T2, and proton density of comparable quality could be achieved with a two-fold or more reduction in acquisition time. The effect of sliding-window width on dictionary sensitivity was also estimated. Conclusion The novel SW-MRF recovers high quality image frames from highly undersampled MRF data, which enables more robust dictionary matching with reduced numbers of data frames. This time efficiency may facilitate MRF applications in time-critical clinical settings. Magn Reson Med 78:1579-1588, 2017. © 2016 International Society for Magnetic Resonance in Medicine. Purpose To develop a method for accelerated and robust MR fingerprinting (MRF) with improved image reconstruction and parameter matching processes. Theory and Methods A sliding‐window (SW) strategy was applied to MRF, in which signal and dictionary matching was conducted between fingerprints consisting of mixed‐contrast image series reconstructed from consecutive data frames segmented by a sliding window, and a precalculated mixed‐contrast dictionary. The effectiveness and performance of this new method, dubbed SW‐MRF, was evaluated in both phantom and in vivo. Error quantifications were conducted on results obtained with various settings of SW reconstruction parameters. Results Compared with the original MRF strategy, the results of both phantom and in vivo experiments demonstrate that the proposed SW‐MRF strategy either provided similar accuracy with reduced acquisition time, or improved accuracy with equal acquisition time. Parametric maps of T1, T2, and proton density of comparable quality could be achieved with a two‐fold or more reduction in acquisition time. The effect of sliding‐window width on dictionary sensitivity was also estimated. Conclusion The novel SW‐MRF recovers high quality image frames from highly undersampled MRF data, which enables more robust dictionary matching with reduced numbers of data frames. This time efficiency may facilitate MRF applications in time‐critical clinical settings. Magn Reson Med 78:1579–1588, 2017. © 2016 International Society for Magnetic Resonance in Medicine. Purpose To develop a method for accelerated and robust MR fingerprinting (MRF) with improved image reconstruction and parameter matching processes. Theory and Methods A sliding‐window (SW) strategy was applied to MRF, in which signal and dictionary matching was conducted between fingerprints consisting of mixed‐contrast image series reconstructed from consecutive data frames segmented by a sliding window, and a precalculated mixed‐contrast dictionary. The effectiveness and performance of this new method, dubbed SW‐MRF, was evaluated in both phantom and in vivo. Error quantifications were conducted on results obtained with various settings of SW reconstruction parameters. Results Compared with the original MRF strategy, the results of both phantom and in vivo experiments demonstrate that the proposed SW‐MRF strategy either provided similar accuracy with reduced acquisition time, or improved accuracy with equal acquisition time. Parametric maps of T 1 , T 2 , and proton density of comparable quality could be achieved with a two‐fold or more reduction in acquisition time. The effect of sliding‐window width on dictionary sensitivity was also estimated. Conclusion The novel SW‐MRF recovers high quality image frames from highly undersampled MRF data, which enables more robust dictionary matching with reduced numbers of data frames. This time efficiency may facilitate MRF applications in time‐critical clinical settings. Magn Reson Med 78:1579–1588, 2017. © 2016 International Society for Magnetic Resonance in Medicine. PURPOSETo develop a method for accelerated and robust MR fingerprinting (MRF) with improved image reconstruction and parameter matching processes.THEORY AND METHODSA sliding-window (SW) strategy was applied to MRF, in which signal and dictionary matching was conducted between fingerprints consisting of mixed-contrast image series reconstructed from consecutive data frames segmented by a sliding window, and a precalculated mixed-contrast dictionary. The effectiveness and performance of this new method, dubbed SW-MRF, was evaluated in both phantom and in vivo. Error quantifications were conducted on results obtained with various settings of SW reconstruction parameters.RESULTSCompared with the original MRF strategy, the results of both phantom and in vivo experiments demonstrate that the proposed SW-MRF strategy either provided similar accuracy with reduced acquisition time, or improved accuracy with equal acquisition time. Parametric maps of T1 , T2 , and proton density of comparable quality could be achieved with a two-fold or more reduction in acquisition time. The effect of sliding-window width on dictionary sensitivity was also estimated.CONCLUSIONThe novel SW-MRF recovers high quality image frames from highly undersampled MRF data, which enables more robust dictionary matching with reduced numbers of data frames. This time efficiency may facilitate MRF applications in time-critical clinical settings. Magn Reson Med 78:1579-1588, 2017. © 2016 International Society for Magnetic Resonance in Medicine. |
Author | Ye, Huihui Cao, Xiaozhi He, Hongjian Wang, Zhixing Chen, Ying Liao, Congyu Zhong, Jianhui |
Author_xml | – sequence: 1 givenname: Xiaozhi surname: Cao fullname: Cao, Xiaozhi organization: Zhejiang University – sequence: 2 givenname: Congyu surname: Liao fullname: Liao, Congyu organization: Zhejiang University – sequence: 3 givenname: Zhixing surname: Wang fullname: Wang, Zhixing organization: Zhejiang University – sequence: 4 givenname: Ying surname: Chen fullname: Chen, Ying email: pansychen@zju.edu.cn organization: Zhejiang University – sequence: 5 givenname: Huihui surname: Ye fullname: Ye, Huihui organization: Zhejiang University – sequence: 6 givenname: Hongjian surname: He fullname: He, Hongjian organization: Zhejiang University – sequence: 7 givenname: Jianhui surname: Zhong fullname: Zhong, Jianhui email: jzhong3@gmail.com organization: University of Rochester, Rochester |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27851871$$D View this record in MEDLINE/PubMed |
BookMark | eNp10M9KxDAQBvAgiq6rB19ACl70UJ1JkzY9ivgPXIRFb0LopqlG2kSTlsWbj-Az-iRm3dWDIATmkB8fM982WbfOakL2EI4RgJ50vjumOae4RkbIKU0pL9k6GUHBIM2wZFtkO4RnACjLgm2SLVoIjqLAEXmYutkQ-iS0pjb28fP9Y25s7eaJ18rZ0PtB9cbZpHE-OVVKt9pXfYRJ_6STSr0OJphv4JpkMk2a-KX9izd2gXbIRlO1Qe-u5pjcX5zfnV2lN7eX12enN6linGEqBFIQOo8Pco11xjjWkJUlB8hEPItxWsw05hqqCqoCQQnBWMkEZooJno3J4TL3xbvXQYdedibEXdvKajcEiYIhZhz5gh78oc9u8DZuJ2NPwESOVER1tFTKuxC8bmQ8qav8m0SQi8plrFx-Vx7t_ipxmHW6_pU_HUdwsgRz0-q3_5PkZDpZRn4BXxSL1g |
CitedBy_id | crossref_primary_10_1002_acn3_50851 crossref_primary_10_1002_mrm_29194 crossref_primary_10_1148_radiol_2018172131 crossref_primary_10_1002_mp_17001 crossref_primary_10_1002_hbm_26203 crossref_primary_10_1002_mrm_29990 crossref_primary_10_1109_TRPMS_2019_2897425 crossref_primary_10_1016_j_clinimag_2023_07_004 crossref_primary_10_1002_mrm_27812 crossref_primary_10_1002_mrm_28301 crossref_primary_10_1109_JPROC_2019_2936998 crossref_primary_10_1016_j_cobme_2017_11_001 crossref_primary_10_1049_ipr2_12526 crossref_primary_10_1109_TIM_2023_3291785 crossref_primary_10_3390_bioengineering10091012 crossref_primary_10_1109_TBME_2018_2874992 crossref_primary_10_1002_nbm_4082 crossref_primary_10_1002_mp_15254 crossref_primary_10_1002_mrm_27448 crossref_primary_10_1007_s10334_022_01012_8 crossref_primary_10_1002_mrm_28136 crossref_primary_10_1002_mrm_27726 crossref_primary_10_1007_s10334_023_01140_9 crossref_primary_10_1109_TMI_2019_2932961 crossref_primary_10_1038_s41598_020_70789_2 crossref_primary_10_1016_j_mri_2023_02_002 crossref_primary_10_1002_mrm_27198 crossref_primary_10_1002_mrm_29135 crossref_primary_10_1016_j_mri_2022_05_015 crossref_primary_10_1016_j_ijrobp_2023_04_015 crossref_primary_10_3389_fcvm_2022_1009131 crossref_primary_10_1002_nbm_4670 crossref_primary_10_1002_mp_14513 crossref_primary_10_1109_TRPMS_2019_2905366 crossref_primary_10_1097_RMR_0000000000000221 crossref_primary_10_1016_j_neuroimage_2019_01_034 crossref_primary_10_1038_s41598_020_74462_6 crossref_primary_10_1002_jmri_26877 crossref_primary_10_2200_S00959ED1V01Y201910BME059 crossref_primary_10_1002_jmri_26836 crossref_primary_10_1002_mrm_29969 crossref_primary_10_1109_TMI_2018_2873704 crossref_primary_10_1016_j_mri_2021_06_009 crossref_primary_10_1002_mp_13967 crossref_primary_10_1002_mp_13727 crossref_primary_10_1016_j_ejmp_2022_102514 crossref_primary_10_1016_j_mri_2018_11_001 crossref_primary_10_1002_mrm_27665 crossref_primary_10_1002_mrm_29721 crossref_primary_10_2463_mrms_tn_2018_0157 |
Cites_doi | 10.1007/11424925_121 10.1002/nbm.755 10.1002/mrm.25439 10.1002/mrm.25776 10.1002/mrm.25558 10.1002/mrm.26199 10.1109/TMI.2014.2337321 10.1002/mrm.21701 10.1002/mrm.22714 10.1109/ISBI.2015.7164017 10.1002/mrm.25799 10.1016/j.neuroimage.2011.02.010 10.1002/mrm.20288 10.1002/jmri.1880060408 10.1002/mrm.22059 10.1002/jmri.24619 10.1109/ICASSP.2014.6854937 10.1137/130947246 10.1002/(SICI)1522-2586(199904)9:4<531::AID-JMRI4>3.0.CO;2-L 10.1002/mrm.25156 10.1038/nature11971 10.1002/mrm.24225 10.1002/mrm.25559 10.1002/mrm.25119 10.1016/j.jmr.2007.06.012 10.1002/mrm.24980 10.1002/mrm.22209 10.1002/mrm.10493 10.1016/j.jmr.2010.05.011 10.1002/(SICI)1522-2594(200005)43:5<682::AID-MRM10>3.0.CO;2-G 10.1007/978-1-61737-992-5_4 |
ContentType | Journal Article |
Copyright | 2016 International Society for Magnetic Resonance in Medicine 2016 International Society for Magnetic Resonance in Medicine. 2017 International Society for Magnetic Resonance in Medicine |
Copyright_xml | – notice: 2016 International Society for Magnetic Resonance in Medicine – notice: 2016 International Society for Magnetic Resonance in Medicine. – notice: 2017 International Society for Magnetic Resonance in Medicine |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 8FD FR3 K9. M7Z P64 7X8 |
DOI | 10.1002/mrm.26521 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Biochemistry Abstracts 1 CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 1588 |
ExternalDocumentID | 10_1002_mrm_26521 27851871 MRM26521 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Nature Science Foundation of China funderid: 81401473 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N G8K GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 8FD FR3 K9. M7Z P64 7X8 |
ID | FETCH-LOGICAL-c4541-881208e68e606e1d3451d0399500385214527be16e0aa0a710c884494813c4853 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 |
IngestDate | Fri Aug 16 08:03:08 EDT 2024 Thu Oct 10 22:49:01 EDT 2024 Fri Aug 23 00:46:44 EDT 2024 Wed Oct 16 00:59:53 EDT 2024 Sat Aug 24 00:41:09 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | MR fingerprinting sliding-window reconstruction spiral trajectory |
Language | English |
License | 2016 International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4541-881208e68e606e1d3451d0399500385214527be16e0aa0a710c884494813c4853 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.26521 |
PMID | 27851871 |
PQID | 1940486128 |
PQPubID | 1016391 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1841135155 proquest_journals_1940486128 crossref_primary_10_1002_mrm_26521 pubmed_primary_27851871 wiley_primary_10_1002_mrm_26521_MRM26521 |
PublicationCentury | 2000 |
PublicationDate | October 2017 |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: October 2017 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn Reson Med |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2002; 15 2013; 69 2009; 62 2011; 711 2015; 73 2010; 205 2000; 43 2015; 74 2007; 188 2009 2016; 75 2005 2011; 56 2003; 50 2010; 63 1999; 9 2004; 52 2017; 77 2015; 41 2011; 65 2015 2013; 495 2014 2014; 7 2014; 72 2008; 60 2014; 33 1996; 6 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 52 start-page: 1388 year: 2004 end-page: 1396 article-title: Self‐navigated interleaved spiral (SNAILS): application to high‐resolution diffusion tensor imaging publication-title: Magn Reson Med – year: 2009 – volume: 72 start-page: 707 year: 2014 end-page: 717 article-title: Golden‐angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden‐angle radial sampling for fast and flexible dynamic volumetric MRI publication-title: Magn Reson Med – volume: 73 start-page: 126 year: 2015 end-page: 138 article-title: Acceleration of high angular and spatial resolution diffusion imaging using compressed sensing with multichannel spiral data publication-title: Magn Reson Med – volume: 75 start-page: 2078 year: 2016 end-page: 2085 article-title: Accelerating magnetic resonance fingerprinting (MRF) using t‐blipped simultaneous multislice (SMS) acquisition publication-title: Magn Reson Med – volume: 7 start-page: 2623 year: 2014 end-page: 2656 article-title: A compressed sensing framework for magnetic resonance fingerprinting publication-title: SIAM J Imaging Sci – start-page: 905 year: 2015 end-page: 909 – volume: 6 start-page: 603 year: 1996 end-page: 607 article-title: Comparison of conventional single echo and multi‐echo sequences with a fast spin‐echo sequence for quantitative T2 mapping: application to the prostate publication-title: J Magn Reson Imaging – volume: 74 start-page: 523 year: 2015 end-page: 528 article-title: Fast group matching for MR fingerprinting reconstruction publication-title: Magn Reson Med – volume: 60 start-page: 1090 year: 2008 end-page: 1103 article-title: Sliding‐window sensitivity encoding (SENSE) calibration for reducing noise in functional MRI (fMRI) publication-title: Magn Reson Med – volume: 33 start-page: 2311 year: 2014 end-page: 2322 article-title: SVD compression for magnetic resonance fingerprinting in the time domain publication-title: IEEE Trans Med Imaging – volume: 188 start-page: 191 year: 2007 end-page: 195 article-title: On NUFFT‐based gridding for non‐Cartesian MRI publication-title: J Magn Reson – volume: 63 start-page: 828 year: 2010 end-page: 834 article-title: A three‐dimensional variable‐density spiral spatial‐spectral RF pulse with rotated gradients publication-title: Magn Reson Med – start-page: 1159 year: 2005 end-page: 1168 – volume: 75 start-page: 1346 year: 2016 end-page: 1354 article-title: Accelerated and motion‐robust in vivo T2 mapping from radially undersampled data using bloch‐simulation‐based iterative reconstruction publication-title: Magn Reson Med – volume: 43 start-page: 682 year: 2000 end-page: 690 article-title: Adaptive reconstruction of phased array MR imagery publication-title: Magn Reson Med – volume: 75 start-page: 2481 year: 2016 end-page: 2492 article-title: Multiscale reconstruction for MR fingerprinting publication-title: Magn Reson Med – volume: 41 start-page: 266 year: 2015 end-page: 295 article-title: Extended phase graphs: dephasing, RF pulses, and echoes ‐ pure and simple publication-title: J Magn Reson Imaging – volume: 65 start-page: 1365 year: 2011 end-page: 1371 article-title: Flexible retrospective selection of temporal resolution in real‐time speech MRI using a golden‐ratio spiral view order publication-title: Magn Reson Med – volume: 495 start-page: 187 year: 2013 end-page: 192 article-title: Magnetic resonance fingerprinting publication-title: Nature – volume: 711 start-page: 65 year: 2011 end-page: 108 article-title: Magnetic resonance relaxation and quantitative measurement in the brain publication-title: Methods Mol Biol – volume: 74 start-page: 1621 year: 2015 end-page: 1631 article-title: MR fingerprinting using fast imaging with steady state precession (FISP) with spiral readout publication-title: Magn Reson Med – volume: 62 start-page: 835 year: 2009 end-page: 839 article-title: Myocardial perfusion MRI with sliding‐window conjugate‐gradient HYPR publication-title: Magn Reson Med – volume: 73 start-page: 809 year: 2015 end-page: 817 article-title: Rapid and accurate T2 mapping from multi‐spin‐echo data using Bloch‐simulation‐based reconstruction publication-title: Magn Reson Med – volume: 15 start-page: 174 year: 2002 end-page: 183 article-title: Applications of sliding window reconstruction with cartesian sampling for dynamic contrast enhanced MRI publication-title: NMR Biomed – volume: 56 start-page: 1398 year: 2011 end-page: 1411 article-title: Quantification of accuracy and precision of multi‐center DTI measurements: a diffusion phantom and human brain study publication-title: Neuroimage – volume: 69 start-page: 71 year: 2013 end-page: 81 article-title: IR TrueFISP with a golden‐ratio‐based radial readout: fast quantification of T1, T2, and proton density publication-title: Magn Reson Med – start-page: 225 year: 2005 end-page: 228 – volume: 50 start-page: 214 year: 2003 end-page: 219 article-title: Simple analytic variable density spiral design publication-title: Magn Reson Med – volume: 205 start-page: 276 year: 2010 end-page: 285 article-title: Extended phase graphs with anisotropic diffusion publication-title: J Magn Reson – volume: 77 start-page: 1359 year: 2017 end-page: 1366 article-title: Efficient parallel reconstruction for high resolution multishot spiral diffusion data with low rank constraint publication-title: Magn Reson Med – start-page: 6899 year: 2014 end-page: 6903 – volume: 9 start-page: 531 year: 1999 end-page: 538 article-title: NMR relaxation times in the human brain at 3.0 tesla publication-title: J Magn Reson Imaging – ident: e_1_2_8_17_1 doi: 10.1007/11424925_121 – ident: e_1_2_8_15_1 doi: 10.1002/nbm.755 – ident: e_1_2_8_13_1 doi: 10.1002/mrm.25439 – ident: e_1_2_8_11_1 doi: 10.1002/mrm.25776 – ident: e_1_2_8_4_1 doi: 10.1002/mrm.25558 – ident: e_1_2_8_32_1 doi: 10.1002/mrm.26199 – ident: e_1_2_8_12_1 doi: 10.1109/TMI.2014.2337321 – ident: e_1_2_8_33_1 doi: 10.1002/mrm.21701 – ident: e_1_2_8_34_1 doi: 10.1002/mrm.22714 – ident: e_1_2_8_10_1 doi: 10.1109/ISBI.2015.7164017 – ident: e_1_2_8_25_1 – ident: e_1_2_8_5_1 doi: 10.1002/mrm.25799 – ident: e_1_2_8_23_1 doi: 10.1016/j.neuroimage.2011.02.010 – ident: e_1_2_8_31_1 doi: 10.1002/mrm.20288 – ident: e_1_2_8_26_1 doi: 10.1002/jmri.1880060408 – ident: e_1_2_8_16_1 – ident: e_1_2_8_14_1 doi: 10.1002/mrm.22059 – ident: e_1_2_8_21_1 doi: 10.1002/jmri.24619 – ident: e_1_2_8_24_1 – ident: e_1_2_8_8_1 doi: 10.1109/ICASSP.2014.6854937 – ident: e_1_2_8_9_1 doi: 10.1137/130947246 – ident: e_1_2_8_29_1 doi: 10.1002/(SICI)1522-2586(199904)9:4<531::AID-JMRI4>3.0.CO;2-L – ident: e_1_2_8_3_1 doi: 10.1002/mrm.25156 – ident: e_1_2_8_2_1 doi: 10.1038/nature11971 – ident: e_1_2_8_6_1 doi: 10.1002/mrm.24225 – ident: e_1_2_8_7_1 doi: 10.1002/mrm.25559 – ident: e_1_2_8_30_1 doi: 10.1002/mrm.25119 – ident: e_1_2_8_20_1 doi: 10.1016/j.jmr.2007.06.012 – ident: e_1_2_8_28_1 doi: 10.1002/mrm.24980 – ident: e_1_2_8_35_1 doi: 10.1002/mrm.22209 – ident: e_1_2_8_18_1 doi: 10.1002/mrm.10493 – ident: e_1_2_8_22_1 doi: 10.1016/j.jmr.2010.05.011 – ident: e_1_2_8_19_1 doi: 10.1002/(SICI)1522-2594(200005)43:5<682::AID-MRM10>3.0.CO;2-G – ident: e_1_2_8_27_1 doi: 10.1007/978-1-61737-992-5_4 |
SSID | ssj0009974 |
Score | 2.508502 |
Snippet | Purpose
To develop a method for accelerated and robust MR fingerprinting (MRF) with improved image reconstruction and parameter matching processes.
Theory and... To develop a method for accelerated and robust MR fingerprinting (MRF) with improved image reconstruction and parameter matching processes. A sliding-window... Purpose To develop a method for accelerated and robust MR fingerprinting (MRF) with improved image reconstruction and parameter matching processes. Theory and... PURPOSETo develop a method for accelerated and robust MR fingerprinting (MRF) with improved image reconstruction and parameter matching processes.THEORY AND... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1579 |
SubjectTerms | Algorithms Brain - diagnostic imaging Dictionaries Fingerprinting Fingerprints Frames Humans Image contrast Image processing Image Processing, Computer-Assisted - methods Image quality Image reconstruction In vivo methods and tests Magnetic resonance Magnetic Resonance Imaging - methods Matching MR fingerprinting Phantoms, Imaging Proton density (concentration) Robustness Sliding sliding‐window reconstruction spiral trajectory Strategy Windows (intervals) |
Title | Robust sliding‐window reconstruction for Accelerating the acquisition of MR fingerprinting |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.26521 https://www.ncbi.nlm.nih.gov/pubmed/27851871 https://www.proquest.com/docview/1940486128 https://search.proquest.com/docview/1841135155 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PSx0xEB9EUHqpVtu6rZZYeuhln0k22T94ElsRYXt4KHgQliSbFBF31fceQk9-BD9jP4mT7NsVWwQR9hDYLNlkMpnfJDO_AHzLhPWotoh1rWksaplgiZvY1Y4a5kSdhKSw8ld6eCKOTuXpAuz2uTAdP8Sw4eY1I6zXXsGVnuw8koZe3lyOeCpDEjlLMh_O9WP8SB1VFB0Dcyb8OlOInlWI8p3hy6e26D-A-RSvBoNzsAJn_a92cSYXo9lUj8yff1gcX9mXVXg7B6Jkr5s572DBNmuwXM6P2tdgKcSGmsk6nI1bPZtMCSJSb-j-3t3foiPf3pLgTA8EtAThL9kzBu2Yn1XNb4LYkihzPTvv4sJI60g5Ji5sJPr9RF_pPZwc_DzeP4znlzLERkjB4hwRAc1tig9NLasTIVlNfYJsOGT0xOc805allipFFQIYk-fCk9CwxAgEBx9gsWkbuwFECkWZY4XTthC1cQXLnVJc6gy9Vl3wCL724qmuOu6NqmNZ5hWOWBVGLILNXnDVXP0mFcrbUwmi7Y1ge3iNiuNPQ1Rj2xnWyQXz1xNKGcHHTuBDKzxDIIquZATfg9ieb74qx2UofHp51c_whntwEEICN2ER5WS3ENpM9Zcwhx8AXejzzA |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRTwuPAqUlAIGceCSre3YeUhcKqBaoOlh1Uo9gKLYsVGFmgC7q0o98RP4jfwSZpxNqoKQEFIOluIoicfj-WY88xngeaYcodoiNo3hsWp0gi1pY994boVXTRKKwsqDdHqk3h3r4zV4OdTC9PwQY8CNNCOs16TgFJDeuWANPf12OpGppiryK6juCR3c8Hp2QR5VFD0Hc6ZopSnUwCvE5c746GVr9AfEvIxYg8nZuwUfh4_tM00-T5YLM7Hnv_E4_u_f3IabKyzKdvvJcwfWXLsB18rVbvsGXA3poXZ-Fz7MOrOcLxiCUrJ1P7__OENfvjtjwZ8eOWgZImC2ay2aMppY7SeG8JLV9uvypE8NY51n5Yz5EEukkCJ1ugdHe28OX03j1bkMsVVaiThHUMBzl-LFUyeaRGnRcKqRDfuMxH0uM-NE6nhd8xoxjM1zRTw0IrEK8cF9WG-71j0AplXNhReFN65QjfWFyH1dS20ydFxNISN4Nsin-tLTb1Q90bKscMSqMGIRbA-Sq1YaOK9Q4MQmiOY3gqfjbdQd2hCpW9ctsU-uBJ1QqHUEm73Ex7fIDLEoepMRvAhy-_vrq3JWhsbWv3d9Atenh-V-tf_24P1DuCEJK4QMwW1YR5m5R4h0FuZxmNC_AJCH9-Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1faxQxEB9KxeKL1vpvtdYoPviy1ySX7B98KrVHtd0ih4U-FJZNNhGR7lbvjoJPfoR-xn4SZ7K3W6oIIuxDYLNkk8lkfpPM_ALwOlWOUG0em9rwWNV6jCVpY197boVX9TgkhRVHyf6x-nCiT1bgbZ8L0_FDDBtupBlhvSYFP6_99jVp6Nn3s5FMNCWR31IJIl9CRNNr7qg87yiYU0ULTa56WiEut4dPbxqjPxDmTcAaLM7kHpz2_9oFmnwdLeZmZH_8RuP4n51Zh7tLJMp2uqlzH1ZcswFrxfKsfQNuh-BQO3sAp9PWLGZzhpCULN3Vz8sL9OTbCxa86YGBliH-ZTvWoiGjadV8ZgguWWW_Lb50gWGs9ayYMh92EmlDkSo9hOPJ3qfd_Xh5K0NslVYizhAS8Mwl-PDEiXqstKg5ZciGU0ZiPpepcSJxvKp4hQjGZpkiFhoxtgrRwSNYbdrGPQGmVcWFF7k3Lle19bnIfFVJbVJ0W00uI3jVi6c878g3yo5mWZY4YmUYsQg2e8GVS_2blShv4hJE4xvBy-E1ag4dh1SNaxdYJ1OC7ifUOoLHncCHVmSKSBR9yQjeBLH9vfmymBah8PTfq76AtY_vJuXh-6ODZ3BHElAI4YGbsIoic88R5szNVpjOvwCyv_aT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+sliding-window+reconstruction+for+Accelerating+the+acquisition+of+MR+fingerprinting&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Cao%2C+Xiaozhi&rft.au=Liao%2C+Congyu&rft.au=Wang%2C+Zhixing&rft.au=Chen%2C+Ying&rft.date=2017-10-01&rft.eissn=1522-2594&rft.volume=78&rft.issue=4&rft.spage=1579&rft.epage=1588&rft_id=info:doi/10.1002%2Fmrm.26521&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |