Coral bleaching patterns are the outcome of complex biological and environmental networking

Continued declines in coral reef health over the past three decades have been punctuated by severe mass coral bleaching‐induced mortality events that have grown in intensity and frequency under climate change. Intensive global research efforts have therefore persistently focused on bleaching phenome...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 26; no. 1; pp. 68 - 79
Main Authors Suggett, David J., Smith, David J.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Continued declines in coral reef health over the past three decades have been punctuated by severe mass coral bleaching‐induced mortality events that have grown in intensity and frequency under climate change. Intensive global research efforts have therefore persistently focused on bleaching phenomena to understand where corals bleach, when and why—resulting in a large—yet still somewhat patchy—knowledge base. Particularly catastrophic bleaching‐induced coral mortality events in the past 5 years have catalyzed calls for a more diverse set of reef management tools, extending far beyond climate mitigation and reef protection, to also include more aggressive interventions. However, the effectiveness of these various tools now rests on rapidly assimilating our knowledge base of coral bleaching into more integrated frameworks. Here, we consider how the past three decades of intensive coral bleaching research has established the basis for complex biological and environmental networks, which together regulate outcomes of bleaching severity. We discuss how we now have enough scaffold for conceptual biological and environmental frameworks underpinning bleaching susceptibility, but that new tools are urgently required to translate this to an operational system informing—and testing—bleaching outcomes. Specifically, adopting network models that can fully describe and predict metabolic functioning of coral holobionts, and how this functioning is regulated by complex doses and interactions among environmental factors. Identifying knowledge gaps limiting operation of such models is the logical step to immediately guide and prioritize future experiments and observations. We are at a time‐critical point where we can implement new capacity to resolve how coral bleaching patterns emerge from complex biological–environmental networks, and so more effectively inform rapidly evolving ecological management and social adaptation frameworks aimed at securing the future of coral reefs. Intensive global research efforts over the past three decades have focused on the coral bleaching phenomena to understand when and why it occurs, resulting in a large—yet still somewhat patchy—knowledge base. We consider how these efforts have established the basis for complex biological and environmental networks as conceptual frameworks. However, new tools are required to translate these frameworks into operational systems that can more effectively predict bleaching outcomes that are urgently needed to inform rapidly evolving ecological management and support social adaptation.
AbstractList Continued declines in coral reef health over the past three decades have been punctuated by severe mass coral bleaching‐induced mortality events that have grown in intensity and frequency under climate change. Intensive global research efforts have therefore persistently focused on bleaching phenomena to understand where corals bleach, when and why—resulting in a large—yet still somewhat patchy—knowledge base. Particularly catastrophic bleaching‐induced coral mortality events in the past 5 years have catalyzed calls for a more diverse set of reef management tools, extending far beyond climate mitigation and reef protection, to also include more aggressive interventions. However, the effectiveness of these various tools now rests on rapidly assimilating our knowledge base of coral bleaching into more integrated frameworks. Here, we consider how the past three decades of intensive coral bleaching research has established the basis for complex biological and environmental networks, which together regulate outcomes of bleaching severity. We discuss how we now have enough scaffold for conceptual biological and environmental frameworks underpinning bleaching susceptibility, but that new tools are urgently required to translate this to an operational system informing—and testing—bleaching outcomes. Specifically, adopting network models that can fully describe and predict metabolic functioning of coral holobionts, and how this functioning is regulated by complex doses and interactions among environmental factors. Identifying knowledge gaps limiting operation of such models is the logical step to immediately guide and prioritize future experiments and observations. We are at a time‐critical point where we can implement new capacity to resolve how coral bleaching patterns emerge from complex biological–environmental networks, and so more effectively inform rapidly evolving ecological management and social adaptation frameworks aimed at securing the future of coral reefs. Intensive global research efforts over the past three decades have focused on the coral bleaching phenomena to understand when and why it occurs, resulting in a large—yet still somewhat patchy—knowledge base. We consider how these efforts have established the basis for complex biological and environmental networks as conceptual frameworks. However, new tools are required to translate these frameworks into operational systems that can more effectively predict bleaching outcomes that are urgently needed to inform rapidly evolving ecological management and support social adaptation.
Continued declines in coral reef health over the past three decades have been punctuated by severe mass coral bleaching‐induced mortality events that have grown in intensity and frequency under climate change. Intensive global research efforts have therefore persistently focused on bleaching phenomena to understand where corals bleach, when and why—resulting in a large—yet still somewhat patchy—knowledge base. Particularly catastrophic bleaching‐induced coral mortality events in the past 5 years have catalyzed calls for a more diverse set of reef management tools, extending far beyond climate mitigation and reef protection, to also include more aggressive interventions. However, the effectiveness of these various tools now rests on rapidly assimilating our knowledge base of coral bleaching into more integrated frameworks. Here, we consider how the past three decades of intensive coral bleaching research has established the basis for complex biological and environmental networks, which together regulate outcomes of bleaching severity. We discuss how we now have enough scaffold for conceptual biological and environmental frameworks underpinning bleaching susceptibility, but that new tools are urgently required to translate this to an operational system informing—and testing—bleaching outcomes. Specifically, adopting network models that can fully describe and predict metabolic functioning of coral holobionts, and how this functioning is regulated by complex doses and interactions among environmental factors. Identifying knowledge gaps limiting operation of such models is the logical step to immediately guide and prioritize future experiments and observations. We are at a time‐critical point where we can implement new capacity to resolve how coral bleaching patterns emerge from complex biological–environmental networks, and so more effectively inform rapidly evolving ecological management and social adaptation frameworks aimed at securing the future of coral reefs.
Continued declines in coral reef health over the past three decades have been punctuated by severe mass coral bleaching-induced mortality events that have grown in intensity and frequency under climate change. Intensive global research efforts have therefore persistently focused on bleaching phenomena to understand where corals bleach, when and why-resulting in a large-yet still somewhat patchy-knowledge base. Particularly catastrophic bleaching-induced coral mortality events in the past 5 years have catalyzed calls for a more diverse set of reef management tools, extending far beyond climate mitigation and reef protection, to also include more aggressive interventions. However, the effectiveness of these various tools now rests on rapidly assimilating our knowledge base of coral bleaching into more integrated frameworks. Here, we consider how the past three decades of intensive coral bleaching research has established the basis for complex biological and environmental networks, which together regulate outcomes of bleaching severity. We discuss how we now have enough scaffold for conceptual biological and environmental frameworks underpinning bleaching susceptibility, but that new tools are urgently required to translate this to an operational system informing-and testing-bleaching outcomes. Specifically, adopting network models that can fully describe and predict metabolic functioning of coral holobionts, and how this functioning is regulated by complex doses and interactions among environmental factors. Identifying knowledge gaps limiting operation of such models is the logical step to immediately guide and prioritize future experiments and observations. We are at a time-critical point where we can implement new capacity to resolve how coral bleaching patterns emerge from complex biological-environmental networks, and so more effectively inform rapidly evolving ecological management and social adaptation frameworks aimed at securing the future of coral reefs.
Abstract Continued declines in coral reef health over the past three decades have been punctuated by severe mass coral bleaching‐induced mortality events that have grown in intensity and frequency under climate change. Intensive global research efforts have therefore persistently focused on bleaching phenomena to understand where corals bleach, when and why—resulting in a large—yet still somewhat patchy—knowledge base. Particularly catastrophic bleaching‐induced coral mortality events in the past 5 years have catalyzed calls for a more diverse set of reef management tools, extending far beyond climate mitigation and reef protection, to also include more aggressive interventions. However, the effectiveness of these various tools now rests on rapidly assimilating our knowledge base of coral bleaching into more integrated frameworks. Here, we consider how the past three decades of intensive coral bleaching research has established the basis for complex biological and environmental networks, which together regulate outcomes of bleaching severity. We discuss how we now have enough scaffold for conceptual biological and environmental frameworks underpinning bleaching susceptibility, but that new tools are urgently required to translate this to an operational system informing—and testing—bleaching outcomes. Specifically, adopting network models that can fully describe and predict metabolic functioning of coral holobionts, and how this functioning is regulated by complex doses and interactions among environmental factors. Identifying knowledge gaps limiting operation of such models is the logical step to immediately guide and prioritize future experiments and observations. We are at a time‐critical point where we can implement new capacity to resolve how coral bleaching patterns emerge from complex biological–environmental networks, and so more effectively inform rapidly evolving ecological management and social adaptation frameworks aimed at securing the future of coral reefs.
Author Smith, David J.
Suggett, David J.
Author_xml – sequence: 1
  givenname: David J.
  orcidid: 0000-0001-5326-2520
  surname: Suggett
  fullname: Suggett, David J.
  email: David.Suggett@uts.edu.au
  organization: University of Technology Sydney
– sequence: 2
  givenname: David J.
  orcidid: 0000-0003-1886-8193
  surname: Smith
  fullname: Smith, David J.
  organization: University of Essex
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31618499$$D View this record in MEDLINE/PubMed
BookMark eNp1kDtPwzAUhS1URB8w8AdQJCaGtH7FSUaIoCAhscDEYDnJTZuS2MFJKP33uE1hwx6Odf3d4-szRSNtNCB0SfCcuLVYZemc8CgkJ2hCmAh8yiMx2p8D7hNM2BhN23aDMWYUizM0ZkSQiMfxBL0nxqrKSytQ2brUK69RXQdWt56y4HVr8EzfZaZ2WnhOmwq-vbQ0lVmVmWtUOvdAf5XW6Bp05yoauq2xH87rHJ0Wqmrh4qgz9PZw_5o8-s8vy6fk9tnPeMCJT9OcM8YLEaYxdZOFhICKMpwLgSEHCEnsds55RAIKggp8uGMqF1lBRMxm6Hrwbaz57KHt5Mb0VrsnJWXux5RjwR11M1CZNW1roZCNLWtld5JguY9RuhjlIUbHXh0d-7SG_I_8zc0BiwHYlhXs_neSy-RusPwBwB99OA
CitedBy_id crossref_primary_10_1111_gcb_14921
crossref_primary_10_3354_meps14055
crossref_primary_10_1038_s41396_021_00902_4
crossref_primary_10_3389_fphys_2022_804193
crossref_primary_10_1016_j_tim_2020_08_005
crossref_primary_10_1007_s00338_021_02082_1
crossref_primary_10_1038_s41597_022_01258_w
crossref_primary_10_1111_jpy_13386
crossref_primary_10_1098_rspb_2022_1877
crossref_primary_10_1007_s00338_022_02277_0
crossref_primary_10_3389_frpro_2024_1376877
crossref_primary_10_1111_gcb_15446
crossref_primary_10_7717_peerj_14812
crossref_primary_10_3354_meps14184
crossref_primary_10_1016_j_envint_2024_108768
crossref_primary_10_1038_s43017_021_00214_3
crossref_primary_10_1071_MA23009
crossref_primary_10_1242_jeb_235275
crossref_primary_10_15252_embr_202356826
crossref_primary_10_1128_msystems_00860_23
crossref_primary_10_1016_j_tree_2022_04_008
crossref_primary_10_1111_gcb_15840
crossref_primary_10_1029_2020GC009430
crossref_primary_10_1016_j_tree_2021_06_014
crossref_primary_10_1038_s41598_022_20138_2
crossref_primary_10_1016_j_jag_2024_103700
crossref_primary_10_1371_journal_pclm_0000080
crossref_primary_10_1016_j_ecolind_2023_111020
crossref_primary_10_1016_j_envpol_2020_114987
crossref_primary_10_1002_ece3_9263
crossref_primary_10_1007_s13199_021_00794_0
crossref_primary_10_1016_j_toxcx_2022_100094
crossref_primary_10_3390_biology11071068
crossref_primary_10_1016_j_marpolbul_2023_115365
crossref_primary_10_1111_geb_13771
crossref_primary_10_1371_journal_pone_0248953
crossref_primary_10_3390_ani12172259
crossref_primary_10_1007_s00338_022_02233_y
crossref_primary_10_1016_j_marenvres_2024_106557
crossref_primary_10_1016_j_zool_2021_125893
crossref_primary_10_1111_brv_13042
crossref_primary_10_1007_s00338_023_02427_y
crossref_primary_10_1111_mec_16498
crossref_primary_10_7773_cm_y2023_3296
crossref_primary_10_3390_oceans5020012
crossref_primary_10_1038_s41598_021_03061_w
crossref_primary_10_1111_1462_2920_14918
crossref_primary_10_1016_j_chemosphere_2021_133216
crossref_primary_10_1016_j_envpol_2022_119054
crossref_primary_10_1111_jam_15465
crossref_primary_10_1111_1365_2435_13795
crossref_primary_10_3389_fmars_2021_811055
crossref_primary_10_1007_s00338_021_02201_y
crossref_primary_10_3389_fmars_2022_834332
crossref_primary_10_3389_fevo_2023_1079271
crossref_primary_10_1371_journal_pone_0238361
crossref_primary_10_1088_1748_9326_ac7478
crossref_primary_10_3389_fphys_2021_804678
crossref_primary_10_7717_peerj_16804
crossref_primary_10_1126_sciadv_abq5615
crossref_primary_10_7717_peerj_14626
crossref_primary_10_1016_j_tim_2021_07_006
crossref_primary_10_3389_fmars_2022_938454
crossref_primary_10_3389_fmars_2022_979563
crossref_primary_10_1007_s00227_021_03893_0
crossref_primary_10_3390_pr9060983
crossref_primary_10_1098_rsos_210139
crossref_primary_10_3390_biology12071014
crossref_primary_10_1111_geb_13506
crossref_primary_10_1016_j_marenvres_2024_106419
crossref_primary_10_1371_journal_pclm_0000090
crossref_primary_10_1002_ece3_9450
crossref_primary_10_1016_j_ecolind_2022_108886
crossref_primary_10_1007_s00338_023_02448_7
crossref_primary_10_1093_nargab_lqae016
crossref_primary_10_1146_annurev_marine_040221_115454
crossref_primary_10_1016_j_jembe_2024_152009
crossref_primary_10_1186_s12915_021_00994_6
crossref_primary_10_3389_fmars_2021_745644
crossref_primary_10_1073_pnas_2022653118
crossref_primary_10_1016_j_marpolbul_2021_112257
crossref_primary_10_1016_j_tree_2023_10_005
crossref_primary_10_1111_gcb_15436
crossref_primary_10_3389_fmars_2021_681119
crossref_primary_10_3390_antiox12051057
crossref_primary_10_1093_icb_icac005
crossref_primary_10_1038_s41396_021_01158_8
crossref_primary_10_1007_s00343_024_3159_0
crossref_primary_10_1007_s00338_021_02115_9
crossref_primary_10_1016_j_scitotenv_2023_164258
crossref_primary_10_1016_j_scitotenv_2023_162113
crossref_primary_10_1016_j_jembe_2022_151865
crossref_primary_10_1016_j_scitotenv_2024_173916
crossref_primary_10_1038_s41598_024_66057_2
crossref_primary_10_1038_s41598_022_22604_3
crossref_primary_10_1007_s00227_023_04360_8
crossref_primary_10_1016_j_rsma_2023_103027
crossref_primary_10_1038_s43247_023_00946_8
crossref_primary_10_1021_acsami_3c01166
crossref_primary_10_1111_gcb_16192
crossref_primary_10_1007_s11306_024_02136_9
crossref_primary_10_1016_j_scitotenv_2023_163038
crossref_primary_10_1111_gcb_16074
crossref_primary_10_3389_fmars_2021_754808
crossref_primary_10_3390_microorganisms9112209
crossref_primary_10_3389_fphys_2022_819111
crossref_primary_10_1016_j_jenvman_2021_113919
crossref_primary_10_18475_cjos_v54i1_a17
crossref_primary_10_1111_1462_2920_15009
crossref_primary_10_1016_j_rsma_2023_103268
Cites_doi 10.1111/conl.12587
10.1111/gcb.13695
10.1111/j.1365-2486.2010.02364.x
10.1111/gcb.14141
10.1002/ece3.5576
10.3354/meps222209
10.1371/journal.pone.0077173
10.1038/nature04565
10.1038/s41558-018-0149-2
10.1007/s00227-017-3073-5
10.1111/gcb.14643
10.3389/fmars.2018.00004
10.1111/gcb.14439
10.1371/journal.pone.0054399
10.1073/pnas.1106924108
10.1126/sciadv.aao5493
10.1007/978-3-319-31305-4_30
10.1111/j.1365-2486.2006.01204.x
10.1111/gcb.14102
10.1111/gcb.12541
10.1111/j.1365-2486.2009.02155.x
10.1007/s00227-019-3538-9
10.1111/j.1365-3040.2010.02121.x
10.1111/j.1529-8817.2008.00537.x
10.1073/pnas.0804478105
10.1016/j.jenvman.2018.11.034
10.1126/sciadv.1602047
10.1038/s41467-019-10969-5
10.1073/pnas.1621517114
10.1111/gcb.13015
10.1111/j.1365-2486.2005.01073.x
10.1111/1758-2229.12599
10.1111/j.1529-8817.2003.00895.x
10.1186/s12915-017-0459-2
10.1073/pnas.0708554105
10.3389/fmars.2019.00453
10.1111/gcb.13707
10.1007/s00338-004-0392-z
10.1038/s41598-017-14546-y
10.1016/j.tree.2017.07.013
10.1111/gcb.12706
10.1002/eap.1978
10.1038/s42003-018-0097-4
10.1111/gcb.13895
10.1371/journal.pone.0139290
10.1016/j.cub.2019.06.077
10.7717/peerj.4382
10.1111/gcb.12700
10.1073/pnas.1721415116
10.1128/MMBR.05014-11
10.1038/s41598-019-46412-4
10.1111/ele.12598
10.1111/j.1365-2486.1996.tb00063.x
10.1126/science.aac7125
10.1111/gcb.14153
10.1038/ncomms13801
10.1007/s00338-019-01844-2
10.1073/pnas.1701262114
10.1111/j.1365-2486.2009.02043.x
10.1111/gcb.12450
10.1371/journal.pone.0193230
10.1146/annurev.physiol.68.040104.110001
10.1111/gcb.12658
10.1111/gcb.14119
10.1038/s41586-018-0383-9
10.1111/gcb.14043
10.1038/nclimate1661
10.1111/j.1365-2486.2012.02658.x
10.1038/nmicrobiol.2016.42
10.1038/s41559-019-0953-8
10.1111/nph.12903
10.1126/science.aan8048
10.1111/j.1365-2486.2004.00836.x
10.1111/j.1529-8817.2006.00232.x
10.1111/gcb.12390
10.1111/gcb.13647
10.1111/gcb.14764
10.1242/jeb.155275
10.4319/lo.2011.56.3.0813
10.1111/gcb.13702
10.1016/j.ecolmodel.2018.07.013
10.3389/fpls.2017.00271
10.1016/j.cub.2013.07.041
10.1002/grl.50340
10.1111/gcb.13833
10.1038/s41598-019-49594-z
10.1038/s41559-017-0313-5
10.1038/s41558-019-0576-8
10.1038/nclimate1674
10.1007/s00338-011-0833-4
10.1111/gcb.12901
10.1038/s41598-018-34994-4
10.1073/pnas.0402907101
10.3389/fmars.2018.00160
10.4319/lo.2011.56.2.0471
10.1038/srep38402
10.1126/science.1261224
10.1093/molbev/msw119
10.1073/pnas.1710733114
10.1186/s12864-019-5527-2
10.1242/jeb.009597
10.1111/gcb.12453
10.1038/nature21707
10.1098/rspb.2015.2418
10.1104/pp.112.207480
10.1038/nclimate2655
10.1111/gcb.13250
10.1111/j.1365-2486.2009.01943.x
10.1111/gcb.12027
10.1093/jxb/erx126
ContentType Journal Article
Copyright 2019 John Wiley & Sons Ltd
2019 John Wiley & Sons Ltd.
Copyright © 2020 John Wiley & Sons Ltd
Copyright_xml – notice: 2019 John Wiley & Sons Ltd
– notice: 2019 John Wiley & Sons Ltd.
– notice: Copyright © 2020 John Wiley & Sons Ltd
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SN
7UA
C1K
F1W
H97
L.G
DOI 10.1111/gcb.14871
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
Ecology
EISSN 1365-2486
EndPage 79
ExternalDocumentID 10_1111_gcb_14871
31618499
GCB14871
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Australian Research Council
  funderid: DP160100271; DP180100074
– fundername: Australian Research Council
  grantid: DP160100271
– fundername: Australian Research Council
  grantid: DP180100074
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
ACXME
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SN
7UA
C1K
F1W
H97
L.G
ID FETCH-LOGICAL-c4541-2bd4334f67b92316711ea8c0d660edee719191d448152e6260c0d663ad6cf1693
IEDL.DBID DR2
ISSN 1354-1013
IngestDate Fri Sep 13 05:38:25 EDT 2024
Fri Aug 23 00:29:01 EDT 2024
Thu May 23 23:46:51 EDT 2024
Sat Aug 24 01:09:37 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords environment networks
metabolism
management
coral
bleaching
Language English
License 2019 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4541-2bd4334f67b92316711ea8c0d660edee719191d448152e6260c0d663ad6cf1693
ORCID 0000-0001-5326-2520
0000-0003-1886-8193
OpenAccessLink https://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1111/gcb.14871
PMID 31618499
PQID 2332024064
PQPubID 30327
PageCount 12
ParticipantIDs proquest_journals_2332024064
crossref_primary_10_1111_gcb_14871
pubmed_primary_31618499
wiley_primary_10_1111_gcb_14871_GCB14871
PublicationCentury 2000
PublicationDate January 2020
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Global change biology
PublicationTitleAlternate Glob Chang Biol
PublicationYear 2020
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2018; 560
2017; 7
2017; 8
2001; 222
2017; 1
2010; 16
2013; 3
2017; 3
2013; 23
2019; 10
2004; 23
2013; 20
2008; 105
2012; 18
2011; 56
2015; 348
2011; 17
2013; 8
2013; 161
2017; 114
2019; 166
2014; 21
2014; 20
2016; 33
2013; 19
2018; 6
2014; 204
2018; 8
2018; 5
2018; 4
2019; 20
2006; 68
2018; 1
2017; 32
2019; 25
2019; 116
2006; 440
2016; 352
2019; 29
2017; 164
1996; 2
2019; 233
2018; 36
2004; 101
2010; 33
2019; 9
2019; 3
2015; 5
2019; 6
2016; 19
2006; 12
2017; 27
2013; 40
2017; 68
2015; 10
2017; 23
2019; 38
2012; 76
2012; 31
2016; 283
2018; 24
2004; 10
2016; 6
2016; 7
2016; 1
2006; 42
2011; 108
2017; 15
2018; 359
2015; 21
2019
2018
2016
2008; 44
2017; 220
2008; 211
2018; 11
2018; 10
2017; 543
2005; 11
2018; 13
2016; 22
e_1_2_7_108_1
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_105_1
e_1_2_7_8_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_29_1
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
National Academies of Sciences, Engineering, and Medicine (e_1_2_7_77_1) 2019
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
Ellis J. I. (e_1_2_7_38_1)
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_28_1
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_110_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_91_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
References_xml – volume: 8
  issue: 12
  year: 2013
  article-title: Heat‐stress and light‐stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching
  publication-title: PLoS ONE
– volume: 8
  start-page: 16789
  year: 2018
  article-title: Evidence for mitigation of coral bleaching by manganese
  publication-title: Scientific Reports
– volume: 2
  start-page: 495
  year: 1996
  end-page: 509
  article-title: Coral reef bleaching: Facts, hypotheses and implications
  publication-title: Global Change Biology
– volume: 10
  start-page: 1627
  year: 2004
  end-page: 1641
  article-title: Global warming, regional trends and inshore environmental conditions influence coral bleaching in Hawaii
  publication-title: Global Change Biology
– volume: 3
  year: 2017
  article-title: The role of floridoside in osmoadaptation of coral‐associated algal endosymbionts to high‐salinity conditions
  publication-title: Science Advances
– volume: 20
  start-page: 125
  year: 2014
  end-page: 139
  article-title: Incorporating adaptive responses into future projections of coral bleaching
  publication-title: Global Change Biology
– volume: 23
  start-page: 1782
  year: 2013
  end-page: 1786
  article-title: Coral bleaching independent of photosynthetic activity
  publication-title: Current Biology
– volume: 20
  start-page: 544
  year: 2013
  end-page: 554
  article-title: Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching
  publication-title: Global Change Biology
– volume: 10
  start-page: 7
  year: 2018
  end-page: 11
  article-title: Defining the core microbiome of the symbiotic dinoflagellate
  publication-title: Environmental Microbiology Reports
– volume: 7
  start-page: 13801
  year: 2016
  article-title: Species‐specific control of external superoxide levels by the coral holobiont during a natural bleaching event
  publication-title: Nature Communications
– volume: 23
  start-page: 367
  year: 2004
  end-page: 377
  article-title: Exposure to solar radiation increases damage to both host tissues and algal symbionts of corals during thermal stress
  publication-title: Coral Reefs
– volume: 166
  start-page: 108
  year: 2019
  article-title: Nitrogen enrichment, altered stoichiometry, and coral reef decline at Looe Key, Florida Keys, USA: A 3‐decade study
  publication-title: Marine Biology
– volume: 22
  start-page: 2702
  year: 2016
  end-page: 2714
  article-title: Host adaptation and unexpected symbiont partners enable reef‐building corals to tolerate extreme temperatures
  publication-title: Global Change Biology
– volume: 32
  start-page: 735
  issue: 10
  year: 2017
  end-page: 745
  article-title: Coral reef survival to ecological crisis through dinoflagellate functional diversity
  publication-title: Trends in Ecology & Evolution
– volume: 19
  start-page: 629
  year: 2016
  end-page: 637
  article-title: Marine protected areas increase resilience among coral reef communities
  publication-title: Ecology Letters
– volume: 19
  start-page: 273
  year: 2013
  end-page: 281
  article-title: Can a thermally tolerant symbiont improve the future of Caribbean coral reefs?
  publication-title: Global Change Biology
– volume: 11
  start-page: 2251
  year: 2005
  end-page: 2265
  article-title: Global assessment of coral bleaching and required rates of adaptation under climate change
  publication-title: Global Change Biology
– volume: 105
  start-page: 17442
  issue: 45
  year: 2008
  end-page: 17446
  article-title: Ocean acidification causes bleaching and productivity loss in coral reef builders
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 15
  start-page: 117
  year: 2017
  article-title: A multi‐trait systems approach reveals a response cascade to bleaching in corals
  publication-title: BMC Biology
– volume: 20
  start-page: 1604
  year: 2014
  end-page: 1613
  article-title: Tropical cyclone cooling combats region‐wide coral bleaching
  publication-title: Global Change Biology
– volume: 20
  start-page: 681
  year: 2014
  end-page: 697
  article-title: Evidence for multiple stressor interactions and effects on coral reefs
  publication-title: Global Change Biology
– volume: 38
  start-page: 539
  year: 2019
  end-page: 545
  article-title: The 2014–2017 global‐scale coral bleaching event: Insights and impacts
  publication-title: Coral Reefs
– volume: 6
  start-page: 1985
  year: 2016
  end-page: 2012
  article-title: Warming trends and bleaching stress of the world's coral reefs 1985–2012
  publication-title: Scientific Reports
– volume: 8
  start-page: 499
  year: 2018
  end-page: 503
  article-title: Climate change threatens the world's marine protected areas
  publication-title: Nature Climate Change
– volume: 204
  start-page: 81
  year: 2014
  end-page: 91
  article-title: PSI Mehler reaction is the main alternative photosynthetic electron pathway in sp., symbiotic dinoflagellates of cnidarians
  publication-title: New Phytologist
– volume: 25
  start-page: 2619
  year: 2019
  end-page: 2632
  article-title: Seabird nutrient subsidies alter patterns of algal abundance and fish biomass on coral reefs following a bleaching event
  publication-title: Global Change Biology
– volume: 101
  start-page: 13531
  issue: 37
  year: 2004
  end-page: 13535
  article-title: Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 21
  start-page: 236
  year: 2014
  end-page: 249
  article-title: Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals
  publication-title: Global Change Biology
– article-title: Multiple stressor effects on coral reef ecosystems
  publication-title: Global Change Biology
– volume: 25
  start-page: 3294
  issue: 10
  year: 2019
  end-page: 3304
  article-title: Positive genetic associations among fitness traits support evolvability of a reef‐building coral under multiple stressors
  publication-title: Global Change Biology
– volume: 222
  start-page: 209
  year: 2001
  end-page: 216
  article-title: Cloudy weather may have saved Society Island reef corals during the 1998 ENSO event
  publication-title: Marine Ecology Progress Series
– year: 2019
  article-title: Temperature patterns and mechanisms influencing coral bleaching during the 2016 El Niño
  publication-title: Nature Climate Change
– volume: 440
  start-page: 1186
  year: 2006
  end-page: 1189
  article-title: Heterotrophic plasticity and resilience in bleached corals
  publication-title: Nature
– volume: 42
  start-page: 568
  year: 2006
  end-page: 579
  article-title: Differential impacts of photoacclimation and thermal stress on the photobiology of four different phylotypes of (Pyrrhophyta)
  publication-title: Journal of Phycology
– year: 2019
– volume: 24
  start-page: 5629
  year: 2018
  end-page: 5641
  article-title: Long‐term change in bioconstruction potential of Maldivian coral reefs following extreme climate anomalies
  publication-title: Global Change Biology
– volume: 1
  start-page: 91
  year: 2018
  article-title: Immunity and the coral crisis
  publication-title: Communications Biology
– volume: 543
  start-page: 373
  year: 2017
  end-page: 378
  article-title: Global warming and recurrent mass bleaching of corals
  publication-title: Nature
– volume: 7
  start-page: 13985
  year: 2017
  article-title: Enhanced larval supply and recruitment can replenish reef corals on degraded reefs
  publication-title: Scientific Reports
– volume: 33
  start-page: 2201
  year: 2016
  end-page: 2215
  article-title: Sex, scavengers, and chaperones: Transcriptome secrets of divergent thermal tolerances
  publication-title: Molecular Biology and Evolution
– volume: 31
  start-page: 215
  year: 2012
  end-page: 228
  article-title: Transcriptomic responses to darkness stress point to common coral bleaching mechanisms
  publication-title: Coral Reefs
– volume: 68
  start-page: 2083
  year: 2017
  end-page: 2098
  article-title: Fluxomics links cellular functional analyses to whole‐plant phenotyping
  publication-title: Journal of Experimental Botany
– volume: 24
  start-page: e474
  year: 2018
  end-page: e484
  article-title: Thermal refugia against coral bleaching throughout the northern Red Sea
  publication-title: Global Change Biology
– volume: 20
  start-page: 3823
  year: 2014
  end-page: 3833
  article-title: The cumulative impact of annual coral bleaching can turn some coral species winners into losers
  publication-title: Global Change Biology
– volume: 68
  start-page: 253
  year: 2006
  end-page: 278
  article-title: Oxidative stress in marine environments: Biochemistry and physiological ecology
  publication-title: Annual Review of Physiology
– start-page: 63
  year: 2018
– volume: 1
  start-page: 1420
  year: 2017
  end-page: 1422
  article-title: New interventions are needed to save coral reefs
  publication-title: Nature Ecology and Evolution
– volume: 348
  start-page: 1460
  year: 2015
  end-page: 1462
  article-title: Genomic determinants of coral heat tolerance across latitudes
  publication-title: Science
– volume: 9
  start-page: 9985
  year: 2019
  article-title: Host–symbiont combinations dictate the photo‐physiological response of reef‐building corals to thermal stress
  publication-title: Scientific Reports
– volume: 17
  start-page: 45
  year: 2011
  end-page: 55
  article-title: Interpreting the sign of coral bleaching: Friend vs foe
  publication-title: Global Change Biology
– volume: 359
  start-page: 80
  year: 2018
  end-page: 83
  article-title: Spatial and temporal patterns of mass bleaching of corals in the Anthropocene
  publication-title: Science
– volume: 10
  start-page: 3092
  year: 2019
  article-title: Coral bacterial community structure responds to environmental change in a host‐specific manner
  publication-title: Nature Communications
– volume: 108
  start-page: 9905
  issue: 24
  year: 2011
  end-page: 9909
  article-title: Apoptosis and the selective survival of host animals following thermal bleaching in zooxanthellate corals
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 283
  start-page: 20152418
  year: 2016
  article-title: Dimethylsulfoniopropionate, superoxide dismutase and glutathione as stress response indicators in three corals under short‐term hyposalinity stress
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 23
  start-page: 3437
  year: 2017
  end-page: 3448
  article-title: Shifting paradigms in restoration of the world's coral reefs
  publication-title: Global Change Biology
– volume: 352
  start-page: 338
  issue: 6283
  year: 2016
  end-page: 342
  article-title: Climate change disables coral bleaching protection on the Great Barrier Reef
  publication-title: Science
– volume: 12
  start-page: 1587
  year: 2006
  end-page: 1594
  article-title: Coral bleaching, reef fish community phase shifts and the resilience of coral reefs
  publication-title: Global Change Biology
– volume: 164
  start-page: 46
  year: 2017
  article-title: A molecular physiology basis for functional diversity of hydrogen peroxide production amongst spp. (Dinophyceae)
  publication-title: Marine Biology
– volume: 17
  start-page: 1798
  year: 2011
  end-page: 1808
  article-title: Ocean acidification and warming will lower coral reef resilience
  publication-title: Global Change Biology
– volume: 24
  start-page: 1978
  year: 2018
  end-page: 1991
  article-title: Vulnerability of the Great Barrier Reef to climate change and local pressures
  publication-title: Global Change Biology
– volume: 9
  start-page: 10055
  issue: 17
  year: 2019
  end-page: 10066
  article-title: The past, present, and future of coral heat stress studies
  publication-title: Ecology and Evolution
– volume: 76
  start-page: 229
  issue: 2
  year: 2012
  end-page: 261
  article-title: Cell biology of cnidarian‐dinoflagellate symbiosis
  publication-title: Microbiology and Molecular Biology Reviews
– volume: 24
  start-page: 2239
  year: 2018
  end-page: 2261
  article-title: Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change – A review
  publication-title: Global Change Biology
– volume: 220
  start-page: 1837
  year: 2017
  end-page: 1845
  article-title: The cell specificity of gene expression in the response to heat stress in corals
  publication-title: Journal of Experimental Biology
– volume: 27
  start-page: 4675
  year: 2017
  end-page: 4688
  article-title: Rapid thermal adaptation in photosymbionts of reef‐building corals
  publication-title: Global Change Biology
– volume: 21
  start-page: 48
  year: 2015
  end-page: 61
  article-title: Operationalizing resilience for adaptive coral reef management under global environmental change
  publication-title: Global Change Biology
– volume: 8
  start-page: 271
  year: 2017
  article-title: Transcriptomic analysis of thermally stressed reveals differential expression of stress and metabolism genes
  publication-title: Frontiers in Plant Science
– volume: 6
  year: 2018
  article-title: High‐resolution modeling of thermal thresholds and environmental influences on coral bleaching for local and regional reef management
  publication-title: PeerJ
– volume: 24
  start-page: 2755
  year: 2018
  end-page: 2757
  article-title: How can “Super Corals” facilitate global coral reef survival under rapid environmental and climatic change?
  publication-title: Global Change Biology
– volume: 24
  start-page: 3117
  year: 2018
  end-page: 3129
  article-title: Mass coral bleaching causes biotic homogenization of reef fish assemblages
  publication-title: Global Change Biology
– volume: 5
  start-page: 4
  year: 2018
  article-title: The future of coral reefs subject to rapid climate change: Lessons from natural extreme environments
  publication-title: Frontiers in Marine Science
– year: 2019
  article-title: Considerations for maximizing the adaptive potential of restored coral populations in the western Atlantic
  publication-title: Ecological Applications
– volume: 114
  start-page: 6167
  issue: 24
  year: 2017
  end-page: 6175
  article-title: Marine reserves can mitigate and promote adaptation to climate change
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 18
  start-page: 1561
  year: 2012
  end-page: 1570
  article-title: Temperature‐driven coral decline: The role of marine protected areas
  publication-title: Global Change Biology
– volume: 5
  start-page: 777
  year: 2015
  end-page: 781
  article-title: Coral bleaching under unconventional scenarios of climate warming and ocean acidification
  publication-title: Nature Climate Change
– volume: 1
  start-page: 16042
  year: 2016
  article-title: Global microbialization of coral reefs
  publication-title: Nature Microbiology
– volume: 56
  start-page: 471
  year: 2011
  end-page: 485
  article-title: Herbicides increase the vulnerability of corals to rising sea surface temperature
  publication-title: Limnology and Oceanography
– volume: 24
  start-page: 158
  year: 2018
  end-page: 171
  article-title: Functional genomic analysis of corals from natural CO ‐seeps reveals core molecular responses involved in acclimatization to ocean acidification
  publication-title: Global Change Biology
– volume: 21
  start-page: 3982
  year: 2015
  end-page: 3994
  article-title: Global inequities between polluters and the polluted: Climate change impacts on coral reefs
  publication-title: Global Change Biology
– volume: 5
  start-page: 160
  year: 2018
  article-title: Interspecific hybridization may provide novel opportunities for coral reef restoration
  publication-title: Frontiers in Marine Science
– volume: 33
  start-page: 995
  year: 2010
  end-page: 1004
  article-title: The determination of activity of the enzyme Rubisco in cell extracts of the dinoflagellate alga sp. by manganese chemiluminescence and its response to short‐term thermal stress of the alga
  publication-title: Plant Cell & Environment
– volume: 161
  start-page: 477
  year: 2013
  end-page: 485
  article-title: Thermal acclimation of the symbiotic alga spp. alleviates photobleaching under heat stress
  publication-title: Plant Physiology
– volume: 3
  start-page: 160
  year: 2013
  end-page: 164
  article-title: Nutrient enrichment can increase the susceptibility of reef corals to bleaching
  publication-title: Nature Climate Change
– volume: 233
  start-page: 291
  year: 2019
  end-page: 301
  article-title: The future of resilience‐based management in coral reef ecosystems
  publication-title: Journal of Environmental Management
– volume: 23
  start-page: 3869
  year: 2017
  end-page: 3881
  article-title: Delayed coral recovery in a warming ocean
  publication-title: Global Change Biology
– start-page: 489
  year: 2016
  end-page: 509
– volume: 10
  issue: 10
  year: 2015
  article-title: Host Coenzyme Q redox state is an early biomarker of thermal stress in the coral
  publication-title: PLoS ONE
– volume: 3
  start-page: 1341
  issue: 9
  year: 2019
  end-page: 1350
  article-title: Social‐environmental drivers inform strategic management of coral reefs in the Anthropocene
  publication-title: Nature Ecology & Evolution
– volume: 29
  start-page: 2723
  issue: 16
  year: 2019
  end-page: 2730.e4
  article-title: Rapid coral decay is associated with marine heatwave mortality events on reefs
  publication-title: Current Biology
– volume: 23
  start-page: 3838
  year: 2017
  end-page: 3848
  article-title: Sugar enrichment provides evidence for a role of nitrogen fixation in coral bleaching
  publication-title: Global Change Biology
– volume: 114
  start-page: 3660
  year: 2017
  end-page: 3665
  article-title: Tropical dead zones and mass mortalities on coral reefs
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 44
  start-page: 948
  year: 2008
  end-page: 956
  article-title: Photosynthesis and production of hydrogen peroxide by symbiotic dinoflagellates during heat stress
  publication-title: Journal of Phycology
– volume: 16
  start-page: 1247
  year: 2010
  end-page: 1257
  article-title: Century‐scale records of coral growth rates indicate that local stressors reduce coral thermal tolerance threshold
  publication-title: Global Change Biology
– volume: 105
  start-page: 4203
  year: 2008
  end-page: 4208
  article-title: Heat stress causes inhibition of the de novo synthesis of antenna proteins and photobleaching in cultured
  publication-title: Proceedings of the National Academy of Science of the United States of America
– volume: 11
  start-page: 1
  year: 2005
  end-page: 11
  article-title: Is photoinhibition of zooxanthellae photosynthesis the primary cause of thermal bleaching in corals?
  publication-title: Global Change Biology
– volume: 16
  start-page: 851
  year: 2010
  end-page: 863
  article-title: The effect of ocean acidification on symbiont photorespiration and productivity in
  publication-title: Global Change Biology
– volume: 560
  start-page: 360
  year: 2018
  end-page: 364
  article-title: Marine heatwaves under global warming
  publication-title: Nature
– volume: 11
  year: 2018
  article-title: Risk‐sensitive planning for conserving coral reefs under rapid climate change
  publication-title: Conservation Letters
– volume: 3
  start-page: 165
  year: 2013
  end-page: 170
  article-title: Limiting global warming to 2°C is unlikely to save most coral reefs
  publication-title: Nature Climate Change
– volume: 21
  start-page: 3389
  year: 2015
  end-page: 3401
  article-title: Downscaled projections of Caribbean coral bleaching that can inform conservation planning
  publication-title: Global Change Biology
– volume: 40
  start-page: 1799
  year: 2013
  end-page: 1805
  article-title: Tropical coral reef habitat in a geoengineered, high‐CO world
  publication-title: Geophysical Research Letters
– volume: 6
  start-page: 453
  year: 2019
  article-title: Night‐time temperature reprieves enhance the thermal tolerance of a symbiotic Cnidarian
  publication-title: Frontiers in Marine Science
– volume: 211
  start-page: 3059
  year: 2008
  end-page: 3066
  article-title: Cellular mechanisms of cnidarian bleaching: Stress causes the collapse of symbiosis
  publication-title: Journal of Experimental Biology
– volume: 36
  start-page: 20
  year: 2018
  end-page: 37
  article-title: A mechanistic model of coral bleaching due to temperature‐mediated light‐driven reactive oxygen build‐up in zooxanthellae
  publication-title: Ecological Modelling
– volume: 24
  start-page: 3145
  year: 2018
  end-page: 3157
  article-title: Coral bleaching is linked to the capacity of the animal host to supply essential metals to the symbionts
  publication-title: Global Change Biology
– volume: 9
  start-page: 13492
  year: 2019
  article-title: The coral exhibits local adaptation to long‐term thermal stress through host‐specific physiological and enzymatic response
  publication-title: Scientific Reports
– volume: 13
  issue: 3
  year: 2018
  article-title: A linked land‐sea modeling framework to inform ridge‐to‐reef management in high oceanic islands
  publication-title: PLoS ONE
– volume: 20
  issue: 1
  year: 2019
  article-title: Transcriptomic analysis reveals protein homeostasis breakdown in the coral during hypo‐saline stress
  publication-title: BMC Genomics
– volume: 56
  start-page: 813
  year: 2011
  end-page: 828
  article-title: Responses to iron limitation in two colonies of exposed to high temperature: Implications for coral bleaching
  publication-title: Limnology and Oceanography
– volume: 8
  year: 2013
  article-title: Does trophic status enhance or reduce the thermal tolerance of scleractinian corals? A review, experiment and conceptual framework
  publication-title: PLoS ONE
– volume: 114
  start-page: 13194
  issue: 50
  year: 2017
  end-page: 13199
  article-title: Optimal nutrient exchange and immune responses operate in partner specificity in the cnidarian‐dinoflagellate symbiosis
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 116
  start-page: 10586
  issue: 21
  year: 2019
  end-page: 10591
  article-title: Using naturally occurring climate resilient corals to construct bleaching‐resistant nurseries
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 4
  start-page: eaao5493
  issue: 5
  year: 2018
  article-title: Attenuating effects of ecosystem management on coral reefs
  publication-title: Science Advances
– ident: e_1_2_7_14_1
  doi: 10.1111/conl.12587
– ident: e_1_2_7_85_1
  doi: 10.1111/gcb.13695
– ident: e_1_2_7_8_1
  doi: 10.1111/j.1365-2486.2010.02364.x
– ident: e_1_2_7_40_1
  doi: 10.1111/gcb.14141
– ident: e_1_2_7_27_1
  doi: 10.1002/ece3.5576
– ident: e_1_2_7_76_1
  doi: 10.3354/meps222209
– ident: e_1_2_7_36_1
  doi: 10.1371/journal.pone.0077173
– ident: e_1_2_7_48_1
  doi: 10.1038/nature04565
– ident: e_1_2_7_18_1
  doi: 10.1038/s41558-018-0149-2
– ident: e_1_2_7_47_1
  doi: 10.1007/s00227-017-3073-5
– ident: e_1_2_7_13_1
  doi: 10.1111/gcb.14643
– ident: e_1_2_7_19_1
  doi: 10.3389/fmars.2018.00004
– ident: e_1_2_7_74_1
  doi: 10.1111/gcb.14439
– ident: e_1_2_7_39_1
  doi: 10.1371/journal.pone.0054399
– ident: e_1_2_7_102_1
  doi: 10.1073/pnas.1106924108
– ident: e_1_2_7_95_1
  doi: 10.1126/sciadv.aao5493
– ident: e_1_2_7_108_1
  doi: 10.1007/978-3-319-31305-4_30
– ident: e_1_2_7_12_1
  doi: 10.1111/j.1365-2486.2006.01204.x
– ident: e_1_2_7_17_1
  doi: 10.1111/gcb.14102
– ident: e_1_2_7_22_1
  doi: 10.1111/gcb.12541
– ident: e_1_2_7_96_1
  doi: 10.1111/j.1365-2486.2009.02155.x
– ident: e_1_2_7_61_1
  doi: 10.1007/s00227-019-3538-9
– ident: e_1_2_7_67_1
  doi: 10.1111/j.1365-3040.2010.02121.x
– ident: e_1_2_7_98_1
  doi: 10.1111/j.1529-8817.2008.00537.x
– ident: e_1_2_7_6_1
  doi: 10.1073/pnas.0804478105
– ident: e_1_2_7_72_1
  doi: 10.1016/j.jenvman.2018.11.034
– ident: e_1_2_7_79_1
  doi: 10.1126/sciadv.1602047
– ident: e_1_2_7_114_1
  doi: 10.1038/s41467-019-10969-5
– ident: e_1_2_7_4_1
  doi: 10.1073/pnas.1621517114
– ident: e_1_2_7_111_1
  doi: 10.1111/gcb.13015
– ident: e_1_2_7_35_1
  doi: 10.1111/j.1365-2486.2005.01073.x
– ident: e_1_2_7_62_1
  doi: 10.1111/1758-2229.12599
– ident: e_1_2_7_94_1
  doi: 10.1111/j.1529-8817.2003.00895.x
– ident: e_1_2_7_44_1
  doi: 10.1186/s12915-017-0459-2
– ident: e_1_2_7_99_1
  doi: 10.1073/pnas.0708554105
– ident: e_1_2_7_58_1
  doi: 10.3389/fmars.2019.00453
– ident: e_1_2_7_82_1
  doi: 10.1111/gcb.13707
– ident: e_1_2_7_65_1
  doi: 10.1007/s00338-004-0392-z
– ident: e_1_2_7_30_1
  doi: 10.1038/s41598-017-14546-y
– ident: e_1_2_7_97_1
  doi: 10.1016/j.tree.2017.07.013
– ident: e_1_2_7_93_1
  doi: 10.1111/gcb.12706
– ident: e_1_2_7_11_1
  doi: 10.1002/eap.1978
– ident: e_1_2_7_84_1
  doi: 10.1038/s42003-018-0097-4
– ident: e_1_2_7_83_1
  doi: 10.1111/gcb.13895
– ident: e_1_2_7_69_1
  doi: 10.1371/journal.pone.0139290
– ident: e_1_2_7_63_1
  doi: 10.1016/j.cub.2019.06.077
– ident: e_1_2_7_59_1
  doi: 10.7717/peerj.4382
– ident: e_1_2_7_7_1
  doi: 10.1111/gcb.12700
– ident: e_1_2_7_75_1
  doi: 10.1073/pnas.1721415116
– ident: e_1_2_7_29_1
  doi: 10.1128/MMBR.05014-11
– ident: e_1_2_7_52_1
  doi: 10.1038/s41598-019-46412-4
– ident: e_1_2_7_73_1
  doi: 10.1111/ele.12598
– ident: e_1_2_7_46_1
  doi: 10.1111/j.1365-2486.1996.tb00063.x
– ident: e_1_2_7_3_1
  doi: 10.1126/science.aac7125
– ident: e_1_2_7_20_1
  doi: 10.1111/gcb.14153
– ident: e_1_2_7_33_1
  doi: 10.1038/ncomms13801
– ident: e_1_2_7_37_1
  doi: 10.1007/s00338-019-01844-2
– ident: e_1_2_7_87_1
  doi: 10.1073/pnas.1701262114
– ident: e_1_2_7_21_1
  doi: 10.1111/j.1365-2486.2009.02043.x
– ident: e_1_2_7_106_1
  doi: 10.1111/gcb.12450
– ident: e_1_2_7_31_1
  doi: 10.1371/journal.pone.0193230
– ident: e_1_2_7_64_1
  doi: 10.1146/annurev.physiol.68.040104.110001
– ident: e_1_2_7_49_1
  doi: 10.1111/gcb.12658
– ident: e_1_2_7_86_1
  doi: 10.1111/gcb.14119
– ident: e_1_2_7_16_1
– ident: e_1_2_7_42_1
  doi: 10.1038/s41586-018-0383-9
– ident: e_1_2_7_112_1
  doi: 10.1111/gcb.14043
– ident: e_1_2_7_110_1
  doi: 10.1038/nclimate1661
– ident: e_1_2_7_91_1
  doi: 10.1111/j.1365-2486.2012.02658.x
– ident: e_1_2_7_50_1
  doi: 10.1038/nmicrobiol.2016.42
– ident: e_1_2_7_28_1
  doi: 10.1038/s41559-019-0953-8
– ident: e_1_2_7_88_1
  doi: 10.1111/nph.12903
– ident: e_1_2_7_54_1
  doi: 10.1126/science.aan8048
– ident: e_1_2_7_56_1
  doi: 10.1111/j.1365-2486.2004.00836.x
– ident: e_1_2_7_89_1
  doi: 10.1111/j.1529-8817.2006.00232.x
– ident: e_1_2_7_68_1
  doi: 10.1111/gcb.12390
– ident: e_1_2_7_38_1
  article-title: Multiple stressor effects on coral reef ecosystems
  publication-title: Global Change Biology
  contributor:
    fullname: Ellis J. I.
– ident: e_1_2_7_80_1
  doi: 10.1111/gcb.13647
– ident: e_1_2_7_113_1
  doi: 10.1111/gcb.14764
– ident: e_1_2_7_104_1
  doi: 10.1242/jeb.155275
– ident: e_1_2_7_92_1
  doi: 10.4319/lo.2011.56.3.0813
– ident: e_1_2_7_23_1
  doi: 10.1111/gcb.13702
– ident: e_1_2_7_9_1
  doi: 10.1016/j.ecolmodel.2018.07.013
– ident: e_1_2_7_45_1
  doi: 10.3389/fpls.2017.00271
– ident: e_1_2_7_103_1
  doi: 10.1016/j.cub.2013.07.041
– ident: e_1_2_7_25_1
  doi: 10.1002/grl.50340
– ident: e_1_2_7_57_1
  doi: 10.1111/gcb.13833
– ident: e_1_2_7_107_1
  doi: 10.1038/s41598-019-49594-z
– ident: e_1_2_7_5_1
  doi: 10.1038/s41559-017-0313-5
– ident: e_1_2_7_71_1
  doi: 10.1038/s41558-019-0576-8
– ident: e_1_2_7_41_1
  doi: 10.1038/nclimate1674
– volume-title: A research review of interventions to increase the persistence and resilience of coral reefs
  year: 2019
  ident: e_1_2_7_77_1
  contributor:
    fullname: National Academies of Sciences, Engineering, and Medicine
– ident: e_1_2_7_32_1
  doi: 10.1007/s00338-011-0833-4
– ident: e_1_2_7_105_1
  doi: 10.1111/gcb.12901
– ident: e_1_2_7_15_1
  doi: 10.1038/s41598-018-34994-4
– ident: e_1_2_7_101_1
  doi: 10.1073/pnas.0402907101
– ident: e_1_2_7_24_1
  doi: 10.3389/fmars.2018.00160
– ident: e_1_2_7_78_1
  doi: 10.4319/lo.2011.56.2.0471
– ident: e_1_2_7_51_1
  doi: 10.1038/srep38402
– ident: e_1_2_7_34_1
  doi: 10.1126/science.1261224
– ident: e_1_2_7_66_1
  doi: 10.1093/molbev/msw119
– ident: e_1_2_7_70_1
  doi: 10.1073/pnas.1710733114
– ident: e_1_2_7_2_1
  doi: 10.1186/s12864-019-5527-2
– ident: e_1_2_7_109_1
  doi: 10.1242/jeb.009597
– ident: e_1_2_7_10_1
  doi: 10.1111/gcb.12453
– ident: e_1_2_7_55_1
  doi: 10.1038/nature21707
– ident: e_1_2_7_43_1
  doi: 10.1098/rspb.2015.2418
– ident: e_1_2_7_100_1
  doi: 10.1104/pp.112.207480
– ident: e_1_2_7_60_1
  doi: 10.1038/nclimate2655
– ident: e_1_2_7_53_1
  doi: 10.1111/gcb.13250
– ident: e_1_2_7_26_1
  doi: 10.1111/j.1365-2486.2009.01943.x
– ident: e_1_2_7_81_1
  doi: 10.1111/gcb.12027
– ident: e_1_2_7_90_1
  doi: 10.1093/jxb/erx126
SSID ssj0003206
Score 2.6316462
SecondaryResourceType review_article
Snippet Continued declines in coral reef health over the past three decades have been punctuated by severe mass coral bleaching‐induced mortality events that have...
Continued declines in coral reef health over the past three decades have been punctuated by severe mass coral bleaching-induced mortality events that have...
Abstract Continued declines in coral reef health over the past three decades have been punctuated by severe mass coral bleaching‐induced mortality events that...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 68
SubjectTerms Adaptation
Animals
Anthozoa
Biological evolution
Bleaching
Catastrophic events
Climate Change
Climate change mitigation
coral
Coral bleaching
Coral Reefs
Corals
Critical point
Ecological effects
Ecology
environment networks
Environmental factors
Environmental management
Environmental regulations
Knowledge bases (artificial intelligence)
management
Management tools
metabolism
Mitigation
Mortality
Title Coral bleaching patterns are the outcome of complex biological and environmental networking
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.14871
https://www.ncbi.nlm.nih.gov/pubmed/31618499
https://www.proquest.com/docview/2332024064/abstract/
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9EEHzxY35VpwQR8aWjadKswycd0yHogygICqVJriKObuwD1L_eJG03pwjiU1uaJmkul_wu3P0O4EhjhoHQ3EfkmTFQKPXjLA18GbjtGplwPAXXN6J7z68eoocFOK1iYQp-iOmBm9UMt15bBU_l6IuSPytp1Dx28eOWSM8CotsZdRQLXV5NyiJulhrKSlYh68Uz_XJ-L_oBMOfxqttwLlbhqepq4Wfy2piMZUN9fGNx_Oe_rMFKCUTJWTFz1mEB8xosFakp32uw1ZlFwJli5RIwqoF3bWB2f-iKkWPS7r0YzOueNuCxbeP9ieyVLppk4Ng78xFJh0gM1CT9ydj0zVwz4pzZ8Y0UNFB2rpA01wTn2s0LL3VT1ybcX3Tu2l2_zN7gKx5x6odSc8Z4JprSgkjRpBTTWAVaiAA1YtNYii2quWWLCdHaVe4dS7VQmaWI2YLFvJ_jDpCIK46RPXrRyBXlqVIYa9ESUgRpLGIPDis5JoOCpCOpjBsztIkbWg_qlYSTUk9HSchs_ngDargH24XUpzUwm0vAGIQenDjZ_V51ctk-dze7fy-6B8uhNd3daU4dFsfDCe4bfDOWB24ifwIj9PUq
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB5EEX3xWK96BhHxpdI0abaCL7qo67H7ILuwIFLaZCqidGUPUH-9SdquriKIT21pmqadTPLNMPMNwJ7CFD2huIvIU22gUOqGaey5iWe3a2TC8hQ0mqLe5ledoDMBx2UuTM4PMXK4Gc2w67VRcOOQ_qLlDzLReh6aBPIpre6BNahuP8mjmG8ra1IWcL3YUFbwCpk4ntGj47vRD4g5jljtlnM-D_flYPNIk6fD4SA5lO_feBz_-zULMFdgUXKST55FmMCsAtN5dcq3CqycfSbB6WbFKtCvgNPQSLvbs83IPqk9P2rYa6-W4K5mUv5J8lxEaZIXS-CZ9UncQ6LRJukOB3pw-pgSG8-OryRngjLThcSZIjj23iwPVNd9LUP7_KxVq7tFAQdX8oBT108UZ4ynopoYHCmqlGIcSk8J4aFCrGpj8YgqbghjfDSmlb3HYiVkalhiVmAy62a4BiTgkmNgvC8KuaQ8lhJDJY5EIrw4FKEDu6Ugo5ecpyMq7Rv9ayP7ax3YLEUcFaraj3xmSshrXMMdWM3FPuqBmXIC2iZ04MAK7_euo4vaqT1Z_3vTHZiptxo30c1l83oDZn1jyVvnziZMDnpD3NJwZ5Bs21n9AYhA-Uw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB5EUXzxWK_qqkFEfKk0TZqt-KS7rreIKAgKpU2mIkp32QPUX2-StqurCOJTW5qmaWcm-SbMfAOwqTBFTyjuIvJUOyiUumEae27i2eUambA8BReX4viWn94FdyOwV-bC5PwQgw03Yxl2vjYG3lbpFyN_lIk289Dkj49xwXyj0o3rT-4o5tvCmpQFXM81lBW0QiaMZ_Do8GL0A2EOA1a74jSn4aEcax5o8rzT7yU78v0bjeM_P2YGpgokSvZz1ZmFEcwqMJ7XpnyrwMLhZwqcblbMAd0KOBcaZ7c6thnZIvWXJw167dUc3NdNwj9JXooYTdK29J1Zl8QdJBprkla_p8emjymx0ez4SnIeKKMsJM4UwaH3ZnmYuu5rHm6bhzf1Y7co3-BKHnDq-onijPFU1BKDIkWNUoxD6SkhPFSINe0q7lLFDV2Mj8axsvdYrIRMDUfMAoxmrQyXgARccgzM3otCLimPpcRQiV2RCC8ORejARinHqJ2zdESld6N_bWR_rQPVUsJRYajdyGemgLxGNdyBxVzqgx6YKSagPUIHtq3sfu86Oqof2JPlvzddh4mrRjM6P7k8W4FJ37jxdmenCqO9Th9XNdbpJWtWpz8ApUr3-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coral+bleaching+patterns+are+the+outcome+of+complex+biological+and+environmental+networking&rft.jtitle=Global+change+biology&rft.au=Suggett%2C+David+J&rft.au=Smith%2C+David+J&rft.date=2020-01-01&rft.eissn=1365-2486&rft.volume=26&rft.issue=1&rft.spage=68&rft_id=info:doi/10.1111%2Fgcb.14871&rft_id=info%3Apmid%2F31618499&rft.externalDocID=31618499
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon