Mangrove expansion and salt marsh decline at mangrove poleward limits
Mangroves are species of halophytic intertidal trees and shrubs derived from tropical genera and are likely delimited in latitudinal range by varying sensitivity to cold. There is now sufficient evidence that mangrove species have proliferated at or near their poleward limits on at least five contin...
Saved in:
Published in | Global change biology Vol. 20; no. 1; pp. 147 - 157 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.01.2014
Wiley-Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mangroves are species of halophytic intertidal trees and shrubs derived from tropical genera and are likely delimited in latitudinal range by varying sensitivity to cold. There is now sufficient evidence that mangrove species have proliferated at or near their poleward limits on at least five continents over the past half century, at the expense of salt marsh. Avicennia is the most cold‐tolerant genus worldwide, and is the subject of most of the observed changes. Avicennia germinans has extended in range along the USA Atlantic coast and expanded into salt marsh as a consequence of lower frost frequency and intensity in the southern USA. The genus has also expanded into salt marsh at its southern limit in Peru, and on the Pacific coast of Mexico. Mangroves of several species have expanded in extent and replaced salt marsh where protected within mangrove reserves in Guangdong Province, China. In south‐eastern Australia, the expansion of Avicennia marina into salt marshes is now well documented, and Rhizophora stylosa has extended its range southward, while showing strong population growth within estuaries along its southern limits in northern New South Wales. Avicennia marina has extended its range southwards in South Africa. The changes are consistent with the poleward extension of temperature thresholds coincident with sea‐level rise, although the specific mechanism of range extension might be complicated by limitations on dispersal or other factors. The shift from salt marsh to mangrove dominance on subtropical and temperate shorelines has important implications for ecological structure, function, and global change adaptation. |
---|---|
AbstractList | Mangroves are species of halophytic intertidal trees and shrubs derived from tropical genera and are likely delimited in latitudinal range by varying sensitivity to cold. There is now sufficient evidence that mangrove species have proliferated at or near their poleward limits on at least five continents over the past half century, at the expense of salt marsh. Avicennia is the most cold‐tolerant genus worldwide, and is the subject of most of the observed changes. Avicennia germinans has extended in range along the USA Atlantic coast and expanded into salt marsh as a consequence of lower frost frequency and intensity in the southern USA. The genus has also expanded into salt marsh at its southern limit in Peru, and on the Pacific coast of Mexico. Mangroves of several species have expanded in extent and replaced salt marsh where protected within mangrove reserves in Guangdong Province, China. In south‐eastern Australia, the expansion of Avicennia marina into salt marshes is now well documented, and Rhizophora stylosa has extended its range southward, while showing strong population growth within estuaries along its southern limits in northern New South Wales. Avicennia marina has extended its range southwards in South Africa. The changes are consistent with the poleward extension of temperature thresholds coincident with sea‐level rise, although the specific mechanism of range extension might be complicated by limitations on dispersal or other factors. The shift from salt marsh to mangrove dominance on subtropical and temperate shorelines has important implications for ecological structure, function, and global change adaptation. Mangroves are species of halophytic intertidal trees and shrubs derived from tropical genera and are likely delimited in latitudinal range by varying sensitivity to cold. There is now sufficient evidence that mangrove species have proliferated at or near their poleward limits on at least five continents over the past half century, at the expense of salt marsh. Avicennia is the most cold‐tolerant genus worldwide, and is the subject of most of the observed changes. Avicennia germinans has extended in range along the USA Atlantic coast and expanded into salt marsh as a consequence of lower frost frequency and intensity in the southern USA . The genus has also expanded into salt marsh at its southern limit in Peru, and on the Pacific coast of Mexico. Mangroves of several species have expanded in extent and replaced salt marsh where protected within mangrove reserves in Guangdong Province, China. In south‐eastern Australia, the expansion of A vicennia marina into salt marshes is now well documented, and R hizophora stylosa has extended its range southward, while showing strong population growth within estuaries along its southern limits in northern New South Wales. Avicennia marina has extended its range southwards in South Africa. The changes are consistent with the poleward extension of temperature thresholds coincident with sea‐level rise, although the specific mechanism of range extension might be complicated by limitations on dispersal or other factors. The shift from salt marsh to mangrove dominance on subtropical and temperate shorelines has important implications for ecological structure, function, and global change adaptation. Mangroves are species of halophytic intertidal trees and shrubs derived from tropical genera and are likely delimited in latitudinal range by varying sensitivity to cold. There is now sufficient evidence that mangrove species have proliferated at or near their poleward limits on at least five continents over the past half century, at the expense of salt marsh. Avicennia is the most cold-tolerant genus worldwide, and is the subject of most of the observed changes. Avicennia germinans has extended in range along the USA Atlantic coast and expanded into salt marsh as a consequence of lower frost frequency and intensity in the southern USA. The genus has also expanded into salt marsh at its southern limit in Peru, and on the Pacific coast of Mexico. Mangroves of several species have expanded in extent and replaced salt marsh where protected within mangrove reserves in Guangdong Province, China. In south-eastern Australia, the expansion of Avicennia marina into salt marshes is now well documented, and Rhizophora stylosa has extended its range southward, while showing strong population growth within estuaries along its southern limits in northern New South Wales. Avicennia marina has extended its range southwards in South Africa. The changes are consistent with the poleward extension of temperature thresholds coincident with sea-level rise, although the specific mechanism of range extension might be complicated by limitations on dispersal or other factors. The shift from salt marsh to mangrove dominance on subtropical and temperate shorelines has important implications for ecological structure, function, and global change adaptation. [PUBLICATION ABSTRACT] Mangroves are species of halophytic intertidal trees and shrubs derived from tropical genera and are likely delimited in latitudinal range by varying sensitivity to cold. There is now sufficient evidence that mangrove species have proliferated at or near their poleward limits on at least five continents over the past half century, at the expense of salt marsh. Avicennia is the most cold-tolerant genus worldwide, and is the subject of most of the observed changes. Avicennia germinans has extended in range along the USA Atlantic coast and expanded into salt marsh as a consequence of lower frost frequency and intensity in the southern USA. The genus has also expanded into salt marsh at its southern limit in Peru, and on the Pacific coast of Mexico. Mangroves of several species have expanded in extent and replaced salt marsh where protected within mangrove reserves in Guangdong Province, China. In south-eastern Australia, the expansion of Avicennia marina into salt marshes is now well documented, and Rhizophora stylosa has extended its range southward, while showing strong population growth within estuaries along its southern limits in northern New South Wales. Avicennia marina has extended its range southwards in South Africa. The changes are consistent with the poleward extension of temperature thresholds coincident with sea-level rise, although the specific mechanism of range extension might be complicated by limitations on dispersal or other factors. The shift from salt marsh to mangrove dominance on subtropical and temperate shorelines has important implications for ecological structure, function, and global change adaptation.Mangroves are species of halophytic intertidal trees and shrubs derived from tropical genera and are likely delimited in latitudinal range by varying sensitivity to cold. There is now sufficient evidence that mangrove species have proliferated at or near their poleward limits on at least five continents over the past half century, at the expense of salt marsh. Avicennia is the most cold-tolerant genus worldwide, and is the subject of most of the observed changes. Avicennia germinans has extended in range along the USA Atlantic coast and expanded into salt marsh as a consequence of lower frost frequency and intensity in the southern USA. The genus has also expanded into salt marsh at its southern limit in Peru, and on the Pacific coast of Mexico. Mangroves of several species have expanded in extent and replaced salt marsh where protected within mangrove reserves in Guangdong Province, China. In south-eastern Australia, the expansion of Avicennia marina into salt marshes is now well documented, and Rhizophora stylosa has extended its range southward, while showing strong population growth within estuaries along its southern limits in northern New South Wales. Avicennia marina has extended its range southwards in South Africa. The changes are consistent with the poleward extension of temperature thresholds coincident with sea-level rise, although the specific mechanism of range extension might be complicated by limitations on dispersal or other factors. The shift from salt marsh to mangrove dominance on subtropical and temperate shorelines has important implications for ecological structure, function, and global change adaptation. |
Author | Wilson, Nicholas C. Rogers, Kerrylee Saintilan, Neil Rajkaran, Anusha Krauss, Ken W. |
Author_xml | – sequence: 1 givenname: Neil surname: Saintilan fullname: Saintilan, Neil email: neil.saintilan@environment.nsw.gov.au organization: NSW Department of Premier and Cabinet, Office of Environment and Heritage, PO Box A290, NSW, 1232, Sydney South, Australia – sequence: 2 givenname: Nicholas C. surname: Wilson fullname: Wilson, Nicholas C. organization: Forest Science Institute of South Vietnam, 1 Pham Van Hai StreetTan Binh District, Ho Chi Minh City, Vietnam – sequence: 3 givenname: Kerrylee surname: Rogers fullname: Rogers, Kerrylee organization: School of Earth and Environmental Science, University of Wollongong, Northfields Ave, 2522, Wollongong, Australia – sequence: 4 givenname: Anusha surname: Rajkaran fullname: Rajkaran, Anusha organization: Department of Botany, Rhodes University, PO Box 94, 6140, Grahamstown, South Africa – sequence: 5 givenname: Ken W. surname: Krauss fullname: Krauss, Ken W. organization: National Wetlands Research Center, US Geological Survey, LA, 70506, Lafayette, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28313674$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23907934$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkVmLFDEUhYOMOIs--AekQATnoWayp_I4NjOt0C6Iy2O4lU6NGdOpNqme5d-bsqsVBgXvSy7hOwfuOYdoL_bRIfSU4BNS5vTStieEMk4eoAPCpKgpb-TeuAteE0zYPjrM-QpjzCiWj9A-ZRorzfgBOn8L8TL1165yt2uI2fexgrisMoShWkHK36qls8FHV8H4McHrPrgbSMsq-JUf8mP0sIOQ3ZPpPUKfL84_zV7Xi_fzN7OzRW254KRmqnGu1aLBGi8JbmTbyQ4ESO20boXqWqdF2xKrQTQUC6opbxvWKatAU-vYEXq59V2n_sfG5cGsfLYuBIiu32RDuKaSSNmo_0ClwlJgTgr6_B561W9SLIeMlMSUEzIaPpuoTbtyS7NOvuRzZ3ZZFuDFBEC2ELoE0fr8h2tY6UaN3OmWs6nPObnOWD_AUJIfEvhgCDZjq6a0an61WhTH9xQ707-xk_uND-7u36CZz17tFPVW4fPgbn8rIH03UjElzNd3cyMX8w-zi49fyrk_AV-wvLI |
CitedBy_id | crossref_primary_10_1007_s11356_023_27816_2 crossref_primary_10_1016_j_ecss_2021_107607 crossref_primary_10_1007_s00468_021_02089_9 crossref_primary_10_3354_meps12707 crossref_primary_10_1016_j_cub_2019_08_042 crossref_primary_10_1002_ecy_2916 crossref_primary_10_1146_annurev_marine_042023_093037 crossref_primary_10_3389_fevo_2021_700962 crossref_primary_10_1007_s10750_017_3150_2 crossref_primary_10_1111_1365_2745_13586 crossref_primary_10_1088_2515_7620_ab7a77 crossref_primary_10_1371_journal_pone_0119128 crossref_primary_10_1016_j_catena_2022_106205 crossref_primary_10_1111_gcb_14635 crossref_primary_10_1016_j_jag_2020_102285 crossref_primary_10_1371_journal_pone_0193617 crossref_primary_10_1016_j_ecochg_2022_100056 crossref_primary_10_1016_j_ecolind_2023_110063 crossref_primary_10_1061__ASCE_HE_1943_5584_0001260 crossref_primary_10_3389_fclim_2022_853666 crossref_primary_10_1007_s12237_023_01308_5 crossref_primary_10_1007_s10750_017_3449_z crossref_primary_10_1038_s41467_020_16236_2 crossref_primary_10_2166_wcc_2022_069 crossref_primary_10_3390_f14122375 crossref_primary_10_1126_sciadv_abo6602 crossref_primary_10_1007_s11356_023_28486_w crossref_primary_10_1007_s10530_023_03085_5 crossref_primary_10_1111_gcb_15516 crossref_primary_10_2139_ssrn_4157304 crossref_primary_10_1007_s13157_019_01218_y crossref_primary_10_1016_j_seares_2023_102368 crossref_primary_10_1016_j_jag_2021_102414 crossref_primary_10_1007_s40725_015_0018_4 crossref_primary_10_1111_1365_2745_13243 crossref_primary_10_1007_s11852_016_0486_0 crossref_primary_10_1007_s00442_018_4098_2 crossref_primary_10_1016_j_tree_2023_11_003 crossref_primary_10_1073_pnas_1812470116 crossref_primary_10_3390_rs13081450 crossref_primary_10_1016_j_jhydrol_2023_129665 crossref_primary_10_1016_j_marpolbul_2021_112864 crossref_primary_10_1002_rse2_394 crossref_primary_10_1093_nsr_nwaa296 crossref_primary_10_1016_j_ecss_2018_04_022 crossref_primary_10_1016_j_isci_2022_104755 crossref_primary_10_1111_sjtg_12357 crossref_primary_10_1111_1365_2745_14440 crossref_primary_10_1111_1365_2745_13350 crossref_primary_10_1016_j_catena_2022_106413 crossref_primary_10_1002_wat2_1495 crossref_primary_10_1111_jbi_12580 crossref_primary_10_1002_eap_2085 crossref_primary_10_1109_TGRS_2021_3051025 crossref_primary_10_1093_femsec_fiaa148 crossref_primary_10_1016_j_ecss_2020_106796 crossref_primary_10_1016_j_ocecoaman_2018_01_009 crossref_primary_10_1007_s11258_024_01453_2 crossref_primary_10_3390_s16122010 crossref_primary_10_1007_s11104_024_07130_7 crossref_primary_10_1016_j_ecocom_2016_11_005 crossref_primary_10_1002_gdj3_119 crossref_primary_10_1016_j_ecss_2024_108690 crossref_primary_10_1016_j_ecss_2018_10_005 crossref_primary_10_1016_j_gecco_2021_e01684 crossref_primary_10_1007_s13157_016_0810_3 crossref_primary_10_1016_j_ecss_2017_02_005 crossref_primary_10_1007_s12237_020_00736_x crossref_primary_10_1093_treephys_tpaa107 crossref_primary_10_1071_MF20125 crossref_primary_10_1016_j_scitotenv_2021_149328 crossref_primary_10_1080_10106049_2019_1624988 crossref_primary_10_1146_annurev_environ_101718_033302 crossref_primary_10_1371_journal_pbio_3001322 crossref_primary_10_1007_s11356_014_3568_2 crossref_primary_10_1007_s10933_022_00275_4 crossref_primary_10_1007_s10641_022_01333_6 crossref_primary_10_1111_ddi_13631 crossref_primary_10_1007_s11120_018_0570_4 crossref_primary_10_1016_j_sajb_2016_04_014 crossref_primary_10_1016_j_isci_2024_110473 crossref_primary_10_1007_s13157_018_1016_7 crossref_primary_10_1016_j_scitotenv_2024_177446 crossref_primary_10_1088_1755_1315_618_1_012021 crossref_primary_10_1111_1365_2745_13049 crossref_primary_10_1016_j_gecco_2024_e03048 crossref_primary_10_1111_1365_2745_13285 crossref_primary_10_1016_j_scitotenv_2025_178826 crossref_primary_10_1038_srep44071 crossref_primary_10_1111_ddi_13400 crossref_primary_10_3389_fmars_2023_1206776 crossref_primary_10_1007_s12237_023_01209_7 crossref_primary_10_1016_j_landurbplan_2018_09_022 crossref_primary_10_1016_j_ecss_2018_09_006 crossref_primary_10_26359_52462_0619 crossref_primary_10_1007_s12237_020_00879_x crossref_primary_10_1016_j_ecolmodel_2025_111089 crossref_primary_10_1111_1365_2745_13398 crossref_primary_10_1111_jvs_13267 crossref_primary_10_1111_jbi_13990 crossref_primary_10_1002_ecs2_4007 crossref_primary_10_1111_gcb_13158 crossref_primary_10_1007_s11273_020_09742_z crossref_primary_10_1016_j_isprsjprs_2021_01_003 crossref_primary_10_1007_s10668_024_04522_8 crossref_primary_10_1007_s11069_020_04454_2 crossref_primary_10_1016_j_ecss_2019_106299 crossref_primary_10_1016_j_chemosphere_2019_125152 crossref_primary_10_1371_journal_pone_0211638 crossref_primary_10_1007_s12237_020_00733_0 crossref_primary_10_1016_j_scitotenv_2023_167981 crossref_primary_10_20473_jipk_v11i1_10770 crossref_primary_10_3390_f13020192 crossref_primary_10_1038_s41559_023_02264_w crossref_primary_10_1002_ece3_9252 crossref_primary_10_1038_s41598_020_63880_1 crossref_primary_10_30852_sb_2017_70 crossref_primary_10_1126_sciadv_abm7826 crossref_primary_10_1016_j_ecss_2024_109116 crossref_primary_10_1016_j_ecss_2021_107553 crossref_primary_10_1007_s12237_021_00906_5 crossref_primary_10_1038_nclimate3203 crossref_primary_10_1111_1365_2745_14264 crossref_primary_10_1111_1365_2745_14020 crossref_primary_10_1007_s10750_018_3730_9 crossref_primary_10_1038_s41467_023_36477_1 crossref_primary_10_1016_j_ecolmodel_2020_109292 crossref_primary_10_1111_nph_12605 crossref_primary_10_1016_j_geomorph_2023_108607 crossref_primary_10_1016_j_jag_2022_102890 crossref_primary_10_1016_j_chemosphere_2020_126368 crossref_primary_10_1007_s12237_017_0208_3 crossref_primary_10_1098_rsbl_2018_0471 crossref_primary_10_1007_s10021_019_00411_8 crossref_primary_10_1016_j_ecolind_2019_105927 crossref_primary_10_1016_j_margeo_2019_105963 crossref_primary_10_1007_s12237_020_00830_0 crossref_primary_10_1016_j_geomorph_2018_06_018 crossref_primary_10_1029_2024EF004990 crossref_primary_10_1111_1365_2745_14296 crossref_primary_10_1111_jvs_12920 crossref_primary_10_2112_JCOASTRES_D_16_00013_1 crossref_primary_10_1007_s11160_021_09668_6 crossref_primary_10_1002_2016JG003510 crossref_primary_10_1111_gcb_14016 crossref_primary_10_1007_s13157_018_1067_9 crossref_primary_10_3389_fmars_2024_1389428 crossref_primary_10_1007_s00442_019_04563_1 crossref_primary_10_1007_s11104_025_07204_0 crossref_primary_10_1038_s41561_019_0435_2 crossref_primary_10_1038_s43017_021_00224_1 crossref_primary_10_1016_j_envadv_2023_100459 crossref_primary_10_1007_s11273_021_09803_x crossref_primary_10_1007_s10750_017_3225_0 crossref_primary_10_1111_brv_12514 crossref_primary_10_1111_gcb_14376 crossref_primary_10_1002_ecm_1248 crossref_primary_10_1126_science_abm9583 crossref_primary_10_1016_j_ecolmodel_2020_109245 crossref_primary_10_3390_f7060116 crossref_primary_10_1007_s11356_021_15450_9 crossref_primary_10_1016_j_jenvman_2023_119892 crossref_primary_10_1002_aqc_3146 crossref_primary_10_1088_1755_1315_695_1_012008 crossref_primary_10_1088_1748_9326_abc122 crossref_primary_10_1016_j_aquabot_2018_07_009 crossref_primary_10_1016_j_scitotenv_2019_04_122 crossref_primary_10_1007_s13364_021_00584_5 crossref_primary_10_1007_s11769_022_1260_x crossref_primary_10_1016_j_ecss_2021_107238 crossref_primary_10_3390_oceans5010006 crossref_primary_10_1080_10549811_2017_1339615 crossref_primary_10_1016_j_ecolind_2019_105972 crossref_primary_10_3354_meps13948 crossref_primary_10_1007_s12237_022_01162_x crossref_primary_10_1016_j_ecss_2020_107015 crossref_primary_10_1016_j_rsma_2021_101945 crossref_primary_10_1016_j_marpolbul_2023_115595 crossref_primary_10_1016_j_scitotenv_2023_167410 crossref_primary_10_1111_gcb_15642 crossref_primary_10_1016_j_tree_2019_04_004 crossref_primary_10_1007_s12237_015_9993_8 crossref_primary_10_3389_fcosc_2022_763325 crossref_primary_10_1016_j_jplph_2023_154023 crossref_primary_10_1007_s12237_018_00490_1 crossref_primary_10_1016_j_jnc_2024_126679 crossref_primary_10_1111_ddi_13119 crossref_primary_10_1007_s10113_024_02225_4 crossref_primary_10_1016_j_jembe_2025_152083 crossref_primary_10_1002_ecy_3107 crossref_primary_10_1007_s10750_017_3257_5 crossref_primary_10_1016_j_marenvres_2018_05_018 crossref_primary_10_1016_j_agrformet_2019_107644 crossref_primary_10_1016_j_ecss_2017_05_009 crossref_primary_10_3390_f13010064 crossref_primary_10_1111_gcb_14100 crossref_primary_10_1029_2019JF005200 crossref_primary_10_1007_s10021_020_00554_z crossref_primary_10_5194_bg_18_2527_2021 crossref_primary_10_1093_femsec_fiac139 crossref_primary_10_1016_j_jhydrol_2021_127401 crossref_primary_10_1111_geb_13720 crossref_primary_10_1111_jbi_12813 crossref_primary_10_1016_j_scitotenv_2024_172284 crossref_primary_10_1111_rec_13824 crossref_primary_10_1016_j_ecss_2020_107158 crossref_primary_10_1080_20964129_2020_1780159 crossref_primary_10_1016_j_ecss_2013_08_025 crossref_primary_10_1007_s41976_021_00055_0 crossref_primary_10_1111_ecog_07288 crossref_primary_10_1007_s13157_018_0994_9 crossref_primary_10_1002_ecs2_3674 crossref_primary_10_1111_geb_12751 crossref_primary_10_1002_aqc_3119 crossref_primary_10_1002_2017JG003775 crossref_primary_10_1016_j_rsma_2024_103681 crossref_primary_10_1007_s10750_022_04823_x crossref_primary_10_1002_ecs2_2207 crossref_primary_10_1016_j_aquabot_2016_06_006 crossref_primary_10_1111_emr_12572 crossref_primary_10_1186_s12862_015_0343_z crossref_primary_10_1007_s12237_019_00533_1 crossref_primary_10_1002_ecy_3320 crossref_primary_10_1111_ele_12429 crossref_primary_10_3390_quat5010002 crossref_primary_10_1016_j_plaphy_2018_09_019 crossref_primary_10_1186_s13717_016_0064_2 crossref_primary_10_1007_s11852_024_01061_2 crossref_primary_10_1002_ecs2_1366 crossref_primary_10_1016_j_sajb_2016_06_011 crossref_primary_10_1111_1365_2435_12443 crossref_primary_10_1038_s41598_018_19695_2 crossref_primary_10_1007_s11273_020_09735_y crossref_primary_10_3389_fpls_2018_01376 crossref_primary_10_1111_rec_13774 crossref_primary_10_1111_ddi_13380 crossref_primary_10_1111_gcb_15046 crossref_primary_10_1111_geb_12211 crossref_primary_10_1080_16583655_2021_1985871 crossref_primary_10_3390_plants13243471 crossref_primary_10_1007_s10750_017_3331_z crossref_primary_10_1016_j_scitotenv_2022_153313 crossref_primary_10_1007_s13157_015_0693_8 crossref_primary_10_1016_j_ecolmodel_2015_04_013 crossref_primary_10_1002_ecy_3309 crossref_primary_10_1016_j_earscirev_2023_104501 crossref_primary_10_2989_1814232X_2018_1466728 crossref_primary_10_1007_s10021_019_00441_2 crossref_primary_10_1111_cobi_13905 crossref_primary_10_1002_ecy_3662 crossref_primary_10_1002_rra_4177 crossref_primary_10_1007_s10661_018_6472_2 crossref_primary_10_1002_wcc_792 crossref_primary_10_1016_j_ecss_2018_06_002 crossref_primary_10_3390_rs14184664 crossref_primary_10_1016_j_ecss_2020_106940 crossref_primary_10_1038_s41467_020_18118_z crossref_primary_10_1111_1745_5871_12265 crossref_primary_10_1002_ece3_70577 crossref_primary_10_1007_s13157_016_0793_0 crossref_primary_10_1007_s13157_018_0996_7 crossref_primary_10_1016_j_scitotenv_2020_136576 crossref_primary_10_1038_s44183_024_00095_1 crossref_primary_10_1093_aob_mcz161 crossref_primary_10_1007_s10530_018_1821_1 crossref_primary_10_1016_j_scitotenv_2024_175962 crossref_primary_10_1002_pan3_10794 crossref_primary_10_1002_ece3_7263 crossref_primary_10_1007_s12237_019_00577_3 crossref_primary_10_1016_j_marenvres_2024_106485 crossref_primary_10_1007_s00227_020_03807_6 crossref_primary_10_1007_s11120_016_0278_2 crossref_primary_10_1007_s10531_023_02708_6 crossref_primary_10_1071_MF15159 crossref_primary_10_1016_j_ecss_2016_02_008 crossref_primary_10_1007_s10750_017_3179_2 crossref_primary_10_34133_ehs_0033 crossref_primary_10_1016_j_ecss_2018_06_026 crossref_primary_10_3389_fmars_2022_781876 crossref_primary_10_1111_gcb_15494 crossref_primary_10_1016_j_aquabot_2014_10_010 crossref_primary_10_1088_1755_1315_913_1_012047 crossref_primary_10_2989_1814232X_2019_1683070 crossref_primary_10_1007_s11273_016_9515_x crossref_primary_10_1186_s40645_020_00387_3 crossref_primary_10_1007_s12237_025_01482_8 crossref_primary_10_5194_bg_12_6169_2015 crossref_primary_10_1002_ehs2_1211 crossref_primary_10_1016_j_rse_2021_112799 crossref_primary_10_1002_lno_12655 crossref_primary_10_3389_fmars_2022_860910 crossref_primary_10_1007_s11104_018_3807_2 crossref_primary_10_1016_j_ocecoaman_2021_105645 crossref_primary_10_3389_fmars_2020_00453 crossref_primary_10_1016_j_foreco_2016_04_044 crossref_primary_10_1016_j_ecss_2018_05_001 crossref_primary_10_1016_j_ecss_2014_07_009 crossref_primary_10_1016_j_ecss_2013_12_032 crossref_primary_10_4028_www_scientific_net_AMR_1073_1076_535 crossref_primary_10_3354_meps13893 crossref_primary_10_1016_j_jhazmat_2021_126252 crossref_primary_10_1016_j_oneear_2020_07_010 crossref_primary_10_1029_2020EF001901 crossref_primary_10_1111_ppl_12289 crossref_primary_10_1007_s10750_017_3409_7 crossref_primary_10_1038_ncomms16094 crossref_primary_10_1071_MF16322 crossref_primary_10_1007_s40641_015_0002_x crossref_primary_10_1016_j_sajb_2019_11_005 crossref_primary_10_1080_00288330_2020_1738505 crossref_primary_10_3389_fmars_2024_1459935 crossref_primary_10_1002_ecy_1698 crossref_primary_10_1007_s12237_024_01389_w crossref_primary_10_1016_j_chemosphere_2022_133555 crossref_primary_10_3354_meps11581 crossref_primary_10_1007_s12237_020_00894_y crossref_primary_10_1890_15_1077 crossref_primary_10_1111_gcb_13084 crossref_primary_10_1038_s43017_023_00429_6 crossref_primary_10_1111_gcb_16111 crossref_primary_10_1016_j_ecss_2020_106754 crossref_primary_10_1371_journal_pone_0234083 crossref_primary_10_1038_s41586_023_06448_z crossref_primary_10_1016_j_ecss_2020_106877 crossref_primary_10_1007_s10750_019_04170_4 crossref_primary_10_1111_1365_2745_12539 crossref_primary_10_3389_fenvs_2022_951365 crossref_primary_10_1016_j_margeo_2017_07_001 crossref_primary_10_5194_hess_25_769_2021 crossref_primary_10_1007_s10980_020_01176_5 crossref_primary_10_1371_journal_pone_0125404 crossref_primary_10_1016_j_ecolind_2020_106489 crossref_primary_10_1371_journal_pone_0150950 crossref_primary_10_1088_1755_1315_1190_1_012004 crossref_primary_10_1016_j_ecss_2020_106749 crossref_primary_10_1111_nph_13147 crossref_primary_10_1073_pnas_1902181116 crossref_primary_10_1177_0959683619875801 crossref_primary_10_1016_j_ecss_2020_106884 crossref_primary_10_1002_ecs2_1865 crossref_primary_10_1111_gcb_13945 crossref_primary_10_1016_j_geomorph_2021_107968 crossref_primary_10_1016_j_ecss_2020_106767 crossref_primary_10_1016_j_ancene_2021_100295 crossref_primary_10_3389_fcosc_2021_746461 crossref_primary_10_1016_j_landurbplan_2024_105203 crossref_primary_10_1016_j_sajb_2016_08_001 crossref_primary_10_1371_journal_pone_0229605 crossref_primary_10_1111_rec_13373 crossref_primary_10_1007_s10980_021_01314_7 crossref_primary_10_1016_j_catena_2020_104775 crossref_primary_10_1038_s41586_022_05355_z crossref_primary_10_1016_j_ecss_2020_106776 crossref_primary_10_20961_ijed_v3i1_1207 crossref_primary_10_1016_j_quascirev_2024_108855 crossref_primary_10_1016_j_ecss_2020_106650 crossref_primary_10_1111_1365_2745_12799 crossref_primary_10_1007_s12237_017_0211_8 crossref_primary_10_3390_d11110208 crossref_primary_10_1016_j_marpolbul_2021_112690 crossref_primary_10_1016_j_jembe_2020_151336 crossref_primary_10_1007_s10021_019_00408_3 crossref_primary_10_1111_geb_13368 crossref_primary_10_1016_j_marpolbul_2021_112223 crossref_primary_10_1002_ecy_2505 crossref_primary_10_1007_s10661_017_6399_z crossref_primary_10_1016_j_gecco_2016_07_005 crossref_primary_10_3389_ffgc_2022_852910 crossref_primary_10_1111_gcb_13727 crossref_primary_10_1890_ES15_00042_1 crossref_primary_10_1002_ecy_1539 crossref_primary_10_1007_s13157_021_01440_7 crossref_primary_10_1016_j_ecss_2018_10_011 crossref_primary_10_1016_j_foreco_2020_118517 crossref_primary_10_1007_s13157_021_01463_0 crossref_primary_10_2988_0006_324X_129_Q2_164 crossref_primary_10_1080_00288330_2023_2298913 crossref_primary_10_1007_s10750_020_04403_x crossref_primary_10_1016_j_ecss_2020_106712 crossref_primary_10_17129_botsci_3322 crossref_primary_10_1002_ecs2_1956 crossref_primary_10_1016_j_marpolbul_2021_112475 crossref_primary_10_1002_2014JG002870 crossref_primary_10_1590_0001_3765201520150055 crossref_primary_10_1002_ecy_1625 crossref_primary_10_1007_s11104_018_3611_z crossref_primary_10_3390_f9100596 crossref_primary_10_1002_lno_11936 crossref_primary_10_1656_058_013_0405 crossref_primary_10_1016_j_sajb_2015_05_003 crossref_primary_10_1111_1365_2745_12571 crossref_primary_10_1038_nature15538 crossref_primary_10_1088_2752_5295_ad9f90 crossref_primary_10_3389_fmars_2016_00150 crossref_primary_10_1007_s10750_017_3175_6 crossref_primary_10_1016_j_catena_2023_107459 crossref_primary_10_1016_j_ecss_2020_106828 crossref_primary_10_1016_j_advwatres_2018_02_006 crossref_primary_10_1016_j_jembe_2021_151618 crossref_primary_10_1071_MF18321 crossref_primary_10_21829_myb_2024_3042623 crossref_primary_10_3390_f14020421 crossref_primary_10_1016_j_geomorph_2021_107648 crossref_primary_10_1016_j_marpolbul_2022_113674 crossref_primary_10_1038_s41559_023_02247_x crossref_primary_10_1029_2024JF007676 crossref_primary_10_1016_j_scitotenv_2022_160483 crossref_primary_10_1098_rsos_230155 crossref_primary_10_3354_meps12176 crossref_primary_10_1016_j_ecss_2020_106719 crossref_primary_10_1038_s41558_022_01391_9 crossref_primary_10_1016_j_rsma_2025_104133 crossref_primary_10_1029_2019GB006334 crossref_primary_10_1111_gcb_12843 crossref_primary_10_1016_j_ecss_2020_106733 crossref_primary_10_1111_aec_13583 crossref_primary_10_1088_1748_9326_ab246e crossref_primary_10_1016_j_soilbio_2024_109607 crossref_primary_10_1016_j_sajb_2015_11_002 crossref_primary_10_1007_s10021_016_9972_3 crossref_primary_10_1016_j_ocecoaman_2016_09_024 crossref_primary_10_1007_s10750_017_3197_0 crossref_primary_10_1016_j_marpolbul_2024_116058 crossref_primary_10_1029_2022EF003202 crossref_primary_10_3390_rs13142732 crossref_primary_10_1016_j_ecss_2020_106621 crossref_primary_10_1007_s12237_023_01267_x crossref_primary_10_1016_j_ecss_2020_106862 crossref_primary_10_1071_MF17015 crossref_primary_10_1111_mec_15365 crossref_primary_10_3389_fevo_2022_908557 crossref_primary_10_1016_j_gloplacha_2022_103902 crossref_primary_10_1002_ecy_1979 crossref_primary_10_1080_21580103_2023_2220576 crossref_primary_10_1371_journal_pone_0099604 crossref_primary_10_3389_fpls_2014_00503 crossref_primary_10_1016_j_geomorph_2021_107860 |
Cites_doi | 10.1038/21181 10.1111/j.1466-882X.2004.00075.x 10.1023/A:1009919816903 10.2307/2388899 10.1023/A:1009923917812 10.1016/j.aquabot.2007.12.014 10.1016/j.ecoleng.2009.05.008 10.2307/2257502 10.1007/s00468-001-0142-6 10.1038/ngeo1123 10.1016/j.chnaes.2009.09.017 10.1002/eco.1353/abstract 10.4996/fireecology.0901066 10.5194/bgd-10-895-2013 10.2307/1351590 10.1016/j.ecss.2009.06.006 10.1007/978-94-007-4494-3_2 10.2989/18142320309504007 10.1177/030913339001400404 10.1111/j.1745-5871.2006.00360.x 10.5962/bhl.title.7602 10.1029/2002GB001917 10.1007/s11273-010-9199-6 10.2307/4003730 10.1111/j.1654-1103.2010.01232.x 10.1046/j.1466-822X.1999.00126.x 10.1590/S1679-87592007000200004 10.1007/BF02344528 10.1007/s10113-010-0109-5 10.1016/j.ecss.2005.11.004 10.1016/j.ecss.2012.12.007 10.1111/j.1365-2486.2007.01512.x 10.1046/j.1354-1013.2001.00467.x 10.1016/j.aquabot.2007.12.007 10.1111/j.1469-8137.2006.01938.x 10.1038/20335 10.1016/j.ecss.2012.02.018 10.2307/1936046 10.31646/wa.79 10.1111/j.1600-0587.2009.05957.x 10.1016/B978-0-12-586450-3.50008-1 10.1016/j.ecss.2007.08.024 10.1016/S0378-1127(97)00054-6 10.1016/S0272-7714(02)00208-1 10.1007/BF00029113 10.1016/S0022-4618(16)30176-0 10.2307/2845685 10.1007/BF03160845 10.1672/08-100.1 10.1111/j.1442-9993.1985.tb00874.x 10.1007/s11852-011-0153-4 10.1201/EBK1439821169-c2 10.1007/BF00039767 10.1890/05-1935 10.1111/j.1469-185X.2011.00198.x 10.1007/s00468-012-0760-1 10.2307/3236781 10.1007/BF02696066 10.1007/BF00539820 10.1017/CBO9780511525490.006 10.1007/s00442-007-0750-y 10.1641/0006-3568(2001)051[0807:MFOOTW]2.0.CO;2 10.1111/gcb.12221 10.3133/pp92 10.2307/3671923 10.1007/s12237-010-9358-2 10.1146/annurev.ecolsys.28.1.517 10.1007/BF00328964 10.1038/416389a 10.1016/j.ecoleng.2008.01.007 10.2112/JCOASTRES-D-11-00028.1 10.1371/journal.pone.0002502 10.1111/j.1466-8238.2007.00317.x 10.1007/s10531-013-0478-4 10.1111/j.1442-9993.1993.tb00458.x 10.1002/(SICI)1099-1417(199908)14:5<465::AID-JQS473>3.0.CO;2-E 10.1016/S0254-6299(15)31160-1 10.1016/j.jenvman.2009.04.023 10.1007/s11273-005-5165-0 10.1016/0031-0182(90)90210-X 10.1046/j.0022-0477.2001.00584.x 10.1111/j.1365-2486.2008.01547.x 10.1111/gcb.12126 10.1016/j.aquabot.2007.12.009 10.1139/b82-330 10.1016/j.ecss.2011.10.003 10.2307/1943020 10.1007/BF00114718 10.2112/08-1043.1 10.1111/j.1466-8238.1998.00269.x 10.1038/35079180 10.1038/nature01286 10.1007/s11273-006-0006-3 10.1046/j.1365-2699.1999.00133.x 10.1007/s10584-010-0003-7 10.1111/j.1442-9993.2009.02001.x 10.1080/03014223.1994.9517466 10.1016/j.cosust.2012.03.005 10.5194/bgd-10-2591-2013 10.1007/s10750-012-1159-0 10.1016/j.ecss.2009.08.011 10.1007/BF00029109 10.1007/978-94-017-0914-9_6 10.1023/A:1011148522181 10.1016/j.aquabot.2012.03.011 |
ContentType | Journal Article |
Copyright | 2013 John Wiley & Sons Ltd 2015 INIST-CNRS 2013 John Wiley & Sons Ltd. Copyright © 2014 John Wiley & Sons Ltd |
Copyright_xml | – notice: 2013 John Wiley & Sons Ltd – notice: 2015 INIST-CNRS – notice: 2013 John Wiley & Sons Ltd. – notice: Copyright © 2014 John Wiley & Sons Ltd |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7X8 7ST 7TN 7U6 H95 SOI |
DOI | 10.1111/gcb.12341 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic Environment Abstracts Oceanic Abstracts Sustainability Science Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic Oceanic Abstracts Sustainability Science Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Environmental Sciences |
EISSN | 1365-2486 |
EndPage | 157 |
ExternalDocumentID | 3149969721 23907934 28313674 10_1111_gcb_12341 GCB12341 ark_67375_WNG_6LGPCFRV_2 |
Genre | article Journal Article Feature |
GeographicLocations | South America United States Southern Africa Africa America South Africa Australia North America Oceania PSE, Australia, New South Wales USA, Atlantic Coast ISE, Mexico ISEW, China, People's Rep., Guangdong Prov ISE, Peru |
GeographicLocations_xml | – name: South Africa – name: USA, Atlantic Coast – name: PSE, Australia, New South Wales – name: ISE, Mexico – name: ISE, Peru – name: ISEW, China, People's Rep., Guangdong Prov |
GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION IQODW AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7X8 7ST 7TN 7U6 H95 SOI |
ID | FETCH-LOGICAL-c4541-378eeb958090d1086bf6fa5a69e99b57fbe95bb1c9a582052924b83f7c7a92ce3 |
IEDL.DBID | DR2 |
ISSN | 1354-1013 1365-2486 |
IngestDate | Fri Jul 11 04:06:30 EDT 2025 Thu Jul 10 20:06:55 EDT 2025 Fri Jul 25 10:49:50 EDT 2025 Mon Jul 21 05:56:11 EDT 2025 Wed Apr 02 07:35:51 EDT 2025 Tue Jul 01 03:52:50 EDT 2025 Thu Apr 24 22:50:36 EDT 2025 Wed Jan 22 16:19:15 EST 2025 Wed Oct 30 09:50:00 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | South America Brackish water environment Temperature USA range expansion Environmental factor Dynamical climatology Climate change Salt marsh Mangrove South Africa Australia Expansion temperature mangrove climate change salt marsh |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 2013 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4541-378eeb958090d1086bf6fa5a69e99b57fbe95bb1c9a582052924b83f7c7a92ce3 |
Notes | istex:73E43F0837C415F442DF8B8570D3D7ABBE727015 ArticleID:GCB12341 ark:/67375/WNG-6LGPCFRV-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 23907934 |
PQID | 1466024117 |
PQPubID | 30327 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1492616687 proquest_miscellaneous_1467065041 proquest_journals_1466024117 pubmed_primary_23907934 pascalfrancis_primary_28313674 crossref_citationtrail_10_1111_gcb_12341 crossref_primary_10_1111_gcb_12341 wiley_primary_10_1111_gcb_12341_GCB12341 istex_primary_ark_67375_WNG_6LGPCFRV_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-01 January 2014 2014-01-00 2014 2014-Jan 20140101 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 01 year: 2014 text: 2014-01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: England |
PublicationTitle | Global change biology |
PublicationTitleAlternate | Glob Change Biol |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Wiley-Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley-Blackwell |
References | Gee CT (2001) The mangrove palm Nypa in the geologic past of the New World. Wetlands Ecology and Management, 9, 181-194. Tutiemp (2012) Climate East London. Available at: http://www.tutiempo.net/en/Climate/East_London/688580.htm (accessed 7 November 2012 Spalding M (2012). World Atlas of Mangroves. Earthscan, New York. López-Medellín X, Ezcurra E, González-Abraham C, Hak J, Santiago LS, Sickman JO (2011) Oceanographic anomalies and sea-level rise drive mangroves inland in the Pacific coast of Mexico. Journal of Vegetation Science, 22, 143-151. Egler FE (1952) Southeast saline Everglades vegetation, Florida, and its management. Vegetatio, 3, 213-265. Wilton K, Saintilan N (2000). Protocols for Mangrove and Saltmarsh Habitat Mapping. Estuaries Branch, NSW Department of Land and Water Conservation, Sydney. Kangas PC, Lugo AE (1990) The distribution of mangroves and saltmarshes in Florida. Tropical Ecology, 31, 32-39. Walther GR, Post E, Convey P et al. (2002) Ecological responses to recent climate change. Nature, 416, 389-395. Markley JL, McMillan C, Thompson GA Jr (1982) Latitudinal differentiation in response to chilling temperatures among populations of three mangroves, Avicennia germinans, Laguncularia racemosa, and Rhizophora mangle, from the western tropical Atlantic and Pacific Panama. Canadian Journal of Botany, 60, 2704-2715. Osland MJ, Enwright N, Day RH, Doyle TW (2013) Winter climate change and coastal wetland foundation species: salt marshes versus mangrove forests in the southeastern United States. Global Change Biology, 19, 1482-1494. Quisthoudt K, Adams J, Rajkaran A, Dahdouh-Geubas F, Koedam N, Randin CF (2013) Disentangling the effects of global climate and regional land-use on the current and future distribution of mangroves in South Africa. Biodiversity Conservation, 22, 1369-1390. Clarke PJ, Kerrigan RA, Wetphal CJ (2001) Dispersal potential and early growth in 14 tropical mangroves: do early life history traints correlate with patterns of adult distribution? Journal of Ecology, 89, 648-659. Sturm M, Racine C, Tape K (2001) Increasing shrub abundance in the Arctic. Nature, 411, 546-547. Snedaker S (1995) Mangroves and climate change in the Florida and Caribbean region: scenarios and hypotheses. Hydrobiologia, 295, 43-49. Solomon S, Qin D, Manning M et al. (eds.) (2007) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Westgate JW, Gee CT (1990) Paleoecology of a middle Eocene mangrove biota (vertebrates, plants, and invertebrates) from southwest Texas. Palaeogeography, Palaeoclimatology, Palaeoecology, 78, 163-177. Bedin T (2001) The progression of a mangrove forest over a newly formed delta in the Umhlatuze Estuary, South Africa. South African Journal of Botany, 67, 433-438. Breen CM, Hill BJ (1966) A mass mortality of mangroves in the Kosi estuary. Transactions of the Royal Society of South Africa, 41, 285-301. Lugo AE, Patterson Zucca C (1977) The impact of low temperature stress on mangrove structure and growth. Tropical Ecology, 18, 149-161. Willner W, Di Pietro R, Bergmeier E (2009) Phytogeographical evidence for post-glacial dispersal limitation of European beech forest species. Ecography, 32, 1011-1018. de Lange WP, de Lange PJ (1994) An appraisal of factors controlling the latitudinal distribution of mangrove (Avicennia marina var. resinifera) in New Zealand. Journal of Coastal Research, 10, 539-548. Woodroffe CD (1990) The Impact of sea-Level Rise on Mangrove Shorelines. Turpin, Letchworth, ROYAUME-UNI. Parmesan C, Ryrholm N, Stefanescu C et al. (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature, 399, 579-583. Van der Stocken T, DeRyck DJR, Balke T, Bouma TJ, Dahdouh-Guebas F, Koedam N (2013) The role of wind in hydrochorous mangrove propagule dispersal. Biogeosciences, 10, 895-925. Schaeffer-Novelli Y, Cintron-Molero G, Adaime RR, de Camargo TM (1990) Variability of mangrove ecosystems along the Brazilian Coast. Estuaries, 13, 204-218. Berry EW (1924) The Middle and Upper Eocene Floras of Southeastern North America. Professional Paper 92, US Geological Survey, Washington, DC, USA. Polley HW, Mayeux HS, Johnson HB, Tischler CR (1997) Viewpoint: atmospheric CO2, soil water and shrub/grass rations on rangelands. Journal of Range Management, 50, 278-284. Wilson NC, Saintilan N (2012) Growth of the mangrove species Rhizophora stylosa Griff. at its southern latitudinal limit in eastern Australia. Aquatic Botany, 101, 8-17. Rogers K, Wilton KM, Saintilan N (2006) Vegetation change and surface elevation dynamics in estuarine wetlands of southeast Australia. Estuarine, Coastal and Shelf Science, 66, 559-569. Clarke PJ, Allaway W (1993) The regeneration niche of the grey mangrove Avicennia marina - effects of salinity, light and sediment factors on establishment, growth and survival in the field. Oecologia, 93, 548-556. Patterson CS, Mendelssohn IA (1991) A comparison of physicochemical variables across plant zones in a mangal/salt marsh community in Louisiana. Wetlands, 11, 139-161. Burns BR, Ogden J (1985) The demography of the temperate mangrove [Avicennia marina (Forsk.) Vierh.] at its southern limit in New Zealand. Australian Journal of Ecology, 10, 125-133. Steinke TD, Ward CJ (2003) Use of plastic drift cards as indicators of possible dispersal of propagules of the mangrove Avicennia marina by ocean currents. Africal Journal of Marine Science, 25, 169-176. Siegle E, Asp NE (2007) Wave refraction and longshore transport patterns along the southern Santa Catarina coast. Brazilian Journal of Oceanography, 55, 109-120. Duke NC, Ball MC, Ellison JC (1998) Factors influencing biodiversity and distributional gradients in mangroves. Global Ecology and Biogeography Letters, 7, 27-47. Sherrod CL, McMillan C (1981) Black mangrove, Avicennia germinans, in Texas: Past and present distribution. Contributions in Marine Science, 24, 115-131. Penfound WT, Hathaway ES (1938) Plant communities in the marshlands of southeastern Louisiana. Ecological Monographs, 8, 1-56. Ward CJ, Steinke TD (1982) A note on the distribution and approximate areas of mangroves in South Africa. South African Journal of Botany, 3, 51-53. Friess DA, Krauss KW, Horstman EM, Balke T, Bouma TJ, Galli D, Webb EL (2012) Are all intertidal wetlands naturally created equal? Bottlenecks, thresholds and knowledge gaps to mangrove and saltmarsh ecosystems. Biological Reviews, 87, 346-366. Hopkinson CS, Caiíguez WJ, Hu X (2012) Carbon sequestration in wetland dominated coastal systems-a global sink of rapidly diminishing magnitude. Current Opinion in Environmental Sustainability, 4, 186-194. Macnae W (1963) Mangroves swamps in South Africa. Journal of Ecology, 51, 1-25. McKee KL, Mendelssohn IA, Materne M (2004) Acute salt marsh dieback in the Mississippi River deltaic plain: a drought-induced phenomenon? Global Ecology and Biogeography, 13, 65-73. Comeaux RS, Allison MA, Bianchi TS (2012) Mangrove expansion in the Gulf of Mexico with climate change: implications for wetland health and resistance to rising sea levels. Estuarine, Coastal and Shelf Science, 96, 81-95. Thomas CD, Lennon JJ (1999) Birds extend their ranges northwards. Nature, 399, 213. Wakushima S, Kuraishi S, Sakurai N (1994) Soil salinity and pH in Japanese mangrove forests and growth of cultivated mangrove plants in different soil conditions. Journal of Plant Research, 107, 39-46. Smith TJ III, Foster AM, Tiling-Range G, Jones JW (2013) Dynamics of mangrove-marsh ecotones in subtropical coastal wetlands: Fire, sea-level rise, and water levels. Fire Ecology, 9, 66-77. Alleman LK, Hester MW (2011) Refinement of the fundamental niche of black mangrove (Avicennia germinans) seedlings in Louisiana: Applications for restoration. Wetlands Ecology and Management, 19, 47-60. Michot TC, Day RH, Wells CJ (2010) Increase in black mangrove abundance in coastal Louisiana. Louisiana Natural Resources News, Newsletter of the Louisiana Association of Professional Biologists, January, 4-5. Lee T-M, Yeh H-C (2009) Applying remote sensing techniques to monitor shifting wetland vegetation: a case study of Danshui River estuary mangrove communities Taiwan. Ecological Engineering, 35, 487-496. Ellison AM, Farnsworth EJ, Merkt RE (1999) Origins of mangrove ecosystems and the mangrove biodiversity anomaly. Global Ecology and Biogeography, 8, 95-115. Van Auken OW (2009) Causes and consequences of woody plant encroachment into western North American grasslands. Journal of Environmental Management, 90, 2931-2942. Li MS, Lee SY (1997) Mangroves of China: a brief review. Forest Ecology and Management, 96, 241-259. Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 4, 293-297. Perry C, Mendelssohn I (2009) Ecosystem effects of expanding populations of Avicennia germinans in a Louisiana salt marsh. Wetlands, 29, 396-406. Clüsener M, Breckle SW (1987) Reasons for the limitation of mangrove along the west coast of northern Peru. Vegetatio, 68, 173-177. Lovelock CE, Feller IC, Ellis J, Schwarz AM, Hancock N, Nichols P, Sorrell B (2007) Mangrove growth in New Zealand estuaries: The role of nutrient enrichment at sites with contrasting rates of sedimentation. Oecologia, 153, 633-641. Stevens PW, Fox SL, Montague CL (2006) The interplay between mangroves and saltmarshes at the transition between temperate and subtropical climate in Florida. Wetlands Ecology and Management, 14, 435-444. Alongi DM (2008) Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuarine, Coastal and Shelf Science, 76, 1-13. Scholes RJ, Archer SR (1997) Tree-grass interactions in savannas. Annual Review of Ecology and Systematics, 28, 517-544. Berry EW (1916) The Lower Eocene Floras of Southeastern North America. Professional Paper 91, US Geologi 2002; 16 2010; 11 1985; 28 1991; 18 2009; 85 2009; 84 2010; 18 1991; 11 1974 1997; 1 2007; 77 2012; 96 2013; 9 2003; 56 1997; 50 2010; 26 1990 2013; 119 1995; 27 1982; 60 2007; 173 2000; 11 2009; 90 1983 2012; 26 1985; 10 2001; 51 1998; 11 2001; 411 1990; 31 2012; 101 2002; 8 1997 1981; 24 1997; 28 1995 1992 2002; 416 2011; 4 1916 1996; 12 2007; 16 1999 1987; 68 2010; 48 1963; 51 2006; 44 1977; 18 2007; 153 2003; 25 1986; 29 1998; 7 1924 1994; 10 1993; 9 1990; 13 2000; 6 2013; 22 1986; 30 1983; 53 1994; 24 2008; 76 2003; 17 2011; 15 2008; 3 2001; 89 2011; 19 2008; 2007 1995; 295 2005; 28 2013; 19 1971; 52 2013; 10 2000 1997; 96 2006; 66 1982; 3 1999; 14 2011; 22 2011; 27 1994; 107 1990; 78 1991; 36 2013; 708 2012 1985; 4 2010 2006; 14 2008; 14 2009 2007 2006 2004 2011; 34 1999; 8 1938; 8 2001; 67 2007; 55 2009; 29 2009; 34 2009; 35 1993; 18 2009; 32 2011; 106 1993; 93 2004; 12 2001; 9 2004; 13 1988; 7 1952; 3 2008; 89 1999; 399 2013 2012; 4 2003; 421 1966; 41 2012; 87 e_1_2_6_114_1 e_1_2_6_137_1 e_1_2_6_53_1 e_1_2_6_76_1 Kangas PC (e_1_2_6_43_1) 1990; 31 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_91_1 e_1_2_6_133_1 Saintilan N (e_1_2_6_95_1) 2009 Li Y (e_1_2_6_52_1) 1998; 11 e_1_2_6_19_1 e_1_2_6_34_1 e_1_2_6_15_1 e_1_2_6_38_1 Lange WP (e_1_2_6_48_1) 1994; 10 e_1_2_6_99_1 e_1_2_6_125_1 e_1_2_6_87_1 e_1_2_6_106_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 e_1_2_6_121_1 e_1_2_6_9_1 Tutiemp (e_1_2_6_120_1) 2012 Woodroffe CD (e_1_2_6_136_1) 1990 e_1_2_6_5_1 Berry EW (e_1_2_6_8_1) 1924 e_1_2_6_49_1 e_1_2_6_22_1 Steinke TD (e_1_2_6_110_1) 1986; 30 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_96_1 e_1_2_6_117_1 e_1_2_6_31_1 Spalding M (e_1_2_6_109_1) 2012 e_1_2_6_50_1 e_1_2_6_92_1 e_1_2_6_132_1 e_1_2_6_113_1 e_1_2_6_35_1 e_1_2_6_12_1 Everitt JH (e_1_2_6_27_1) 1996; 12 e_1_2_6_39_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_58_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_105_1 e_1_2_6_128_1 Wilton K (e_1_2_6_135_1) 2000 Swales A (e_1_2_6_118_1) 2007 e_1_2_6_80_1 Sherrod CL (e_1_2_6_102_1) 1986; 29 e_1_2_6_61_1 Sherrod CL (e_1_2_6_100_1) 1981; 24 e_1_2_6_124_1 e_1_2_6_6_1 Montague CL (e_1_2_6_70_1) 1997 e_1_2_6_2_1 e_1_2_6_88_1 e_1_2_6_46_1 e_1_2_6_69_1 Patterson CS (e_1_2_6_79_1) 1993; 9 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_97_1 e_1_2_6_116_1 McLoughlin L (e_1_2_6_65_1) 2000; 6 e_1_2_6_32_1 e_1_2_6_93_1 e_1_2_6_131_1 Lugo AE (e_1_2_6_57_1) 1977; 18 Sherrod CL (e_1_2_6_101_1) 1985; 28 e_1_2_6_112_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 Straw P (e_1_2_6_115_1) 2006 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_62_1 e_1_2_6_85_1 e_1_2_6_104_1 e_1_2_6_127_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_108_1 e_1_2_6_123_1 McMillan C (e_1_2_6_67_1) 1986; 29 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_3_1 Eamus D (e_1_2_6_23_1) 2008; 2007 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 Saintilan N (e_1_2_6_94_1) 2010 e_1_2_6_47_1 e_1_2_6_98_1 McLoughlin L (e_1_2_6_64_1) 1988; 7 e_1_2_6_75_1 e_1_2_6_138_1 e_1_2_6_10_1 e_1_2_6_119_1 Harris LD (e_1_2_6_37_1) 1992 e_1_2_6_71_1 e_1_2_6_90_1 e_1_2_6_130_1 e_1_2_6_111_1 West RJ (e_1_2_6_129_1) 1985; 4 e_1_2_6_134_1 Michot TC (e_1_2_6_68_1) 2010 e_1_2_6_14_1 Hoekstra JM (e_1_2_6_40_1) 2010 e_1_2_6_33_1 Solomon S (e_1_2_6_107_1) 2007 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_103_1 e_1_2_6_126_1 e_1_2_6_63_1 e_1_2_6_86_1 e_1_2_6_21_1 Breen CM (e_1_2_6_11_1) 1966; 41 e_1_2_6_82_1 e_1_2_6_122_1 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_29_1 e_1_2_6_44_1 |
References_xml | – reference: McLoughlin L (1988) Mangroves and grass swamps: changes in the shoreline vegetation of the Middle Lane Cover River, Sydney, 1780's-1880's. Wetlands (Australia), 7, 13-24. – reference: López-Medellín X, Ezcurra E, González-Abraham C, Hak J, Santiago LS, Sickman JO (2011) Oceanographic anomalies and sea-level rise drive mangroves inland in the Pacific coast of Mexico. Journal of Vegetation Science, 22, 143-151. – reference: Clüsener M, Breckle SW (1987) Reasons for the limitation of mangrove along the west coast of northern Peru. Vegetatio, 68, 173-177. – reference: Solomon S, Qin D, Manning M et al. (eds.) (2007) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. – reference: Clarke PJ, Kerrigan RA, Wetphal CJ (2001) Dispersal potential and early growth in 14 tropical mangroves: do early life history traints correlate with patterns of adult distribution? Journal of Ecology, 89, 648-659. – reference: Kangas PC, Lugo AE (1990) The distribution of mangroves and saltmarshes in Florida. Tropical Ecology, 31, 32-39. – reference: Steinke TD (1986) Mangroves of the East London area. The Naturalist, 30, 50-53. – reference: Breen CM, Hill BJ (1966) A mass mortality of mangroves in the Kosi estuary. Transactions of the Royal Society of South Africa, 41, 285-301. – reference: Krauss KW, From AS, Doyle TW, Doyle TJ, Barry MJ (2011) Sea-level rise and landscape change influence mangrove encroachment onto marsh in the Ten Thousand Inslands region of Florida, USA. Journal of Coastal Conservation, 15, 629-638. – reference: Sturm M, Racine C, Tape K (2001) Increasing shrub abundance in the Arctic. Nature, 411, 546-547. – reference: Mildenhall DC (1994) Early to Mid Holocene pollen samples containing mangrove pollen from Sponge Bay, East Coast, North Island, New Zealand. Journal of the Royal Society of New Zealand, 24, 219-230. – reference: Duke NC, Ball MC, Ellison JC (1998) Factors influencing biodiversity and distributional gradients in mangroves. Global Ecology and Biogeography Letters, 7, 27-47. – reference: Guo H, Zhang Y, Lan Z, Pennings SC (2013) Biotic interactions mediate the expansion of black mangrove (Avicennia germinans) into salt marshes under climate change. Global Change Biology, 19, 2765-2774. – reference: Macnae W (1963) Mangroves swamps in South Africa. Journal of Ecology, 51, 1-25. – reference: Snedaker S (1995) Mangroves and climate change in the Florida and Caribbean region: scenarios and hypotheses. Hydrobiologia, 295, 43-49. – reference: Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 4, 293-297. – reference: Tutiemp (2012) Climate East London. Available at: http://www.tutiempo.net/en/Climate/East_London/688580.htm (accessed 7 November 2012 – reference: West RJ, Thorogood C, Walford T, Williams RJ (1985) Mangrove distribution in New South Wales. Wetlands (Australia), 4, 2-6. – reference: Morrisey DJ, Swales A, Dittman S, Morrison MA, Lovelock CE, Beard CM (2010) The ecology and management of temperate mangroves. Oceanography and Marine Biology: An Annual Review, 48, 43-160. – reference: Stevens PW, Fox SL, Montague CL (2006) The interplay between mangroves and saltmarshes at the transition between temperate and subtropical climate in Florida. Wetlands Ecology and Management, 14, 435-444. – reference: Lee T-M, Yeh H-C (2009) Applying remote sensing techniques to monitor shifting wetland vegetation: a case study of Danshui River estuary mangrove communities Taiwan. Ecological Engineering, 35, 487-496. – reference: Comeaux RS, Allison MA, Bianchi TS (2012) Mangrove expansion in the Gulf of Mexico with climate change: implications for wetland health and resistance to rising sea levels. Estuarine, Coastal and Shelf Science, 96, 81-95. – reference: Schaeffer-Novelli Y, Cintron-Molero G, Adaime RR, de Camargo TM (1990) Variability of mangrove ecosystems along the Brazilian Coast. Estuaries, 13, 204-218. – reference: Parmesan C, Ryrholm N, Stefanescu C et al. (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature, 399, 579-583. – reference: Peng Y, Chen G, Tian G, Yang X (2009) Niches of plant populations in mangrove resrve of Qu'ao Island, Pearl River Estuary. Acta Ecologica Sinica, 29, 357-361. – reference: Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles, 17, 1111. – reference: Dodd R, Afzal Rafii Z (2002) Evolutionary genetics of mangroves: continental drift to recent climate change. Trees, 16, 80-86. – reference: Lonard RI, Judd FW (1991) Comparison of the effects of the severe freezes of 1983 and 1989 on native woody plants in the Lower Rio Grande Valley, Texas. The Southwestern Naturalist, 36, 213-217. – reference: Perry C, Mendelssohn I (2009) Ecosystem effects of expanding populations of Avicennia germinans in a Louisiana salt marsh. Wetlands, 29, 396-406. – reference: Li Y, Zheng D, Liao B, Zheng S, Wang Y (1998) Preliminary report on introduction of several superior mangroves. Forest Research, 11, 652-655. – reference: Westgate JW, Gee CT (1990) Paleoecology of a middle Eocene mangrove biota (vertebrates, plants, and invertebrates) from southwest Texas. Palaeogeography, Palaeoclimatology, Palaeoecology, 78, 163-177. – reference: McKee KL, Mendelssohn IA, Materne M (2004) Acute salt marsh dieback in the Mississippi River deltaic plain: a drought-induced phenomenon? Global Ecology and Biogeography, 13, 65-73. – reference: Walther GR, Post E, Convey P et al. (2002) Ecological responses to recent climate change. Nature, 416, 389-395. – reference: Soares MLG, Estrada GCD, Fernandez V, Tognella MMP (2012) Southern limit of the Western South Atlantic mangroves: Assessment of the potential effects of global warming from a biogeographical perspective. Estuarine, Coastal and Shelf Science, 101, 44-53. – reference: Hashimoto TR, Saintilan N, Haberle SG (2006) Mid-Holocene development of mangrove communities featuring Rhizophoraceae and geomorphic change in the Richmond River Estuary, New South Wales, Australia. Geographical Research, 44, 63-76. – reference: Ross MS, Meeder JF, Sah JP, Ruiz PL, Telesnicki GL (2000) The southeast saline Everglades revisited: 50 years of coastal vegetation change. Journal of Vegetation Science, 11, 101-112. – reference: Semeniuk V (2013) Predicted response of coastal wetlands to climate changes: a Western Australian model. Hydrobiologia, 708, 23-43. – reference: Sherrod CL, Hockaday DL, McMillan C (1986) Survival of red mangrove, Rhizophora mangle, on the Gulf of Mexico coast of Texas. Contributions in Marine Science, 29, 27-36. – reference: Burns BR, Ogden J (1985) The demography of the temperate mangrove [Avicennia marina (Forsk.) Vierh.] at its southern limit in New Zealand. Australian Journal of Ecology, 10, 125-133. – reference: Friess DA, Krauss KW, Horstman EM, Balke T, Bouma TJ, Galli D, Webb EL (2012) Are all intertidal wetlands naturally created equal? Bottlenecks, thresholds and knowledge gaps to mangrove and saltmarsh ecosystems. Biological Reviews, 87, 346-366. – reference: Clarke PJ, Myerscough PJ (1993) The intertidal distribution of the grey mangrove (Avicennia marina) in southeastern Australia: the effects of physical conditions, interspecific competition, and predation on propagule establishment and survival. Australian Journal of Ecology, 18, 307-315. – reference: Knapp AK, Briggs JM, Collins SL, et al. (2008) Shrub encroachment in North American grasslands: shifts in growth form dominance rapidly alters control of ecosystem carbon inputs. Global Change Biology, 14, 615-623. – reference: Graham A (1995) Diversification of Gulf/Caribbean mangrove communities through Cenozoic time. Biotropica, 27, 20-27. – reference: Egler FE (1952) Southeast saline Everglades vegetation, Florida, and its management. Vegetatio, 3, 213-265. – reference: Rogers K, Saintilan N, Heijnis H (2005) Mangrove encroachment of salt marsh in Western Port Bay, Victoria: The role of sedimentation, subsidence and sea level rise. Estuaries, 28, 551-559. – reference: Grindrod J, Moss P, Kaars SVD (1999) Late Quaternary cycles of mangrove development and decline on the north Australian continental shelf. Journal of Quaternary Science, 14, 465-470. – reference: McMillan C, Sherrod CL (1986) The chilling tolerance of black mangrove, Avicennia germinans, from the Gulf of Mexico coast of Texas, Louisiana and Florida. Contributions in Marine Science, 29, 9-16. – reference: Gee CT (2001) The mangrove palm Nypa in the geologic past of the New World. Wetlands Ecology and Management, 9, 181-194. – reference: Saintilan N, Williams RJ (1999) Mangrove transgression into saltmarsh environments in South-East Australia. Global Ecology and Biogeography, 8, 117-124. – reference: Stokes DJ, Healy TR, Cooke PJ (2010) Expansion dynamics of monospecific, temperate mangroves and sedimentation in two embayments of a barrier-enclosed lagoon, Tauranga Harbour, New Zealand. Journal of Coastal Research, 26, 113-122. – reference: Van der Stocken T, DeRyck DJR, Balke T, Bouma TJ, Dahdouh-Guebas F, Koedam N (2013) The role of wind in hydrochorous mangrove propagule dispersal. Biogeosciences, 10, 895-925. – reference: Berry EW (1916) The Lower Eocene Floras of Southeastern North America. Professional Paper 91, US Geological Survey, Washington, DC, USA. – reference: Polley HW, Mayeux HS, Johnson HB, Tischler CR (1997) Viewpoint: atmospheric CO2, soil water and shrub/grass rations on rangelands. Journal of Range Management, 50, 278-284. – reference: Berry EW (1924) The Middle and Upper Eocene Floras of Southeastern North America. Professional Paper 92, US Geological Survey, Washington, DC, USA. – reference: Loarie SR, Carter BE, Hayhoe K, McMahon S, Moe R, Knight CA, Ackerly DD (2008) Climate change and the future of California's endemic flora. PLoS ONE, 3, e2502. – reference: Ren H, Lu H, Shen W, Huang C, Guo Q, Li ZA, Jian S (2009) Sonneratia apetala Buch. Ham in the mangrove ecosystems of China: An invasive species or restoration species? Ecological Engineering, 35, 1243-1248. – reference: Steinke TD, Ward CJ (2003) Use of plastic drift cards as indicators of possible dispersal of propagules of the mangrove Avicennia marina by ocean currents. Africal Journal of Marine Science, 25, 169-176. – reference: Van Auken OW (2009) Causes and consequences of woody plant encroachment into western North American grasslands. Journal of Environmental Management, 90, 2931-2942. – reference: Bedin T (2001) The progression of a mangrove forest over a newly formed delta in the Umhlatuze Estuary, South Africa. South African Journal of Botany, 67, 433-438. – reference: McLoughlin L (2000) Estuarine wetlands distribution along the Parramatta River, Sydney, 1788-1940: Implications for planning and conservation. Cunninghamia, 6, 579-610. – reference: Bakkenes M, Alkemade JRM, Ihle F, Leemans R, Latour JB (2002) Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Global Change Biology, 8, 390-407. – reference: Scholes RJ, Archer SR (1997) Tree-grass interactions in savannas. Annual Review of Ecology and Systematics, 28, 517-544. – reference: Sherrod CL, McMillan C (1981) Black mangrove, Avicennia germinans, in Texas: Past and present distribution. Contributions in Marine Science, 24, 115-131. – reference: Gilman EL, Ellison J, Duke NC, Field CD (2008) Threats to mangroves from climate change and adaptation options: a review. Aquatic Botany, 89, 237-250. – reference: Krauss KW, Lovelock CE, McKee KL, López-Hoffman L, Ewe SML, Sousa WP (2008) Environmental drivers in mangrove establishment and early development: a review. Aquatic Botany, 89, 105-127. – reference: Li MS, Lee SY (1997) Mangroves of China: a brief review. Forest Ecology and Management, 96, 241-259. – reference: Ellison AM, Farnsworth EJ, Merkt RE (1999) Origins of mangrove ecosystems and the mangrove biodiversity anomaly. Global Ecology and Biogeography, 8, 95-115. – reference: McMillan C (1971) Environmental factors affecting seedling establishment of the black mangrove on the central Texas coast. Ecology, 52, 927-930. – reference: de Lange WP, de Lange PJ (1994) An appraisal of factors controlling the latitudinal distribution of mangrove (Avicennia marina var. resinifera) in New Zealand. Journal of Coastal Research, 10, 539-548. – reference: Krauss KW, McKee KL, Hester MW (2013) Water use characteristics of black mangrove (Avicennia germinans) communities along an ecotone with marsh at a northern geographical limit. Ecohydrology, doi: 10.1002/eco.1353/abstract. – reference: Willner W, Di Pietro R, Bergmeier E (2009) Phytogeographical evidence for post-glacial dispersal limitation of European beech forest species. Ecography, 32, 1011-1018. – reference: Morrisey DJ, Skilleter GA, Ellis JI, Burns BR, Kemp CE, Burt K (2003) Differences in benthic fauna and sediment among mangrove (Avicennia marina var. australasica) stands of different ages in New Zealand. Estuarine, Coastal and Shelf Science, 56, 581-592. – reference: Patterson CS, Mendelssohn IA, Swenson EM (1993) Growth and survival of Avicennia germinans seedlings in a mangal/salt marsh community in Louisiana, U.S.A. Journal of Coastal Research, 9, 801-810. – reference: Patterson CS, Mendelssohn IA (1991) A comparison of physicochemical variables across plant zones in a mangal/salt marsh community in Louisiana. Wetlands, 11, 139-161. – reference: Giri C, Long J, Tieszen L (2011) Mapping and monitoring Louisiana's mangroves in the aftermath of the 2010 Gulf of Mexico oil spill. Journal of Coastal Research, 27, 1059-1064. – reference: Alongi DM (2008) Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuarine, Coastal and Shelf Science, 76, 1-13. – reference: Leempoel K, Bourgeois C, Zhang J et al. (2013) Spatial heterogeneity in mangroves assessed by GeoEye-1 satellite data: a case-study in Zhanjiang Mangrove National Nature Reserve (ZMNNR), China. Biogeosciences Discussions, 10, 2591-2615. – reference: Hoekstra JM, Molnar JL, Jennings M et al. (2010) The Atlas of Global Conservation: Changes, Challenges, and Opportunities to Make a Difference. University of California Press, Berkeley. – reference: Lovelock CE, Feller IC, Ellis J, Schwarz AM, Hancock N, Nichols P, Sorrell B (2007) Mangrove growth in New Zealand estuaries: The role of nutrient enrichment at sites with contrasting rates of sedimentation. Oecologia, 153, 633-641. – reference: Field CD (1995) Impact of expected climate change on mangroves. Hydrobiologia, 295, 75-81. – reference: Wright CI, Lindsay P, Cooper JAG (1997) The effect of sedimentary processes on the ecology of the mangrove-fringed Kosi estuary/lake system, South Africa. Mangroves and Salt Marshes, 1, 79-94. – reference: Williamson GJ, Boggs GS, Bowman DMS (2010). Late 20th century mangrove encroachment in the coastal Australian monsoon tropics parallels the regional increase in woody biomass. Regional Environmental Change, 11, 19-27. – reference: Patterson CS, McKee KL, Mendelssohn IA (1997) Effects of tidal inundation and predation on Avicennia germinans seedling establishment and survival in a sub-tropical mangal/salt marsh community. Mangroves and Salt Marshes, 1, 103-111. – reference: Thomas CD, Lennon JJ (1999) Birds extend their ranges northwards. Nature, 399, 213. – reference: Howe AJ, Rodríguez JF, Saco PM (2009) Surface evolution and carbon sequestration in disturbed and undisturbed wetland soils of the Hunter estuary, southeast Australia. Estuarine, Coastal and Shelf Science, 84, 75-83. – reference: Everitt JH, Judd FW, Escobar DE, Davis MR (1996) Integration of remote sensing and spatial information technologies for mapping black mangrove on the Texas gulf coast. Journal of Coastal Research, 12, 64-69. – reference: Stuart SA, Choat B, Martin KC, Holbrook NM, Ball MC (2007) The role of freezing in setting the latitudinal limits of mangrove forests. New Phytologist, 173, 576-583. – reference: McKee KL, Cahoon DR, Feller IC (2007) Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Global Ecology and Biogeography, 16, 545-556. – reference: Gedan K, Kirwan M, Wolanski E, Barbier E, Silliman B (2011) The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Climatic Change, 106, 7-29. – reference: Michot TC, Day RH, Wells CJ (2010) Increase in black mangrove abundance in coastal Louisiana. Louisiana Natural Resources News, Newsletter of the Louisiana Association of Professional Biologists, January, 4-5. – reference: McKee KL, Rooth JE (2008) Where temperate meets tropical: multi-factorial effects of elevated CO2, nitrogen enrichment, and competition on a mangrove-salt marsh community. Global Change Biology, 14, 971-984. – reference: Quisthoudt K, Schmitz N, Randin C, Dahdouh-Guebas F, Robert ER, Koedam N (2012) Temperature variation among mangrove latitudinal range limits worldwide. Trees, 26, 1919-1931. – reference: Wilson NC, Saintilan N (2012) Growth of the mangrove species Rhizophora stylosa Griff. at its southern latitudinal limit in eastern Australia. Aquatic Botany, 101, 8-17. – reference: Alleman LK, Hester MW (2011) Refinement of the fundamental niche of black mangrove (Avicennia germinans) seedlings in Louisiana: Applications for restoration. Wetlands Ecology and Management, 19, 47-60. – reference: Penfound WT, Hathaway ES (1938) Plant communities in the marshlands of southeastern Louisiana. Ecological Monographs, 8, 1-56. – reference: Ward CJ, Steinke TD (1982) A note on the distribution and approximate areas of mangroves in South Africa. South African Journal of Botany, 3, 51-53. – reference: Sherrod CL, McMillan C (1985) The distributional history and ecology of mangrove vegetation along the northerm Gulf of Mexico coastal region. Contributions in Marine Science, 28, 129-140. – reference: Woodroffe CD, Grindrod J (1991) Mangrove biogeography: the role of quaternary environmental and sea-level change. Journal of Biogeography, 18, 479-492. – reference: Nagelkerken I, Blaber SJM, Bouillon S et al. (2008) The habitat function of mangroves for terrestrial and marine fauna: A review. Aquatic Botany, 89, 155-185. – reference: Straw P, Saintilan N (2006) Loss of shorebird habitat as a result of mangrove incursion due to sea-level rise and urbanization. In Waterbirds Around the World (eds Boere GC, Galbraith CA, Stroud DA), 717-720. TSO Scotland, Edinburgh, UK. – reference: Eamus D, Palmer AR (2008) Is climate change a possible explanation for woody thickening in arid and semi-arid regions? International Journal of Ecology, 2007, 5. – reference: Saintilan N (2009) Biogeography of Australian saltmarsh plants. Austral Ecology, 34, 929-937. – reference: Wakushima S, Kuraishi S, Sakurai N (1994) Soil salinity and pH in Japanese mangrove forests and growth of cultivated mangrove plants in different soil conditions. Journal of Plant Research, 107, 39-46. – reference: Sousa WP, Kennedy PG, Mitchell BJ, Ordonez BM (2007) Supply-side ecology in mangroves: do propagule dispersal and seedling establishment explain forest structure? Ecological Monographs, 77, 53-76. – reference: Clarke PJ, Allaway W (1993) The regeneration niche of the grey mangrove Avicennia marina - effects of salinity, light and sediment factors on establishment, growth and survival in the field. Oecologia, 93, 548-556. – reference: Pickens C, Hester M (2011) Temperature tolerance of early life history stages of black mangrove Avicennia germinans: implications for range expansion. Estuaries and Coasts, 34, 824-830. – reference: Rogers K, Wilton KM, Saintilan N (2006) Vegetation change and surface elevation dynamics in estuarine wetlands of southeast Australia. Estuarine, Coastal and Shelf Science, 66, 559-569. – reference: Smith TJ III, Foster AM, Tiling-Range G, Jones JW (2013) Dynamics of mangrove-marsh ecotones in subtropical coastal wetlands: Fire, sea-level rise, and water levels. Fire Ecology, 9, 66-77. – reference: Lugo AE, Patterson Zucca C (1977) The impact of low temperature stress on mangrove structure and growth. Tropical Ecology, 18, 149-161. – reference: Spalding M (2012). World Atlas of Mangroves. Earthscan, New York. – reference: Osland MJ, Enwright N, Day RH, Doyle TW (2013) Winter climate change and coastal wetland foundation species: salt marshes versus mangrove forests in the southeastern United States. Global Change Biology, 19, 1482-1494. – reference: Hopkinson CS, Caiíguez WJ, Hu X (2012) Carbon sequestration in wetland dominated coastal systems-a global sink of rapidly diminishing magnitude. Current Opinion in Environmental Sustainability, 4, 186-194. – reference: Semeniuk V (1983) Mangrove distribution in Northwestern Australia in relationship to regional and local freshwater seepage. Vegetatio, 53, 11-31. – reference: Woodroffe CD (1990) The Impact of sea-Level Rise on Mangrove Shorelines. Turpin, Letchworth, ROYAUME-UNI. – reference: Siegle E, Asp NE (2007) Wave refraction and longshore transport patterns along the southern Santa Catarina coast. Brazilian Journal of Oceanography, 55, 109-120. – reference: Valiela E, Bowen JL, York JK (2001) Mangrove forests: one of the world's threatened major tropical environments. BioScience, 51, 807-815. – reference: Bianchi TS, Allison MA, Zhao J, Li X, Comeaux RS, Feagin RA, Kulawardhana RW (2013) Historical reconstruction of mangrove expansion in the Gulf of Mexico: linking climate change with carbon sequestration in coastal wetlands. Estuarine, Coastal and Shelf Science, 119, 7-16. – reference: Wilton K, Saintilan N (2000). Protocols for Mangrove and Saltmarsh Habitat Mapping. Estuaries Branch, NSW Department of Land and Water Conservation, Sydney. – reference: Eslami-Andargoli L, Dale P, Sipe N, Chaseling J (2009) Mangrove expansion and rainfall patterns in Moreton Bay, Southeast Queensland, Australia. Estuarine, Coastal and Shelf Science, 85, 292-298. – reference: Quisthoudt K, Adams J, Rajkaran A, Dahdouh-Geubas F, Koedam N, Randin CF (2013) Disentangling the effects of global climate and regional land-use on the current and future distribution of mangroves in South Africa. Biodiversity Conservation, 22, 1369-1390. – reference: Markley JL, McMillan C, Thompson GA Jr (1982) Latitudinal differentiation in response to chilling temperatures among populations of three mangroves, Avicennia germinans, Laguncularia racemosa, and Rhizophora mangle, from the western tropical Atlantic and Pacific Panama. Canadian Journal of Botany, 60, 2704-2715. – reference: Adams JB, Colloty BM, Bate GC (2004) The distribution and state of mangroves along the coast of Transkei, Eastern Cape Province, South Africa. Wetlands Ecology and Management, 12, 531-541. – reference: Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37-42. – volume: 87 start-page: 346 year: 2012 end-page: 366 article-title: Are all intertidal wetlands naturally created equal? Bottlenecks, thresholds and knowledge gaps to mangrove and saltmarsh ecosystems publication-title: Biological Reviews – volume: 107 start-page: 39 year: 1994 end-page: 46 article-title: Soil salinity and pH in Japanese mangrove forests and growth of cultivated mangrove plants in different soil conditions publication-title: Journal of Plant Research – volume: 10 start-page: 2591 year: 2013 end-page: 2615 article-title: Spatial heterogeneity in mangroves assessed by GeoEye‐1 satellite data: a case‐study in Zhanjiang Mangrove National Nature Reserve (ZMNNR), China publication-title: Biogeosciences Discussions – volume: 28 start-page: 129 year: 1985 end-page: 140 article-title: The distributional history and ecology of mangrove vegetation along the northerm Gulf of Mexico coastal region publication-title: Contributions in Marine Science – volume: 1 start-page: 103 year: 1997 end-page: 111 article-title: Effects of tidal inundation and predation on Avicennia germinans seedling establishment and survival in a sub‐tropical mangal/salt marsh community publication-title: Mangroves and Salt Marshes – volume: 12 start-page: 64 year: 1996 end-page: 69 article-title: Integration of remote sensing and spatial information technologies for mapping black mangrove on the Texas gulf coast publication-title: Journal of Coastal Research – volume: 3 start-page: e2502 year: 2008 article-title: Climate change and the future of California's endemic flora publication-title: PLoS ONE – volume: 35 start-page: 1243 year: 2009 end-page: 1248 article-title: Buch. Ham in the mangrove ecosystems of China: An invasive species or restoration species? publication-title: Ecological Engineering – volume: 60 start-page: 2704 year: 1982 end-page: 2715 article-title: Latitudinal differentiation in response to chilling temperatures among populations of three mangroves, , , and , from the western tropical Atlantic and Pacific Panama publication-title: Canadian Journal of Botany – volume: 31 start-page: 32 year: 1990 end-page: 39 article-title: The distribution of mangroves and saltmarshes in Florida publication-title: Tropical Ecology – volume: 27 start-page: 1059 year: 2011 end-page: 1064 article-title: Mapping and monitoring Louisiana's mangroves in the aftermath of the 2010 Gulf of Mexico oil spill publication-title: Journal of Coastal Research – volume: 29 start-page: 9 year: 1986 end-page: 16 article-title: The chilling tolerance of black mangrove, , from the Gulf of Mexico coast of Texas, Louisiana and Florida publication-title: Contributions in Marine Science – volume: 295 start-page: 43 year: 1995 end-page: 49 article-title: Mangroves and climate change in the Florida and Caribbean region: scenarios and hypotheses publication-title: Hydrobiologia – volume: 30 start-page: 50 year: 1986 end-page: 53 article-title: Mangroves of the East London area publication-title: The Naturalist – volume: 3 start-page: 51 year: 1982 end-page: 53 article-title: A note on the distribution and approximate areas of mangroves in South Africa publication-title: South African Journal of Botany – volume: 85 start-page: 292 year: 2009 end-page: 298 article-title: Mangrove expansion and rainfall patterns in Moreton Bay, Southeast Queensland, Australia publication-title: Estuarine, Coastal and Shelf Science – volume: 10 start-page: 125 year: 1985 end-page: 133 article-title: The demography of the temperate mangrove [ (Forsk.) Vierh.] at its southern limit in New Zealand publication-title: Australian Journal of Ecology – volume: 7 start-page: 13 year: 1988 end-page: 24 article-title: Mangroves and grass swamps: changes in the shoreline vegetation of the Middle Lane Cover River, Sydney, 1780's‐1880's publication-title: Wetlands (Australia) – volume: 24 start-page: 115 year: 1981 end-page: 131 article-title: Black mangrove, , in Texas: Past and present distribution publication-title: Contributions in Marine Science – year: 1990 – volume: 29 start-page: 27 year: 1986 end-page: 36 article-title: Survival of red mangrove, , on the Gulf of Mexico coast of Texas publication-title: Contributions in Marine Science – start-page: 717 year: 2006 end-page: 720 article-title: Loss of shorebird habitat as a result of mangrove incursion due to sea‐level rise and urbanization publication-title: Waterbirds Around the World (eds Boere GC, Galbraith CA, Stroud DA) – volume: 13 start-page: 65 year: 2004 end-page: 73 article-title: Acute salt marsh dieback in the Mississippi River deltaic plain: a drought‐induced phenomenon? publication-title: Global Ecology and Biogeography – volume: 34 start-page: 929 year: 2009 end-page: 937 article-title: Biogeography of Australian saltmarsh plants publication-title: Austral Ecology – volume: 101 start-page: 8 year: 2012 end-page: 17 article-title: Growth of the mangrove species Griff. at its southern latitudinal limit in eastern Australia publication-title: Aquatic Botany – volume: 16 start-page: 80 year: 2002 end-page: 86 article-title: Evolutionary genetics of mangroves: continental drift to recent climate change publication-title: Trees – start-page: 309 year: 1992 end-page: 324 – volume: 76 start-page: 1 year: 2008 end-page: 13 article-title: Mangrove forests: resilience, protection from tsunamis, and responses to global climate change publication-title: Estuarine, Coastal and Shelf Science – volume: 10 start-page: 539 year: 1994 end-page: 548 article-title: An appraisal of factors controlling the latitudinal distribution of mangrove ( var. ) in New Zealand publication-title: Journal of Coastal Research – volume: 27 start-page: 20 year: 1995 end-page: 27 article-title: Diversification of Gulf/Caribbean mangrove communities through Cenozoic time publication-title: Biotropica – volume: 77 start-page: 53 year: 2007 end-page: 76 article-title: Supply‐side ecology in mangroves: do propagule dispersal and seedling establishment explain forest structure? publication-title: Ecological Monographs – volume: 35 start-page: 487 year: 2009 end-page: 496 article-title: Applying remote sensing techniques to monitor shifting wetland vegetation: a case study of Danshui River estuary mangrove communities Taiwan publication-title: Ecological Engineering – volume: 173 start-page: 576 year: 2007 end-page: 583 article-title: The role of freezing in setting the latitudinal limits of mangrove forests publication-title: New Phytologist – volume: 67 start-page: 433 year: 2001 end-page: 438 article-title: The progression of a mangrove forest over a newly formed delta in the Umhlatuze Estuary, South Africa publication-title: South African Journal of Botany – volume: 14 start-page: 971 year: 2008 end-page: 984 article-title: Where temperate meets tropical: multi‐factorial effects of elevated CO , nitrogen enrichment, and competition on a mangrove‐salt marsh community publication-title: Global Change Biology – start-page: 4 year: 2010 end-page: 5 article-title: Increase in black mangrove abundance in coastal Louisiana publication-title: Louisiana Natural Resources News, Newsletter of the Louisiana Association of Professional Biologists – volume: 4 start-page: 2 year: 1985 end-page: 6 article-title: Mangrove distribution in New South Wales publication-title: Wetlands (Australia) – volume: 8 start-page: 117 year: 1999 end-page: 124 article-title: Mangrove transgression into saltmarsh environments in South‐East Australia publication-title: Global Ecology and Biogeography – volume: 7 start-page: 27 year: 1998 end-page: 47 article-title: Factors influencing biodiversity and distributional gradients in mangroves publication-title: Global Ecology and Biogeography Letters – volume: 9 start-page: 801 year: 1993 end-page: 810 article-title: Growth and survival of Avicennia germinans seedlings in a mangal/salt marsh community in Louisiana, U.S.A publication-title: Journal of Coastal Research – volume: 18 start-page: 479 year: 1991 end-page: 492 article-title: Mangrove biogeography: the role of quaternary environmental and sea‐level change publication-title: Journal of Biogeography – volume: 295 start-page: 75 year: 1995 end-page: 81 article-title: Impact of expected climate change on mangroves publication-title: Hydrobiologia – start-page: 51 year: 1974 end-page: 174 – volume: 96 start-page: 241 year: 1997 end-page: 259 article-title: Mangroves of China: a brief review publication-title: Forest Ecology and Management – year: 1916 – volume: 9 start-page: 66 year: 2013 end-page: 77 article-title: Dynamics of mangrove‐marsh ecotones in subtropical coastal wetlands: Fire, sea‐level rise, and water levels publication-title: Fire Ecology – year: 2007 – volume: 52 start-page: 927 year: 1971 end-page: 930 article-title: Environmental factors affecting seedling establishment of the black mangrove on the central Texas coast publication-title: Ecology – volume: 16 start-page: 545 year: 2007 end-page: 556 article-title: Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation publication-title: Global Ecology and Biogeography – volume: 421 start-page: 37 year: 2003 end-page: 42 article-title: A globally coherent fingerprint of climate change impacts across natural systems publication-title: Nature – volume: 96 start-page: 81 year: 2012 end-page: 95 article-title: Mangrove expansion in the Gulf of Mexico with climate change: implications for wetland health and resistance to rising sea levels publication-title: Estuarine, Coastal and Shelf Science – volume: 66 start-page: 559 year: 2006 end-page: 569 article-title: Vegetation change and surface elevation dynamics in estuarine wetlands of southeast Australia publication-title: Estuarine, Coastal and Shelf Science – year: 2010 – volume: 44 start-page: 63 year: 2006 end-page: 76 article-title: Mid‐Holocene development of mangrove communities featuring Rhizophoraceae and geomorphic change in the Richmond River Estuary, New South Wales, Australia publication-title: Geographical Research – volume: 19 start-page: 47 year: 2011 end-page: 60 article-title: Refinement of the fundamental niche of black mangrove (Avicennia germinans) seedlings in Louisiana: Applications for restoration publication-title: Wetlands Ecology and Management – volume: 56 start-page: 581 year: 2003 end-page: 592 article-title: Differences in benthic fauna and sediment among mangrove (Avicennia marina var. australasica) stands of different ages in New Zealand publication-title: Estuarine, Coastal and Shelf Science – volume: 19 start-page: 1482 year: 2013 end-page: 1494 article-title: Winter climate change and coastal wetland foundation species: salt marshes versus mangrove forests in the southeastern United States publication-title: Global Change Biology – volume: 416 start-page: 389 year: 2002 end-page: 395 article-title: Ecological responses to recent climate change publication-title: Nature – year: 1995 – volume: 399 start-page: 213 year: 1999 article-title: Birds extend their ranges northwards publication-title: Nature – volume: 29 start-page: 396 year: 2009 end-page: 406 article-title: Ecosystem effects of expanding populations of Avicennia germinans in a Louisiana salt marsh publication-title: Wetlands – volume: 4 start-page: 186 year: 2012 end-page: 194 article-title: Carbon sequestration in wetland dominated coastal systems–a global sink of rapidly diminishing magnitude publication-title: Current Opinion in Environmental Sustainability – volume: 708 start-page: 23 year: 2013 end-page: 43 article-title: Predicted response of coastal wetlands to climate changes: a Western Australian model publication-title: Hydrobiologia – volume: 68 start-page: 173 year: 1987 end-page: 177 article-title: Reasons for the limitation of mangrove along the west coast of northern Peru publication-title: Vegetatio – year: 2013 article-title: Water use characteristics of black mangrove ( ) communities along an ecotone with marsh at a northern geographical limit publication-title: Ecohydrology – year: 2013 – volume: 26 start-page: 113 year: 2010 end-page: 122 article-title: Expansion dynamics of monospecific, temperate mangroves and sedimentation in two embayments of a barrier‐enclosed lagoon, Tauranga Harbour, New Zealand publication-title: Journal of Coastal Research – year: 2009 – volume: 25 start-page: 169 year: 2003 end-page: 176 article-title: Use of plastic drift cards as indicators of possible dispersal of propagules of the mangrove Avicennia marina by ocean currents publication-title: Africal Journal of Marine Science – volume: 29 start-page: 357 year: 2009 end-page: 361 article-title: Niches of plant populations in mangrove resrve of Qu'ao Island, Pearl River Estuary publication-title: Acta Ecologica Sinica – volume: 18 start-page: 49 year: 2010 end-page: 54 – volume: 14 start-page: 465 year: 1999 end-page: 470 article-title: Late Quaternary cycles of mangrove development and decline on the north Australian continental shelf publication-title: Journal of Quaternary Science – volume: 26 start-page: 1919 year: 2012 end-page: 1931 article-title: Temperature variation among mangrove latitudinal range limits worldwide publication-title: Trees – volume: 6 start-page: 579 year: 2000 end-page: 610 article-title: Estuarine wetlands distribution along the Parramatta River, Sydney, 1788‐1940: Implications for planning and conservation publication-title: Cunninghamia – volume: 8 start-page: 95 year: 1999 end-page: 115 article-title: Origins of mangrove ecosystems and the mangrove biodiversity anomaly publication-title: Global Ecology and Biogeography – volume: 411 start-page: 546 year: 2001 end-page: 547 article-title: Increasing shrub abundance in the Arctic publication-title: Nature – volume: 32 start-page: 1011 year: 2009 end-page: 1018 article-title: Phytogeographical evidence for post‐glacial dispersal limitation of European beech forest species publication-title: Ecography – volume: 93 start-page: 548 year: 1993 end-page: 556 article-title: The regeneration niche of the grey mangrove – effects of salinity, light and sediment factors on establishment, growth and survival in the field publication-title: Oecologia – volume: 36 start-page: 213 year: 1991 end-page: 217 article-title: Comparison of the effects of the severe freezes of 1983 and 1989 on native woody plants in the Lower Rio Grande Valley, Texas publication-title: The Southwestern Naturalist – volume: 11 start-page: 139 year: 1991 end-page: 161 article-title: A comparison of physicochemical variables across plant zones in a mangal/salt marsh community in Louisiana publication-title: Wetlands – volume: 153 start-page: 633 year: 2007 end-page: 641 article-title: Mangrove growth in New Zealand estuaries: The role of nutrient enrichment at sites with contrasting rates of sedimentation publication-title: Oecologia – volume: 15 start-page: 629 year: 2011 end-page: 638 article-title: Sea‐level rise and landscape change influence mangrove encroachment onto marsh in the Ten Thousand Inslands region of Florida, USA publication-title: Journal of Coastal Conservation – volume: 48 start-page: 43 year: 2010 end-page: 160 article-title: The ecology and management of temperate mangroves publication-title: Oceanography and Marine Biology: An Annual Review – start-page: 855 year: 2009 end-page: 883 – volume: 17 start-page: 1111 year: 2003 article-title: Global carbon sequestration in tidal, saline wetland soils publication-title: Global Biogeochemical Cycles – volume: 84 start-page: 75 year: 2009 end-page: 83 article-title: Surface evolution and carbon sequestration in disturbed and undisturbed wetland soils of the Hunter estuary, southeast Australia publication-title: Estuarine, Coastal and Shelf Science – volume: 101 start-page: 44 year: 2012 end-page: 53 article-title: Southern limit of the Western South Atlantic mangroves: Assessment of the potential effects of global warming from a biogeographical perspective publication-title: Estuarine, Coastal and Shelf Science – volume: 28 start-page: 517 year: 1997 end-page: 544 article-title: Tree‐grass interactions in savannas publication-title: Annual Review of Ecology and Systematics – volume: 90 start-page: 2931 year: 2009 end-page: 2942 article-title: Causes and consequences of woody plant encroachment into western North American grasslands publication-title: Journal of Environmental Management – volume: 9 start-page: 181 year: 2001 end-page: 194 article-title: The mangrove palm in the geologic past of the New World publication-title: Wetlands Ecology and Management – volume: 19 start-page: 2765 year: 2013 end-page: 2774 article-title: Biotic interactions mediate the expansion of black mangrove ( ) into salt marshes under climate change publication-title: Global Change Biology – volume: 53 start-page: 11 year: 1983 end-page: 31 article-title: Mangrove distribution in Northwestern Australia in relationship to regional and local freshwater seepage publication-title: Vegetatio – year: 2004 – year: 1924 – volume: 51 start-page: 1 year: 1963 end-page: 25 article-title: Mangroves swamps in South Africa publication-title: Journal of Ecology – volume: 24 start-page: 219 year: 1994 end-page: 230 article-title: Early to Mid Holocene pollen samples containing mangrove pollen from Sponge Bay, East Coast, North Island, New Zealand publication-title: Journal of the Royal Society of New Zealand – volume: 3 start-page: 213 year: 1952 end-page: 265 article-title: Southeast saline Everglades vegetation, Florida, and its management publication-title: Vegetatio – start-page: 119 year: 1999 end-page: 140 – volume: 106 start-page: 7 year: 2011 end-page: 29 article-title: The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm publication-title: Climatic Change – volume: 399 start-page: 579 year: 1999 end-page: 583 article-title: Poleward shifts in geographical ranges of butterfly species associated with regional warming publication-title: Nature – volume: 119 start-page: 7 year: 2013 end-page: 16 article-title: Historical reconstruction of mangrove expansion in the Gulf of Mexico: linking climate change with carbon sequestration in coastal wetlands publication-title: Estuarine, Coastal and Shelf Science – volume: 13 start-page: 204 year: 1990 end-page: 218 article-title: Variability of mangrove ecosystems along the Brazilian Coast publication-title: Estuaries – volume: 41 start-page: 285 year: 1966 end-page: 301 article-title: A mass mortality of mangroves in the Kosi estuary publication-title: Transactions of the Royal Society of South Africa – volume: 18 start-page: 149 year: 1977 end-page: 161 article-title: The impact of low temperature stress on mangrove structure and growth publication-title: Tropical Ecology – volume: 11 start-page: 101 year: 2000 end-page: 112 article-title: The southeast saline Everglades revisited: 50 years of coastal vegetation change publication-title: Journal of Vegetation Science – year: 2000 – volume: 10 start-page: 895 year: 2013 end-page: 925 article-title: The role of wind in hydrochorous mangrove propagule dispersal publication-title: Biogeosciences – volume: 8 start-page: 1 year: 1938 end-page: 56 article-title: Plant communities in the marshlands of southeastern Louisiana publication-title: Ecological Monographs – volume: 4 start-page: 293 year: 2011 end-page: 297 article-title: Mangroves among the most carbon‐rich forests in the tropics publication-title: Nature Geoscience – volume: 89 start-page: 648 year: 2001 end-page: 659 article-title: Dispersal potential and early growth in 14 tropical mangroves: do early life history traints correlate with patterns of adult distribution? publication-title: Journal of Ecology – volume: 22 start-page: 143 year: 2011 end-page: 151 article-title: Oceanographic anomalies and sea‐level rise drive mangroves inland in the Pacific coast of Mexico publication-title: Journal of Vegetation Science – volume: 2007 start-page: 5 year: 2008 article-title: Is climate change a possible explanation for woody thickening in arid and semi‐arid regions? publication-title: International Journal of Ecology – volume: 14 start-page: 615 year: 2008 end-page: 623 article-title: Shrub encroachment in North American grasslands: shifts in growth form dominance rapidly alters control of ecosystem carbon inputs publication-title: Global Change Biology – volume: 28 start-page: 551 year: 2005 end-page: 559 article-title: Mangrove encroachment of salt marsh in Western Port Bay, Victoria: The role of sedimentation, subsidence and sea level rise publication-title: Estuaries – volume: 51 start-page: 807 year: 2001 end-page: 815 article-title: Mangrove forests: one of the world's threatened major tropical environments publication-title: BioScience – volume: 12 start-page: 531 year: 2004 end-page: 541 article-title: The distribution and state of mangroves along the coast of Transkei, Eastern Cape Province, South Africa publication-title: Wetlands Ecology and Management – volume: 55 start-page: 109 year: 2007 end-page: 120 article-title: Wave refraction and longshore transport patterns along the southern Santa Catarina coast publication-title: Brazilian Journal of Oceanography – year: 2012 – volume: 11 start-page: 19 year: 2010 end-page: 27 article-title: Late 20th century mangrove encroachment in the coastal Australian monsoon tropics parallels the regional increase in woody biomass publication-title: Regional Environmental Change – volume: 89 start-page: 105 year: 2008 end-page: 127 article-title: Environmental drivers in mangrove establishment and early development: a review publication-title: Aquatic Botany – volume: 8 start-page: 390 year: 2002 end-page: 407 article-title: Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050 publication-title: Global Change Biology – volume: 18 start-page: 307 year: 1993 end-page: 315 article-title: The intertidal distribution of the grey mangrove ( in southeastern Australia: the effects of physical conditions, interspecific competition, and predation on propagule establishment and survival publication-title: Australian Journal of Ecology – volume: 89 start-page: 155 year: 2008 end-page: 185 article-title: The habitat function of mangroves for terrestrial and marine fauna: A review publication-title: Aquatic Botany – volume: 22 start-page: 1369 year: 2013 end-page: 1390 article-title: Disentangling the effects of global climate and regional land‐use on the current and future distribution of mangroves in South Africa publication-title: Biodiversity Conservation – volume: 11 start-page: 652 year: 1998 end-page: 655 article-title: Preliminary report on introduction of several superior mangroves publication-title: Forest Research – start-page: 57 year: 1983 end-page: 76 – volume: 78 start-page: 163 year: 1990 end-page: 177 article-title: Paleoecology of a middle Eocene mangrove biota (vertebrates, plants, and invertebrates) from southwest Texas publication-title: Palaeogeography, Palaeoclimatology, Palaeoecology – start-page: 1 year: 1997 end-page: 9 – volume: 14 start-page: 435 year: 2006 end-page: 444 article-title: The interplay between mangroves and saltmarshes at the transition between temperate and subtropical climate in Florida publication-title: Wetlands Ecology and Management – volume: 34 start-page: 824 year: 2011 end-page: 830 article-title: Temperature tolerance of early life history stages of black mangrove Avicennia germinans: implications for range expansion publication-title: Estuaries and Coasts – start-page: 1441 year: 2007 end-page: 1454 – start-page: 63 year: 2012 end-page: 96 – volume: 50 start-page: 278 year: 1997 end-page: 284 article-title: Viewpoint: atmospheric CO , soil water and shrub/grass rations on rangelands publication-title: Journal of Range Management – volume: 89 start-page: 237 year: 2008 end-page: 250 article-title: Threats to mangroves from climate change and adaptation options: a review publication-title: Aquatic Botany – volume: 1 start-page: 79 year: 1997 end-page: 94 article-title: The effect of sedimentary processes on the ecology of the mangrove‐fringed Kosi estuary/lake system, South Africa publication-title: Mangroves and Salt Marshes – volume-title: The Atlas of Global Conservation: Changes, Challenges, and Opportunities to Make a Difference year: 2010 ident: e_1_2_6_40_1 – volume: 18 start-page: 149 year: 1977 ident: e_1_2_6_57_1 article-title: The impact of low temperature stress on mangrove structure and growth publication-title: Tropical Ecology – ident: e_1_2_6_77_1 doi: 10.1038/21181 – ident: e_1_2_6_61_1 doi: 10.1111/j.1466-882X.2004.00075.x – volume: 41 start-page: 285 year: 1966 ident: e_1_2_6_11_1 article-title: A mass mortality of mangroves in the Kosi estuary publication-title: Transactions of the Royal Society of South Africa – ident: e_1_2_6_138_1 doi: 10.1023/A:1009919816903 – ident: e_1_2_6_34_1 doi: 10.2307/2388899 – ident: e_1_2_6_80_1 doi: 10.1023/A:1009923917812 – ident: e_1_2_6_45_1 doi: 10.1016/j.aquabot.2007.12.014 – volume: 2007 start-page: 5 year: 2008 ident: e_1_2_6_23_1 article-title: Is climate change a possible explanation for woody thickening in arid and semi‐arid regions? publication-title: International Journal of Ecology – volume: 30 start-page: 50 year: 1986 ident: e_1_2_6_110_1 article-title: Mangroves of the East London area publication-title: The Naturalist – ident: e_1_2_6_88_1 doi: 10.1016/j.ecoleng.2009.05.008 – ident: e_1_2_6_58_1 doi: 10.2307/2257502 – start-page: 855 volume-title: Coastal Wetlands; an Integrated Ecosystems Approach year: 2009 ident: e_1_2_6_95_1 – ident: e_1_2_6_19_1 doi: 10.1007/s00468-001-0142-6 – ident: e_1_2_6_20_1 doi: 10.1038/ngeo1123 – ident: e_1_2_6_82_1 doi: 10.1016/j.chnaes.2009.09.017 – ident: e_1_2_6_47_1 doi: 10.1002/eco.1353/abstract – volume: 9 start-page: 801 year: 1993 ident: e_1_2_6_79_1 article-title: Growth and survival of Avicennia germinans seedlings in a mangal/salt marsh community in Louisiana, U.S.A publication-title: Journal of Coastal Research – ident: e_1_2_6_104_1 doi: 10.4996/fireecology.0901066 – ident: e_1_2_6_123_1 doi: 10.5194/bgd-10-895-2013 – ident: e_1_2_6_133_1 – ident: e_1_2_6_96_1 doi: 10.2307/1351590 – ident: e_1_2_6_42_1 doi: 10.1016/j.ecss.2009.06.006 – ident: e_1_2_6_63_1 doi: 10.1007/978-94-007-4494-3_2 – ident: e_1_2_6_112_1 doi: 10.2989/18142320309504007 – volume-title: The Impact of sea‐Level Rise on Mangrove Shorelines year: 1990 ident: e_1_2_6_136_1 doi: 10.1177/030913339001400404 – start-page: 309 volume-title: Global Warming and Biological Diversity year: 1992 ident: e_1_2_6_37_1 – ident: e_1_2_6_38_1 doi: 10.1111/j.1745-5871.2006.00360.x – ident: e_1_2_6_7_1 doi: 10.5962/bhl.title.7602 – ident: e_1_2_6_13_1 doi: 10.1029/2002GB001917 – ident: e_1_2_6_3_1 doi: 10.1007/s11273-010-9199-6 – ident: e_1_2_6_85_1 doi: 10.2307/4003730 – ident: e_1_2_6_55_1 doi: 10.1111/j.1654-1103.2010.01232.x – volume: 10 start-page: 539 year: 1994 ident: e_1_2_6_48_1 article-title: An appraisal of factors controlling the latitudinal distribution of mangrove (Avicennia marina var. resinifera) in New Zealand publication-title: Journal of Coastal Research – ident: e_1_2_6_25_1 doi: 10.1046/j.1466-822X.1999.00126.x – ident: e_1_2_6_74_1 – ident: e_1_2_6_103_1 doi: 10.1590/S1679-87592007000200004 – ident: e_1_2_6_124_1 doi: 10.1007/BF02344528 – ident: e_1_2_6_131_1 doi: 10.1007/s10113-010-0109-5 – ident: e_1_2_6_90_1 doi: 10.1016/j.ecss.2005.11.004 – ident: e_1_2_6_9_1 doi: 10.1016/j.ecss.2012.12.007 – ident: e_1_2_6_44_1 doi: 10.1111/j.1365-2486.2007.01512.x – ident: e_1_2_6_39_1 – ident: e_1_2_6_5_1 doi: 10.1046/j.1354-1013.2001.00467.x – ident: e_1_2_6_73_1 doi: 10.1016/j.aquabot.2007.12.007 – volume: 24 start-page: 115 year: 1981 ident: e_1_2_6_100_1 article-title: Black mangrove, Avicennia germinans, in Texas: Past and present distribution publication-title: Contributions in Marine Science – ident: e_1_2_6_116_1 doi: 10.1111/j.1469-8137.2006.01938.x – ident: e_1_2_6_119_1 doi: 10.1038/20335 – ident: e_1_2_6_106_1 doi: 10.1016/j.ecss.2012.02.018 – ident: e_1_2_6_66_1 doi: 10.2307/1936046 – volume: 12 start-page: 64 year: 1996 ident: e_1_2_6_27_1 article-title: Integration of remote sensing and spatial information technologies for mapping black mangrove on the Texas gulf coast publication-title: Journal of Coastal Research – volume: 31 start-page: 32 year: 1990 ident: e_1_2_6_43_1 article-title: The distribution of mangroves and saltmarshes in Florida publication-title: Tropical Ecology – volume: 6 start-page: 579 year: 2000 ident: e_1_2_6_65_1 article-title: Estuarine wetlands distribution along the Parramatta River, Sydney, 1788‐1940: Implications for planning and conservation publication-title: Cunninghamia – volume: 4 start-page: 2 year: 1985 ident: e_1_2_6_129_1 article-title: Mangrove distribution in New South Wales publication-title: Wetlands (Australia) doi: 10.31646/wa.79 – volume-title: World Atlas of Mangroves year: 2012 ident: e_1_2_6_109_1 – ident: e_1_2_6_132_1 doi: 10.1111/j.1600-0587.2009.05957.x – ident: e_1_2_6_125_1 doi: 10.1016/B978-0-12-586450-3.50008-1 – volume: 28 start-page: 129 year: 1985 ident: e_1_2_6_101_1 article-title: The distributional history and ecology of mangrove vegetation along the northerm Gulf of Mexico coastal region publication-title: Contributions in Marine Science – ident: e_1_2_6_4_1 doi: 10.1016/j.ecss.2007.08.024 – ident: e_1_2_6_51_1 doi: 10.1016/S0378-1127(97)00054-6 – ident: e_1_2_6_71_1 doi: 10.1016/S0272-7714(02)00208-1 – ident: e_1_2_6_28_1 doi: 10.1007/BF00029113 – ident: e_1_2_6_127_1 doi: 10.1016/S0022-4618(16)30176-0 – volume-title: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change year: 2007 ident: e_1_2_6_107_1 – ident: e_1_2_6_137_1 doi: 10.2307/2845685 – ident: e_1_2_6_78_1 doi: 10.1007/BF03160845 – ident: e_1_2_6_83_1 doi: 10.1672/08-100.1 – ident: e_1_2_6_12_1 doi: 10.1111/j.1442-9993.1985.tb00874.x – ident: e_1_2_6_46_1 doi: 10.1007/s11852-011-0153-4 – ident: e_1_2_6_72_1 doi: 10.1201/EBK1439821169-c2 – ident: e_1_2_6_98_1 doi: 10.1007/BF00039767 – ident: e_1_2_6_108_1 doi: 10.1890/05-1935 – ident: e_1_2_6_22_1 – volume: 29 start-page: 9 year: 1986 ident: e_1_2_6_67_1 article-title: The chilling tolerance of black mangrove, Avicennia germinans, from the Gulf of Mexico coast of Texas, Louisiana and Florida publication-title: Contributions in Marine Science – ident: e_1_2_6_29_1 doi: 10.1111/j.1469-185X.2011.00198.x – ident: e_1_2_6_86_1 doi: 10.1007/s00468-012-0760-1 – ident: e_1_2_6_91_1 doi: 10.2307/3236781 – ident: e_1_2_6_89_1 doi: 10.1007/BF02696066 – ident: e_1_2_6_24_1 doi: 10.1007/BF00539820 – ident: e_1_2_6_111_1 doi: 10.1017/CBO9780511525490.006 – start-page: 1441 volume-title: Coastal Sediments ‘07. Proceedings of the Sixth International Conference on Coastal Engineering and Science of Coastal Sedimetn Processes, New Orleans, May 2007 year: 2007 ident: e_1_2_6_118_1 – volume: 29 start-page: 27 year: 1986 ident: e_1_2_6_102_1 article-title: Survival of red mangrove, Rhizophora mangle, on the Gulf of Mexico coast of Texas publication-title: Contributions in Marine Science – ident: e_1_2_6_56_1 doi: 10.1007/s00442-007-0750-y – ident: e_1_2_6_121_1 doi: 10.1641/0006-3568(2001)051[0807:MFOOTW]2.0.CO;2 – ident: e_1_2_6_36_1 doi: 10.1111/gcb.12221 – volume-title: The Middle and Upper Eocene Floras of Southeastern North America year: 1924 ident: e_1_2_6_8_1 doi: 10.3133/pp92 – ident: e_1_2_6_54_1 doi: 10.2307/3671923 – ident: e_1_2_6_84_1 doi: 10.1007/s12237-010-9358-2 – ident: e_1_2_6_97_1 doi: 10.1146/annurev.ecolsys.28.1.517 – ident: e_1_2_6_14_1 doi: 10.1007/BF00328964 – ident: e_1_2_6_126_1 doi: 10.1038/416389a – ident: e_1_2_6_49_1 doi: 10.1016/j.ecoleng.2008.01.007 – volume-title: Protocols for Mangrove and Saltmarsh Habitat Mapping year: 2000 ident: e_1_2_6_135_1 – ident: e_1_2_6_33_1 doi: 10.2112/JCOASTRES-D-11-00028.1 – ident: e_1_2_6_53_1 doi: 10.1371/journal.pone.0002502 – ident: e_1_2_6_62_1 doi: 10.1111/j.1466-8238.2007.00317.x – ident: e_1_2_6_87_1 doi: 10.1007/s10531-013-0478-4 – ident: e_1_2_6_15_1 doi: 10.1111/j.1442-9993.1993.tb00458.x – ident: e_1_2_6_35_1 doi: 10.1002/(SICI)1099-1417(199908)14:5<465::AID-JQS473>3.0.CO;2-E – ident: e_1_2_6_6_1 doi: 10.1016/S0254-6299(15)31160-1 – ident: e_1_2_6_122_1 doi: 10.1016/j.jenvman.2009.04.023 – ident: e_1_2_6_2_1 doi: 10.1007/s11273-005-5165-0 – ident: e_1_2_6_130_1 doi: 10.1016/0031-0182(90)90210-X – ident: e_1_2_6_16_1 doi: 10.1046/j.0022-0477.2001.00584.x – ident: e_1_2_6_60_1 doi: 10.1111/j.1365-2486.2008.01547.x – ident: e_1_2_6_75_1 doi: 10.1111/gcb.12126 – ident: e_1_2_6_32_1 doi: 10.1016/j.aquabot.2007.12.009 – ident: e_1_2_6_59_1 doi: 10.1139/b82-330 – ident: e_1_2_6_18_1 doi: 10.1016/j.ecss.2011.10.003 – start-page: 717 year: 2006 ident: e_1_2_6_115_1 article-title: Loss of shorebird habitat as a result of mangrove incursion due to sea‐level rise and urbanization publication-title: Waterbirds Around the World (eds Boere GC, Galbraith CA, Stroud DA) – ident: e_1_2_6_81_1 doi: 10.2307/1943020 – ident: e_1_2_6_17_1 doi: 10.1007/BF00114718 – ident: e_1_2_6_114_1 doi: 10.2112/08-1043.1 – volume-title: Climate East London year: 2012 ident: e_1_2_6_120_1 – ident: e_1_2_6_21_1 doi: 10.1111/j.1466-8238.1998.00269.x – ident: e_1_2_6_117_1 doi: 10.1038/35079180 – ident: e_1_2_6_76_1 doi: 10.1038/nature01286 – ident: e_1_2_6_113_1 doi: 10.1007/s11273-006-0006-3 – start-page: 1 volume-title: Ecology and Management of Tidal Marshes: A Model From the Gulf of Mexico year: 1997 ident: e_1_2_6_70_1 – ident: e_1_2_6_93_1 doi: 10.1046/j.1365-2699.1999.00133.x – ident: e_1_2_6_10_1 – ident: e_1_2_6_30_1 doi: 10.1007/s10584-010-0003-7 – ident: e_1_2_6_92_1 doi: 10.1111/j.1442-9993.2009.02001.x – ident: e_1_2_6_69_1 doi: 10.1080/03014223.1994.9517466 – start-page: 4 year: 2010 ident: e_1_2_6_68_1 article-title: Increase in black mangrove abundance in coastal Louisiana publication-title: Louisiana Natural Resources News, Newsletter of the Louisiana Association of Professional Biologists – volume: 11 start-page: 652 year: 1998 ident: e_1_2_6_52_1 article-title: Preliminary report on introduction of several superior mangroves publication-title: Forest Research – ident: e_1_2_6_41_1 doi: 10.1016/j.cosust.2012.03.005 – ident: e_1_2_6_50_1 doi: 10.5194/bgd-10-2591-2013 – start-page: 49 volume-title: Wetlands (Australia) year: 2010 ident: e_1_2_6_94_1 – ident: e_1_2_6_99_1 doi: 10.1007/s10750-012-1159-0 – volume: 7 start-page: 13 year: 1988 ident: e_1_2_6_64_1 article-title: Mangroves and grass swamps: changes in the shoreline vegetation of the Middle Lane Cover River, Sydney, 1780's‐1880's publication-title: Wetlands (Australia) – ident: e_1_2_6_26_1 doi: 10.1016/j.ecss.2009.08.011 – ident: e_1_2_6_105_1 doi: 10.1007/BF00029109 – ident: e_1_2_6_128_1 doi: 10.1007/978-94-017-0914-9_6 – ident: e_1_2_6_31_1 doi: 10.1023/A:1011148522181 – ident: e_1_2_6_134_1 doi: 10.1016/j.aquabot.2012.03.011 |
SSID | ssj0003206 |
Score | 2.6000388 |
Snippet | Mangroves are species of halophytic intertidal trees and shrubs derived from tropical genera and are likely delimited in latitudinal range by varying... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 147 |
SubjectTerms | Abiotic stress Animal and plant ecology Animal, plant and microbial ecology Australia Avicennia Avicennia germinans Avicennia marina Biological and medical sciences Brackish water ecosystems Climate Change Climatology. Bioclimatology. Climate change Coasts Combretaceae Dispersal Earth, ocean, space Ecosystem Estuaries Exact sciences and technology External geophysics Fundamental and applied biological sciences. Psychology General aspects mangrove Mangroves Marine Meteorology Plant populations Population growth range expansion Rhizophora stylosa Rhizophoraceae salt marsh Salt marshes South Africa South America Synecology Temperature USA Wetlands |
Title | Mangrove expansion and salt marsh decline at mangrove poleward limits |
URI | https://api.istex.fr/ark:/67375/WNG-6LGPCFRV-2/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.12341 https://www.ncbi.nlm.nih.gov/pubmed/23907934 https://www.proquest.com/docview/1466024117 https://www.proquest.com/docview/1467065041 https://www.proquest.com/docview/1492616687 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamISReuBQGgTEZhKa9tGoSX2LxBFXbCbEJTQz2gBTZjjPQQjI1LRr8es5xLqVokxBvTfs5st1zTr7jnAshr1geayadGwphsYWZ4sPEJW4oQZwyxUyunI-2OBaHp-zdGT_bIq-7XJimPkR_4Iaa4e01Krg29R9Kfm7NCMyuT1rHWC0kRCfr0lFx5PtqhjFnYGrCuK0qhFE8_ciNZ9Et3NYrjI3UNWxP3vS1uI54bvJY_yCa3SNfuiU08ScXo9XSjOyvv6o7_uca75O7LUGlbxqJekC2XDkgt5uWlT8HZGe6zowDWGsa6gEJjoB-VwsPo_t0UnwDLuyvHpLpkS7PF9UPR90VWB88oKO6zGitiyX9Dq71V5o5zNF0VOMXLfiyKhwG9dICs7DqR-R0Nv04ORy2_RuGlnEWgu1KnDOKJ2M1zrCjk8lFrrkWyilluMyNU9yY0CrNgYjwCHxBk8S5tFKryLp4h2yXVemeEApmKHPYLM3KmGkJA0ItdB5JLqOE23FADrp_MrVtcXPssVGknZMDW5n6rQzIyx562VT0uA6078WhR-jFBYbASZ5-Pp6n4v38w2R28imNArK3IS_9AKBtWA2PBWS3E6C0NQ81-lsCyFEYyoC86H8Gxca3Nbp01cpj8BX0GCdzM0aBByxEAvd53AjnegKxwuKHMIEDL2I3LzadT976D0__HfqM3AHqyJrDqF2yvVys3HOgZ0uz5_XwN4cMMtE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VVgguPAIFQykLgqqXRPFjvd4DB0jzKE0iVLWlN7N21gU1OFWcQMtv4q_wn5hZP0JQK3HpgZvjjK21Z-bbmfXsfACvvMRVntC67vsxUZhJXg90oOsCzWkkvSiR2lRbDP3eoff-mB-vwM9yL0zeH6JacCPPMHhNDk4L0n94-UkcNRB3PbsoqdzTF98xYcve7O6gdl87Tqd90OrVC06Beuxxz0Z_CrSOJA-asjkilqEo8RPFlS-1lBEXSaQljyI7lorj5MgdzE-iwE1ELJR0Yu3ifW_AGjGIU6f-nf1FsyrXMUyetss9BDfbLfoYUd1QNdSl2W-NFHlO1ZgqQ4UkOZPGZaHucuRspr7OXfhVvrS84uW0MZ9FjfjHX_0k_5e3eg_uFDE4e5s7zX1Y0WkNbuasnBc1WG8vNv-hWIF-WQ2sAWYYk6kRY1usNf6C4b759QDaA5WeTCffNNPnCLC0BslUOmKZGs_YVzXNPrORpm2omik6UQifTcaa6pbZmDaaZQ_h8FoefB1W00mqHwNDpB1p4oOLhespgRfYyleJI7hwAh43LdguTSeMi_7tRCMyDss8DlUXGtVZ8LISPcubllwmtGXsr5JQ01Oq8hM8_Djshn6_-6HV2T8KHQs2lwy0ugAjU2r451mwUVpsWCBgRimlj_GfbQsLXlR_I3bRBymV6sncyNBX9iYN5moZiUm-7wd4n0e5NywG4Erq74gD2DY2ffXDht3WO3Pw5N9Fn8Ot3sGgH_Z3h3tP4TZGyl6-9rYBq7PpXD_DaHQWbRoQYPDpuv3jNygWkHQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lc9MwEN4p7cBw4REoGEoRDHR6SSa2Jcs6cIA0SUvbTKdDS29GsuXCNDiZOIGWv8Rf4Uexkh8hTDvDpQdueXzyyN6HvpVXuwCvaOpLyrVuBkFsWpgJ1gx1qJsc1SkRVKVC22yLQbB9RN-fsJMl-FmdhSnqQ9QbbsYyrL82Bj5O0j-M_DRWLXS71C0zKnf1xXeM1_I3O1so3Nee1-t-6Gw3y5YCzZgy6qI5hVorwcK2aCemyZBKg1QyGQgthGI8VVowpdxYSIZrI_MwPFGhn_KYS-HF2sfr3oAVGuB4w8AO57WqfM828nR9RtG3uX5ZxsikDdVTXVj8Vowcz00ypsxRHmnRSOMyprtInO3K17sLv6pnViS8nLVmU9WKf_xVTvI_eaj34E7JwMnbwmTuw5LOGnCz6Ml50YDV7vzoH8JK35c3wNnH-GI0sTCyQTrDL0j27bcH0N2X2elk9E0TfY7u1exAEpklJJfDKfkqJ_lnkmhzCFUTaX4owePRUJusZTI0x8zyh3B0LTe-CsvZKNOPgaCfTbTpBhdzn0qOA1wZyNTjjHshi9sObFaaE8Vl9XbTRGQYVVEcii6yonPgZQ0dFyVLLgNtWPWrEXJyZnL8OIs-DvpRsNc_6PQOjyPPgfUF_awHIC815f6oA2uVwkal_8tNQBkg-3Nd7sCL-m_0XOZ1lMz0aGYx5h1720zmaozAED8IQrzOo8IY5hPwhanuiBPYtCp99c1G_c47--HJv0Ofw62DrV60tzPYfQq3kSbTYuNtDZank5l-hlR0qtatCyDw6brN4zfRCI8j |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mangrove+expansion+and+salt+marsh+decline+at+mangrove+poleward+limits&rft.jtitle=Global+change+biology&rft.au=SAINTILAN%2C+Neil&rft.au=WILSON%2C+Nicholas+C&rft.au=ROGERS%2C+Kerrylee&rft.au=RAJKARAN%2C+Anusha&rft.date=2014&rft.pub=Wiley-Blackwell&rft.issn=1354-1013&rft.volume=20&rft.issue=1&rft.spage=147&rft.epage=157&rft_id=info:doi/10.1111%2Fgcb.12341&rft.externalDBID=n%2Fa&rft.externalDocID=28313674 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |