Arabidopsis MYB4 plays dual roles in flavonoid biosynthesis

SUMMARY Flavonoids are major secondary metabolites derived from the plant phenylpropanoid pathway that play important roles in plant development and also have benefits for human health. So‐called MBW ternary complexes involving R2R3‐MYB and basic helix‐loop‐helix (bHLH) transcription factors along w...

Full description

Saved in:
Bibliographic Details
Published inThe Plant journal : for cell and molecular biology Vol. 101; no. 3; pp. 637 - 652
Main Authors Wang, Xiao‐Chen, Wu, Jie, Guan, Meng‐Ling, Zhao, Cui‐Huan, Geng, Pan, Zhao, Qiao
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract SUMMARY Flavonoids are major secondary metabolites derived from the plant phenylpropanoid pathway that play important roles in plant development and also have benefits for human health. So‐called MBW ternary complexes involving R2R3‐MYB and basic helix‐loop‐helix (bHLH) transcription factors along with WD‐repeat proteins have been reported to regulate expression of the biosynthetic genes in the flavonoid pathway. MYB4 and its closest homolog MYB7 have been suggested to function as repressors of phenylpropanoid metabolism. However, the detailed mechanism by which they act has not been fully elucidated. Here, we show that Arabidopsis thaliana MYB4 and its homologs MYB7 and MYB32 interact with the bHLH transcription factors TT8, GL3 and EGL3 and thereby interfere with the transcriptional activity of the MBW complexes. In addition, MYB4 can also inhibit flavonoid accumulation by repressing expression of the gene encoding Arogenate Dehydratase 6 (ADT6), which catalyzes the final step in the biosynthesis of phenylalanine, the precursor for flavonoid biosynthesis. MYB4 potentially represses not only the conventional ADT6 encoding the plastidial enzyme but also the alternative isoform encoding the cytosolic enzyme. We suggest that MYB4 plays dual roles in modulating the flavonoid biosynthetic pathway in Arabidopsis. Significance Statement Our results indicate that MYB4 can attenuate the transcriptional function of MYB‐bHLH‐WDR complexes, which are major regulators of flavonoid metabolism, by interacting with bHLH proteins. MYB4 directly represses the transcription of ADT6 encoding the enzyme catalyzing the last step of phenylalanine biosynthesis. These observations reveal unexpected cross‐talk between primary and secondary metabolism.
AbstractList Flavonoids are major secondary metabolites derived from the plant phenylpropanoid pathway that play important roles in plant development and also have benefits for human health. So-called MBW ternary complexes involving R2R3-MYB and basic helix-loop-helix (bHLH) transcription factors along with WD-repeat proteins have been reported to regulate expression of the biosynthetic genes in the flavonoid pathway. MYB4 and its closest homolog MYB7 have been suggested to function as repressors of phenylpropanoid metabolism. However, the detailed mechanism by which they act has not been fully elucidated. Here, we show that Arabidopsis thaliana MYB4 and its homologs MYB7 and MYB32 interact with the bHLH transcription factors TT8, GL3 and EGL3 and thereby interfere with the transcriptional activity of the MBW complexes. In addition, MYB4 can also inhibit flavonoid accumulation by repressing expression of the gene encoding Arogenate Dehydratase 6 (ADT6), which catalyzes the final step in the biosynthesis of phenylalanine, the precursor for flavonoid biosynthesis. MYB4 potentially represses not only the conventional ADT6 encoding the plastidial enzyme but also the alternative isoform encoding the cytosolic enzyme. We suggest that MYB4 plays dual roles in modulating the flavonoid biosynthetic pathway in Arabidopsis.
SUMMARY Flavonoids are major secondary metabolites derived from the plant phenylpropanoid pathway that play important roles in plant development and also have benefits for human health. So‐called MBW ternary complexes involving R2R3‐MYB and basic helix‐loop‐helix (bHLH) transcription factors along with WD‐repeat proteins have been reported to regulate expression of the biosynthetic genes in the flavonoid pathway. MYB4 and its closest homolog MYB7 have been suggested to function as repressors of phenylpropanoid metabolism. However, the detailed mechanism by which they act has not been fully elucidated. Here, we show that Arabidopsis thaliana MYB4 and its homologs MYB7 and MYB32 interact with the bHLH transcription factors TT8, GL3 and EGL3 and thereby interfere with the transcriptional activity of the MBW complexes. In addition, MYB4 can also inhibit flavonoid accumulation by repressing expression of the gene encoding Arogenate Dehydratase 6 (ADT6), which catalyzes the final step in the biosynthesis of phenylalanine, the precursor for flavonoid biosynthesis. MYB4 potentially represses not only the conventional ADT6 encoding the plastidial enzyme but also the alternative isoform encoding the cytosolic enzyme. We suggest that MYB4 plays dual roles in modulating the flavonoid biosynthetic pathway in Arabidopsis. Significance Statement Our results indicate that MYB4 can attenuate the transcriptional function of MYB‐bHLH‐WDR complexes, which are major regulators of flavonoid metabolism, by interacting with bHLH proteins. MYB4 directly represses the transcription of ADT6 encoding the enzyme catalyzing the last step of phenylalanine biosynthesis. These observations reveal unexpected cross‐talk between primary and secondary metabolism.
SUMMARYFlavonoids are major secondary metabolites derived from the plant phenylpropanoid pathway that play important roles in plant development and also have benefits for human health. So‐called MBW ternary complexes involving R2R3‐MYB and basic helix‐loop‐helix (bHLH) transcription factors along with WD‐repeat proteins have been reported to regulate expression of the biosynthetic genes in the flavonoid pathway. MYB4 and its closest homolog MYB7 have been suggested to function as repressors of phenylpropanoid metabolism. However, the detailed mechanism by which they act has not been fully elucidated. Here, we show that Arabidopsis thaliana MYB4 and its homologs MYB7 and MYB32 interact with the bHLH transcription factors TT8, GL3 and EGL3 and thereby interfere with the transcriptional activity of the MBW complexes. In addition, MYB4 can also inhibit flavonoid accumulation by repressing expression of the gene encoding Arogenate Dehydratase 6 (ADT6), which catalyzes the final step in the biosynthesis of phenylalanine, the precursor for flavonoid biosynthesis. MYB4 potentially represses not only the conventional ADT6 encoding the plastidial enzyme but also the alternative isoform encoding the cytosolic enzyme. We suggest that MYB4 plays dual roles in modulating the flavonoid biosynthetic pathway in Arabidopsis.
Flavonoids are major secondary metabolites derived from the plant phenylpropanoid pathway that play important roles in plant development and also have benefits for human health. So‐called MBW ternary complexes involving R2R3‐MYB and basic helix‐loop‐helix (bHLH) transcription factors along with WD‐repeat proteins have been reported to regulate expression of the biosynthetic genes in the flavonoid pathway. MYB4 and its closest homolog MYB7 have been suggested to function as repressors of phenylpropanoid metabolism. However, the detailed mechanism by which they act has not been fully elucidated. Here, we show that Arabidopsis thaliana MYB4 and its homologs MYB7 and MYB32 interact with the bHLH transcription factors TT8, GL3 and EGL3 and thereby interfere with the transcriptional activity of the MBW complexes. In addition, MYB4 can also inhibit flavonoid accumulation by repressing expression of the gene encoding Arogenate Dehydratase 6 (ADT6), which catalyzes the final step in the biosynthesis of phenylalanine, the precursor for flavonoid biosynthesis. MYB4 potentially represses not only the conventional ADT6 encoding the plastidial enzyme but also the alternative isoform encoding the cytosolic enzyme. We suggest that MYB4 plays dual roles in modulating the flavonoid biosynthetic pathway in Arabidopsis. Our results indicate that MYB4 can attenuate the transcriptional function of MYB‐bHLH‐WDR complexes, which are major regulators of flavonoid metabolism, by interacting with bHLH proteins. MYB4 directly represses the transcription of ADT6 encoding the enzyme catalyzing the last step of phenylalanine biosynthesis. These observations reveal unexpected cross‐talk between primary and secondary metabolism.
Author Zhao, Cui‐Huan
Wu, Jie
Zhao, Qiao
Guan, Meng‐Ling
Wang, Xiao‐Chen
Geng, Pan
Author_xml – sequence: 1
  givenname: Xiao‐Chen
  surname: Wang
  fullname: Wang, Xiao‐Chen
– sequence: 2
  givenname: Jie
  surname: Wu
  fullname: Wu, Jie
– sequence: 3
  givenname: Meng‐Ling
  surname: Guan
  fullname: Guan, Meng‐Ling
– sequence: 4
  givenname: Cui‐Huan
  surname: Zhao
  fullname: Zhao, Cui‐Huan
– sequence: 5
  givenname: Pan
  surname: Geng
  fullname: Geng, Pan
– sequence: 6
  givenname: Qiao
  orcidid: 0000-0002-0958-4300
  surname: Zhao
  fullname: Zhao, Qiao
  email: qzhao@tsinghua.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31626358$$D View this record in MEDLINE/PubMed
BookMark eNp10LtOwzAUBmALFdELDLwAisQCQ4odO3YsplJxVREMRYIpcmJHuHLjYDegvD2GFAYkznKWT7_O-cdgUNtaAXCI4BSFOds0qykiKYM7YIQwTWOM8PMAjCCnMGYEJUMw9n4FIWKYkj0wxIgmFKfZCJzPnCi0tI3XPrp_uSBRY0TnI9kKEzlrlI90HVVGvNvaahkV2vqu3ryq4PfBbiWMVwfbPQFPV5fL-U28eLi-nc8WcUlSAmMloUw5I5XIGOKSlUolJU95SRmTCSkUF5QjQXGhCEMVlAVGRRnOI5Aigio8ASd9buPsW6v8Jl9rXypjRK1s6_MEQxbeJ4gGevyHrmzr6nBdUISRjFOeBXXaq9JZ752q8sbptXBdjmD-1WgeGs2_Gw32aJvYFmslf-VPhQGc9eBDG9X9n5QvH-_6yE_4sn_B
CitedBy_id crossref_primary_10_3390_ijms22031033
crossref_primary_10_1111_tpj_16881
crossref_primary_10_1016_j_ygeno_2021_03_033
crossref_primary_10_3389_fpls_2021_658961
crossref_primary_10_1093_plphys_kiac342
crossref_primary_10_1111_tpj_16642
crossref_primary_10_1016_j_cj_2023_11_006
crossref_primary_10_1016_j_foodres_2022_111964
crossref_primary_10_3389_fpls_2021_638792
crossref_primary_10_1186_s12864_023_09605_w
crossref_primary_10_1021_acsomega_2c01125
crossref_primary_10_1093_hr_uhad080
crossref_primary_10_1016_j_plantsci_2020_110748
crossref_primary_10_1186_s12870_021_03423_6
crossref_primary_10_1016_j_plantsci_2021_111154
crossref_primary_10_1016_j_biotechadv_2023_108246
crossref_primary_10_1016_j_plantsci_2021_110983
crossref_primary_10_1186_s12864_020_07175_9
crossref_primary_10_1186_s13059_022_02647_5
crossref_primary_10_3390_ijms222111306
crossref_primary_10_1111_1462_2920_16268
crossref_primary_10_1016_j_cpb_2020_100174
crossref_primary_10_1016_j_cub_2020_11_070
crossref_primary_10_1016_j_envexpbot_2023_105443
crossref_primary_10_1111_nph_18958
crossref_primary_10_1016_j_cpb_2023_100317
crossref_primary_10_1093_jxb_eraa266
crossref_primary_10_1016_j_envexpbot_2023_105569
crossref_primary_10_1016_j_plaphy_2023_108068
crossref_primary_10_3389_fpls_2022_806865
crossref_primary_10_1016_j_fochx_2024_101159
crossref_primary_10_1042_BCJ20210810
crossref_primary_10_1093_jxb_erad139
crossref_primary_10_3390_agriculture13050955
crossref_primary_10_1016_j_indcrop_2020_112929
crossref_primary_10_1186_s12915_023_01719_7
crossref_primary_10_1016_j_scienta_2022_111483
crossref_primary_10_1080_15592324_2022_2149113
crossref_primary_10_1016_j_cpb_2024_100341
crossref_primary_10_1016_j_indcrop_2022_116219
crossref_primary_10_3390_plants11101369
crossref_primary_10_3390_horticulturae10010050
crossref_primary_10_24072_pcjournal_225
crossref_primary_10_1016_j_indcrop_2023_117088
crossref_primary_10_1093_plphys_kiac213
crossref_primary_10_1111_pbr_13092
crossref_primary_10_3390_biology12070894
crossref_primary_10_1016_j_fbio_2024_104565
crossref_primary_10_1038_s41598_021_93532_x
crossref_primary_10_1016_j_foodchem_2024_139933
crossref_primary_10_1016_j_hpj_2023_05_015
crossref_primary_10_1038_s41438_021_00545_8
crossref_primary_10_3233_JBR_210008
crossref_primary_10_1016_j_pbi_2020_04_004
crossref_primary_10_1002_aocs_12675
crossref_primary_10_1186_s12870_023_04038_9
crossref_primary_10_1007_s11104_022_05786_7
crossref_primary_10_3390_horticulturae10040325
crossref_primary_10_1007_s00299_022_02878_7
crossref_primary_10_1016_j_foodres_2023_112997
crossref_primary_10_3390_agronomy14051019
crossref_primary_10_1007_s00425_020_03476_1
crossref_primary_10_3390_ijms241813951
crossref_primary_10_1021_acs_jafc_0c01126
crossref_primary_10_1093_jxb_erad311
crossref_primary_10_3389_fpls_2022_877304
crossref_primary_10_3390_f14071413
crossref_primary_10_1016_j_indcrop_2022_115183
crossref_primary_10_3390_antiox13010055
crossref_primary_10_3389_fpls_2023_1153902
crossref_primary_10_1007_s42994_024_00149_5
crossref_primary_10_3390_genes14020240
crossref_primary_10_1016_j_fochms_2023_100178
crossref_primary_10_1093_hr_uhae026
crossref_primary_10_3389_fpls_2022_816875
crossref_primary_10_1016_j_gene_2022_146924
crossref_primary_10_1016_j_plaphy_2022_10_026
crossref_primary_10_1007_s00122_021_03850_x
crossref_primary_10_1111_tpj_14970
crossref_primary_10_1016_j_ijbiomac_2021_01_053
crossref_primary_10_3390_ijms222111978
crossref_primary_10_1111_nph_19736
crossref_primary_10_1016_j_xplc_2024_100821
crossref_primary_10_3390_ijms22042040
crossref_primary_10_1016_j_plaphy_2023_03_013
crossref_primary_10_1186_s43897_023_00050_7
crossref_primary_10_1007_s10528_021_10027_0
crossref_primary_10_1093_pcp_pcaa065
crossref_primary_10_1016_j_cj_2023_02_007
crossref_primary_10_1038_s41598_022_08331_9
crossref_primary_10_1093_pcp_pcab152
crossref_primary_10_3390_ijms232415618
crossref_primary_10_1007_s42977_021_00094_0
crossref_primary_10_3390_ijms25073709
crossref_primary_10_1038_s42003_020_01134_6
crossref_primary_10_3390_ijms24119262
crossref_primary_10_3390_molecules26195836
crossref_primary_10_1016_j_scienta_2024_113334
crossref_primary_10_1080_07352689_2021_1898083
crossref_primary_10_1093_hr_uhad281
crossref_primary_10_1016_j_plaphy_2023_02_002
crossref_primary_10_1111_jipb_13054
crossref_primary_10_1016_j_ijbiomac_2023_123729
crossref_primary_10_1016_j_scienta_2021_110858
crossref_primary_10_1093_hr_uhae096
crossref_primary_10_1007_s00438_021_01790_1
crossref_primary_10_1007_s11101_023_09873_0
crossref_primary_10_3390_ijms22179544
crossref_primary_10_1038_s41598_022_21517_5
crossref_primary_10_3390_genes11060614
crossref_primary_10_1093_aob_mcac155
crossref_primary_10_1016_j_tplants_2020_02_005
crossref_primary_10_1016_j_plantsci_2022_111196
crossref_primary_10_1093_hr_uhad209
crossref_primary_10_3390_molecules28062644
crossref_primary_10_3390_biom13121721
crossref_primary_10_3389_fpls_2022_896540
crossref_primary_10_3390_plants13111524
crossref_primary_10_3390_biom13030531
crossref_primary_10_1007_s10142_022_00836_w
crossref_primary_10_1016_j_gene_2023_147739
crossref_primary_10_3390_agronomy13123006
crossref_primary_10_3390_f12091260
crossref_primary_10_3389_fpls_2024_1377899
crossref_primary_10_3390_genes13060988
crossref_primary_10_1016_j_tifs_2022_02_031
crossref_primary_10_3390_jof10050318
crossref_primary_10_3390_ijms23094603
crossref_primary_10_1111_ppl_13921
crossref_primary_10_1007_s11427_022_2246_4
crossref_primary_10_1093_hr_uhac062
crossref_primary_10_3390_foods11162527
crossref_primary_10_3390_ijms24119132
crossref_primary_10_1016_j_plantsci_2022_111522
crossref_primary_10_1093_pcp_pcad108
crossref_primary_10_1016_j_plaphy_2023_107851
crossref_primary_10_3390_ijms22063103
crossref_primary_10_3390_jof9111063
crossref_primary_10_1186_s13068_022_02218_7
crossref_primary_10_1016_j_cj_2021_07_001
crossref_primary_10_1007_s00299_021_02758_6
crossref_primary_10_1016_j_foodres_2021_110616
crossref_primary_10_1007_s00438_022_01952_9
crossref_primary_10_1080_21645698_2020_1852064
crossref_primary_10_3390_horticulturae9121295
crossref_primary_10_3390_plants12162897
crossref_primary_10_1093_treephys_tpac013
crossref_primary_10_1016_j_scienta_2021_110443
crossref_primary_10_3390_agriculture11070632
crossref_primary_10_3390_plants10051011
crossref_primary_10_1111_tpj_16548
crossref_primary_10_1007_s11738_023_03571_2
crossref_primary_10_1007_s42994_022_00077_2
crossref_primary_10_1016_j_plantsci_2021_110924
crossref_primary_10_1371_journal_pone_0253812
crossref_primary_10_1186_s13068_022_02227_6
crossref_primary_10_1016_j_plaphy_2023_01_050
crossref_primary_10_3390_plants9040413
crossref_primary_10_1371_journal_pgen_1009636
crossref_primary_10_1016_j_phytochem_2020_112515
crossref_primary_10_1016_j_heliyon_2024_e32563
crossref_primary_10_1016_j_hpj_2023_02_011
crossref_primary_10_1093_plphys_kiaa068
crossref_primary_10_1016_j_hpj_2023_12_009
crossref_primary_10_1016_j_plaphy_2024_108698
crossref_primary_10_1016_j_indcrop_2023_117599
crossref_primary_10_3390_ijms242216045
crossref_primary_10_1016_j_ijbiomac_2023_125302
crossref_primary_10_3390_ijms25042057
crossref_primary_10_1016_j_hpj_2023_12_001
crossref_primary_10_1016_j_cj_2023_06_011
crossref_primary_10_1111_mpp_13208
crossref_primary_10_1016_j_postharvbio_2024_112844
crossref_primary_10_1093_plphys_kiac516
crossref_primary_10_1038_s41598_021_92610_4
crossref_primary_10_1093_hr_uhad134
crossref_primary_10_32615_bp_2023_030
crossref_primary_10_3390_ijms242316817
crossref_primary_10_1016_j_plantsci_2023_111762
crossref_primary_10_1080_15592324_2021_1994248
crossref_primary_10_3389_fpls_2020_617020
crossref_primary_10_3390_ijms22094838
crossref_primary_10_1007_s11103_023_01376_y
crossref_primary_10_1186_s12864_023_09260_1
crossref_primary_10_1093_plphys_kiac118
Cites_doi 10.1073/pnas.1107161108
10.1104/pp.122.2.403
10.1080/09637480701781490
10.1111/tpj.14169
10.1016/j.molp.2016.09.010
10.1038/nplants.2015.75
10.1111/j.1365-313X.2011.04779.x
10.1111/nph.12620
10.1016/j.tplants.2010.12.005
10.1111/j.1469-8137.2011.03922.x
10.1105/tpc.17.00282
10.1046/j.1365-313X.2003.01916.x
10.1104/pp.105.066688
10.1105/tpc.10.2.135
10.1104/pp.109.138180
10.1111/tpj.13324
10.1111/j.1365-313X.2004.02138.x
10.1074/jbc.M111.312298
10.1111/j.1744-7909.2011.01042.x
10.1104/pp.107.107326
10.1104/pp.114.240507
10.1093/emboj/19.22.6150
10.1073/pnas.1316622110
10.1016/j.jplph.2007.06.010
10.1111/j.1744-7909.2010.00905.x
10.1074/jbc.M111.322164
10.1146/annurev-arplant-042811-105439
10.1104/pp.17.01766
10.1111/j.1365-313X.2007.03078.x
10.1105/tpc.106.046029
10.1016/j.tplants.2007.11.012
10.1038/s41467-018-07969-2
10.1093/pcp/pct187
10.1093/jxb/erq179
10.1074/jbc.M702662200
10.1111/j.1365-313X.2010.04363.x
10.1104/pp.114.241877
10.1111/j.1365-313X.2007.03373.x
10.1534/genetics.107.083881
10.1199/tab.0152
10.1111/j.1469-8137.2010.03432.x
10.1093/jxb/ers067
10.3389/fpls.2017.00943
10.1111/j.1365-313X.2008.03564.x
10.1105/tpc.17.00845
10.1073/pnas.0802254105
10.1104/pp.103.026484
10.1111/nph.15741
10.1105/tpc.111.083261
10.1038/nature13084
10.1105/tpc.12.12.2383
10.1007/978-1-60761-854-6_5
10.1111/pce.13393
10.1073/pnas.1700850114
10.1126/science.aar7361
10.1105/tpc.109.073247
ContentType Journal Article
Copyright 2019 The Authors The Plant Journal © 2019 John Wiley & Sons Ltd
2019 The Authors The Plant Journal © 2019 John Wiley & Sons Ltd.
Copyright © 2020 John Wiley & Sons Ltd and the Society for Experimental Biology
Copyright_xml – notice: 2019 The Authors The Plant Journal © 2019 John Wiley & Sons Ltd
– notice: 2019 The Authors The Plant Journal © 2019 John Wiley & Sons Ltd.
– notice: Copyright © 2020 John Wiley & Sons Ltd and the Society for Experimental Biology
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7X8
DOI 10.1111/tpj.14570
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

Genetics Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1365-313X
EndPage 652
ExternalDocumentID 10_1111_tpj_14570
31626358
TPJ14570
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: School of Life Sciences
– fundername: Tsinghua University
– fundername: National Natural Science Foundation of China
  funderid: 31522008; 31570296
– fundername: Youth Thousand Scholar Program of China
GroupedDBID ---
-DZ
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
TR2
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
YFH
YUY
ZZTAW
~IA
~KM
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c4540-ed0d5974fa8719d7cee2c959c677d24be9a691a63be471f0db31bc635406141f3
IEDL.DBID DR2
ISSN 0960-7412
IngestDate Wed Dec 04 02:35:50 EST 2024
Thu Oct 10 19:18:01 EDT 2024
Fri Dec 06 04:41:48 EST 2024
Sat Sep 28 08:35:33 EDT 2024
Sat Aug 24 01:08:05 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords proanthocyanidins
anthocyanins
phenylalanine
mediator
Language English
License 2019 The Authors The Plant Journal © 2019 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4540-ed0d5974fa8719d7cee2c959c677d24be9a691a63be471f0db31bc635406141f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0958-4300
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/tpj.14570
PMID 31626358
PQID 2347489698
PQPubID 31702
PageCount 16
ParticipantIDs proquest_miscellaneous_2307145416
proquest_journals_2347489698
crossref_primary_10_1111_tpj_14570
pubmed_primary_31626358
wiley_primary_10_1111_tpj_14570_TPJ14570
PublicationCentury 2000
PublicationDate February 2020
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle The Plant journal : for cell and molecular biology
PublicationTitleAlternate Plant J
PublicationYear 2020
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2017a; 8
2007; 145
2012; 287
2018; 360
2017b; 89
2019; 97
2019; 10
2005; 139
2011; 53
2010; 188
2018; 41
2008; 105
2009; 150
2011; 16
2017; 114
2010; 61
2010; 22
2018; 177
2010; 64
2000; 19
2000; 12
2004; 39
2010; 674
2018; 30
2011; 23
2000; 122
2013; 110
2014; 165
2012; 69
2014; 166
1998; 10
2014; 202
2014; 55
2012; 63
2015; 1
2007; 19
2007; 282
2009; 60
2003; 36
2019; 223
2008; 13
2017; 29
2008; 55
2007; 50
2008; 53
2008; 165
2003; 133
2011; 9
2011; 108
2014; 509
2012; 193
2008; 178
2010; 52
2016; 9
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 36
  start-page: 743
  year: 2003
  end-page: 754
  article-title: Characterisation of a pine MYB that regulates lignification
  publication-title: Plant J.
– volume: 150
  start-page: 1450
  year: 2009
  end-page: 1458
  article-title: Two alternatively spliced isoforms of the SR45 protein have distinct roles during normal plant development
  publication-title: Plant Physiol.
– volume: 9
  start-page: 1609
  year: 2016
  end-page: 1619
  article-title: Arogenate dehydratase isoforms differentially regulate anthocyanin biosynthesis in
  publication-title: Mol. Plant
– volume: 509
  start-page: 376
  year: 2014
  end-page: 380
  article-title: Disruption of Mediator rescues the stunted growth of a lignin‐deficient mutant
  publication-title: Nature
– volume: 61
  start-page: 3663
  year: 2010
  end-page: 3673
  article-title: Identification and characterization of the maize arogenate dehydrogenase gene family
  publication-title: J. Exp. Bot.
– volume: 105
  start-page: 7618
  year: 2008
  end-page: 7623
  article-title: Modulation of brassinosteroid‐regulated gene expression by Jumonji domain‐containing proteins ELF6 and REF6 in
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 19
  start-page: 2023
  year: 2007
  end-page: 2038
  article-title: The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H ‐antiporter active in proanthocyanidin‐accumulating cells of the seed coat
  publication-title: Plant Cell
– volume: 39
  start-page: 366
  year: 2004
  end-page: 380
  article-title: TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in
  publication-title: Plant J.
– volume: 16
  start-page: 227
  year: 2011
  end-page: 233
  article-title: Transcriptional networks for lignin biosynthesis: more complex than we thought?
  publication-title: Trends Plant Sci.
– volume: 10
  start-page: 135
  year: 1998
  end-page: 154
  article-title: The AmMYB308 and AmMYB330 transcription factors from regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco
  publication-title: Plant Cell
– volume: 110
  start-page: 16669
  year: 2013
  end-page: 16674
  article-title: Conversion from CUL4‐based COP1‐SPA E3 apparatus to UVR8‐COP1‐SPA complexes underlies a distinct biochemical function of COP1 under UV‐B
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 29
  start-page: 3269
  year: 2017
  end-page: 3285
  article-title: Mediator complex subunits MED2, MED5, MED16, and MED23 genetically interact in the regulation of phenylpropanoid biosynthesis
  publication-title: Plant Cell
– volume: 89
  start-page: 85
  year: 2017b
  end-page: 103
  article-title: The Arabidopsis UDP‐glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation
  publication-title: Plant J.
– volume: 69
  start-page: 154
  year: 2012
  end-page: 167
  article-title: Two glycosyltransferases involved in anthocyanin modification delineated by transcriptome independent component analysis in
  publication-title: Plant J.
– volume: 165
  start-page: 1424
  year: 2014
  end-page: 1439
  article-title: MYB5 and MYB14 play pivotal roles in seed coat polymer biosynthesis in
  publication-title: Plant Physiol.
– volume: 10
  start-page: 15
  year: 2019
  article-title: Completion of the cytosolic post‐chorismate phenylalanine biosynthetic pathway in plants
  publication-title: Nat. Commun.
– volume: 30
  start-page: 1062
  year: 2018
  end-page: 1076
  article-title: The ubiquitin E3 ligase PRU1 regulates WRKY6 degradation to modulate phosphate homeostasis in response to low‐Pi stress in
  publication-title: Plant Cell
– volume: 202
  start-page: 132
  year: 2014
  end-page: 144
  article-title: Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB‐bHLH‐WDR complexes and their targets in seed
  publication-title: New Phytol.
– volume: 41
  start-page: 2678
  year: 2018
  end-page: 2692
  article-title: Apple bZIP transcription factor MdbZIP44 regulates abscisic acid‐promoted anthocyanin accumulation
  publication-title: Plant Cell Environ.
– volume: 287
  start-page: 11446
  year: 2012
  end-page: 11459
  article-title: Arogenate dehydratase isoenzymes profoundly and differentially modulate carbon flux into lignins
  publication-title: J. Biol. Chem.
– volume: 188
  start-page: 774
  year: 2010
  end-page: 786
  article-title: EgMYB1, an R2R3 MYB transcription factor from eucalyptus negatively regulates secondary cell wall formation in and poplar
  publication-title: New Phytol.
– volume: 108
  start-page: 16475
  year: 2011
  end-page: 16480
  article-title: Integration of low temperature and light signaling during cold acclimation response in
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 52
  start-page: 98
  year: 2010
  end-page: 111
  article-title: Flavonoids: new roles for old molecules
  publication-title: J. Integr. Plant Biol.
– volume: 53
  start-page: 632
  year: 2011
  end-page: 640
  article-title: Brassinosteroid enhances jasmonate‐induced anthocyanin accumulation in seedlings
  publication-title: J. Integr. Plant Biol.
– volume: 9
  year: 2011
  article-title: The phenylpropanoid pathway in
  publication-title: Arabidopsis Book
– volume: 12
  start-page: 2383
  year: 2000
  end-page: 2394
  article-title: Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis
  publication-title: Plant Cell
– volume: 13
  start-page: 99
  year: 2008
  end-page: 102
  article-title: MYB transcription factors that colour our fruit
  publication-title: Trends Plant Sci.
– volume: 139
  start-page: 1840
  year: 2005
  end-page: 1852
  article-title: Sucrose‐specific induction of anthocyanin biosynthesis in requires the MYB75/PAP1 gene
  publication-title: Plant Physiol.
– volume: 166
  start-page: 614
  year: 2014
  end-page: 631
  article-title: The anthocyanin reduced tomato mutant demonstrates the role of flavonols in tomato lateral root and root hair development
  publication-title: Plant Physiol.
– volume: 223
  start-page: 233
  year: 2019
  end-page: 245
  article-title: Mutation of Mediator subunit counteracts the stunted growth and salicylic acid hyper‐accumulation phenotypes of an Arabidopsis mutant
  publication-title: New Phytol.
– volume: 287
  start-page: 5434
  year: 2012
  end-page: 5445
  article-title: REF4 and RFR1, subunits of the transcriptional coregulatory complex mediator, are required for phenylpropanoid homeostasis in
  publication-title: J. Biol. Chem.
– volume: 193
  start-page: 121
  year: 2012
  end-page: 136
  article-title: Functional characterization of the switchgrass ( ) R2R3‐MYB transcription factor PvMYB4 for improvement of lignocellulosic feedstocks
  publication-title: New Phytol.
– volume: 55
  start-page: 940
  year: 2008
  end-page: 953
  article-title: MYBL2 is a new regulator of flavonoid biosynthesis in
  publication-title: Plant J.
– volume: 60
  start-page: 497
  year: 2009
  end-page: 506
  article-title: Antioxidant activity and polyphenol content of green tea flavan‐3‐ols and oligomeric proanthocyanidins
  publication-title: Int. J. Food Sci. Nutr.
– volume: 55
  start-page: 507
  year: 2014
  end-page: 516
  article-title: AtMYB7, a new player in the regulation of UV‐sunscreens in
  publication-title: Plant Cell Physiol.
– volume: 122
  start-page: 403
  year: 2000
  end-page: 414
  article-title: Influence of the testa on seed dormancy, germination, and longevity in
  publication-title: Plant Physiol.
– volume: 64
  start-page: 633
  year: 2010
  end-page: 644
  article-title: ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux
  publication-title: Plant J.
– volume: 22
  start-page: 832
  year: 2010
  end-page: 849
  article-title: RNAi suppression of reveals that phenylalanine is synthesized predominantly via the arogenate pathway in petunia petals
  publication-title: Plant Cell
– volume: 674
  start-page: 57
  year: 2010
  end-page: 83
  article-title: Identification of promoter regions and regulatory sites
  publication-title: Methods Mol. Biol.
– volume: 19
  start-page: 6150
  year: 2000
  end-page: 6161
  article-title: Transcriptional repression by AtMYB4 controls production of UV‐protecting sunscreens in
  publication-title: EMBO J.
– volume: 63
  start-page: 3749
  year: 2012
  end-page: 3764
  article-title: Metabolite profiling and quantitative genetics of natural variation for flavonoids in
  publication-title: J. Exp. Bot.
– volume: 50
  start-page: 660
  year: 2007
  end-page: 677
  article-title: Differential regulation of closely related R2R3‐MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling
  publication-title: Plant J.
– volume: 145
  start-page: 601
  year: 2007
  end-page: 615
  article-title: Early steps in proanthocyanidin biosynthesis in the model legume
  publication-title: Plant Physiol.
– volume: 360
  start-page: 1014
  year: 2018
  end-page: 1017
  article-title: Feedback regulation of COOLAIR expression controls seed dormancy and flowering time
  publication-title: Science
– volume: 23
  start-page: 1795
  year: 2011
  end-page: 1814
  article-title: The Jasmonate‐ZIM‐domain proteins interact with the WD‐Repeat/bHLH/MYB complexes to regulate Jasmonate‐mediated anthocyanin accumulation and trichome initiation in
  publication-title: Plant Cell
– volume: 1
  start-page: 15075
  year: 2015
  article-title: Transcription and processing of primary microRNAs are coupled by Elongator complex in
  publication-title: Nat. Plants
– volume: 114
  start-page: 3539
  year: 2017
  end-page: 3544
  article-title: Noncanonical role of Arabidopsis COP1/SPA complex in repressing BIN2‐mediated PIF3 phosphorylation and degradation in darkness
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 282
  start-page: 30827
  year: 2007
  end-page: 30835
  article-title: Phenylalanine biosynthesis in identification and characterization of arogenate dehydratases
  publication-title: J. Biol. Chem.
– volume: 97
  start-page: 901
  year: 2019
  end-page: 922
  article-title: Imbalance of tyrosine by modulating TyrA arogenate dehydrogenases impacts growth and development of Arabidopsis thaliana
  publication-title: Plant J.
– volume: 178
  start-page: 2237
  year: 2008
  end-page: 2251
  article-title: Semidominant mutations in reduced epidermal fluorescence 4 reduce phenylpropanoid content in Arabidopsis
  publication-title: Genetics
– volume: 53
  start-page: 814
  year: 2008
  end-page: 827
  article-title: Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in seedlings
  publication-title: Plant J.
– volume: 133
  start-page: 1051
  year: 2003
  end-page: 1071
  article-title: Genome‐wide characterization of the lignification toolbox in
  publication-title: Plant Physiol.
– volume: 177
  start-page: 115
  year: 2018
  end-page: 131
  article-title: Reduced arogenate dehydratase expression: ramifications for photosynthesis and metabolism
  publication-title: Plant Physiol.
– volume: 8
  start-page: 943
  year: 2017a
  article-title: Functional characterization of tea ( ) MYB4a transcription factor using an integrative approach
  publication-title: Front. Plant Sci.
– volume: 165
  start-page: 886
  year: 2008
  end-page: 894
  article-title: Expression analysis of anthocyanin regulatory genes in response to different light qualities in
  publication-title: J. Plant. Physiol.
– volume: 63
  start-page: 73
  year: 2012
  end-page: 105
  article-title: The shikimate pathway and aromatic amino acid biosynthesis in plants
  publication-title: Annu. Rev. Plant Biol.
– ident: e_1_2_9_9_1
  doi: 10.1073/pnas.1107161108
– ident: e_1_2_9_15_1
  doi: 10.1104/pp.122.2.403
– ident: e_1_2_9_37_1
  doi: 10.1080/09637480701781490
– ident: e_1_2_9_38_1
  doi: 10.1111/tpj.14169
– ident: e_1_2_9_11_1
  doi: 10.1016/j.molp.2016.09.010
– ident: e_1_2_9_18_1
  doi: 10.1038/nplants.2015.75
– ident: e_1_2_9_54_1
  doi: 10.1111/j.1365-313X.2011.04779.x
– ident: e_1_2_9_52_1
  doi: 10.1111/nph.12620
– ident: e_1_2_9_57_1
  doi: 10.1016/j.tplants.2010.12.005
– ident: e_1_2_9_46_1
  doi: 10.1111/j.1469-8137.2011.03922.x
– ident: e_1_2_9_16_1
  doi: 10.1105/tpc.17.00282
– ident: e_1_2_9_40_1
  doi: 10.1046/j.1365-313X.2003.01916.x
– ident: e_1_2_9_51_1
  doi: 10.1104/pp.105.066688
– ident: e_1_2_9_50_1
  doi: 10.1105/tpc.10.2.135
– ident: e_1_2_9_56_1
  doi: 10.1104/pp.109.138180
– ident: e_1_2_9_29_1
  doi: 10.1111/tpj.13324
– ident: e_1_2_9_4_1
  doi: 10.1111/j.1365-313X.2004.02138.x
– ident: e_1_2_9_5_1
  doi: 10.1074/jbc.M111.312298
– ident: e_1_2_9_41_1
  doi: 10.1111/j.1744-7909.2011.01042.x
– ident: e_1_2_9_39_1
  doi: 10.1104/pp.107.107326
– ident: e_1_2_9_34_1
  doi: 10.1104/pp.114.240507
– ident: e_1_2_9_26_1
  doi: 10.1093/emboj/19.22.6150
– ident: e_1_2_9_25_1
  doi: 10.1073/pnas.1316622110
– ident: e_1_2_9_13_1
  doi: 10.1016/j.jplph.2007.06.010
– ident: e_1_2_9_8_1
  doi: 10.1111/j.1744-7909.2010.00905.x
– ident: e_1_2_9_14_1
  doi: 10.1074/jbc.M111.322164
– ident: e_1_2_9_32_1
  doi: 10.1146/annurev-arplant-042811-105439
– ident: e_1_2_9_23_1
  doi: 10.1104/pp.17.01766
– ident: e_1_2_9_49_1
  doi: 10.1111/j.1365-313X.2007.03078.x
– ident: e_1_2_9_36_1
  doi: 10.1105/tpc.106.046029
– ident: e_1_2_9_2_1
  doi: 10.1016/j.tplants.2007.11.012
– ident: e_1_2_9_43_1
  doi: 10.1038/s41467-018-07969-2
– ident: e_1_2_9_20_1
  doi: 10.1093/pcp/pct187
– ident: e_1_2_9_24_1
  doi: 10.1093/jxb/erq179
– ident: e_1_2_9_12_1
  doi: 10.1074/jbc.M702662200
– ident: e_1_2_9_19_1
  doi: 10.1111/j.1365-313X.2010.04363.x
– ident: e_1_2_9_31_1
  doi: 10.1104/pp.114.241877
– ident: e_1_2_9_22_1
  doi: 10.1111/j.1365-313X.2007.03373.x
– ident: e_1_2_9_48_1
  doi: 10.1534/genetics.107.083881
– ident: e_1_2_9_21_1
  doi: 10.1199/tab.0152
– ident: e_1_2_9_27_1
  doi: 10.1111/j.1469-8137.2010.03432.x
– ident: e_1_2_9_45_1
  doi: 10.1093/jxb/ers067
– ident: e_1_2_9_28_1
  doi: 10.3389/fpls.2017.00943
– ident: e_1_2_9_17_1
  doi: 10.1111/j.1365-313X.2008.03564.x
– ident: e_1_2_9_53_1
  doi: 10.1105/tpc.17.00845
– ident: e_1_2_9_55_1
  doi: 10.1073/pnas.0802254105
– ident: e_1_2_9_44_1
  doi: 10.1104/pp.103.026484
– ident: e_1_2_9_35_1
  doi: 10.1111/nph.15741
– ident: e_1_2_9_42_1
  doi: 10.1105/tpc.111.083261
– ident: e_1_2_9_6_1
  doi: 10.1038/nature13084
– ident: e_1_2_9_7_1
  doi: 10.1105/tpc.12.12.2383
– ident: e_1_2_9_47_1
  doi: 10.1007/978-1-60761-854-6_5
– ident: e_1_2_9_3_1
  doi: 10.1111/pce.13393
– ident: e_1_2_9_30_1
  doi: 10.1073/pnas.1700850114
– ident: e_1_2_9_10_1
  doi: 10.1126/science.aar7361
– ident: e_1_2_9_33_1
  doi: 10.1105/tpc.109.073247
SSID ssj0017364
Score 2.6962183
Snippet SUMMARY Flavonoids are major secondary metabolites derived from the plant phenylpropanoid pathway that play important roles in plant development and also have...
Flavonoids are major secondary metabolites derived from the plant phenylpropanoid pathway that play important roles in plant development and also have benefits...
SUMMARYFlavonoids are major secondary metabolites derived from the plant phenylpropanoid pathway that play important roles in plant development and also have...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 637
SubjectTerms anthocyanins
Arabidopsis
Arabidopsis - enzymology
Arabidopsis - genetics
Arabidopsis - physiology
Biosynthesis
Biosynthetic Pathways
Dehydration
Enzymes
Flavonoids
Flavonoids - metabolism
Gene expression
Helix-loop-helix proteins (basic)
Homology
mediator
Metabolism
Metabolites
Phenylalanine
Prephenate Dehydrogenase - genetics
Prephenate Dehydrogenase - metabolism
proanthocyanidins
Repressor Proteins - genetics
Repressor Proteins - metabolism
Repressors
Secondary metabolites
Transcription factors
Title Arabidopsis MYB4 plays dual roles in flavonoid biosynthesis
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.14570
https://www.ncbi.nlm.nih.gov/pubmed/31626358
https://www.proquest.com/docview/2347489698
https://search.proquest.com/docview/2307145416
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5EPHjx_VhfRPHgpbJJ-tjgaVcUERQRBQWhJE0DRWkXuyusv96Zdlt8IIi3QpOmzczX-SadfAU41F1uI8MDz1faYYISOE8ZazxuFXpXYkhCiqotrsOLe__yIXiYgZNmL0ytD9EuuBEyqvc1AVyb8hPIR0OCeRBRvs4RJkSIblvpKB7JWjoKGbqHUVNMVYWoiqft-TUW_SCYX_lqFXDOF-GpudW6zuT5eDwyx8n7NxXHfz7LEixMiSjr156zDDNpvgJzgwLJ4mQVTvqv2mS2GJZZya4eBz4bvuhJyWjnFqOKxJJlOXMv-q3Ii8wykxXlJEcyie3X4P787O70wpv-Z8FLSH_PS23XUl7hNGZPykYYN0WiApWEUWSFb1KlQ8V1KE2Kocx1rZHcJCGtGGFw506uw2xe5OkmsCSwyud4FV84X3a1Fk5G0qVW9BLei0QHDpoZj4e1nEbcpCE4CXE1CR3YaWwRTxFVxkL6JJQTql4H9tvTiAX6wKHztBhTG9qOFSDH7MBGbcN2FMkr3R3sfVRZ4vfh47uby-pg6-9Nt2FeUCJelXPvwOzodZzuIlsZmb3KLT8A8ovjAA
link.rule.ids 315,781,785,1376,27929,27930,46299,46723
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS-QwFL2ILuy-6Oru6vgZxQdfKpOkHxP0RWVl_ERkBPdhKUnTQHFoBzuzMPvrvbedllVZWPat0KRpk5zec9KbU4B93eU2MjzwfKUdCpTAecpY43GrcHYlhiykKNviNuw_-JePweMcHDd7YWp_iHbBjZBRva8J4LQg_QfKxyPCeRChYF9AuNeC6r41j-KRrM2jkKN7GDfFzFeI8njaqq-j0TuK-ZqxViHnfAl-NjdbZ5o8HU7G5jD5_cbH8X-f5jMszrgoO6knzzLMpfkKfDgtkC9Ov8DRybM2mS1GZVaymx-nPhsN9bRktHmLUVJiybKcuaH-VeRFZpnJinKaI5_E8l_h4fz74KzvzX614CVkweeltmtJWjiNAkrZCEOnSFSgkjCKrPBNqnSouA6lSTGaua41kpskpEUjjO_cyW8wnxd5ugYsCazyOV7FF86XXa2Fk5F0qRW9hPci0YG9psvjUe2oETdKBDshrjqhA5vNYMQzUJWxkD555YSq14Hd9jTCgb5x6DwtJlSGdmQFSDM7sFoPYtuK5JX1DtY-qIbi783Hg7vL6mD934vuwMf-4OY6vr64vdqAT4J0eZXdvQnz4-dJuoXkZWy2qzn6AjBF5xw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB-OVsQXW7_q6dWu4kNfUm4_ktzSp17r0VYth7RQQQi72SwESxKaO-H8651JLsFaBPEtkNlsdnZm5zeb2V8A3psxd7HlYaC08ZighD7Q1tmAO43WlVqikKJqi4vo9EqdX4fXAzjszsK0_BD9hht5RrNek4NXzv_m5IuK3DyMMV_fVBGuqoSIvvTcUTyWLXcUQvQAw6ZY0wpRGU_f9G4wuocw7wLWJuLMtuBb965tocn3g-XCHqQ__6Bx_M_BbMPjNRJlR63pPIFBVjyFB9MS0eLqGRwe3Rqbu7Kq85p9_jpVrLoxq5rR0S1GJYk1ywvmb8yPsihzx2xe1qsC0STKP4er2YfL49Ng_aOFICUCviBzY0eJhTeYPmkXY-AUqQ51GsWxE8pm2kSam0jaDGOZHzsruU0j2jLC6M69fAEbRVlkL4GlodOK41OU8EqOjRFextJnTkxSPonFEN51Gk-qlk8j6fIQVELSKGEIo24ukrVL1YmQiphyIj0Zwtv-NjoDfeEwRVYuSYbOY4UIMoew085h34vkDfEOtt5vZuLv3SeX8_Pm4tW_i-7Bw_nJLPl0dvHxNTwSlJQ3pd0j2FjcLrNdRC4L-6ax0F-nDeXU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arabidopsis+MYB4+plays+dual+roles+in+flavonoid+biosynthesis&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Wang%2C+Xiao-Chen&rft.au=Wu%2C+Jie&rft.au=Guan%2C+Meng-Ling&rft.au=Zhao%2C+Cui-Huan&rft.date=2020-02-01&rft.eissn=1365-313X&rft.volume=101&rft.issue=3&rft.spage=637&rft_id=info:doi/10.1111%2Ftpj.14570&rft_id=info%3Apmid%2F31626358&rft.externalDocID=31626358
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon