Mangrove expansion and salt marsh decline at mangrove poleward limits

Mangroves are species of halophytic intertidal trees and shrubs derived from tropical genera and are likely delimited in latitudinal range by varying sensitivity to cold. There is now sufficient evidence that mangrove species have proliferated at or near their poleward limits on at least five contin...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 20; no. 1; pp. 147 - 157
Main Authors Saintilan, Neil, Wilson, Nicholas C., Rogers, Kerrylee, Rajkaran, Anusha, Krauss, Ken W.
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.01.2014
Wiley-Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mangroves are species of halophytic intertidal trees and shrubs derived from tropical genera and are likely delimited in latitudinal range by varying sensitivity to cold. There is now sufficient evidence that mangrove species have proliferated at or near their poleward limits on at least five continents over the past half century, at the expense of salt marsh. Avicennia is the most cold‐tolerant genus worldwide, and is the subject of most of the observed changes. Avicennia germinans has extended in range along the USA Atlantic coast and expanded into salt marsh as a consequence of lower frost frequency and intensity in the southern USA. The genus has also expanded into salt marsh at its southern limit in Peru, and on the Pacific coast of Mexico. Mangroves of several species have expanded in extent and replaced salt marsh where protected within mangrove reserves in Guangdong Province, China. In south‐eastern Australia, the expansion of Avicennia marina into salt marshes is now well documented, and Rhizophora stylosa has extended its range southward, while showing strong population growth within estuaries along its southern limits in northern New South Wales. Avicennia marina has extended its range southwards in South Africa. The changes are consistent with the poleward extension of temperature thresholds coincident with sea‐level rise, although the specific mechanism of range extension might be complicated by limitations on dispersal or other factors. The shift from salt marsh to mangrove dominance on subtropical and temperate shorelines has important implications for ecological structure, function, and global change adaptation.
AbstractList Mangroves are species of halophytic intertidal trees and shrubs derived from tropical genera and are likely delimited in latitudinal range by varying sensitivity to cold. There is now sufficient evidence that mangrove species have proliferated at or near their poleward limits on at least five continents over the past half century, at the expense of salt marsh. Avicennia is the most cold‐tolerant genus worldwide, and is the subject of most of the observed changes. Avicennia germinans has extended in range along the USA Atlantic coast and expanded into salt marsh as a consequence of lower frost frequency and intensity in the southern USA. The genus has also expanded into salt marsh at its southern limit in Peru, and on the Pacific coast of Mexico. Mangroves of several species have expanded in extent and replaced salt marsh where protected within mangrove reserves in Guangdong Province, China. In south‐eastern Australia, the expansion of Avicennia marina into salt marshes is now well documented, and Rhizophora stylosa has extended its range southward, while showing strong population growth within estuaries along its southern limits in northern New South Wales. Avicennia marina has extended its range southwards in South Africa. The changes are consistent with the poleward extension of temperature thresholds coincident with sea‐level rise, although the specific mechanism of range extension might be complicated by limitations on dispersal or other factors. The shift from salt marsh to mangrove dominance on subtropical and temperate shorelines has important implications for ecological structure, function, and global change adaptation.
Mangroves are species of halophytic intertidal trees and shrubs derived from tropical genera and are likely delimited in latitudinal range by varying sensitivity to cold. There is now sufficient evidence that mangrove species have proliferated at or near their poleward limits on at least five continents over the past half century, at the expense of salt marsh. Avicennia is the most cold‐tolerant genus worldwide, and is the subject of most of the observed changes. Avicennia germinans has extended in range along the USA Atlantic coast and expanded into salt marsh as a consequence of lower frost frequency and intensity in the southern USA . The genus has also expanded into salt marsh at its southern limit in Peru, and on the Pacific coast of Mexico. Mangroves of several species have expanded in extent and replaced salt marsh where protected within mangrove reserves in Guangdong Province, China. In south‐eastern Australia, the expansion of A vicennia marina into salt marshes is now well documented, and R hizophora stylosa has extended its range southward, while showing strong population growth within estuaries along its southern limits in northern New South Wales. Avicennia marina has extended its range southwards in South Africa. The changes are consistent with the poleward extension of temperature thresholds coincident with sea‐level rise, although the specific mechanism of range extension might be complicated by limitations on dispersal or other factors. The shift from salt marsh to mangrove dominance on subtropical and temperate shorelines has important implications for ecological structure, function, and global change adaptation.
Mangroves are species of halophytic intertidal trees and shrubs derived from tropical genera and are likely delimited in latitudinal range by varying sensitivity to cold. There is now sufficient evidence that mangrove species have proliferated at or near their poleward limits on at least five continents over the past half century, at the expense of salt marsh. Avicennia is the most cold-tolerant genus worldwide, and is the subject of most of the observed changes. Avicennia germinans has extended in range along the USA Atlantic coast and expanded into salt marsh as a consequence of lower frost frequency and intensity in the southern USA. The genus has also expanded into salt marsh at its southern limit in Peru, and on the Pacific coast of Mexico. Mangroves of several species have expanded in extent and replaced salt marsh where protected within mangrove reserves in Guangdong Province, China. In south-eastern Australia, the expansion of Avicennia marina into salt marshes is now well documented, and Rhizophora stylosa has extended its range southward, while showing strong population growth within estuaries along its southern limits in northern New South Wales. Avicennia marina has extended its range southwards in South Africa. The changes are consistent with the poleward extension of temperature thresholds coincident with sea-level rise, although the specific mechanism of range extension might be complicated by limitations on dispersal or other factors. The shift from salt marsh to mangrove dominance on subtropical and temperate shorelines has important implications for ecological structure, function, and global change adaptation. [PUBLICATION ABSTRACT]
Mangroves are species of halophytic intertidal trees and shrubs derived from tropical genera and are likely delimited in latitudinal range by varying sensitivity to cold. There is now sufficient evidence that mangrove species have proliferated at or near their poleward limits on at least five continents over the past half century, at the expense of salt marsh. Avicennia is the most cold-tolerant genus worldwide, and is the subject of most of the observed changes. Avicennia germinans has extended in range along the USA Atlantic coast and expanded into salt marsh as a consequence of lower frost frequency and intensity in the southern USA. The genus has also expanded into salt marsh at its southern limit in Peru, and on the Pacific coast of Mexico. Mangroves of several species have expanded in extent and replaced salt marsh where protected within mangrove reserves in Guangdong Province, China. In south-eastern Australia, the expansion of Avicennia marina into salt marshes is now well documented, and Rhizophora stylosa has extended its range southward, while showing strong population growth within estuaries along its southern limits in northern New South Wales. Avicennia marina has extended its range southwards in South Africa. The changes are consistent with the poleward extension of temperature thresholds coincident with sea-level rise, although the specific mechanism of range extension might be complicated by limitations on dispersal or other factors. The shift from salt marsh to mangrove dominance on subtropical and temperate shorelines has important implications for ecological structure, function, and global change adaptation.Mangroves are species of halophytic intertidal trees and shrubs derived from tropical genera and are likely delimited in latitudinal range by varying sensitivity to cold. There is now sufficient evidence that mangrove species have proliferated at or near their poleward limits on at least five continents over the past half century, at the expense of salt marsh. Avicennia is the most cold-tolerant genus worldwide, and is the subject of most of the observed changes. Avicennia germinans has extended in range along the USA Atlantic coast and expanded into salt marsh as a consequence of lower frost frequency and intensity in the southern USA. The genus has also expanded into salt marsh at its southern limit in Peru, and on the Pacific coast of Mexico. Mangroves of several species have expanded in extent and replaced salt marsh where protected within mangrove reserves in Guangdong Province, China. In south-eastern Australia, the expansion of Avicennia marina into salt marshes is now well documented, and Rhizophora stylosa has extended its range southward, while showing strong population growth within estuaries along its southern limits in northern New South Wales. Avicennia marina has extended its range southwards in South Africa. The changes are consistent with the poleward extension of temperature thresholds coincident with sea-level rise, although the specific mechanism of range extension might be complicated by limitations on dispersal or other factors. The shift from salt marsh to mangrove dominance on subtropical and temperate shorelines has important implications for ecological structure, function, and global change adaptation.
Author Wilson, Nicholas C.
Rogers, Kerrylee
Saintilan, Neil
Rajkaran, Anusha
Krauss, Ken W.
Author_xml – sequence: 1
  givenname: Neil
  surname: Saintilan
  fullname: Saintilan, Neil
  email: neil.saintilan@environment.nsw.gov.au
  organization: NSW Department of Premier and Cabinet, Office of Environment and Heritage, PO Box A290, NSW, 1232, Sydney South, Australia
– sequence: 2
  givenname: Nicholas C.
  surname: Wilson
  fullname: Wilson, Nicholas C.
  organization: Forest Science Institute of South Vietnam, 1 Pham Van Hai StreetTan Binh District, Ho Chi Minh City, Vietnam
– sequence: 3
  givenname: Kerrylee
  surname: Rogers
  fullname: Rogers, Kerrylee
  organization: School of Earth and Environmental Science, University of Wollongong, Northfields Ave, 2522, Wollongong, Australia
– sequence: 4
  givenname: Anusha
  surname: Rajkaran
  fullname: Rajkaran, Anusha
  organization: Department of Botany, Rhodes University, PO Box 94, 6140, Grahamstown, South Africa
– sequence: 5
  givenname: Ken W.
  surname: Krauss
  fullname: Krauss, Ken W.
  organization: National Wetlands Research Center, US Geological Survey, LA, 70506, Lafayette, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28313674$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23907934$$D View this record in MEDLINE/PubMed
BookMark eNqNkVmLFDEUhYOMOIs--AekQATnoWayp_I4NjOt0C6Iy2O4lU6NGdOpNqme5d-bsqsVBgXvSy7hOwfuOYdoL_bRIfSU4BNS5vTStieEMk4eoAPCpKgpb-TeuAteE0zYPjrM-QpjzCiWj9A-ZRorzfgBOn8L8TL1165yt2uI2fexgrisMoShWkHK36qls8FHV8H4McHrPrgbSMsq-JUf8mP0sIOQ3ZPpPUKfL84_zV7Xi_fzN7OzRW254KRmqnGu1aLBGi8JbmTbyQ4ESO20boXqWqdF2xKrQTQUC6opbxvWKatAU-vYEXq59V2n_sfG5cGsfLYuBIiu32RDuKaSSNmo_0ClwlJgTgr6_B561W9SLIeMlMSUEzIaPpuoTbtyS7NOvuRzZ3ZZFuDFBEC2ELoE0fr8h2tY6UaN3OmWs6nPObnOWD_AUJIfEvhgCDZjq6a0an61WhTH9xQ707-xk_uND-7u36CZz17tFPVW4fPgbn8rIH03UjElzNd3cyMX8w-zi49fyrk_AV-wvLI
CitedBy_id crossref_primary_10_1007_s11356_023_27816_2
crossref_primary_10_1016_j_ecss_2021_107607
crossref_primary_10_1007_s00468_021_02089_9
crossref_primary_10_3354_meps12707
crossref_primary_10_1016_j_cub_2019_08_042
crossref_primary_10_1002_ecy_2916
crossref_primary_10_1146_annurev_marine_042023_093037
crossref_primary_10_3389_fevo_2021_700962
crossref_primary_10_1007_s10750_017_3150_2
crossref_primary_10_1111_1365_2745_13586
crossref_primary_10_1088_2515_7620_ab7a77
crossref_primary_10_1371_journal_pone_0119128
crossref_primary_10_1016_j_catena_2022_106205
crossref_primary_10_1111_gcb_14635
crossref_primary_10_1016_j_jag_2020_102285
crossref_primary_10_1371_journal_pone_0193617
crossref_primary_10_1016_j_ecochg_2022_100056
crossref_primary_10_1016_j_ecolind_2023_110063
crossref_primary_10_1061__ASCE_HE_1943_5584_0001260
crossref_primary_10_3389_fclim_2022_853666
crossref_primary_10_1007_s12237_023_01308_5
crossref_primary_10_1007_s10750_017_3449_z
crossref_primary_10_1038_s41467_020_16236_2
crossref_primary_10_2166_wcc_2022_069
crossref_primary_10_3390_f14122375
crossref_primary_10_1126_sciadv_abo6602
crossref_primary_10_1007_s11356_023_28486_w
crossref_primary_10_1007_s10530_023_03085_5
crossref_primary_10_1111_gcb_15516
crossref_primary_10_2139_ssrn_4157304
crossref_primary_10_1007_s13157_019_01218_y
crossref_primary_10_1016_j_seares_2023_102368
crossref_primary_10_1016_j_jag_2021_102414
crossref_primary_10_1007_s40725_015_0018_4
crossref_primary_10_1111_1365_2745_13243
crossref_primary_10_1007_s11852_016_0486_0
crossref_primary_10_1007_s00442_018_4098_2
crossref_primary_10_1016_j_tree_2023_11_003
crossref_primary_10_1073_pnas_1812470116
crossref_primary_10_3390_rs13081450
crossref_primary_10_1016_j_jhydrol_2023_129665
crossref_primary_10_1016_j_marpolbul_2021_112864
crossref_primary_10_1002_rse2_394
crossref_primary_10_1093_nsr_nwaa296
crossref_primary_10_1016_j_ecss_2018_04_022
crossref_primary_10_1016_j_isci_2022_104755
crossref_primary_10_1111_sjtg_12357
crossref_primary_10_1111_1365_2745_14440
crossref_primary_10_1111_1365_2745_13350
crossref_primary_10_1016_j_catena_2022_106413
crossref_primary_10_1002_wat2_1495
crossref_primary_10_1111_jbi_12580
crossref_primary_10_1002_eap_2085
crossref_primary_10_1109_TGRS_2021_3051025
crossref_primary_10_1093_femsec_fiaa148
crossref_primary_10_1016_j_ecss_2020_106796
crossref_primary_10_1016_j_ocecoaman_2018_01_009
crossref_primary_10_1007_s11258_024_01453_2
crossref_primary_10_3390_s16122010
crossref_primary_10_1007_s11104_024_07130_7
crossref_primary_10_1016_j_ecocom_2016_11_005
crossref_primary_10_1002_gdj3_119
crossref_primary_10_1016_j_ecss_2024_108690
crossref_primary_10_1016_j_ecss_2018_10_005
crossref_primary_10_1016_j_gecco_2021_e01684
crossref_primary_10_1007_s13157_016_0810_3
crossref_primary_10_1016_j_ecss_2017_02_005
crossref_primary_10_1007_s12237_020_00736_x
crossref_primary_10_1093_treephys_tpaa107
crossref_primary_10_1071_MF20125
crossref_primary_10_1016_j_scitotenv_2021_149328
crossref_primary_10_1080_10106049_2019_1624988
crossref_primary_10_1146_annurev_environ_101718_033302
crossref_primary_10_1371_journal_pbio_3001322
crossref_primary_10_1007_s11356_014_3568_2
crossref_primary_10_1007_s10933_022_00275_4
crossref_primary_10_1007_s10641_022_01333_6
crossref_primary_10_1111_ddi_13631
crossref_primary_10_1007_s11120_018_0570_4
crossref_primary_10_1016_j_sajb_2016_04_014
crossref_primary_10_1016_j_isci_2024_110473
crossref_primary_10_1007_s13157_018_1016_7
crossref_primary_10_1016_j_scitotenv_2024_177446
crossref_primary_10_1088_1755_1315_618_1_012021
crossref_primary_10_1111_1365_2745_13049
crossref_primary_10_1016_j_gecco_2024_e03048
crossref_primary_10_1111_1365_2745_13285
crossref_primary_10_1016_j_scitotenv_2025_178826
crossref_primary_10_1038_srep44071
crossref_primary_10_1111_ddi_13400
crossref_primary_10_3389_fmars_2023_1206776
crossref_primary_10_1007_s12237_023_01209_7
crossref_primary_10_1016_j_landurbplan_2018_09_022
crossref_primary_10_1016_j_ecss_2018_09_006
crossref_primary_10_26359_52462_0619
crossref_primary_10_1007_s12237_020_00879_x
crossref_primary_10_1016_j_ecolmodel_2025_111089
crossref_primary_10_1111_1365_2745_13398
crossref_primary_10_1111_jvs_13267
crossref_primary_10_1111_jbi_13990
crossref_primary_10_1002_ecs2_4007
crossref_primary_10_1111_gcb_13158
crossref_primary_10_1007_s11273_020_09742_z
crossref_primary_10_1016_j_isprsjprs_2021_01_003
crossref_primary_10_1007_s10668_024_04522_8
crossref_primary_10_1007_s11069_020_04454_2
crossref_primary_10_1016_j_ecss_2019_106299
crossref_primary_10_1016_j_chemosphere_2019_125152
crossref_primary_10_1371_journal_pone_0211638
crossref_primary_10_1007_s12237_020_00733_0
crossref_primary_10_1016_j_scitotenv_2023_167981
crossref_primary_10_20473_jipk_v11i1_10770
crossref_primary_10_3390_f13020192
crossref_primary_10_1038_s41559_023_02264_w
crossref_primary_10_1002_ece3_9252
crossref_primary_10_1038_s41598_020_63880_1
crossref_primary_10_30852_sb_2017_70
crossref_primary_10_1126_sciadv_abm7826
crossref_primary_10_1016_j_ecss_2024_109116
crossref_primary_10_1016_j_ecss_2021_107553
crossref_primary_10_1007_s12237_021_00906_5
crossref_primary_10_1038_nclimate3203
crossref_primary_10_1111_1365_2745_14264
crossref_primary_10_1111_1365_2745_14020
crossref_primary_10_1007_s10750_018_3730_9
crossref_primary_10_1038_s41467_023_36477_1
crossref_primary_10_1016_j_ecolmodel_2020_109292
crossref_primary_10_1111_nph_12605
crossref_primary_10_1016_j_geomorph_2023_108607
crossref_primary_10_1016_j_jag_2022_102890
crossref_primary_10_1016_j_chemosphere_2020_126368
crossref_primary_10_1007_s12237_017_0208_3
crossref_primary_10_1098_rsbl_2018_0471
crossref_primary_10_1007_s10021_019_00411_8
crossref_primary_10_1016_j_ecolind_2019_105927
crossref_primary_10_1016_j_margeo_2019_105963
crossref_primary_10_1007_s12237_020_00830_0
crossref_primary_10_1016_j_geomorph_2018_06_018
crossref_primary_10_1029_2024EF004990
crossref_primary_10_1111_1365_2745_14296
crossref_primary_10_1111_jvs_12920
crossref_primary_10_2112_JCOASTRES_D_16_00013_1
crossref_primary_10_1007_s11160_021_09668_6
crossref_primary_10_1002_2016JG003510
crossref_primary_10_1111_gcb_14016
crossref_primary_10_1007_s13157_018_1067_9
crossref_primary_10_3389_fmars_2024_1389428
crossref_primary_10_1007_s00442_019_04563_1
crossref_primary_10_1007_s11104_025_07204_0
crossref_primary_10_1038_s41561_019_0435_2
crossref_primary_10_1038_s43017_021_00224_1
crossref_primary_10_1016_j_envadv_2023_100459
crossref_primary_10_1007_s11273_021_09803_x
crossref_primary_10_1007_s10750_017_3225_0
crossref_primary_10_1111_brv_12514
crossref_primary_10_1111_gcb_14376
crossref_primary_10_1002_ecm_1248
crossref_primary_10_1126_science_abm9583
crossref_primary_10_1016_j_ecolmodel_2020_109245
crossref_primary_10_3390_f7060116
crossref_primary_10_1007_s11356_021_15450_9
crossref_primary_10_1016_j_jenvman_2023_119892
crossref_primary_10_1002_aqc_3146
crossref_primary_10_1088_1755_1315_695_1_012008
crossref_primary_10_1088_1748_9326_abc122
crossref_primary_10_1016_j_aquabot_2018_07_009
crossref_primary_10_1016_j_scitotenv_2019_04_122
crossref_primary_10_1007_s13364_021_00584_5
crossref_primary_10_1007_s11769_022_1260_x
crossref_primary_10_1016_j_ecss_2021_107238
crossref_primary_10_3390_oceans5010006
crossref_primary_10_1080_10549811_2017_1339615
crossref_primary_10_1016_j_ecolind_2019_105972
crossref_primary_10_3354_meps13948
crossref_primary_10_1007_s12237_022_01162_x
crossref_primary_10_1016_j_ecss_2020_107015
crossref_primary_10_1016_j_rsma_2021_101945
crossref_primary_10_1016_j_marpolbul_2023_115595
crossref_primary_10_1016_j_scitotenv_2023_167410
crossref_primary_10_1111_gcb_15642
crossref_primary_10_1016_j_tree_2019_04_004
crossref_primary_10_1007_s12237_015_9993_8
crossref_primary_10_3389_fcosc_2022_763325
crossref_primary_10_1016_j_jplph_2023_154023
crossref_primary_10_1007_s12237_018_00490_1
crossref_primary_10_1016_j_jnc_2024_126679
crossref_primary_10_1111_ddi_13119
crossref_primary_10_1007_s10113_024_02225_4
crossref_primary_10_1016_j_jembe_2025_152083
crossref_primary_10_1002_ecy_3107
crossref_primary_10_1007_s10750_017_3257_5
crossref_primary_10_1016_j_marenvres_2018_05_018
crossref_primary_10_1016_j_agrformet_2019_107644
crossref_primary_10_1016_j_ecss_2017_05_009
crossref_primary_10_3390_f13010064
crossref_primary_10_1111_gcb_14100
crossref_primary_10_1029_2019JF005200
crossref_primary_10_1007_s10021_020_00554_z
crossref_primary_10_5194_bg_18_2527_2021
crossref_primary_10_1093_femsec_fiac139
crossref_primary_10_1016_j_jhydrol_2021_127401
crossref_primary_10_1111_geb_13720
crossref_primary_10_1111_jbi_12813
crossref_primary_10_1016_j_scitotenv_2024_172284
crossref_primary_10_1111_rec_13824
crossref_primary_10_1016_j_ecss_2020_107158
crossref_primary_10_1080_20964129_2020_1780159
crossref_primary_10_1016_j_ecss_2013_08_025
crossref_primary_10_1007_s41976_021_00055_0
crossref_primary_10_1111_ecog_07288
crossref_primary_10_1007_s13157_018_0994_9
crossref_primary_10_1002_ecs2_3674
crossref_primary_10_1111_geb_12751
crossref_primary_10_1002_aqc_3119
crossref_primary_10_1002_2017JG003775
crossref_primary_10_1016_j_rsma_2024_103681
crossref_primary_10_1007_s10750_022_04823_x
crossref_primary_10_1002_ecs2_2207
crossref_primary_10_1016_j_aquabot_2016_06_006
crossref_primary_10_1111_emr_12572
crossref_primary_10_1186_s12862_015_0343_z
crossref_primary_10_1007_s12237_019_00533_1
crossref_primary_10_1002_ecy_3320
crossref_primary_10_1111_ele_12429
crossref_primary_10_3390_quat5010002
crossref_primary_10_1016_j_plaphy_2018_09_019
crossref_primary_10_1186_s13717_016_0064_2
crossref_primary_10_1007_s11852_024_01061_2
crossref_primary_10_1002_ecs2_1366
crossref_primary_10_1016_j_sajb_2016_06_011
crossref_primary_10_1111_1365_2435_12443
crossref_primary_10_1038_s41598_018_19695_2
crossref_primary_10_1007_s11273_020_09735_y
crossref_primary_10_3389_fpls_2018_01376
crossref_primary_10_1111_rec_13774
crossref_primary_10_1111_ddi_13380
crossref_primary_10_1111_gcb_15046
crossref_primary_10_1111_geb_12211
crossref_primary_10_1080_16583655_2021_1985871
crossref_primary_10_3390_plants13243471
crossref_primary_10_1007_s10750_017_3331_z
crossref_primary_10_1016_j_scitotenv_2022_153313
crossref_primary_10_1007_s13157_015_0693_8
crossref_primary_10_1016_j_ecolmodel_2015_04_013
crossref_primary_10_1002_ecy_3309
crossref_primary_10_1016_j_earscirev_2023_104501
crossref_primary_10_2989_1814232X_2018_1466728
crossref_primary_10_1007_s10021_019_00441_2
crossref_primary_10_1111_cobi_13905
crossref_primary_10_1002_ecy_3662
crossref_primary_10_1002_rra_4177
crossref_primary_10_1007_s10661_018_6472_2
crossref_primary_10_1002_wcc_792
crossref_primary_10_1016_j_ecss_2018_06_002
crossref_primary_10_3390_rs14184664
crossref_primary_10_1016_j_ecss_2020_106940
crossref_primary_10_1038_s41467_020_18118_z
crossref_primary_10_1111_1745_5871_12265
crossref_primary_10_1002_ece3_70577
crossref_primary_10_1007_s13157_016_0793_0
crossref_primary_10_1007_s13157_018_0996_7
crossref_primary_10_1016_j_scitotenv_2020_136576
crossref_primary_10_1038_s44183_024_00095_1
crossref_primary_10_1093_aob_mcz161
crossref_primary_10_1007_s10530_018_1821_1
crossref_primary_10_1016_j_scitotenv_2024_175962
crossref_primary_10_1002_pan3_10794
crossref_primary_10_1002_ece3_7263
crossref_primary_10_1007_s12237_019_00577_3
crossref_primary_10_1016_j_marenvres_2024_106485
crossref_primary_10_1007_s00227_020_03807_6
crossref_primary_10_1007_s11120_016_0278_2
crossref_primary_10_1007_s10531_023_02708_6
crossref_primary_10_1071_MF15159
crossref_primary_10_1016_j_ecss_2016_02_008
crossref_primary_10_1007_s10750_017_3179_2
crossref_primary_10_34133_ehs_0033
crossref_primary_10_1016_j_ecss_2018_06_026
crossref_primary_10_3389_fmars_2022_781876
crossref_primary_10_1111_gcb_15494
crossref_primary_10_1016_j_aquabot_2014_10_010
crossref_primary_10_1088_1755_1315_913_1_012047
crossref_primary_10_2989_1814232X_2019_1683070
crossref_primary_10_1007_s11273_016_9515_x
crossref_primary_10_1186_s40645_020_00387_3
crossref_primary_10_1007_s12237_025_01482_8
crossref_primary_10_5194_bg_12_6169_2015
crossref_primary_10_1002_ehs2_1211
crossref_primary_10_1016_j_rse_2021_112799
crossref_primary_10_1002_lno_12655
crossref_primary_10_3389_fmars_2022_860910
crossref_primary_10_1007_s11104_018_3807_2
crossref_primary_10_1016_j_ocecoaman_2021_105645
crossref_primary_10_3389_fmars_2020_00453
crossref_primary_10_1016_j_foreco_2016_04_044
crossref_primary_10_1016_j_ecss_2018_05_001
crossref_primary_10_1016_j_ecss_2014_07_009
crossref_primary_10_1016_j_ecss_2013_12_032
crossref_primary_10_4028_www_scientific_net_AMR_1073_1076_535
crossref_primary_10_3354_meps13893
crossref_primary_10_1016_j_jhazmat_2021_126252
crossref_primary_10_1016_j_oneear_2020_07_010
crossref_primary_10_1029_2020EF001901
crossref_primary_10_1111_ppl_12289
crossref_primary_10_1007_s10750_017_3409_7
crossref_primary_10_1038_ncomms16094
crossref_primary_10_1071_MF16322
crossref_primary_10_1007_s40641_015_0002_x
crossref_primary_10_1016_j_sajb_2019_11_005
crossref_primary_10_1080_00288330_2020_1738505
crossref_primary_10_3389_fmars_2024_1459935
crossref_primary_10_1002_ecy_1698
crossref_primary_10_1007_s12237_024_01389_w
crossref_primary_10_1016_j_chemosphere_2022_133555
crossref_primary_10_3354_meps11581
crossref_primary_10_1007_s12237_020_00894_y
crossref_primary_10_1890_15_1077
crossref_primary_10_1111_gcb_13084
crossref_primary_10_1038_s43017_023_00429_6
crossref_primary_10_1111_gcb_16111
crossref_primary_10_1016_j_ecss_2020_106754
crossref_primary_10_1371_journal_pone_0234083
crossref_primary_10_1038_s41586_023_06448_z
crossref_primary_10_1016_j_ecss_2020_106877
crossref_primary_10_1007_s10750_019_04170_4
crossref_primary_10_1111_1365_2745_12539
crossref_primary_10_3389_fenvs_2022_951365
crossref_primary_10_1016_j_margeo_2017_07_001
crossref_primary_10_5194_hess_25_769_2021
crossref_primary_10_1007_s10980_020_01176_5
crossref_primary_10_1371_journal_pone_0125404
crossref_primary_10_1016_j_ecolind_2020_106489
crossref_primary_10_1371_journal_pone_0150950
crossref_primary_10_1088_1755_1315_1190_1_012004
crossref_primary_10_1016_j_ecss_2020_106749
crossref_primary_10_1111_nph_13147
crossref_primary_10_1073_pnas_1902181116
crossref_primary_10_1177_0959683619875801
crossref_primary_10_1016_j_ecss_2020_106884
crossref_primary_10_1002_ecs2_1865
crossref_primary_10_1111_gcb_13945
crossref_primary_10_1016_j_geomorph_2021_107968
crossref_primary_10_1016_j_ecss_2020_106767
crossref_primary_10_1016_j_ancene_2021_100295
crossref_primary_10_3389_fcosc_2021_746461
crossref_primary_10_1016_j_landurbplan_2024_105203
crossref_primary_10_1016_j_sajb_2016_08_001
crossref_primary_10_1371_journal_pone_0229605
crossref_primary_10_1111_rec_13373
crossref_primary_10_1007_s10980_021_01314_7
crossref_primary_10_1016_j_catena_2020_104775
crossref_primary_10_1038_s41586_022_05355_z
crossref_primary_10_1016_j_ecss_2020_106776
crossref_primary_10_20961_ijed_v3i1_1207
crossref_primary_10_1016_j_quascirev_2024_108855
crossref_primary_10_1016_j_ecss_2020_106650
crossref_primary_10_1111_1365_2745_12799
crossref_primary_10_1007_s12237_017_0211_8
crossref_primary_10_3390_d11110208
crossref_primary_10_1016_j_marpolbul_2021_112690
crossref_primary_10_1016_j_jembe_2020_151336
crossref_primary_10_1007_s10021_019_00408_3
crossref_primary_10_1111_geb_13368
crossref_primary_10_1016_j_marpolbul_2021_112223
crossref_primary_10_1002_ecy_2505
crossref_primary_10_1007_s10661_017_6399_z
crossref_primary_10_1016_j_gecco_2016_07_005
crossref_primary_10_3389_ffgc_2022_852910
crossref_primary_10_1111_gcb_13727
crossref_primary_10_1890_ES15_00042_1
crossref_primary_10_1002_ecy_1539
crossref_primary_10_1007_s13157_021_01440_7
crossref_primary_10_1016_j_ecss_2018_10_011
crossref_primary_10_1016_j_foreco_2020_118517
crossref_primary_10_1007_s13157_021_01463_0
crossref_primary_10_2988_0006_324X_129_Q2_164
crossref_primary_10_1080_00288330_2023_2298913
crossref_primary_10_1007_s10750_020_04403_x
crossref_primary_10_1016_j_ecss_2020_106712
crossref_primary_10_17129_botsci_3322
crossref_primary_10_1002_ecs2_1956
crossref_primary_10_1016_j_marpolbul_2021_112475
crossref_primary_10_1002_2014JG002870
crossref_primary_10_1590_0001_3765201520150055
crossref_primary_10_1002_ecy_1625
crossref_primary_10_1007_s11104_018_3611_z
crossref_primary_10_3390_f9100596
crossref_primary_10_1002_lno_11936
crossref_primary_10_1656_058_013_0405
crossref_primary_10_1016_j_sajb_2015_05_003
crossref_primary_10_1111_1365_2745_12571
crossref_primary_10_1038_nature15538
crossref_primary_10_1088_2752_5295_ad9f90
crossref_primary_10_3389_fmars_2016_00150
crossref_primary_10_1007_s10750_017_3175_6
crossref_primary_10_1016_j_catena_2023_107459
crossref_primary_10_1016_j_ecss_2020_106828
crossref_primary_10_1016_j_advwatres_2018_02_006
crossref_primary_10_1016_j_jembe_2021_151618
crossref_primary_10_1071_MF18321
crossref_primary_10_21829_myb_2024_3042623
crossref_primary_10_3390_f14020421
crossref_primary_10_1016_j_geomorph_2021_107648
crossref_primary_10_1016_j_marpolbul_2022_113674
crossref_primary_10_1038_s41559_023_02247_x
crossref_primary_10_1029_2024JF007676
crossref_primary_10_1016_j_scitotenv_2022_160483
crossref_primary_10_1098_rsos_230155
crossref_primary_10_3354_meps12176
crossref_primary_10_1016_j_ecss_2020_106719
crossref_primary_10_1038_s41558_022_01391_9
crossref_primary_10_1016_j_rsma_2025_104133
crossref_primary_10_1029_2019GB006334
crossref_primary_10_1111_gcb_12843
crossref_primary_10_1016_j_ecss_2020_106733
crossref_primary_10_1111_aec_13583
crossref_primary_10_1088_1748_9326_ab246e
crossref_primary_10_1016_j_soilbio_2024_109607
crossref_primary_10_1016_j_sajb_2015_11_002
crossref_primary_10_1007_s10021_016_9972_3
crossref_primary_10_1016_j_ocecoaman_2016_09_024
crossref_primary_10_1007_s10750_017_3197_0
crossref_primary_10_1016_j_marpolbul_2024_116058
crossref_primary_10_1029_2022EF003202
crossref_primary_10_3390_rs13142732
crossref_primary_10_1016_j_ecss_2020_106621
crossref_primary_10_1007_s12237_023_01267_x
crossref_primary_10_1016_j_ecss_2020_106862
crossref_primary_10_1071_MF17015
crossref_primary_10_1111_mec_15365
crossref_primary_10_3389_fevo_2022_908557
crossref_primary_10_1016_j_gloplacha_2022_103902
crossref_primary_10_1002_ecy_1979
crossref_primary_10_1080_21580103_2023_2220576
crossref_primary_10_1371_journal_pone_0099604
crossref_primary_10_3389_fpls_2014_00503
crossref_primary_10_1016_j_geomorph_2021_107860
Cites_doi 10.1038/21181
10.1111/j.1466-882X.2004.00075.x
10.1023/A:1009919816903
10.2307/2388899
10.1023/A:1009923917812
10.1016/j.aquabot.2007.12.014
10.1016/j.ecoleng.2009.05.008
10.2307/2257502
10.1007/s00468-001-0142-6
10.1038/ngeo1123
10.1016/j.chnaes.2009.09.017
10.1002/eco.1353/abstract
10.4996/fireecology.0901066
10.5194/bgd-10-895-2013
10.2307/1351590
10.1016/j.ecss.2009.06.006
10.1007/978-94-007-4494-3_2
10.2989/18142320309504007
10.1177/030913339001400404
10.1111/j.1745-5871.2006.00360.x
10.5962/bhl.title.7602
10.1029/2002GB001917
10.1007/s11273-010-9199-6
10.2307/4003730
10.1111/j.1654-1103.2010.01232.x
10.1046/j.1466-822X.1999.00126.x
10.1590/S1679-87592007000200004
10.1007/BF02344528
10.1007/s10113-010-0109-5
10.1016/j.ecss.2005.11.004
10.1016/j.ecss.2012.12.007
10.1111/j.1365-2486.2007.01512.x
10.1046/j.1354-1013.2001.00467.x
10.1016/j.aquabot.2007.12.007
10.1111/j.1469-8137.2006.01938.x
10.1038/20335
10.1016/j.ecss.2012.02.018
10.2307/1936046
10.31646/wa.79
10.1111/j.1600-0587.2009.05957.x
10.1016/B978-0-12-586450-3.50008-1
10.1016/j.ecss.2007.08.024
10.1016/S0378-1127(97)00054-6
10.1016/S0272-7714(02)00208-1
10.1007/BF00029113
10.1016/S0022-4618(16)30176-0
10.2307/2845685
10.1007/BF03160845
10.1672/08-100.1
10.1111/j.1442-9993.1985.tb00874.x
10.1007/s11852-011-0153-4
10.1201/EBK1439821169-c2
10.1007/BF00039767
10.1890/05-1935
10.1111/j.1469-185X.2011.00198.x
10.1007/s00468-012-0760-1
10.2307/3236781
10.1007/BF02696066
10.1007/BF00539820
10.1017/CBO9780511525490.006
10.1007/s00442-007-0750-y
10.1641/0006-3568(2001)051[0807:MFOOTW]2.0.CO;2
10.1111/gcb.12221
10.3133/pp92
10.2307/3671923
10.1007/s12237-010-9358-2
10.1146/annurev.ecolsys.28.1.517
10.1007/BF00328964
10.1038/416389a
10.1016/j.ecoleng.2008.01.007
10.2112/JCOASTRES-D-11-00028.1
10.1371/journal.pone.0002502
10.1111/j.1466-8238.2007.00317.x
10.1007/s10531-013-0478-4
10.1111/j.1442-9993.1993.tb00458.x
10.1002/(SICI)1099-1417(199908)14:5<465::AID-JQS473>3.0.CO;2-E
10.1016/S0254-6299(15)31160-1
10.1016/j.jenvman.2009.04.023
10.1007/s11273-005-5165-0
10.1016/0031-0182(90)90210-X
10.1046/j.0022-0477.2001.00584.x
10.1111/j.1365-2486.2008.01547.x
10.1111/gcb.12126
10.1016/j.aquabot.2007.12.009
10.1139/b82-330
10.1016/j.ecss.2011.10.003
10.2307/1943020
10.1007/BF00114718
10.2112/08-1043.1
10.1111/j.1466-8238.1998.00269.x
10.1038/35079180
10.1038/nature01286
10.1007/s11273-006-0006-3
10.1046/j.1365-2699.1999.00133.x
10.1007/s10584-010-0003-7
10.1111/j.1442-9993.2009.02001.x
10.1080/03014223.1994.9517466
10.1016/j.cosust.2012.03.005
10.5194/bgd-10-2591-2013
10.1007/s10750-012-1159-0
10.1016/j.ecss.2009.08.011
10.1007/BF00029109
10.1007/978-94-017-0914-9_6
10.1023/A:1011148522181
10.1016/j.aquabot.2012.03.011
ContentType Journal Article
Copyright 2013 John Wiley & Sons Ltd
2015 INIST-CNRS
2013 John Wiley & Sons Ltd.
Copyright © 2014 John Wiley & Sons Ltd
Copyright_xml – notice: 2013 John Wiley & Sons Ltd
– notice: 2015 INIST-CNRS
– notice: 2013 John Wiley & Sons Ltd.
– notice: Copyright © 2014 John Wiley & Sons Ltd
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7ST
7TN
7U6
H95
SOI
DOI 10.1111/gcb.12341
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
Environment Abstracts
Oceanic Abstracts
Sustainability Science Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Environment Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
Oceanic Abstracts
Sustainability Science Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Environment Abstracts
DatabaseTitleList
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
EndPage 157
ExternalDocumentID 3149969721
23907934
28313674
10_1111_gcb_12341
GCB12341
ark_67375_WNG_6LGPCFRV_2
Genre article
Journal Article
Feature
GeographicLocations South America
United States
Southern Africa
Africa
America
South Africa
Australia
North America
Oceania
PSE, Australia, New South Wales
USA, Atlantic Coast
ISE, Mexico
ISEW, China, People's Rep., Guangdong Prov
ISE, Peru
GeographicLocations_xml – name: South Africa
– name: USA, Atlantic Coast
– name: PSE, Australia, New South Wales
– name: ISE, Mexico
– name: ISE, Peru
– name: ISEW, China, People's Rep., Guangdong Prov
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
IQODW
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7ST
7TN
7U6
H95
SOI
ID FETCH-LOGICAL-c4541-378eeb958090d1086bf6fa5a69e99b57fbe95bb1c9a582052924b83f7c7a92ce3
IEDL.DBID DR2
ISSN 1354-1013
1365-2486
IngestDate Fri Jul 11 04:06:30 EDT 2025
Thu Jul 10 20:06:55 EDT 2025
Fri Jul 25 10:49:50 EDT 2025
Mon Jul 21 05:56:11 EDT 2025
Wed Apr 02 07:35:51 EDT 2025
Tue Jul 01 03:52:50 EDT 2025
Thu Apr 24 22:50:36 EDT 2025
Wed Jan 22 16:19:15 EST 2025
Wed Oct 30 09:50:00 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords South America
Brackish water environment
Temperature
USA
range expansion
Environmental factor
Dynamical climatology
Climate change
Salt marsh
Mangrove
South Africa
Australia
Expansion
temperature
mangrove
climate change
salt marsh
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
2013 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4541-378eeb958090d1086bf6fa5a69e99b57fbe95bb1c9a582052924b83f7c7a92ce3
Notes istex:73E43F0837C415F442DF8B8570D3D7ABBE727015
ArticleID:GCB12341
ark:/67375/WNG-6LGPCFRV-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 23907934
PQID 1466024117
PQPubID 30327
PageCount 11
ParticipantIDs proquest_miscellaneous_1492616687
proquest_miscellaneous_1467065041
proquest_journals_1466024117
pubmed_primary_23907934
pascalfrancis_primary_28313674
crossref_citationtrail_10_1111_gcb_12341
crossref_primary_10_1111_gcb_12341
wiley_primary_10_1111_gcb_12341_GCB12341
istex_primary_ark_67375_WNG_6LGPCFRV_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-01
January 2014
2014-01-00
2014
2014-Jan
20140101
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Global change biology
PublicationTitleAlternate Glob Change Biol
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley-Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley-Blackwell
References Gee CT (2001) The mangrove palm Nypa in the geologic past of the New World. Wetlands Ecology and Management, 9, 181-194.
Tutiemp (2012) Climate East London. Available at: http://www.tutiempo.net/en/Climate/East_London/688580.htm (accessed 7 November 2012
Spalding M (2012). World Atlas of Mangroves. Earthscan, New York.
López-Medellín X, Ezcurra E, González-Abraham C, Hak J, Santiago LS, Sickman JO (2011) Oceanographic anomalies and sea-level rise drive mangroves inland in the Pacific coast of Mexico. Journal of Vegetation Science, 22, 143-151.
Egler FE (1952) Southeast saline Everglades vegetation, Florida, and its management. Vegetatio, 3, 213-265.
Wilton K, Saintilan N (2000). Protocols for Mangrove and Saltmarsh Habitat Mapping. Estuaries Branch, NSW Department of Land and Water Conservation, Sydney.
Kangas PC, Lugo AE (1990) The distribution of mangroves and saltmarshes in Florida. Tropical Ecology, 31, 32-39.
Walther GR, Post E, Convey P et al. (2002) Ecological responses to recent climate change. Nature, 416, 389-395.
Markley JL, McMillan C, Thompson GA Jr (1982) Latitudinal differentiation in response to chilling temperatures among populations of three mangroves, Avicennia germinans, Laguncularia racemosa, and Rhizophora mangle, from the western tropical Atlantic and Pacific Panama. Canadian Journal of Botany, 60, 2704-2715.
Osland MJ, Enwright N, Day RH, Doyle TW (2013) Winter climate change and coastal wetland foundation species: salt marshes versus mangrove forests in the southeastern United States. Global Change Biology, 19, 1482-1494.
Quisthoudt K, Adams J, Rajkaran A, Dahdouh-Geubas F, Koedam N, Randin CF (2013) Disentangling the effects of global climate and regional land-use on the current and future distribution of mangroves in South Africa. Biodiversity Conservation, 22, 1369-1390.
Clarke PJ, Kerrigan RA, Wetphal CJ (2001) Dispersal potential and early growth in 14 tropical mangroves: do early life history traints correlate with patterns of adult distribution? Journal of Ecology, 89, 648-659.
Sturm M, Racine C, Tape K (2001) Increasing shrub abundance in the Arctic. Nature, 411, 546-547.
Snedaker S (1995) Mangroves and climate change in the Florida and Caribbean region: scenarios and hypotheses. Hydrobiologia, 295, 43-49.
Solomon S, Qin D, Manning M et al. (eds.) (2007) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Westgate JW, Gee CT (1990) Paleoecology of a middle Eocene mangrove biota (vertebrates, plants, and invertebrates) from southwest Texas. Palaeogeography, Palaeoclimatology, Palaeoecology, 78, 163-177.
Bedin T (2001) The progression of a mangrove forest over a newly formed delta in the Umhlatuze Estuary, South Africa. South African Journal of Botany, 67, 433-438.
Breen CM, Hill BJ (1966) A mass mortality of mangroves in the Kosi estuary. Transactions of the Royal Society of South Africa, 41, 285-301.
Lugo AE, Patterson Zucca C (1977) The impact of low temperature stress on mangrove structure and growth. Tropical Ecology, 18, 149-161.
Willner W, Di Pietro R, Bergmeier E (2009) Phytogeographical evidence for post-glacial dispersal limitation of European beech forest species. Ecography, 32, 1011-1018.
de Lange WP, de Lange PJ (1994) An appraisal of factors controlling the latitudinal distribution of mangrove (Avicennia marina var. resinifera) in New Zealand. Journal of Coastal Research, 10, 539-548.
Woodroffe CD (1990) The Impact of sea-Level Rise on Mangrove Shorelines. Turpin, Letchworth, ROYAUME-UNI.
Parmesan C, Ryrholm N, Stefanescu C et al. (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature, 399, 579-583.
Van der Stocken T, DeRyck DJR, Balke T, Bouma TJ, Dahdouh-Guebas F, Koedam N (2013) The role of wind in hydrochorous mangrove propagule dispersal. Biogeosciences, 10, 895-925.
Schaeffer-Novelli Y, Cintron-Molero G, Adaime RR, de Camargo TM (1990) Variability of mangrove ecosystems along the Brazilian Coast. Estuaries, 13, 204-218.
Berry EW (1924) The Middle and Upper Eocene Floras of Southeastern North America. Professional Paper 92, US Geological Survey, Washington, DC, USA.
Polley HW, Mayeux HS, Johnson HB, Tischler CR (1997) Viewpoint: atmospheric CO2, soil water and shrub/grass rations on rangelands. Journal of Range Management, 50, 278-284.
Wilson NC, Saintilan N (2012) Growth of the mangrove species Rhizophora stylosa Griff. at its southern latitudinal limit in eastern Australia. Aquatic Botany, 101, 8-17.
Rogers K, Wilton KM, Saintilan N (2006) Vegetation change and surface elevation dynamics in estuarine wetlands of southeast Australia. Estuarine, Coastal and Shelf Science, 66, 559-569.
Clarke PJ, Allaway W (1993) The regeneration niche of the grey mangrove Avicennia marina - effects of salinity, light and sediment factors on establishment, growth and survival in the field. Oecologia, 93, 548-556.
Patterson CS, Mendelssohn IA (1991) A comparison of physicochemical variables across plant zones in a mangal/salt marsh community in Louisiana. Wetlands, 11, 139-161.
Burns BR, Ogden J (1985) The demography of the temperate mangrove [Avicennia marina (Forsk.) Vierh.] at its southern limit in New Zealand. Australian Journal of Ecology, 10, 125-133.
Steinke TD, Ward CJ (2003) Use of plastic drift cards as indicators of possible dispersal of propagules of the mangrove Avicennia marina by ocean currents. Africal Journal of Marine Science, 25, 169-176.
Siegle E, Asp NE (2007) Wave refraction and longshore transport patterns along the southern Santa Catarina coast. Brazilian Journal of Oceanography, 55, 109-120.
Duke NC, Ball MC, Ellison JC (1998) Factors influencing biodiversity and distributional gradients in mangroves. Global Ecology and Biogeography Letters, 7, 27-47.
Sherrod CL, McMillan C (1981) Black mangrove, Avicennia germinans, in Texas: Past and present distribution. Contributions in Marine Science, 24, 115-131.
Penfound WT, Hathaway ES (1938) Plant communities in the marshlands of southeastern Louisiana. Ecological Monographs, 8, 1-56.
Ward CJ, Steinke TD (1982) A note on the distribution and approximate areas of mangroves in South Africa. South African Journal of Botany, 3, 51-53.
Friess DA, Krauss KW, Horstman EM, Balke T, Bouma TJ, Galli D, Webb EL (2012) Are all intertidal wetlands naturally created equal? Bottlenecks, thresholds and knowledge gaps to mangrove and saltmarsh ecosystems. Biological Reviews, 87, 346-366.
Hopkinson CS, Caiíguez WJ, Hu X (2012) Carbon sequestration in wetland dominated coastal systems-a global sink of rapidly diminishing magnitude. Current Opinion in Environmental Sustainability, 4, 186-194.
Macnae W (1963) Mangroves swamps in South Africa. Journal of Ecology, 51, 1-25.
McKee KL, Mendelssohn IA, Materne M (2004) Acute salt marsh dieback in the Mississippi River deltaic plain: a drought-induced phenomenon? Global Ecology and Biogeography, 13, 65-73.
Comeaux RS, Allison MA, Bianchi TS (2012) Mangrove expansion in the Gulf of Mexico with climate change: implications for wetland health and resistance to rising sea levels. Estuarine, Coastal and Shelf Science, 96, 81-95.
Thomas CD, Lennon JJ (1999) Birds extend their ranges northwards. Nature, 399, 213.
Wakushima S, Kuraishi S, Sakurai N (1994) Soil salinity and pH in Japanese mangrove forests and growth of cultivated mangrove plants in different soil conditions. Journal of Plant Research, 107, 39-46.
Smith TJ III, Foster AM, Tiling-Range G, Jones JW (2013) Dynamics of mangrove-marsh ecotones in subtropical coastal wetlands: Fire, sea-level rise, and water levels. Fire Ecology, 9, 66-77.
Alleman LK, Hester MW (2011) Refinement of the fundamental niche of black mangrove (Avicennia germinans) seedlings in Louisiana: Applications for restoration. Wetlands Ecology and Management, 19, 47-60.
Michot TC, Day RH, Wells CJ (2010) Increase in black mangrove abundance in coastal Louisiana. Louisiana Natural Resources News, Newsletter of the Louisiana Association of Professional Biologists, January, 4-5.
Lee T-M, Yeh H-C (2009) Applying remote sensing techniques to monitor shifting wetland vegetation: a case study of Danshui River estuary mangrove communities Taiwan. Ecological Engineering, 35, 487-496.
Ellison AM, Farnsworth EJ, Merkt RE (1999) Origins of mangrove ecosystems and the mangrove biodiversity anomaly. Global Ecology and Biogeography, 8, 95-115.
Van Auken OW (2009) Causes and consequences of woody plant encroachment into western North American grasslands. Journal of Environmental Management, 90, 2931-2942.
Li MS, Lee SY (1997) Mangroves of China: a brief review. Forest Ecology and Management, 96, 241-259.
Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 4, 293-297.
Perry C, Mendelssohn I (2009) Ecosystem effects of expanding populations of Avicennia germinans in a Louisiana salt marsh. Wetlands, 29, 396-406.
Clüsener M, Breckle SW (1987) Reasons for the limitation of mangrove along the west coast of northern Peru. Vegetatio, 68, 173-177.
Lovelock CE, Feller IC, Ellis J, Schwarz AM, Hancock N, Nichols P, Sorrell B (2007) Mangrove growth in New Zealand estuaries: The role of nutrient enrichment at sites with contrasting rates of sedimentation. Oecologia, 153, 633-641.
Stevens PW, Fox SL, Montague CL (2006) The interplay between mangroves and saltmarshes at the transition between temperate and subtropical climate in Florida. Wetlands Ecology and Management, 14, 435-444.
Alongi DM (2008) Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuarine, Coastal and Shelf Science, 76, 1-13.
Scholes RJ, Archer SR (1997) Tree-grass interactions in savannas. Annual Review of Ecology and Systematics, 28, 517-544.
Berry EW (1916) The Lower Eocene Floras of Southeastern North America. Professional Paper 91, US Geologi
2002; 16
2010; 11
1985; 28
1991; 18
2009; 85
2009; 84
2010; 18
1991; 11
1974
1997; 1
2007; 77
2012; 96
2013; 9
2003; 56
1997; 50
2010; 26
1990
2013; 119
1995; 27
1982; 60
2007; 173
2000; 11
2009; 90
1983
2012; 26
1985; 10
2001; 51
1998; 11
2001; 411
1990; 31
2012; 101
2002; 8
1997
1981; 24
1997; 28
1995
1992
2002; 416
2011; 4
1916
1996; 12
2007; 16
1999
1987; 68
2010; 48
1963; 51
2006; 44
1977; 18
2007; 153
2003; 25
1986; 29
1998; 7
1924
1994; 10
1993; 9
1990; 13
2000; 6
2013; 22
1986; 30
1983; 53
1994; 24
2008; 76
2003; 17
2011; 15
2008; 3
2001; 89
2011; 19
2008; 2007
1995; 295
2005; 28
2013; 19
1971; 52
2013; 10
2000
1997; 96
2006; 66
1982; 3
1999; 14
2011; 22
2011; 27
1994; 107
1990; 78
1991; 36
2013; 708
2012
1985; 4
2010
2006; 14
2008; 14
2009
2007
2006
2004
2011; 34
1999; 8
1938; 8
2001; 67
2007; 55
2009; 29
2009; 34
2009; 35
1993; 18
2009; 32
2011; 106
1993; 93
2004; 12
2001; 9
2004; 13
1988; 7
1952; 3
2008; 89
1999; 399
2013
2012; 4
2003; 421
1966; 41
2012; 87
e_1_2_6_114_1
e_1_2_6_137_1
e_1_2_6_53_1
e_1_2_6_76_1
Kangas PC (e_1_2_6_43_1) 1990; 31
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_91_1
e_1_2_6_133_1
Saintilan N (e_1_2_6_95_1) 2009
Li Y (e_1_2_6_52_1) 1998; 11
e_1_2_6_19_1
e_1_2_6_34_1
e_1_2_6_15_1
e_1_2_6_38_1
Lange WP (e_1_2_6_48_1) 1994; 10
e_1_2_6_99_1
e_1_2_6_125_1
e_1_2_6_87_1
e_1_2_6_106_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_121_1
e_1_2_6_9_1
Tutiemp (e_1_2_6_120_1) 2012
Woodroffe CD (e_1_2_6_136_1) 1990
e_1_2_6_5_1
Berry EW (e_1_2_6_8_1) 1924
e_1_2_6_49_1
e_1_2_6_22_1
Steinke TD (e_1_2_6_110_1) 1986; 30
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_96_1
e_1_2_6_117_1
e_1_2_6_31_1
Spalding M (e_1_2_6_109_1) 2012
e_1_2_6_50_1
e_1_2_6_92_1
e_1_2_6_132_1
e_1_2_6_113_1
e_1_2_6_35_1
e_1_2_6_12_1
Everitt JH (e_1_2_6_27_1) 1996; 12
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_58_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_105_1
e_1_2_6_128_1
Wilton K (e_1_2_6_135_1) 2000
Swales A (e_1_2_6_118_1) 2007
e_1_2_6_80_1
Sherrod CL (e_1_2_6_102_1) 1986; 29
e_1_2_6_61_1
Sherrod CL (e_1_2_6_100_1) 1981; 24
e_1_2_6_124_1
e_1_2_6_6_1
Montague CL (e_1_2_6_70_1) 1997
e_1_2_6_2_1
e_1_2_6_88_1
e_1_2_6_46_1
e_1_2_6_69_1
Patterson CS (e_1_2_6_79_1) 1993; 9
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_97_1
e_1_2_6_116_1
McLoughlin L (e_1_2_6_65_1) 2000; 6
e_1_2_6_32_1
e_1_2_6_93_1
e_1_2_6_131_1
Lugo AE (e_1_2_6_57_1) 1977; 18
Sherrod CL (e_1_2_6_101_1) 1985; 28
e_1_2_6_112_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
Straw P (e_1_2_6_115_1) 2006
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_104_1
e_1_2_6_127_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_108_1
e_1_2_6_123_1
McMillan C (e_1_2_6_67_1) 1986; 29
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_3_1
Eamus D (e_1_2_6_23_1) 2008; 2007
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
Saintilan N (e_1_2_6_94_1) 2010
e_1_2_6_47_1
e_1_2_6_98_1
McLoughlin L (e_1_2_6_64_1) 1988; 7
e_1_2_6_75_1
e_1_2_6_138_1
e_1_2_6_10_1
e_1_2_6_119_1
Harris LD (e_1_2_6_37_1) 1992
e_1_2_6_71_1
e_1_2_6_90_1
e_1_2_6_130_1
e_1_2_6_111_1
West RJ (e_1_2_6_129_1) 1985; 4
e_1_2_6_134_1
Michot TC (e_1_2_6_68_1) 2010
e_1_2_6_14_1
Hoekstra JM (e_1_2_6_40_1) 2010
e_1_2_6_33_1
Solomon S (e_1_2_6_107_1) 2007
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_103_1
e_1_2_6_126_1
e_1_2_6_63_1
e_1_2_6_86_1
e_1_2_6_21_1
Breen CM (e_1_2_6_11_1) 1966; 41
e_1_2_6_82_1
e_1_2_6_122_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_29_1
e_1_2_6_44_1
References_xml – reference: McLoughlin L (1988) Mangroves and grass swamps: changes in the shoreline vegetation of the Middle Lane Cover River, Sydney, 1780's-1880's. Wetlands (Australia), 7, 13-24.
– reference: López-Medellín X, Ezcurra E, González-Abraham C, Hak J, Santiago LS, Sickman JO (2011) Oceanographic anomalies and sea-level rise drive mangroves inland in the Pacific coast of Mexico. Journal of Vegetation Science, 22, 143-151.
– reference: Clüsener M, Breckle SW (1987) Reasons for the limitation of mangrove along the west coast of northern Peru. Vegetatio, 68, 173-177.
– reference: Solomon S, Qin D, Manning M et al. (eds.) (2007) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
– reference: Clarke PJ, Kerrigan RA, Wetphal CJ (2001) Dispersal potential and early growth in 14 tropical mangroves: do early life history traints correlate with patterns of adult distribution? Journal of Ecology, 89, 648-659.
– reference: Kangas PC, Lugo AE (1990) The distribution of mangroves and saltmarshes in Florida. Tropical Ecology, 31, 32-39.
– reference: Steinke TD (1986) Mangroves of the East London area. The Naturalist, 30, 50-53.
– reference: Breen CM, Hill BJ (1966) A mass mortality of mangroves in the Kosi estuary. Transactions of the Royal Society of South Africa, 41, 285-301.
– reference: Krauss KW, From AS, Doyle TW, Doyle TJ, Barry MJ (2011) Sea-level rise and landscape change influence mangrove encroachment onto marsh in the Ten Thousand Inslands region of Florida, USA. Journal of Coastal Conservation, 15, 629-638.
– reference: Sturm M, Racine C, Tape K (2001) Increasing shrub abundance in the Arctic. Nature, 411, 546-547.
– reference: Mildenhall DC (1994) Early to Mid Holocene pollen samples containing mangrove pollen from Sponge Bay, East Coast, North Island, New Zealand. Journal of the Royal Society of New Zealand, 24, 219-230.
– reference: Duke NC, Ball MC, Ellison JC (1998) Factors influencing biodiversity and distributional gradients in mangroves. Global Ecology and Biogeography Letters, 7, 27-47.
– reference: Guo H, Zhang Y, Lan Z, Pennings SC (2013) Biotic interactions mediate the expansion of black mangrove (Avicennia germinans) into salt marshes under climate change. Global Change Biology, 19, 2765-2774.
– reference: Macnae W (1963) Mangroves swamps in South Africa. Journal of Ecology, 51, 1-25.
– reference: Snedaker S (1995) Mangroves and climate change in the Florida and Caribbean region: scenarios and hypotheses. Hydrobiologia, 295, 43-49.
– reference: Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 4, 293-297.
– reference: Tutiemp (2012) Climate East London. Available at: http://www.tutiempo.net/en/Climate/East_London/688580.htm (accessed 7 November 2012
– reference: West RJ, Thorogood C, Walford T, Williams RJ (1985) Mangrove distribution in New South Wales. Wetlands (Australia), 4, 2-6.
– reference: Morrisey DJ, Swales A, Dittman S, Morrison MA, Lovelock CE, Beard CM (2010) The ecology and management of temperate mangroves. Oceanography and Marine Biology: An Annual Review, 48, 43-160.
– reference: Stevens PW, Fox SL, Montague CL (2006) The interplay between mangroves and saltmarshes at the transition between temperate and subtropical climate in Florida. Wetlands Ecology and Management, 14, 435-444.
– reference: Lee T-M, Yeh H-C (2009) Applying remote sensing techniques to monitor shifting wetland vegetation: a case study of Danshui River estuary mangrove communities Taiwan. Ecological Engineering, 35, 487-496.
– reference: Comeaux RS, Allison MA, Bianchi TS (2012) Mangrove expansion in the Gulf of Mexico with climate change: implications for wetland health and resistance to rising sea levels. Estuarine, Coastal and Shelf Science, 96, 81-95.
– reference: Schaeffer-Novelli Y, Cintron-Molero G, Adaime RR, de Camargo TM (1990) Variability of mangrove ecosystems along the Brazilian Coast. Estuaries, 13, 204-218.
– reference: Parmesan C, Ryrholm N, Stefanescu C et al. (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature, 399, 579-583.
– reference: Peng Y, Chen G, Tian G, Yang X (2009) Niches of plant populations in mangrove resrve of Qu'ao Island, Pearl River Estuary. Acta Ecologica Sinica, 29, 357-361.
– reference: Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles, 17, 1111.
– reference: Dodd R, Afzal Rafii Z (2002) Evolutionary genetics of mangroves: continental drift to recent climate change. Trees, 16, 80-86.
– reference: Lonard RI, Judd FW (1991) Comparison of the effects of the severe freezes of 1983 and 1989 on native woody plants in the Lower Rio Grande Valley, Texas. The Southwestern Naturalist, 36, 213-217.
– reference: Perry C, Mendelssohn I (2009) Ecosystem effects of expanding populations of Avicennia germinans in a Louisiana salt marsh. Wetlands, 29, 396-406.
– reference: Li Y, Zheng D, Liao B, Zheng S, Wang Y (1998) Preliminary report on introduction of several superior mangroves. Forest Research, 11, 652-655.
– reference: Westgate JW, Gee CT (1990) Paleoecology of a middle Eocene mangrove biota (vertebrates, plants, and invertebrates) from southwest Texas. Palaeogeography, Palaeoclimatology, Palaeoecology, 78, 163-177.
– reference: McKee KL, Mendelssohn IA, Materne M (2004) Acute salt marsh dieback in the Mississippi River deltaic plain: a drought-induced phenomenon? Global Ecology and Biogeography, 13, 65-73.
– reference: Walther GR, Post E, Convey P et al. (2002) Ecological responses to recent climate change. Nature, 416, 389-395.
– reference: Soares MLG, Estrada GCD, Fernandez V, Tognella MMP (2012) Southern limit of the Western South Atlantic mangroves: Assessment of the potential effects of global warming from a biogeographical perspective. Estuarine, Coastal and Shelf Science, 101, 44-53.
– reference: Hashimoto TR, Saintilan N, Haberle SG (2006) Mid-Holocene development of mangrove communities featuring Rhizophoraceae and geomorphic change in the Richmond River Estuary, New South Wales, Australia. Geographical Research, 44, 63-76.
– reference: Ross MS, Meeder JF, Sah JP, Ruiz PL, Telesnicki GL (2000) The southeast saline Everglades revisited: 50 years of coastal vegetation change. Journal of Vegetation Science, 11, 101-112.
– reference: Semeniuk V (2013) Predicted response of coastal wetlands to climate changes: a Western Australian model. Hydrobiologia, 708, 23-43.
– reference: Sherrod CL, Hockaday DL, McMillan C (1986) Survival of red mangrove, Rhizophora mangle, on the Gulf of Mexico coast of Texas. Contributions in Marine Science, 29, 27-36.
– reference: Burns BR, Ogden J (1985) The demography of the temperate mangrove [Avicennia marina (Forsk.) Vierh.] at its southern limit in New Zealand. Australian Journal of Ecology, 10, 125-133.
– reference: Friess DA, Krauss KW, Horstman EM, Balke T, Bouma TJ, Galli D, Webb EL (2012) Are all intertidal wetlands naturally created equal? Bottlenecks, thresholds and knowledge gaps to mangrove and saltmarsh ecosystems. Biological Reviews, 87, 346-366.
– reference: Clarke PJ, Myerscough PJ (1993) The intertidal distribution of the grey mangrove (Avicennia marina) in southeastern Australia: the effects of physical conditions, interspecific competition, and predation on propagule establishment and survival. Australian Journal of Ecology, 18, 307-315.
– reference: Knapp AK, Briggs JM, Collins SL, et al. (2008) Shrub encroachment in North American grasslands: shifts in growth form dominance rapidly alters control of ecosystem carbon inputs. Global Change Biology, 14, 615-623.
– reference: Graham A (1995) Diversification of Gulf/Caribbean mangrove communities through Cenozoic time. Biotropica, 27, 20-27.
– reference: Egler FE (1952) Southeast saline Everglades vegetation, Florida, and its management. Vegetatio, 3, 213-265.
– reference: Rogers K, Saintilan N, Heijnis H (2005) Mangrove encroachment of salt marsh in Western Port Bay, Victoria: The role of sedimentation, subsidence and sea level rise. Estuaries, 28, 551-559.
– reference: Grindrod J, Moss P, Kaars SVD (1999) Late Quaternary cycles of mangrove development and decline on the north Australian continental shelf. Journal of Quaternary Science, 14, 465-470.
– reference: McMillan C, Sherrod CL (1986) The chilling tolerance of black mangrove, Avicennia germinans, from the Gulf of Mexico coast of Texas, Louisiana and Florida. Contributions in Marine Science, 29, 9-16.
– reference: Gee CT (2001) The mangrove palm Nypa in the geologic past of the New World. Wetlands Ecology and Management, 9, 181-194.
– reference: Saintilan N, Williams RJ (1999) Mangrove transgression into saltmarsh environments in South-East Australia. Global Ecology and Biogeography, 8, 117-124.
– reference: Stokes DJ, Healy TR, Cooke PJ (2010) Expansion dynamics of monospecific, temperate mangroves and sedimentation in two embayments of a barrier-enclosed lagoon, Tauranga Harbour, New Zealand. Journal of Coastal Research, 26, 113-122.
– reference: Van der Stocken T, DeRyck DJR, Balke T, Bouma TJ, Dahdouh-Guebas F, Koedam N (2013) The role of wind in hydrochorous mangrove propagule dispersal. Biogeosciences, 10, 895-925.
– reference: Berry EW (1916) The Lower Eocene Floras of Southeastern North America. Professional Paper 91, US Geological Survey, Washington, DC, USA.
– reference: Polley HW, Mayeux HS, Johnson HB, Tischler CR (1997) Viewpoint: atmospheric CO2, soil water and shrub/grass rations on rangelands. Journal of Range Management, 50, 278-284.
– reference: Berry EW (1924) The Middle and Upper Eocene Floras of Southeastern North America. Professional Paper 92, US Geological Survey, Washington, DC, USA.
– reference: Loarie SR, Carter BE, Hayhoe K, McMahon S, Moe R, Knight CA, Ackerly DD (2008) Climate change and the future of California's endemic flora. PLoS ONE, 3, e2502.
– reference: Ren H, Lu H, Shen W, Huang C, Guo Q, Li ZA, Jian S (2009) Sonneratia apetala Buch. Ham in the mangrove ecosystems of China: An invasive species or restoration species? Ecological Engineering, 35, 1243-1248.
– reference: Steinke TD, Ward CJ (2003) Use of plastic drift cards as indicators of possible dispersal of propagules of the mangrove Avicennia marina by ocean currents. Africal Journal of Marine Science, 25, 169-176.
– reference: Van Auken OW (2009) Causes and consequences of woody plant encroachment into western North American grasslands. Journal of Environmental Management, 90, 2931-2942.
– reference: Bedin T (2001) The progression of a mangrove forest over a newly formed delta in the Umhlatuze Estuary, South Africa. South African Journal of Botany, 67, 433-438.
– reference: McLoughlin L (2000) Estuarine wetlands distribution along the Parramatta River, Sydney, 1788-1940: Implications for planning and conservation. Cunninghamia, 6, 579-610.
– reference: Bakkenes M, Alkemade JRM, Ihle F, Leemans R, Latour JB (2002) Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Global Change Biology, 8, 390-407.
– reference: Scholes RJ, Archer SR (1997) Tree-grass interactions in savannas. Annual Review of Ecology and Systematics, 28, 517-544.
– reference: Sherrod CL, McMillan C (1981) Black mangrove, Avicennia germinans, in Texas: Past and present distribution. Contributions in Marine Science, 24, 115-131.
– reference: Gilman EL, Ellison J, Duke NC, Field CD (2008) Threats to mangroves from climate change and adaptation options: a review. Aquatic Botany, 89, 237-250.
– reference: Krauss KW, Lovelock CE, McKee KL, López-Hoffman L, Ewe SML, Sousa WP (2008) Environmental drivers in mangrove establishment and early development: a review. Aquatic Botany, 89, 105-127.
– reference: Li MS, Lee SY (1997) Mangroves of China: a brief review. Forest Ecology and Management, 96, 241-259.
– reference: Ellison AM, Farnsworth EJ, Merkt RE (1999) Origins of mangrove ecosystems and the mangrove biodiversity anomaly. Global Ecology and Biogeography, 8, 95-115.
– reference: McMillan C (1971) Environmental factors affecting seedling establishment of the black mangrove on the central Texas coast. Ecology, 52, 927-930.
– reference: de Lange WP, de Lange PJ (1994) An appraisal of factors controlling the latitudinal distribution of mangrove (Avicennia marina var. resinifera) in New Zealand. Journal of Coastal Research, 10, 539-548.
– reference: Krauss KW, McKee KL, Hester MW (2013) Water use characteristics of black mangrove (Avicennia germinans) communities along an ecotone with marsh at a northern geographical limit. Ecohydrology, doi: 10.1002/eco.1353/abstract.
– reference: Willner W, Di Pietro R, Bergmeier E (2009) Phytogeographical evidence for post-glacial dispersal limitation of European beech forest species. Ecography, 32, 1011-1018.
– reference: Morrisey DJ, Skilleter GA, Ellis JI, Burns BR, Kemp CE, Burt K (2003) Differences in benthic fauna and sediment among mangrove (Avicennia marina var. australasica) stands of different ages in New Zealand. Estuarine, Coastal and Shelf Science, 56, 581-592.
– reference: Patterson CS, Mendelssohn IA, Swenson EM (1993) Growth and survival of Avicennia germinans seedlings in a mangal/salt marsh community in Louisiana, U.S.A. Journal of Coastal Research, 9, 801-810.
– reference: Patterson CS, Mendelssohn IA (1991) A comparison of physicochemical variables across plant zones in a mangal/salt marsh community in Louisiana. Wetlands, 11, 139-161.
– reference: Giri C, Long J, Tieszen L (2011) Mapping and monitoring Louisiana's mangroves in the aftermath of the 2010 Gulf of Mexico oil spill. Journal of Coastal Research, 27, 1059-1064.
– reference: Alongi DM (2008) Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuarine, Coastal and Shelf Science, 76, 1-13.
– reference: Leempoel K, Bourgeois C, Zhang J et al. (2013) Spatial heterogeneity in mangroves assessed by GeoEye-1 satellite data: a case-study in Zhanjiang Mangrove National Nature Reserve (ZMNNR), China. Biogeosciences Discussions, 10, 2591-2615.
– reference: Hoekstra JM, Molnar JL, Jennings M et al. (2010) The Atlas of Global Conservation: Changes, Challenges, and Opportunities to Make a Difference. University of California Press, Berkeley.
– reference: Lovelock CE, Feller IC, Ellis J, Schwarz AM, Hancock N, Nichols P, Sorrell B (2007) Mangrove growth in New Zealand estuaries: The role of nutrient enrichment at sites with contrasting rates of sedimentation. Oecologia, 153, 633-641.
– reference: Field CD (1995) Impact of expected climate change on mangroves. Hydrobiologia, 295, 75-81.
– reference: Wright CI, Lindsay P, Cooper JAG (1997) The effect of sedimentary processes on the ecology of the mangrove-fringed Kosi estuary/lake system, South Africa. Mangroves and Salt Marshes, 1, 79-94.
– reference: Williamson GJ, Boggs GS, Bowman DMS (2010). Late 20th century mangrove encroachment in the coastal Australian monsoon tropics parallels the regional increase in woody biomass. Regional Environmental Change, 11, 19-27.
– reference: Patterson CS, McKee KL, Mendelssohn IA (1997) Effects of tidal inundation and predation on Avicennia germinans seedling establishment and survival in a sub-tropical mangal/salt marsh community. Mangroves and Salt Marshes, 1, 103-111.
– reference: Thomas CD, Lennon JJ (1999) Birds extend their ranges northwards. Nature, 399, 213.
– reference: Howe AJ, Rodríguez JF, Saco PM (2009) Surface evolution and carbon sequestration in disturbed and undisturbed wetland soils of the Hunter estuary, southeast Australia. Estuarine, Coastal and Shelf Science, 84, 75-83.
– reference: Everitt JH, Judd FW, Escobar DE, Davis MR (1996) Integration of remote sensing and spatial information technologies for mapping black mangrove on the Texas gulf coast. Journal of Coastal Research, 12, 64-69.
– reference: Stuart SA, Choat B, Martin KC, Holbrook NM, Ball MC (2007) The role of freezing in setting the latitudinal limits of mangrove forests. New Phytologist, 173, 576-583.
– reference: McKee KL, Cahoon DR, Feller IC (2007) Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Global Ecology and Biogeography, 16, 545-556.
– reference: Gedan K, Kirwan M, Wolanski E, Barbier E, Silliman B (2011) The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Climatic Change, 106, 7-29.
– reference: Michot TC, Day RH, Wells CJ (2010) Increase in black mangrove abundance in coastal Louisiana. Louisiana Natural Resources News, Newsletter of the Louisiana Association of Professional Biologists, January, 4-5.
– reference: McKee KL, Rooth JE (2008) Where temperate meets tropical: multi-factorial effects of elevated CO2, nitrogen enrichment, and competition on a mangrove-salt marsh community. Global Change Biology, 14, 971-984.
– reference: Quisthoudt K, Schmitz N, Randin C, Dahdouh-Guebas F, Robert ER, Koedam N (2012) Temperature variation among mangrove latitudinal range limits worldwide. Trees, 26, 1919-1931.
– reference: Wilson NC, Saintilan N (2012) Growth of the mangrove species Rhizophora stylosa Griff. at its southern latitudinal limit in eastern Australia. Aquatic Botany, 101, 8-17.
– reference: Alleman LK, Hester MW (2011) Refinement of the fundamental niche of black mangrove (Avicennia germinans) seedlings in Louisiana: Applications for restoration. Wetlands Ecology and Management, 19, 47-60.
– reference: Penfound WT, Hathaway ES (1938) Plant communities in the marshlands of southeastern Louisiana. Ecological Monographs, 8, 1-56.
– reference: Ward CJ, Steinke TD (1982) A note on the distribution and approximate areas of mangroves in South Africa. South African Journal of Botany, 3, 51-53.
– reference: Sherrod CL, McMillan C (1985) The distributional history and ecology of mangrove vegetation along the northerm Gulf of Mexico coastal region. Contributions in Marine Science, 28, 129-140.
– reference: Woodroffe CD, Grindrod J (1991) Mangrove biogeography: the role of quaternary environmental and sea-level change. Journal of Biogeography, 18, 479-492.
– reference: Nagelkerken I, Blaber SJM, Bouillon S et al. (2008) The habitat function of mangroves for terrestrial and marine fauna: A review. Aquatic Botany, 89, 155-185.
– reference: Straw P, Saintilan N (2006) Loss of shorebird habitat as a result of mangrove incursion due to sea-level rise and urbanization. In Waterbirds Around the World (eds Boere GC, Galbraith CA, Stroud DA), 717-720. TSO Scotland, Edinburgh, UK.
– reference: Eamus D, Palmer AR (2008) Is climate change a possible explanation for woody thickening in arid and semi-arid regions? International Journal of Ecology, 2007, 5.
– reference: Saintilan N (2009) Biogeography of Australian saltmarsh plants. Austral Ecology, 34, 929-937.
– reference: Wakushima S, Kuraishi S, Sakurai N (1994) Soil salinity and pH in Japanese mangrove forests and growth of cultivated mangrove plants in different soil conditions. Journal of Plant Research, 107, 39-46.
– reference: Sousa WP, Kennedy PG, Mitchell BJ, Ordonez BM (2007) Supply-side ecology in mangroves: do propagule dispersal and seedling establishment explain forest structure? Ecological Monographs, 77, 53-76.
– reference: Clarke PJ, Allaway W (1993) The regeneration niche of the grey mangrove Avicennia marina - effects of salinity, light and sediment factors on establishment, growth and survival in the field. Oecologia, 93, 548-556.
– reference: Pickens C, Hester M (2011) Temperature tolerance of early life history stages of black mangrove Avicennia germinans: implications for range expansion. Estuaries and Coasts, 34, 824-830.
– reference: Rogers K, Wilton KM, Saintilan N (2006) Vegetation change and surface elevation dynamics in estuarine wetlands of southeast Australia. Estuarine, Coastal and Shelf Science, 66, 559-569.
– reference: Smith TJ III, Foster AM, Tiling-Range G, Jones JW (2013) Dynamics of mangrove-marsh ecotones in subtropical coastal wetlands: Fire, sea-level rise, and water levels. Fire Ecology, 9, 66-77.
– reference: Lugo AE, Patterson Zucca C (1977) The impact of low temperature stress on mangrove structure and growth. Tropical Ecology, 18, 149-161.
– reference: Spalding M (2012). World Atlas of Mangroves. Earthscan, New York.
– reference: Osland MJ, Enwright N, Day RH, Doyle TW (2013) Winter climate change and coastal wetland foundation species: salt marshes versus mangrove forests in the southeastern United States. Global Change Biology, 19, 1482-1494.
– reference: Hopkinson CS, Caiíguez WJ, Hu X (2012) Carbon sequestration in wetland dominated coastal systems-a global sink of rapidly diminishing magnitude. Current Opinion in Environmental Sustainability, 4, 186-194.
– reference: Semeniuk V (1983) Mangrove distribution in Northwestern Australia in relationship to regional and local freshwater seepage. Vegetatio, 53, 11-31.
– reference: Woodroffe CD (1990) The Impact of sea-Level Rise on Mangrove Shorelines. Turpin, Letchworth, ROYAUME-UNI.
– reference: Siegle E, Asp NE (2007) Wave refraction and longshore transport patterns along the southern Santa Catarina coast. Brazilian Journal of Oceanography, 55, 109-120.
– reference: Valiela E, Bowen JL, York JK (2001) Mangrove forests: one of the world's threatened major tropical environments. BioScience, 51, 807-815.
– reference: Bianchi TS, Allison MA, Zhao J, Li X, Comeaux RS, Feagin RA, Kulawardhana RW (2013) Historical reconstruction of mangrove expansion in the Gulf of Mexico: linking climate change with carbon sequestration in coastal wetlands. Estuarine, Coastal and Shelf Science, 119, 7-16.
– reference: Wilton K, Saintilan N (2000). Protocols for Mangrove and Saltmarsh Habitat Mapping. Estuaries Branch, NSW Department of Land and Water Conservation, Sydney.
– reference: Eslami-Andargoli L, Dale P, Sipe N, Chaseling J (2009) Mangrove expansion and rainfall patterns in Moreton Bay, Southeast Queensland, Australia. Estuarine, Coastal and Shelf Science, 85, 292-298.
– reference: Quisthoudt K, Adams J, Rajkaran A, Dahdouh-Geubas F, Koedam N, Randin CF (2013) Disentangling the effects of global climate and regional land-use on the current and future distribution of mangroves in South Africa. Biodiversity Conservation, 22, 1369-1390.
– reference: Markley JL, McMillan C, Thompson GA Jr (1982) Latitudinal differentiation in response to chilling temperatures among populations of three mangroves, Avicennia germinans, Laguncularia racemosa, and Rhizophora mangle, from the western tropical Atlantic and Pacific Panama. Canadian Journal of Botany, 60, 2704-2715.
– reference: Adams JB, Colloty BM, Bate GC (2004) The distribution and state of mangroves along the coast of Transkei, Eastern Cape Province, South Africa. Wetlands Ecology and Management, 12, 531-541.
– reference: Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37-42.
– volume: 87
  start-page: 346
  year: 2012
  end-page: 366
  article-title: Are all intertidal wetlands naturally created equal? Bottlenecks, thresholds and knowledge gaps to mangrove and saltmarsh ecosystems
  publication-title: Biological Reviews
– volume: 107
  start-page: 39
  year: 1994
  end-page: 46
  article-title: Soil salinity and pH in Japanese mangrove forests and growth of cultivated mangrove plants in different soil conditions
  publication-title: Journal of Plant Research
– volume: 10
  start-page: 2591
  year: 2013
  end-page: 2615
  article-title: Spatial heterogeneity in mangroves assessed by GeoEye‐1 satellite data: a case‐study in Zhanjiang Mangrove National Nature Reserve (ZMNNR), China
  publication-title: Biogeosciences Discussions
– volume: 28
  start-page: 129
  year: 1985
  end-page: 140
  article-title: The distributional history and ecology of mangrove vegetation along the northerm Gulf of Mexico coastal region
  publication-title: Contributions in Marine Science
– volume: 1
  start-page: 103
  year: 1997
  end-page: 111
  article-title: Effects of tidal inundation and predation on Avicennia germinans seedling establishment and survival in a sub‐tropical mangal/salt marsh community
  publication-title: Mangroves and Salt Marshes
– volume: 12
  start-page: 64
  year: 1996
  end-page: 69
  article-title: Integration of remote sensing and spatial information technologies for mapping black mangrove on the Texas gulf coast
  publication-title: Journal of Coastal Research
– volume: 3
  start-page: e2502
  year: 2008
  article-title: Climate change and the future of California's endemic flora
  publication-title: PLoS ONE
– volume: 35
  start-page: 1243
  year: 2009
  end-page: 1248
  article-title: Buch. Ham in the mangrove ecosystems of China: An invasive species or restoration species?
  publication-title: Ecological Engineering
– volume: 60
  start-page: 2704
  year: 1982
  end-page: 2715
  article-title: Latitudinal differentiation in response to chilling temperatures among populations of three mangroves, , , and , from the western tropical Atlantic and Pacific Panama
  publication-title: Canadian Journal of Botany
– volume: 31
  start-page: 32
  year: 1990
  end-page: 39
  article-title: The distribution of mangroves and saltmarshes in Florida
  publication-title: Tropical Ecology
– volume: 27
  start-page: 1059
  year: 2011
  end-page: 1064
  article-title: Mapping and monitoring Louisiana's mangroves in the aftermath of the 2010 Gulf of Mexico oil spill
  publication-title: Journal of Coastal Research
– volume: 29
  start-page: 9
  year: 1986
  end-page: 16
  article-title: The chilling tolerance of black mangrove, , from the Gulf of Mexico coast of Texas, Louisiana and Florida
  publication-title: Contributions in Marine Science
– volume: 295
  start-page: 43
  year: 1995
  end-page: 49
  article-title: Mangroves and climate change in the Florida and Caribbean region: scenarios and hypotheses
  publication-title: Hydrobiologia
– volume: 30
  start-page: 50
  year: 1986
  end-page: 53
  article-title: Mangroves of the East London area
  publication-title: The Naturalist
– volume: 3
  start-page: 51
  year: 1982
  end-page: 53
  article-title: A note on the distribution and approximate areas of mangroves in South Africa
  publication-title: South African Journal of Botany
– volume: 85
  start-page: 292
  year: 2009
  end-page: 298
  article-title: Mangrove expansion and rainfall patterns in Moreton Bay, Southeast Queensland, Australia
  publication-title: Estuarine, Coastal and Shelf Science
– volume: 10
  start-page: 125
  year: 1985
  end-page: 133
  article-title: The demography of the temperate mangrove [ (Forsk.) Vierh.] at its southern limit in New Zealand
  publication-title: Australian Journal of Ecology
– volume: 7
  start-page: 13
  year: 1988
  end-page: 24
  article-title: Mangroves and grass swamps: changes in the shoreline vegetation of the Middle Lane Cover River, Sydney, 1780's‐1880's
  publication-title: Wetlands (Australia)
– volume: 24
  start-page: 115
  year: 1981
  end-page: 131
  article-title: Black mangrove, , in Texas: Past and present distribution
  publication-title: Contributions in Marine Science
– year: 1990
– volume: 29
  start-page: 27
  year: 1986
  end-page: 36
  article-title: Survival of red mangrove, , on the Gulf of Mexico coast of Texas
  publication-title: Contributions in Marine Science
– start-page: 717
  year: 2006
  end-page: 720
  article-title: Loss of shorebird habitat as a result of mangrove incursion due to sea‐level rise and urbanization
  publication-title: Waterbirds Around the World (eds Boere GC, Galbraith CA, Stroud DA)
– volume: 13
  start-page: 65
  year: 2004
  end-page: 73
  article-title: Acute salt marsh dieback in the Mississippi River deltaic plain: a drought‐induced phenomenon?
  publication-title: Global Ecology and Biogeography
– volume: 34
  start-page: 929
  year: 2009
  end-page: 937
  article-title: Biogeography of Australian saltmarsh plants
  publication-title: Austral Ecology
– volume: 101
  start-page: 8
  year: 2012
  end-page: 17
  article-title: Growth of the mangrove species Griff. at its southern latitudinal limit in eastern Australia
  publication-title: Aquatic Botany
– volume: 16
  start-page: 80
  year: 2002
  end-page: 86
  article-title: Evolutionary genetics of mangroves: continental drift to recent climate change
  publication-title: Trees
– start-page: 309
  year: 1992
  end-page: 324
– volume: 76
  start-page: 1
  year: 2008
  end-page: 13
  article-title: Mangrove forests: resilience, protection from tsunamis, and responses to global climate change
  publication-title: Estuarine, Coastal and Shelf Science
– volume: 10
  start-page: 539
  year: 1994
  end-page: 548
  article-title: An appraisal of factors controlling the latitudinal distribution of mangrove ( var. ) in New Zealand
  publication-title: Journal of Coastal Research
– volume: 27
  start-page: 20
  year: 1995
  end-page: 27
  article-title: Diversification of Gulf/Caribbean mangrove communities through Cenozoic time
  publication-title: Biotropica
– volume: 77
  start-page: 53
  year: 2007
  end-page: 76
  article-title: Supply‐side ecology in mangroves: do propagule dispersal and seedling establishment explain forest structure?
  publication-title: Ecological Monographs
– volume: 35
  start-page: 487
  year: 2009
  end-page: 496
  article-title: Applying remote sensing techniques to monitor shifting wetland vegetation: a case study of Danshui River estuary mangrove communities Taiwan
  publication-title: Ecological Engineering
– volume: 173
  start-page: 576
  year: 2007
  end-page: 583
  article-title: The role of freezing in setting the latitudinal limits of mangrove forests
  publication-title: New Phytologist
– volume: 67
  start-page: 433
  year: 2001
  end-page: 438
  article-title: The progression of a mangrove forest over a newly formed delta in the Umhlatuze Estuary, South Africa
  publication-title: South African Journal of Botany
– volume: 14
  start-page: 971
  year: 2008
  end-page: 984
  article-title: Where temperate meets tropical: multi‐factorial effects of elevated CO , nitrogen enrichment, and competition on a mangrove‐salt marsh community
  publication-title: Global Change Biology
– start-page: 4
  year: 2010
  end-page: 5
  article-title: Increase in black mangrove abundance in coastal Louisiana
  publication-title: Louisiana Natural Resources News, Newsletter of the Louisiana Association of Professional Biologists
– volume: 4
  start-page: 2
  year: 1985
  end-page: 6
  article-title: Mangrove distribution in New South Wales
  publication-title: Wetlands (Australia)
– volume: 8
  start-page: 117
  year: 1999
  end-page: 124
  article-title: Mangrove transgression into saltmarsh environments in South‐East Australia
  publication-title: Global Ecology and Biogeography
– volume: 7
  start-page: 27
  year: 1998
  end-page: 47
  article-title: Factors influencing biodiversity and distributional gradients in mangroves
  publication-title: Global Ecology and Biogeography Letters
– volume: 9
  start-page: 801
  year: 1993
  end-page: 810
  article-title: Growth and survival of Avicennia germinans seedlings in a mangal/salt marsh community in Louisiana, U.S.A
  publication-title: Journal of Coastal Research
– volume: 18
  start-page: 479
  year: 1991
  end-page: 492
  article-title: Mangrove biogeography: the role of quaternary environmental and sea‐level change
  publication-title: Journal of Biogeography
– volume: 295
  start-page: 75
  year: 1995
  end-page: 81
  article-title: Impact of expected climate change on mangroves
  publication-title: Hydrobiologia
– start-page: 51
  year: 1974
  end-page: 174
– volume: 96
  start-page: 241
  year: 1997
  end-page: 259
  article-title: Mangroves of China: a brief review
  publication-title: Forest Ecology and Management
– year: 1916
– volume: 9
  start-page: 66
  year: 2013
  end-page: 77
  article-title: Dynamics of mangrove‐marsh ecotones in subtropical coastal wetlands: Fire, sea‐level rise, and water levels
  publication-title: Fire Ecology
– year: 2007
– volume: 52
  start-page: 927
  year: 1971
  end-page: 930
  article-title: Environmental factors affecting seedling establishment of the black mangrove on the central Texas coast
  publication-title: Ecology
– volume: 16
  start-page: 545
  year: 2007
  end-page: 556
  article-title: Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation
  publication-title: Global Ecology and Biogeography
– volume: 421
  start-page: 37
  year: 2003
  end-page: 42
  article-title: A globally coherent fingerprint of climate change impacts across natural systems
  publication-title: Nature
– volume: 96
  start-page: 81
  year: 2012
  end-page: 95
  article-title: Mangrove expansion in the Gulf of Mexico with climate change: implications for wetland health and resistance to rising sea levels
  publication-title: Estuarine, Coastal and Shelf Science
– volume: 66
  start-page: 559
  year: 2006
  end-page: 569
  article-title: Vegetation change and surface elevation dynamics in estuarine wetlands of southeast Australia
  publication-title: Estuarine, Coastal and Shelf Science
– year: 2010
– volume: 44
  start-page: 63
  year: 2006
  end-page: 76
  article-title: Mid‐Holocene development of mangrove communities featuring Rhizophoraceae and geomorphic change in the Richmond River Estuary, New South Wales, Australia
  publication-title: Geographical Research
– volume: 19
  start-page: 47
  year: 2011
  end-page: 60
  article-title: Refinement of the fundamental niche of black mangrove (Avicennia germinans) seedlings in Louisiana: Applications for restoration
  publication-title: Wetlands Ecology and Management
– volume: 56
  start-page: 581
  year: 2003
  end-page: 592
  article-title: Differences in benthic fauna and sediment among mangrove (Avicennia marina var. australasica) stands of different ages in New Zealand
  publication-title: Estuarine, Coastal and Shelf Science
– volume: 19
  start-page: 1482
  year: 2013
  end-page: 1494
  article-title: Winter climate change and coastal wetland foundation species: salt marshes versus mangrove forests in the southeastern United States
  publication-title: Global Change Biology
– volume: 416
  start-page: 389
  year: 2002
  end-page: 395
  article-title: Ecological responses to recent climate change
  publication-title: Nature
– year: 1995
– volume: 399
  start-page: 213
  year: 1999
  article-title: Birds extend their ranges northwards
  publication-title: Nature
– volume: 29
  start-page: 396
  year: 2009
  end-page: 406
  article-title: Ecosystem effects of expanding populations of Avicennia germinans in a Louisiana salt marsh
  publication-title: Wetlands
– volume: 4
  start-page: 186
  year: 2012
  end-page: 194
  article-title: Carbon sequestration in wetland dominated coastal systems–a global sink of rapidly diminishing magnitude
  publication-title: Current Opinion in Environmental Sustainability
– volume: 708
  start-page: 23
  year: 2013
  end-page: 43
  article-title: Predicted response of coastal wetlands to climate changes: a Western Australian model
  publication-title: Hydrobiologia
– volume: 68
  start-page: 173
  year: 1987
  end-page: 177
  article-title: Reasons for the limitation of mangrove along the west coast of northern Peru
  publication-title: Vegetatio
– year: 2013
  article-title: Water use characteristics of black mangrove ( ) communities along an ecotone with marsh at a northern geographical limit
  publication-title: Ecohydrology
– year: 2013
– volume: 26
  start-page: 113
  year: 2010
  end-page: 122
  article-title: Expansion dynamics of monospecific, temperate mangroves and sedimentation in two embayments of a barrier‐enclosed lagoon, Tauranga Harbour, New Zealand
  publication-title: Journal of Coastal Research
– year: 2009
– volume: 25
  start-page: 169
  year: 2003
  end-page: 176
  article-title: Use of plastic drift cards as indicators of possible dispersal of propagules of the mangrove Avicennia marina by ocean currents
  publication-title: Africal Journal of Marine Science
– volume: 29
  start-page: 357
  year: 2009
  end-page: 361
  article-title: Niches of plant populations in mangrove resrve of Qu'ao Island, Pearl River Estuary
  publication-title: Acta Ecologica Sinica
– volume: 18
  start-page: 49
  year: 2010
  end-page: 54
– volume: 14
  start-page: 465
  year: 1999
  end-page: 470
  article-title: Late Quaternary cycles of mangrove development and decline on the north Australian continental shelf
  publication-title: Journal of Quaternary Science
– volume: 26
  start-page: 1919
  year: 2012
  end-page: 1931
  article-title: Temperature variation among mangrove latitudinal range limits worldwide
  publication-title: Trees
– volume: 6
  start-page: 579
  year: 2000
  end-page: 610
  article-title: Estuarine wetlands distribution along the Parramatta River, Sydney, 1788‐1940: Implications for planning and conservation
  publication-title: Cunninghamia
– volume: 8
  start-page: 95
  year: 1999
  end-page: 115
  article-title: Origins of mangrove ecosystems and the mangrove biodiversity anomaly
  publication-title: Global Ecology and Biogeography
– volume: 411
  start-page: 546
  year: 2001
  end-page: 547
  article-title: Increasing shrub abundance in the Arctic
  publication-title: Nature
– volume: 32
  start-page: 1011
  year: 2009
  end-page: 1018
  article-title: Phytogeographical evidence for post‐glacial dispersal limitation of European beech forest species
  publication-title: Ecography
– volume: 93
  start-page: 548
  year: 1993
  end-page: 556
  article-title: The regeneration niche of the grey mangrove – effects of salinity, light and sediment factors on establishment, growth and survival in the field
  publication-title: Oecologia
– volume: 36
  start-page: 213
  year: 1991
  end-page: 217
  article-title: Comparison of the effects of the severe freezes of 1983 and 1989 on native woody plants in the Lower Rio Grande Valley, Texas
  publication-title: The Southwestern Naturalist
– volume: 11
  start-page: 139
  year: 1991
  end-page: 161
  article-title: A comparison of physicochemical variables across plant zones in a mangal/salt marsh community in Louisiana
  publication-title: Wetlands
– volume: 153
  start-page: 633
  year: 2007
  end-page: 641
  article-title: Mangrove growth in New Zealand estuaries: The role of nutrient enrichment at sites with contrasting rates of sedimentation
  publication-title: Oecologia
– volume: 15
  start-page: 629
  year: 2011
  end-page: 638
  article-title: Sea‐level rise and landscape change influence mangrove encroachment onto marsh in the Ten Thousand Inslands region of Florida, USA
  publication-title: Journal of Coastal Conservation
– volume: 48
  start-page: 43
  year: 2010
  end-page: 160
  article-title: The ecology and management of temperate mangroves
  publication-title: Oceanography and Marine Biology: An Annual Review
– start-page: 855
  year: 2009
  end-page: 883
– volume: 17
  start-page: 1111
  year: 2003
  article-title: Global carbon sequestration in tidal, saline wetland soils
  publication-title: Global Biogeochemical Cycles
– volume: 84
  start-page: 75
  year: 2009
  end-page: 83
  article-title: Surface evolution and carbon sequestration in disturbed and undisturbed wetland soils of the Hunter estuary, southeast Australia
  publication-title: Estuarine, Coastal and Shelf Science
– volume: 101
  start-page: 44
  year: 2012
  end-page: 53
  article-title: Southern limit of the Western South Atlantic mangroves: Assessment of the potential effects of global warming from a biogeographical perspective
  publication-title: Estuarine, Coastal and Shelf Science
– volume: 28
  start-page: 517
  year: 1997
  end-page: 544
  article-title: Tree‐grass interactions in savannas
  publication-title: Annual Review of Ecology and Systematics
– volume: 90
  start-page: 2931
  year: 2009
  end-page: 2942
  article-title: Causes and consequences of woody plant encroachment into western North American grasslands
  publication-title: Journal of Environmental Management
– volume: 9
  start-page: 181
  year: 2001
  end-page: 194
  article-title: The mangrove palm in the geologic past of the New World
  publication-title: Wetlands Ecology and Management
– volume: 19
  start-page: 2765
  year: 2013
  end-page: 2774
  article-title: Biotic interactions mediate the expansion of black mangrove ( ) into salt marshes under climate change
  publication-title: Global Change Biology
– volume: 53
  start-page: 11
  year: 1983
  end-page: 31
  article-title: Mangrove distribution in Northwestern Australia in relationship to regional and local freshwater seepage
  publication-title: Vegetatio
– year: 2004
– year: 1924
– volume: 51
  start-page: 1
  year: 1963
  end-page: 25
  article-title: Mangroves swamps in South Africa
  publication-title: Journal of Ecology
– volume: 24
  start-page: 219
  year: 1994
  end-page: 230
  article-title: Early to Mid Holocene pollen samples containing mangrove pollen from Sponge Bay, East Coast, North Island, New Zealand
  publication-title: Journal of the Royal Society of New Zealand
– volume: 3
  start-page: 213
  year: 1952
  end-page: 265
  article-title: Southeast saline Everglades vegetation, Florida, and its management
  publication-title: Vegetatio
– start-page: 119
  year: 1999
  end-page: 140
– volume: 106
  start-page: 7
  year: 2011
  end-page: 29
  article-title: The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm
  publication-title: Climatic Change
– volume: 399
  start-page: 579
  year: 1999
  end-page: 583
  article-title: Poleward shifts in geographical ranges of butterfly species associated with regional warming
  publication-title: Nature
– volume: 119
  start-page: 7
  year: 2013
  end-page: 16
  article-title: Historical reconstruction of mangrove expansion in the Gulf of Mexico: linking climate change with carbon sequestration in coastal wetlands
  publication-title: Estuarine, Coastal and Shelf Science
– volume: 13
  start-page: 204
  year: 1990
  end-page: 218
  article-title: Variability of mangrove ecosystems along the Brazilian Coast
  publication-title: Estuaries
– volume: 41
  start-page: 285
  year: 1966
  end-page: 301
  article-title: A mass mortality of mangroves in the Kosi estuary
  publication-title: Transactions of the Royal Society of South Africa
– volume: 18
  start-page: 149
  year: 1977
  end-page: 161
  article-title: The impact of low temperature stress on mangrove structure and growth
  publication-title: Tropical Ecology
– volume: 11
  start-page: 101
  year: 2000
  end-page: 112
  article-title: The southeast saline Everglades revisited: 50 years of coastal vegetation change
  publication-title: Journal of Vegetation Science
– year: 2000
– volume: 10
  start-page: 895
  year: 2013
  end-page: 925
  article-title: The role of wind in hydrochorous mangrove propagule dispersal
  publication-title: Biogeosciences
– volume: 8
  start-page: 1
  year: 1938
  end-page: 56
  article-title: Plant communities in the marshlands of southeastern Louisiana
  publication-title: Ecological Monographs
– volume: 4
  start-page: 293
  year: 2011
  end-page: 297
  article-title: Mangroves among the most carbon‐rich forests in the tropics
  publication-title: Nature Geoscience
– volume: 89
  start-page: 648
  year: 2001
  end-page: 659
  article-title: Dispersal potential and early growth in 14 tropical mangroves: do early life history traints correlate with patterns of adult distribution?
  publication-title: Journal of Ecology
– volume: 22
  start-page: 143
  year: 2011
  end-page: 151
  article-title: Oceanographic anomalies and sea‐level rise drive mangroves inland in the Pacific coast of Mexico
  publication-title: Journal of Vegetation Science
– volume: 2007
  start-page: 5
  year: 2008
  article-title: Is climate change a possible explanation for woody thickening in arid and semi‐arid regions?
  publication-title: International Journal of Ecology
– volume: 14
  start-page: 615
  year: 2008
  end-page: 623
  article-title: Shrub encroachment in North American grasslands: shifts in growth form dominance rapidly alters control of ecosystem carbon inputs
  publication-title: Global Change Biology
– volume: 28
  start-page: 551
  year: 2005
  end-page: 559
  article-title: Mangrove encroachment of salt marsh in Western Port Bay, Victoria: The role of sedimentation, subsidence and sea level rise
  publication-title: Estuaries
– volume: 51
  start-page: 807
  year: 2001
  end-page: 815
  article-title: Mangrove forests: one of the world's threatened major tropical environments
  publication-title: BioScience
– volume: 12
  start-page: 531
  year: 2004
  end-page: 541
  article-title: The distribution and state of mangroves along the coast of Transkei, Eastern Cape Province, South Africa
  publication-title: Wetlands Ecology and Management
– volume: 55
  start-page: 109
  year: 2007
  end-page: 120
  article-title: Wave refraction and longshore transport patterns along the southern Santa Catarina coast
  publication-title: Brazilian Journal of Oceanography
– year: 2012
– volume: 11
  start-page: 19
  year: 2010
  end-page: 27
  article-title: Late 20th century mangrove encroachment in the coastal Australian monsoon tropics parallels the regional increase in woody biomass
  publication-title: Regional Environmental Change
– volume: 89
  start-page: 105
  year: 2008
  end-page: 127
  article-title: Environmental drivers in mangrove establishment and early development: a review
  publication-title: Aquatic Botany
– volume: 8
  start-page: 390
  year: 2002
  end-page: 407
  article-title: Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050
  publication-title: Global Change Biology
– volume: 18
  start-page: 307
  year: 1993
  end-page: 315
  article-title: The intertidal distribution of the grey mangrove ( in southeastern Australia: the effects of physical conditions, interspecific competition, and predation on propagule establishment and survival
  publication-title: Australian Journal of Ecology
– volume: 89
  start-page: 155
  year: 2008
  end-page: 185
  article-title: The habitat function of mangroves for terrestrial and marine fauna: A review
  publication-title: Aquatic Botany
– volume: 22
  start-page: 1369
  year: 2013
  end-page: 1390
  article-title: Disentangling the effects of global climate and regional land‐use on the current and future distribution of mangroves in South Africa
  publication-title: Biodiversity Conservation
– volume: 11
  start-page: 652
  year: 1998
  end-page: 655
  article-title: Preliminary report on introduction of several superior mangroves
  publication-title: Forest Research
– start-page: 57
  year: 1983
  end-page: 76
– volume: 78
  start-page: 163
  year: 1990
  end-page: 177
  article-title: Paleoecology of a middle Eocene mangrove biota (vertebrates, plants, and invertebrates) from southwest Texas
  publication-title: Palaeogeography, Palaeoclimatology, Palaeoecology
– start-page: 1
  year: 1997
  end-page: 9
– volume: 14
  start-page: 435
  year: 2006
  end-page: 444
  article-title: The interplay between mangroves and saltmarshes at the transition between temperate and subtropical climate in Florida
  publication-title: Wetlands Ecology and Management
– volume: 34
  start-page: 824
  year: 2011
  end-page: 830
  article-title: Temperature tolerance of early life history stages of black mangrove Avicennia germinans: implications for range expansion
  publication-title: Estuaries and Coasts
– start-page: 1441
  year: 2007
  end-page: 1454
– start-page: 63
  year: 2012
  end-page: 96
– volume: 50
  start-page: 278
  year: 1997
  end-page: 284
  article-title: Viewpoint: atmospheric CO , soil water and shrub/grass rations on rangelands
  publication-title: Journal of Range Management
– volume: 89
  start-page: 237
  year: 2008
  end-page: 250
  article-title: Threats to mangroves from climate change and adaptation options: a review
  publication-title: Aquatic Botany
– volume: 1
  start-page: 79
  year: 1997
  end-page: 94
  article-title: The effect of sedimentary processes on the ecology of the mangrove‐fringed Kosi estuary/lake system, South Africa
  publication-title: Mangroves and Salt Marshes
– volume-title: The Atlas of Global Conservation: Changes, Challenges, and Opportunities to Make a Difference
  year: 2010
  ident: e_1_2_6_40_1
– volume: 18
  start-page: 149
  year: 1977
  ident: e_1_2_6_57_1
  article-title: The impact of low temperature stress on mangrove structure and growth
  publication-title: Tropical Ecology
– ident: e_1_2_6_77_1
  doi: 10.1038/21181
– ident: e_1_2_6_61_1
  doi: 10.1111/j.1466-882X.2004.00075.x
– volume: 41
  start-page: 285
  year: 1966
  ident: e_1_2_6_11_1
  article-title: A mass mortality of mangroves in the Kosi estuary
  publication-title: Transactions of the Royal Society of South Africa
– ident: e_1_2_6_138_1
  doi: 10.1023/A:1009919816903
– ident: e_1_2_6_34_1
  doi: 10.2307/2388899
– ident: e_1_2_6_80_1
  doi: 10.1023/A:1009923917812
– ident: e_1_2_6_45_1
  doi: 10.1016/j.aquabot.2007.12.014
– volume: 2007
  start-page: 5
  year: 2008
  ident: e_1_2_6_23_1
  article-title: Is climate change a possible explanation for woody thickening in arid and semi‐arid regions?
  publication-title: International Journal of Ecology
– volume: 30
  start-page: 50
  year: 1986
  ident: e_1_2_6_110_1
  article-title: Mangroves of the East London area
  publication-title: The Naturalist
– ident: e_1_2_6_88_1
  doi: 10.1016/j.ecoleng.2009.05.008
– ident: e_1_2_6_58_1
  doi: 10.2307/2257502
– start-page: 855
  volume-title: Coastal Wetlands; an Integrated Ecosystems Approach
  year: 2009
  ident: e_1_2_6_95_1
– ident: e_1_2_6_19_1
  doi: 10.1007/s00468-001-0142-6
– ident: e_1_2_6_20_1
  doi: 10.1038/ngeo1123
– ident: e_1_2_6_82_1
  doi: 10.1016/j.chnaes.2009.09.017
– ident: e_1_2_6_47_1
  doi: 10.1002/eco.1353/abstract
– volume: 9
  start-page: 801
  year: 1993
  ident: e_1_2_6_79_1
  article-title: Growth and survival of Avicennia germinans seedlings in a mangal/salt marsh community in Louisiana, U.S.A
  publication-title: Journal of Coastal Research
– ident: e_1_2_6_104_1
  doi: 10.4996/fireecology.0901066
– ident: e_1_2_6_123_1
  doi: 10.5194/bgd-10-895-2013
– ident: e_1_2_6_133_1
– ident: e_1_2_6_96_1
  doi: 10.2307/1351590
– ident: e_1_2_6_42_1
  doi: 10.1016/j.ecss.2009.06.006
– ident: e_1_2_6_63_1
  doi: 10.1007/978-94-007-4494-3_2
– ident: e_1_2_6_112_1
  doi: 10.2989/18142320309504007
– volume-title: The Impact of sea‐Level Rise on Mangrove Shorelines
  year: 1990
  ident: e_1_2_6_136_1
  doi: 10.1177/030913339001400404
– start-page: 309
  volume-title: Global Warming and Biological Diversity
  year: 1992
  ident: e_1_2_6_37_1
– ident: e_1_2_6_38_1
  doi: 10.1111/j.1745-5871.2006.00360.x
– ident: e_1_2_6_7_1
  doi: 10.5962/bhl.title.7602
– ident: e_1_2_6_13_1
  doi: 10.1029/2002GB001917
– ident: e_1_2_6_3_1
  doi: 10.1007/s11273-010-9199-6
– ident: e_1_2_6_85_1
  doi: 10.2307/4003730
– ident: e_1_2_6_55_1
  doi: 10.1111/j.1654-1103.2010.01232.x
– volume: 10
  start-page: 539
  year: 1994
  ident: e_1_2_6_48_1
  article-title: An appraisal of factors controlling the latitudinal distribution of mangrove (Avicennia marina var. resinifera) in New Zealand
  publication-title: Journal of Coastal Research
– ident: e_1_2_6_25_1
  doi: 10.1046/j.1466-822X.1999.00126.x
– ident: e_1_2_6_74_1
– ident: e_1_2_6_103_1
  doi: 10.1590/S1679-87592007000200004
– ident: e_1_2_6_124_1
  doi: 10.1007/BF02344528
– ident: e_1_2_6_131_1
  doi: 10.1007/s10113-010-0109-5
– ident: e_1_2_6_90_1
  doi: 10.1016/j.ecss.2005.11.004
– ident: e_1_2_6_9_1
  doi: 10.1016/j.ecss.2012.12.007
– ident: e_1_2_6_44_1
  doi: 10.1111/j.1365-2486.2007.01512.x
– ident: e_1_2_6_39_1
– ident: e_1_2_6_5_1
  doi: 10.1046/j.1354-1013.2001.00467.x
– ident: e_1_2_6_73_1
  doi: 10.1016/j.aquabot.2007.12.007
– volume: 24
  start-page: 115
  year: 1981
  ident: e_1_2_6_100_1
  article-title: Black mangrove, Avicennia germinans, in Texas: Past and present distribution
  publication-title: Contributions in Marine Science
– ident: e_1_2_6_116_1
  doi: 10.1111/j.1469-8137.2006.01938.x
– ident: e_1_2_6_119_1
  doi: 10.1038/20335
– ident: e_1_2_6_106_1
  doi: 10.1016/j.ecss.2012.02.018
– ident: e_1_2_6_66_1
  doi: 10.2307/1936046
– volume: 12
  start-page: 64
  year: 1996
  ident: e_1_2_6_27_1
  article-title: Integration of remote sensing and spatial information technologies for mapping black mangrove on the Texas gulf coast
  publication-title: Journal of Coastal Research
– volume: 31
  start-page: 32
  year: 1990
  ident: e_1_2_6_43_1
  article-title: The distribution of mangroves and saltmarshes in Florida
  publication-title: Tropical Ecology
– volume: 6
  start-page: 579
  year: 2000
  ident: e_1_2_6_65_1
  article-title: Estuarine wetlands distribution along the Parramatta River, Sydney, 1788‐1940: Implications for planning and conservation
  publication-title: Cunninghamia
– volume: 4
  start-page: 2
  year: 1985
  ident: e_1_2_6_129_1
  article-title: Mangrove distribution in New South Wales
  publication-title: Wetlands (Australia)
  doi: 10.31646/wa.79
– volume-title: World Atlas of Mangroves
  year: 2012
  ident: e_1_2_6_109_1
– ident: e_1_2_6_132_1
  doi: 10.1111/j.1600-0587.2009.05957.x
– ident: e_1_2_6_125_1
  doi: 10.1016/B978-0-12-586450-3.50008-1
– volume: 28
  start-page: 129
  year: 1985
  ident: e_1_2_6_101_1
  article-title: The distributional history and ecology of mangrove vegetation along the northerm Gulf of Mexico coastal region
  publication-title: Contributions in Marine Science
– ident: e_1_2_6_4_1
  doi: 10.1016/j.ecss.2007.08.024
– ident: e_1_2_6_51_1
  doi: 10.1016/S0378-1127(97)00054-6
– ident: e_1_2_6_71_1
  doi: 10.1016/S0272-7714(02)00208-1
– ident: e_1_2_6_28_1
  doi: 10.1007/BF00029113
– ident: e_1_2_6_127_1
  doi: 10.1016/S0022-4618(16)30176-0
– volume-title: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2007
  ident: e_1_2_6_107_1
– ident: e_1_2_6_137_1
  doi: 10.2307/2845685
– ident: e_1_2_6_78_1
  doi: 10.1007/BF03160845
– ident: e_1_2_6_83_1
  doi: 10.1672/08-100.1
– ident: e_1_2_6_12_1
  doi: 10.1111/j.1442-9993.1985.tb00874.x
– ident: e_1_2_6_46_1
  doi: 10.1007/s11852-011-0153-4
– ident: e_1_2_6_72_1
  doi: 10.1201/EBK1439821169-c2
– ident: e_1_2_6_98_1
  doi: 10.1007/BF00039767
– ident: e_1_2_6_108_1
  doi: 10.1890/05-1935
– ident: e_1_2_6_22_1
– volume: 29
  start-page: 9
  year: 1986
  ident: e_1_2_6_67_1
  article-title: The chilling tolerance of black mangrove, Avicennia germinans, from the Gulf of Mexico coast of Texas, Louisiana and Florida
  publication-title: Contributions in Marine Science
– ident: e_1_2_6_29_1
  doi: 10.1111/j.1469-185X.2011.00198.x
– ident: e_1_2_6_86_1
  doi: 10.1007/s00468-012-0760-1
– ident: e_1_2_6_91_1
  doi: 10.2307/3236781
– ident: e_1_2_6_89_1
  doi: 10.1007/BF02696066
– ident: e_1_2_6_24_1
  doi: 10.1007/BF00539820
– ident: e_1_2_6_111_1
  doi: 10.1017/CBO9780511525490.006
– start-page: 1441
  volume-title: Coastal Sediments ‘07. Proceedings of the Sixth International Conference on Coastal Engineering and Science of Coastal Sedimetn Processes, New Orleans, May 2007
  year: 2007
  ident: e_1_2_6_118_1
– volume: 29
  start-page: 27
  year: 1986
  ident: e_1_2_6_102_1
  article-title: Survival of red mangrove, Rhizophora mangle, on the Gulf of Mexico coast of Texas
  publication-title: Contributions in Marine Science
– ident: e_1_2_6_56_1
  doi: 10.1007/s00442-007-0750-y
– ident: e_1_2_6_121_1
  doi: 10.1641/0006-3568(2001)051[0807:MFOOTW]2.0.CO;2
– ident: e_1_2_6_36_1
  doi: 10.1111/gcb.12221
– volume-title: The Middle and Upper Eocene Floras of Southeastern North America
  year: 1924
  ident: e_1_2_6_8_1
  doi: 10.3133/pp92
– ident: e_1_2_6_54_1
  doi: 10.2307/3671923
– ident: e_1_2_6_84_1
  doi: 10.1007/s12237-010-9358-2
– ident: e_1_2_6_97_1
  doi: 10.1146/annurev.ecolsys.28.1.517
– ident: e_1_2_6_14_1
  doi: 10.1007/BF00328964
– ident: e_1_2_6_126_1
  doi: 10.1038/416389a
– ident: e_1_2_6_49_1
  doi: 10.1016/j.ecoleng.2008.01.007
– volume-title: Protocols for Mangrove and Saltmarsh Habitat Mapping
  year: 2000
  ident: e_1_2_6_135_1
– ident: e_1_2_6_33_1
  doi: 10.2112/JCOASTRES-D-11-00028.1
– ident: e_1_2_6_53_1
  doi: 10.1371/journal.pone.0002502
– ident: e_1_2_6_62_1
  doi: 10.1111/j.1466-8238.2007.00317.x
– ident: e_1_2_6_87_1
  doi: 10.1007/s10531-013-0478-4
– ident: e_1_2_6_15_1
  doi: 10.1111/j.1442-9993.1993.tb00458.x
– ident: e_1_2_6_35_1
  doi: 10.1002/(SICI)1099-1417(199908)14:5<465::AID-JQS473>3.0.CO;2-E
– ident: e_1_2_6_6_1
  doi: 10.1016/S0254-6299(15)31160-1
– ident: e_1_2_6_122_1
  doi: 10.1016/j.jenvman.2009.04.023
– ident: e_1_2_6_2_1
  doi: 10.1007/s11273-005-5165-0
– ident: e_1_2_6_130_1
  doi: 10.1016/0031-0182(90)90210-X
– ident: e_1_2_6_16_1
  doi: 10.1046/j.0022-0477.2001.00584.x
– ident: e_1_2_6_60_1
  doi: 10.1111/j.1365-2486.2008.01547.x
– ident: e_1_2_6_75_1
  doi: 10.1111/gcb.12126
– ident: e_1_2_6_32_1
  doi: 10.1016/j.aquabot.2007.12.009
– ident: e_1_2_6_59_1
  doi: 10.1139/b82-330
– ident: e_1_2_6_18_1
  doi: 10.1016/j.ecss.2011.10.003
– start-page: 717
  year: 2006
  ident: e_1_2_6_115_1
  article-title: Loss of shorebird habitat as a result of mangrove incursion due to sea‐level rise and urbanization
  publication-title: Waterbirds Around the World (eds Boere GC, Galbraith CA, Stroud DA)
– ident: e_1_2_6_81_1
  doi: 10.2307/1943020
– ident: e_1_2_6_17_1
  doi: 10.1007/BF00114718
– ident: e_1_2_6_114_1
  doi: 10.2112/08-1043.1
– volume-title: Climate East London
  year: 2012
  ident: e_1_2_6_120_1
– ident: e_1_2_6_21_1
  doi: 10.1111/j.1466-8238.1998.00269.x
– ident: e_1_2_6_117_1
  doi: 10.1038/35079180
– ident: e_1_2_6_76_1
  doi: 10.1038/nature01286
– ident: e_1_2_6_113_1
  doi: 10.1007/s11273-006-0006-3
– start-page: 1
  volume-title: Ecology and Management of Tidal Marshes: A Model From the Gulf of Mexico
  year: 1997
  ident: e_1_2_6_70_1
– ident: e_1_2_6_93_1
  doi: 10.1046/j.1365-2699.1999.00133.x
– ident: e_1_2_6_10_1
– ident: e_1_2_6_30_1
  doi: 10.1007/s10584-010-0003-7
– ident: e_1_2_6_92_1
  doi: 10.1111/j.1442-9993.2009.02001.x
– ident: e_1_2_6_69_1
  doi: 10.1080/03014223.1994.9517466
– start-page: 4
  year: 2010
  ident: e_1_2_6_68_1
  article-title: Increase in black mangrove abundance in coastal Louisiana
  publication-title: Louisiana Natural Resources News, Newsletter of the Louisiana Association of Professional Biologists
– volume: 11
  start-page: 652
  year: 1998
  ident: e_1_2_6_52_1
  article-title: Preliminary report on introduction of several superior mangroves
  publication-title: Forest Research
– ident: e_1_2_6_41_1
  doi: 10.1016/j.cosust.2012.03.005
– ident: e_1_2_6_50_1
  doi: 10.5194/bgd-10-2591-2013
– start-page: 49
  volume-title: Wetlands (Australia)
  year: 2010
  ident: e_1_2_6_94_1
– ident: e_1_2_6_99_1
  doi: 10.1007/s10750-012-1159-0
– volume: 7
  start-page: 13
  year: 1988
  ident: e_1_2_6_64_1
  article-title: Mangroves and grass swamps: changes in the shoreline vegetation of the Middle Lane Cover River, Sydney, 1780's‐1880's
  publication-title: Wetlands (Australia)
– ident: e_1_2_6_26_1
  doi: 10.1016/j.ecss.2009.08.011
– ident: e_1_2_6_105_1
  doi: 10.1007/BF00029109
– ident: e_1_2_6_128_1
  doi: 10.1007/978-94-017-0914-9_6
– ident: e_1_2_6_31_1
  doi: 10.1023/A:1011148522181
– ident: e_1_2_6_134_1
  doi: 10.1016/j.aquabot.2012.03.011
SSID ssj0003206
Score 2.6000388
Snippet Mangroves are species of halophytic intertidal trees and shrubs derived from tropical genera and are likely delimited in latitudinal range by varying...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 147
SubjectTerms Abiotic stress
Animal and plant ecology
Animal, plant and microbial ecology
Australia
Avicennia
Avicennia germinans
Avicennia marina
Biological and medical sciences
Brackish water ecosystems
Climate Change
Climatology. Bioclimatology. Climate change
Coasts
Combretaceae
Dispersal
Earth, ocean, space
Ecosystem
Estuaries
Exact sciences and technology
External geophysics
Fundamental and applied biological sciences. Psychology
General aspects
mangrove
Mangroves
Marine
Meteorology
Plant populations
Population growth
range expansion
Rhizophora stylosa
Rhizophoraceae
salt marsh
Salt marshes
South Africa
South America
Synecology
Temperature
USA
Wetlands
Title Mangrove expansion and salt marsh decline at mangrove poleward limits
URI https://api.istex.fr/ark:/67375/WNG-6LGPCFRV-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.12341
https://www.ncbi.nlm.nih.gov/pubmed/23907934
https://www.proquest.com/docview/1466024117
https://www.proquest.com/docview/1467065041
https://www.proquest.com/docview/1492616687
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamISReuBQGgTEZhKa9tGoSX2LxBFXbCbEJTQz2gBTZjjPQQjI1LRr8es5xLqVokxBvTfs5st1zTr7jnAshr1geayadGwphsYWZ4sPEJW4oQZwyxUyunI-2OBaHp-zdGT_bIq-7XJimPkR_4Iaa4e01Krg29R9Kfm7NCMyuT1rHWC0kRCfr0lFx5PtqhjFnYGrCuK0qhFE8_ciNZ9Et3NYrjI3UNWxP3vS1uI54bvJY_yCa3SNfuiU08ScXo9XSjOyvv6o7_uca75O7LUGlbxqJekC2XDkgt5uWlT8HZGe6zowDWGsa6gEJjoB-VwsPo_t0UnwDLuyvHpLpkS7PF9UPR90VWB88oKO6zGitiyX9Dq71V5o5zNF0VOMXLfiyKhwG9dICs7DqR-R0Nv04ORy2_RuGlnEWgu1KnDOKJ2M1zrCjk8lFrrkWyilluMyNU9yY0CrNgYjwCHxBk8S5tFKryLp4h2yXVemeEApmKHPYLM3KmGkJA0ItdB5JLqOE23FADrp_MrVtcXPssVGknZMDW5n6rQzIyx562VT0uA6078WhR-jFBYbASZ5-Pp6n4v38w2R28imNArK3IS_9AKBtWA2PBWS3E6C0NQ81-lsCyFEYyoC86H8Gxca3Nbp01cpj8BX0GCdzM0aBByxEAvd53AjnegKxwuKHMIEDL2I3LzadT976D0__HfqM3AHqyJrDqF2yvVys3HOgZ0uz5_XwN4cMMtE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VVgguPAIFQykLgqqXRPFjvd4DB0jzKE0iVLWlN7N21gU1OFWcQMtv4q_wn5hZP0JQK3HpgZvjjK21Z-bbmfXsfACvvMRVntC67vsxUZhJXg90oOsCzWkkvSiR2lRbDP3eoff-mB-vwM9yL0zeH6JacCPPMHhNDk4L0n94-UkcNRB3PbsoqdzTF98xYcve7O6gdl87Tqd90OrVC06Beuxxz0Z_CrSOJA-asjkilqEo8RPFlS-1lBEXSaQljyI7lorj5MgdzE-iwE1ELJR0Yu3ifW_AGjGIU6f-nf1FsyrXMUyetss9BDfbLfoYUd1QNdSl2W-NFHlO1ZgqQ4UkOZPGZaHucuRspr7OXfhVvrS84uW0MZ9FjfjHX_0k_5e3eg_uFDE4e5s7zX1Y0WkNbuasnBc1WG8vNv-hWIF-WQ2sAWYYk6kRY1usNf6C4b759QDaA5WeTCffNNPnCLC0BslUOmKZGs_YVzXNPrORpm2omik6UQifTcaa6pbZmDaaZQ_h8FoefB1W00mqHwNDpB1p4oOLhespgRfYyleJI7hwAh43LdguTSeMi_7tRCMyDss8DlUXGtVZ8LISPcubllwmtGXsr5JQ01Oq8hM8_Djshn6_-6HV2T8KHQs2lwy0ugAjU2r451mwUVpsWCBgRimlj_GfbQsLXlR_I3bRBymV6sncyNBX9iYN5moZiUm-7wd4n0e5NywG4Erq74gD2DY2ffXDht3WO3Pw5N9Fn8Ot3sGgH_Z3h3tP4TZGyl6-9rYBq7PpXD_DaHQWbRoQYPDpuv3jNygWkHQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lc9MwEN4p7cBw4REoGEoRDHR6SSa2Jcs6cIA0SUvbTKdDS29GsuXCNDiZOIGWv8Rf4Uexkh8hTDvDpQdueXzyyN6HvpVXuwCvaOpLyrVuBkFsWpgJ1gx1qJsc1SkRVKVC22yLQbB9RN-fsJMl-FmdhSnqQ9QbbsYyrL82Bj5O0j-M_DRWLXS71C0zKnf1xXeM1_I3O1so3Nee1-t-6Gw3y5YCzZgy6qI5hVorwcK2aCemyZBKg1QyGQgthGI8VVowpdxYSIZrI_MwPFGhn_KYS-HF2sfr3oAVGuB4w8AO57WqfM828nR9RtG3uX5ZxsikDdVTXVj8Vowcz00ypsxRHmnRSOMyprtInO3K17sLv6pnViS8nLVmU9WKf_xVTvI_eaj34E7JwMnbwmTuw5LOGnCz6Ml50YDV7vzoH8JK35c3wNnH-GI0sTCyQTrDL0j27bcH0N2X2elk9E0TfY7u1exAEpklJJfDKfkqJ_lnkmhzCFUTaX4owePRUJusZTI0x8zyh3B0LTe-CsvZKNOPgaCfTbTpBhdzn0qOA1wZyNTjjHshi9sObFaaE8Vl9XbTRGQYVVEcii6yonPgZQ0dFyVLLgNtWPWrEXJyZnL8OIs-DvpRsNc_6PQOjyPPgfUF_awHIC815f6oA2uVwkal_8tNQBkg-3Nd7sCL-m_0XOZ1lMz0aGYx5h1720zmaozAED8IQrzOo8IY5hPwhanuiBPYtCp99c1G_c47--HJv0Ofw62DrV60tzPYfQq3kSbTYuNtDZank5l-hlR0qtatCyDw6brN4zfRCI8j
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mangrove+expansion+and+salt+marsh+decline+at+mangrove+poleward+limits&rft.jtitle=Global+change+biology&rft.au=SAINTILAN%2C+Neil&rft.au=WILSON%2C+Nicholas+C&rft.au=ROGERS%2C+Kerrylee&rft.au=RAJKARAN%2C+Anusha&rft.date=2014&rft.pub=Wiley-Blackwell&rft.issn=1354-1013&rft.volume=20&rft.issue=1&rft.spage=147&rft.epage=157&rft_id=info:doi/10.1111%2Fgcb.12341&rft.externalDBID=n%2Fa&rft.externalDocID=28313674
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon