Arabidopsis MYB4 plays dual roles in flavonoid biosynthesis
SUMMARY Flavonoids are major secondary metabolites derived from the plant phenylpropanoid pathway that play important roles in plant development and also have benefits for human health. So‐called MBW ternary complexes involving R2R3‐MYB and basic helix‐loop‐helix (bHLH) transcription factors along w...
Saved in:
Published in | The Plant journal : for cell and molecular biology Vol. 101; no. 3; pp. 637 - 652 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | SUMMARY
Flavonoids are major secondary metabolites derived from the plant phenylpropanoid pathway that play important roles in plant development and also have benefits for human health. So‐called MBW ternary complexes involving R2R3‐MYB and basic helix‐loop‐helix (bHLH) transcription factors along with WD‐repeat proteins have been reported to regulate expression of the biosynthetic genes in the flavonoid pathway. MYB4 and its closest homolog MYB7 have been suggested to function as repressors of phenylpropanoid metabolism. However, the detailed mechanism by which they act has not been fully elucidated. Here, we show that Arabidopsis thaliana MYB4 and its homologs MYB7 and MYB32 interact with the bHLH transcription factors TT8, GL3 and EGL3 and thereby interfere with the transcriptional activity of the MBW complexes. In addition, MYB4 can also inhibit flavonoid accumulation by repressing expression of the gene encoding Arogenate Dehydratase 6 (ADT6), which catalyzes the final step in the biosynthesis of phenylalanine, the precursor for flavonoid biosynthesis. MYB4 potentially represses not only the conventional ADT6 encoding the plastidial enzyme but also the alternative isoform encoding the cytosolic enzyme. We suggest that MYB4 plays dual roles in modulating the flavonoid biosynthetic pathway in Arabidopsis.
Significance Statement
Our results indicate that MYB4 can attenuate the transcriptional function of MYB‐bHLH‐WDR complexes, which are major regulators of flavonoid metabolism, by interacting with bHLH proteins. MYB4 directly represses the transcription of ADT6 encoding the enzyme catalyzing the last step of phenylalanine biosynthesis. These observations reveal unexpected cross‐talk between primary and secondary metabolism. |
---|---|
AbstractList | Flavonoids are major secondary metabolites derived from the plant phenylpropanoid pathway that play important roles in plant development and also have benefits for human health. So-called MBW ternary complexes involving R2R3-MYB and basic helix-loop-helix (bHLH) transcription factors along with WD-repeat proteins have been reported to regulate expression of the biosynthetic genes in the flavonoid pathway. MYB4 and its closest homolog MYB7 have been suggested to function as repressors of phenylpropanoid metabolism. However, the detailed mechanism by which they act has not been fully elucidated. Here, we show that Arabidopsis thaliana MYB4 and its homologs MYB7 and MYB32 interact with the bHLH transcription factors TT8, GL3 and EGL3 and thereby interfere with the transcriptional activity of the MBW complexes. In addition, MYB4 can also inhibit flavonoid accumulation by repressing expression of the gene encoding Arogenate Dehydratase 6 (ADT6), which catalyzes the final step in the biosynthesis of phenylalanine, the precursor for flavonoid biosynthesis. MYB4 potentially represses not only the conventional ADT6 encoding the plastidial enzyme but also the alternative isoform encoding the cytosolic enzyme. We suggest that MYB4 plays dual roles in modulating the flavonoid biosynthetic pathway in Arabidopsis. SUMMARY Flavonoids are major secondary metabolites derived from the plant phenylpropanoid pathway that play important roles in plant development and also have benefits for human health. So‐called MBW ternary complexes involving R2R3‐MYB and basic helix‐loop‐helix (bHLH) transcription factors along with WD‐repeat proteins have been reported to regulate expression of the biosynthetic genes in the flavonoid pathway. MYB4 and its closest homolog MYB7 have been suggested to function as repressors of phenylpropanoid metabolism. However, the detailed mechanism by which they act has not been fully elucidated. Here, we show that Arabidopsis thaliana MYB4 and its homologs MYB7 and MYB32 interact with the bHLH transcription factors TT8, GL3 and EGL3 and thereby interfere with the transcriptional activity of the MBW complexes. In addition, MYB4 can also inhibit flavonoid accumulation by repressing expression of the gene encoding Arogenate Dehydratase 6 (ADT6), which catalyzes the final step in the biosynthesis of phenylalanine, the precursor for flavonoid biosynthesis. MYB4 potentially represses not only the conventional ADT6 encoding the plastidial enzyme but also the alternative isoform encoding the cytosolic enzyme. We suggest that MYB4 plays dual roles in modulating the flavonoid biosynthetic pathway in Arabidopsis. Significance Statement Our results indicate that MYB4 can attenuate the transcriptional function of MYB‐bHLH‐WDR complexes, which are major regulators of flavonoid metabolism, by interacting with bHLH proteins. MYB4 directly represses the transcription of ADT6 encoding the enzyme catalyzing the last step of phenylalanine biosynthesis. These observations reveal unexpected cross‐talk between primary and secondary metabolism. SUMMARYFlavonoids are major secondary metabolites derived from the plant phenylpropanoid pathway that play important roles in plant development and also have benefits for human health. So‐called MBW ternary complexes involving R2R3‐MYB and basic helix‐loop‐helix (bHLH) transcription factors along with WD‐repeat proteins have been reported to regulate expression of the biosynthetic genes in the flavonoid pathway. MYB4 and its closest homolog MYB7 have been suggested to function as repressors of phenylpropanoid metabolism. However, the detailed mechanism by which they act has not been fully elucidated. Here, we show that Arabidopsis thaliana MYB4 and its homologs MYB7 and MYB32 interact with the bHLH transcription factors TT8, GL3 and EGL3 and thereby interfere with the transcriptional activity of the MBW complexes. In addition, MYB4 can also inhibit flavonoid accumulation by repressing expression of the gene encoding Arogenate Dehydratase 6 (ADT6), which catalyzes the final step in the biosynthesis of phenylalanine, the precursor for flavonoid biosynthesis. MYB4 potentially represses not only the conventional ADT6 encoding the plastidial enzyme but also the alternative isoform encoding the cytosolic enzyme. We suggest that MYB4 plays dual roles in modulating the flavonoid biosynthetic pathway in Arabidopsis. Flavonoids are major secondary metabolites derived from the plant phenylpropanoid pathway that play important roles in plant development and also have benefits for human health. So‐called MBW ternary complexes involving R2R3‐MYB and basic helix‐loop‐helix (bHLH) transcription factors along with WD‐repeat proteins have been reported to regulate expression of the biosynthetic genes in the flavonoid pathway. MYB4 and its closest homolog MYB7 have been suggested to function as repressors of phenylpropanoid metabolism. However, the detailed mechanism by which they act has not been fully elucidated. Here, we show that Arabidopsis thaliana MYB4 and its homologs MYB7 and MYB32 interact with the bHLH transcription factors TT8, GL3 and EGL3 and thereby interfere with the transcriptional activity of the MBW complexes. In addition, MYB4 can also inhibit flavonoid accumulation by repressing expression of the gene encoding Arogenate Dehydratase 6 (ADT6), which catalyzes the final step in the biosynthesis of phenylalanine, the precursor for flavonoid biosynthesis. MYB4 potentially represses not only the conventional ADT6 encoding the plastidial enzyme but also the alternative isoform encoding the cytosolic enzyme. We suggest that MYB4 plays dual roles in modulating the flavonoid biosynthetic pathway in Arabidopsis. Our results indicate that MYB4 can attenuate the transcriptional function of MYB‐bHLH‐WDR complexes, which are major regulators of flavonoid metabolism, by interacting with bHLH proteins. MYB4 directly represses the transcription of ADT6 encoding the enzyme catalyzing the last step of phenylalanine biosynthesis. These observations reveal unexpected cross‐talk between primary and secondary metabolism. |
Author | Zhao, Cui‐Huan Wu, Jie Zhao, Qiao Guan, Meng‐Ling Wang, Xiao‐Chen Geng, Pan |
Author_xml | – sequence: 1 givenname: Xiao‐Chen surname: Wang fullname: Wang, Xiao‐Chen – sequence: 2 givenname: Jie surname: Wu fullname: Wu, Jie – sequence: 3 givenname: Meng‐Ling surname: Guan fullname: Guan, Meng‐Ling – sequence: 4 givenname: Cui‐Huan surname: Zhao fullname: Zhao, Cui‐Huan – sequence: 5 givenname: Pan surname: Geng fullname: Geng, Pan – sequence: 6 givenname: Qiao orcidid: 0000-0002-0958-4300 surname: Zhao fullname: Zhao, Qiao email: qzhao@tsinghua.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31626358$$D View this record in MEDLINE/PubMed |
BookMark | eNp10LtOwzAUBmALFdELDLwAisQCQ4odO3YsplJxVREMRYIpcmJHuHLjYDegvD2GFAYkznKWT7_O-cdgUNtaAXCI4BSFOds0qykiKYM7YIQwTWOM8PMAjCCnMGYEJUMw9n4FIWKYkj0wxIgmFKfZCJzPnCi0tI3XPrp_uSBRY0TnI9kKEzlrlI90HVVGvNvaahkV2vqu3ryq4PfBbiWMVwfbPQFPV5fL-U28eLi-nc8WcUlSAmMloUw5I5XIGOKSlUolJU95SRmTCSkUF5QjQXGhCEMVlAVGRRnOI5Aigio8ASd9buPsW6v8Jl9rXypjRK1s6_MEQxbeJ4gGevyHrmzr6nBdUISRjFOeBXXaq9JZ752q8sbptXBdjmD-1WgeGs2_Gw32aJvYFmslf-VPhQGc9eBDG9X9n5QvH-_6yE_4sn_B |
CitedBy_id | crossref_primary_10_3390_ijms22031033 crossref_primary_10_1111_tpj_16881 crossref_primary_10_1016_j_ygeno_2021_03_033 crossref_primary_10_3389_fpls_2021_658961 crossref_primary_10_1093_plphys_kiac342 crossref_primary_10_1111_tpj_16642 crossref_primary_10_1016_j_cj_2023_11_006 crossref_primary_10_1016_j_foodres_2022_111964 crossref_primary_10_3389_fpls_2021_638792 crossref_primary_10_1186_s12864_023_09605_w crossref_primary_10_1021_acsomega_2c01125 crossref_primary_10_1093_hr_uhad080 crossref_primary_10_1016_j_plantsci_2020_110748 crossref_primary_10_1186_s12870_021_03423_6 crossref_primary_10_1016_j_plantsci_2021_111154 crossref_primary_10_1016_j_biotechadv_2023_108246 crossref_primary_10_1016_j_plantsci_2021_110983 crossref_primary_10_1186_s12864_020_07175_9 crossref_primary_10_1186_s13059_022_02647_5 crossref_primary_10_3390_ijms222111306 crossref_primary_10_1111_1462_2920_16268 crossref_primary_10_1016_j_cpb_2020_100174 crossref_primary_10_1016_j_cub_2020_11_070 crossref_primary_10_1016_j_envexpbot_2023_105443 crossref_primary_10_1111_nph_18958 crossref_primary_10_1016_j_cpb_2023_100317 crossref_primary_10_1093_jxb_eraa266 crossref_primary_10_1016_j_envexpbot_2023_105569 crossref_primary_10_1016_j_plaphy_2023_108068 crossref_primary_10_3389_fpls_2022_806865 crossref_primary_10_1016_j_fochx_2024_101159 crossref_primary_10_1042_BCJ20210810 crossref_primary_10_1093_jxb_erad139 crossref_primary_10_3390_agriculture13050955 crossref_primary_10_1016_j_indcrop_2020_112929 crossref_primary_10_1186_s12915_023_01719_7 crossref_primary_10_1016_j_scienta_2022_111483 crossref_primary_10_1080_15592324_2022_2149113 crossref_primary_10_1016_j_cpb_2024_100341 crossref_primary_10_1016_j_indcrop_2022_116219 crossref_primary_10_3390_plants11101369 crossref_primary_10_3390_horticulturae10010050 crossref_primary_10_24072_pcjournal_225 crossref_primary_10_1016_j_indcrop_2023_117088 crossref_primary_10_1093_plphys_kiac213 crossref_primary_10_1111_pbr_13092 crossref_primary_10_3390_biology12070894 crossref_primary_10_1016_j_fbio_2024_104565 crossref_primary_10_1038_s41598_021_93532_x crossref_primary_10_1016_j_foodchem_2024_139933 crossref_primary_10_1016_j_hpj_2023_05_015 crossref_primary_10_1038_s41438_021_00545_8 crossref_primary_10_3233_JBR_210008 crossref_primary_10_1016_j_pbi_2020_04_004 crossref_primary_10_1002_aocs_12675 crossref_primary_10_1186_s12870_023_04038_9 crossref_primary_10_1007_s11104_022_05786_7 crossref_primary_10_3390_horticulturae10040325 crossref_primary_10_1007_s00299_022_02878_7 crossref_primary_10_1016_j_foodres_2023_112997 crossref_primary_10_3390_agronomy14051019 crossref_primary_10_1007_s00425_020_03476_1 crossref_primary_10_3390_ijms241813951 crossref_primary_10_1021_acs_jafc_0c01126 crossref_primary_10_1093_jxb_erad311 crossref_primary_10_3389_fpls_2022_877304 crossref_primary_10_3390_f14071413 crossref_primary_10_1016_j_indcrop_2022_115183 crossref_primary_10_3390_antiox13010055 crossref_primary_10_3389_fpls_2023_1153902 crossref_primary_10_1007_s42994_024_00149_5 crossref_primary_10_3390_genes14020240 crossref_primary_10_1016_j_fochms_2023_100178 crossref_primary_10_1093_hr_uhae026 crossref_primary_10_3389_fpls_2022_816875 crossref_primary_10_1016_j_gene_2022_146924 crossref_primary_10_1016_j_plaphy_2022_10_026 crossref_primary_10_1007_s00122_021_03850_x crossref_primary_10_1111_tpj_14970 crossref_primary_10_1016_j_ijbiomac_2021_01_053 crossref_primary_10_3390_ijms222111978 crossref_primary_10_1111_nph_19736 crossref_primary_10_1016_j_xplc_2024_100821 crossref_primary_10_3390_ijms22042040 crossref_primary_10_1016_j_plaphy_2023_03_013 crossref_primary_10_1186_s43897_023_00050_7 crossref_primary_10_1007_s10528_021_10027_0 crossref_primary_10_1093_pcp_pcaa065 crossref_primary_10_1016_j_cj_2023_02_007 crossref_primary_10_1038_s41598_022_08331_9 crossref_primary_10_1093_pcp_pcab152 crossref_primary_10_3390_ijms232415618 crossref_primary_10_1007_s42977_021_00094_0 crossref_primary_10_3390_ijms25073709 crossref_primary_10_1038_s42003_020_01134_6 crossref_primary_10_3390_ijms24119262 crossref_primary_10_3390_molecules26195836 crossref_primary_10_1016_j_scienta_2024_113334 crossref_primary_10_1080_07352689_2021_1898083 crossref_primary_10_1093_hr_uhad281 crossref_primary_10_1016_j_plaphy_2023_02_002 crossref_primary_10_1111_jipb_13054 crossref_primary_10_1016_j_ijbiomac_2023_123729 crossref_primary_10_1016_j_scienta_2021_110858 crossref_primary_10_1093_hr_uhae096 crossref_primary_10_1007_s00438_021_01790_1 crossref_primary_10_1007_s11101_023_09873_0 crossref_primary_10_3390_ijms22179544 crossref_primary_10_1038_s41598_022_21517_5 crossref_primary_10_3390_genes11060614 crossref_primary_10_1093_aob_mcac155 crossref_primary_10_1016_j_tplants_2020_02_005 crossref_primary_10_1016_j_plantsci_2022_111196 crossref_primary_10_1093_hr_uhad209 crossref_primary_10_3390_molecules28062644 crossref_primary_10_3390_biom13121721 crossref_primary_10_3389_fpls_2022_896540 crossref_primary_10_3390_plants13111524 crossref_primary_10_3390_biom13030531 crossref_primary_10_1007_s10142_022_00836_w crossref_primary_10_1016_j_gene_2023_147739 crossref_primary_10_3390_agronomy13123006 crossref_primary_10_3390_f12091260 crossref_primary_10_3389_fpls_2024_1377899 crossref_primary_10_3390_genes13060988 crossref_primary_10_1016_j_tifs_2022_02_031 crossref_primary_10_3390_jof10050318 crossref_primary_10_3390_ijms23094603 crossref_primary_10_1111_ppl_13921 crossref_primary_10_1007_s11427_022_2246_4 crossref_primary_10_1093_hr_uhac062 crossref_primary_10_3390_foods11162527 crossref_primary_10_3390_ijms24119132 crossref_primary_10_1016_j_plantsci_2022_111522 crossref_primary_10_1093_pcp_pcad108 crossref_primary_10_1016_j_plaphy_2023_107851 crossref_primary_10_3390_ijms22063103 crossref_primary_10_3390_jof9111063 crossref_primary_10_1186_s13068_022_02218_7 crossref_primary_10_1016_j_cj_2021_07_001 crossref_primary_10_1007_s00299_021_02758_6 crossref_primary_10_1016_j_foodres_2021_110616 crossref_primary_10_1007_s00438_022_01952_9 crossref_primary_10_1080_21645698_2020_1852064 crossref_primary_10_3390_horticulturae9121295 crossref_primary_10_3390_plants12162897 crossref_primary_10_1093_treephys_tpac013 crossref_primary_10_1016_j_scienta_2021_110443 crossref_primary_10_3390_agriculture11070632 crossref_primary_10_3390_plants10051011 crossref_primary_10_1111_tpj_16548 crossref_primary_10_1007_s11738_023_03571_2 crossref_primary_10_1007_s42994_022_00077_2 crossref_primary_10_1016_j_plantsci_2021_110924 crossref_primary_10_1371_journal_pone_0253812 crossref_primary_10_1186_s13068_022_02227_6 crossref_primary_10_1016_j_plaphy_2023_01_050 crossref_primary_10_3390_plants9040413 crossref_primary_10_1371_journal_pgen_1009636 crossref_primary_10_1016_j_phytochem_2020_112515 crossref_primary_10_1016_j_heliyon_2024_e32563 crossref_primary_10_1016_j_hpj_2023_02_011 crossref_primary_10_1093_plphys_kiaa068 crossref_primary_10_1016_j_hpj_2023_12_009 crossref_primary_10_1016_j_plaphy_2024_108698 crossref_primary_10_1016_j_indcrop_2023_117599 crossref_primary_10_3390_ijms242216045 crossref_primary_10_1016_j_ijbiomac_2023_125302 crossref_primary_10_3390_ijms25042057 crossref_primary_10_1016_j_hpj_2023_12_001 crossref_primary_10_1016_j_cj_2023_06_011 crossref_primary_10_1111_mpp_13208 crossref_primary_10_1016_j_postharvbio_2024_112844 crossref_primary_10_1093_plphys_kiac516 crossref_primary_10_1038_s41598_021_92610_4 crossref_primary_10_1093_hr_uhad134 crossref_primary_10_32615_bp_2023_030 crossref_primary_10_3390_ijms242316817 crossref_primary_10_1016_j_plantsci_2023_111762 crossref_primary_10_1080_15592324_2021_1994248 crossref_primary_10_3389_fpls_2020_617020 crossref_primary_10_3390_ijms22094838 crossref_primary_10_1007_s11103_023_01376_y crossref_primary_10_1186_s12864_023_09260_1 crossref_primary_10_1093_plphys_kiac118 |
Cites_doi | 10.1073/pnas.1107161108 10.1104/pp.122.2.403 10.1080/09637480701781490 10.1111/tpj.14169 10.1016/j.molp.2016.09.010 10.1038/nplants.2015.75 10.1111/j.1365-313X.2011.04779.x 10.1111/nph.12620 10.1016/j.tplants.2010.12.005 10.1111/j.1469-8137.2011.03922.x 10.1105/tpc.17.00282 10.1046/j.1365-313X.2003.01916.x 10.1104/pp.105.066688 10.1105/tpc.10.2.135 10.1104/pp.109.138180 10.1111/tpj.13324 10.1111/j.1365-313X.2004.02138.x 10.1074/jbc.M111.312298 10.1111/j.1744-7909.2011.01042.x 10.1104/pp.107.107326 10.1104/pp.114.240507 10.1093/emboj/19.22.6150 10.1073/pnas.1316622110 10.1016/j.jplph.2007.06.010 10.1111/j.1744-7909.2010.00905.x 10.1074/jbc.M111.322164 10.1146/annurev-arplant-042811-105439 10.1104/pp.17.01766 10.1111/j.1365-313X.2007.03078.x 10.1105/tpc.106.046029 10.1016/j.tplants.2007.11.012 10.1038/s41467-018-07969-2 10.1093/pcp/pct187 10.1093/jxb/erq179 10.1074/jbc.M702662200 10.1111/j.1365-313X.2010.04363.x 10.1104/pp.114.241877 10.1111/j.1365-313X.2007.03373.x 10.1534/genetics.107.083881 10.1199/tab.0152 10.1111/j.1469-8137.2010.03432.x 10.1093/jxb/ers067 10.3389/fpls.2017.00943 10.1111/j.1365-313X.2008.03564.x 10.1105/tpc.17.00845 10.1073/pnas.0802254105 10.1104/pp.103.026484 10.1111/nph.15741 10.1105/tpc.111.083261 10.1038/nature13084 10.1105/tpc.12.12.2383 10.1007/978-1-60761-854-6_5 10.1111/pce.13393 10.1073/pnas.1700850114 10.1126/science.aar7361 10.1105/tpc.109.073247 |
ContentType | Journal Article |
Copyright | 2019 The Authors The Plant Journal © 2019 John Wiley & Sons Ltd 2019 The Authors The Plant Journal © 2019 John Wiley & Sons Ltd. Copyright © 2020 John Wiley & Sons Ltd and the Society for Experimental Biology |
Copyright_xml | – notice: 2019 The Authors The Plant Journal © 2019 John Wiley & Sons Ltd – notice: 2019 The Authors The Plant Journal © 2019 John Wiley & Sons Ltd. – notice: Copyright © 2020 John Wiley & Sons Ltd and the Society for Experimental Biology |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 7X8 |
DOI | 10.1111/tpj.14570 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Genetics Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1365-313X |
EndPage | 652 |
ExternalDocumentID | 10_1111_tpj_14570 31626358 TPJ14570 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: School of Life Sciences – fundername: Tsinghua University – fundername: National Natural Science Foundation of China funderid: 31522008; 31570296 – fundername: Youth Thousand Scholar Program of China |
GroupedDBID | --- -DZ .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FIJ G-S G.N GODZA H.T H.X HF~ HGLYW HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI TR2 UB1 W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 YFH YUY ZZTAW ~IA ~KM ~WT CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c4540-ed0d5974fa8719d7cee2c959c677d24be9a691a63be471f0db31bc635406141f3 |
IEDL.DBID | DR2 |
ISSN | 0960-7412 |
IngestDate | Wed Dec 04 02:35:50 EST 2024 Thu Oct 10 19:18:01 EDT 2024 Fri Dec 06 04:41:48 EST 2024 Sat Sep 28 08:35:33 EDT 2024 Sat Aug 24 01:08:05 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | proanthocyanidins anthocyanins phenylalanine mediator |
Language | English |
License | 2019 The Authors The Plant Journal © 2019 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4540-ed0d5974fa8719d7cee2c959c677d24be9a691a63be471f0db31bc635406141f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0958-4300 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/tpj.14570 |
PMID | 31626358 |
PQID | 2347489698 |
PQPubID | 31702 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2307145416 proquest_journals_2347489698 crossref_primary_10_1111_tpj_14570 pubmed_primary_31626358 wiley_primary_10_1111_tpj_14570_TPJ14570 |
PublicationCentury | 2000 |
PublicationDate | February 2020 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | The Plant journal : for cell and molecular biology |
PublicationTitleAlternate | Plant J |
PublicationYear | 2020 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2017a; 8 2007; 145 2012; 287 2018; 360 2017b; 89 2019; 97 2019; 10 2005; 139 2011; 53 2010; 188 2018; 41 2008; 105 2009; 150 2011; 16 2017; 114 2010; 61 2010; 22 2018; 177 2010; 64 2000; 19 2000; 12 2004; 39 2010; 674 2018; 30 2011; 23 2000; 122 2013; 110 2014; 165 2012; 69 2014; 166 1998; 10 2014; 202 2014; 55 2012; 63 2015; 1 2007; 19 2007; 282 2009; 60 2003; 36 2019; 223 2008; 13 2017; 29 2008; 55 2007; 50 2008; 53 2008; 165 2003; 133 2011; 9 2011; 108 2014; 509 2012; 193 2008; 178 2010; 52 2016; 9 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 36 start-page: 743 year: 2003 end-page: 754 article-title: Characterisation of a pine MYB that regulates lignification publication-title: Plant J. – volume: 150 start-page: 1450 year: 2009 end-page: 1458 article-title: Two alternatively spliced isoforms of the SR45 protein have distinct roles during normal plant development publication-title: Plant Physiol. – volume: 9 start-page: 1609 year: 2016 end-page: 1619 article-title: Arogenate dehydratase isoforms differentially regulate anthocyanin biosynthesis in publication-title: Mol. Plant – volume: 509 start-page: 376 year: 2014 end-page: 380 article-title: Disruption of Mediator rescues the stunted growth of a lignin‐deficient mutant publication-title: Nature – volume: 61 start-page: 3663 year: 2010 end-page: 3673 article-title: Identification and characterization of the maize arogenate dehydrogenase gene family publication-title: J. Exp. Bot. – volume: 105 start-page: 7618 year: 2008 end-page: 7623 article-title: Modulation of brassinosteroid‐regulated gene expression by Jumonji domain‐containing proteins ELF6 and REF6 in publication-title: Proc. Natl Acad. Sci. USA – volume: 19 start-page: 2023 year: 2007 end-page: 2038 article-title: The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H ‐antiporter active in proanthocyanidin‐accumulating cells of the seed coat publication-title: Plant Cell – volume: 39 start-page: 366 year: 2004 end-page: 380 article-title: TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in publication-title: Plant J. – volume: 16 start-page: 227 year: 2011 end-page: 233 article-title: Transcriptional networks for lignin biosynthesis: more complex than we thought? publication-title: Trends Plant Sci. – volume: 10 start-page: 135 year: 1998 end-page: 154 article-title: The AmMYB308 and AmMYB330 transcription factors from regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco publication-title: Plant Cell – volume: 110 start-page: 16669 year: 2013 end-page: 16674 article-title: Conversion from CUL4‐based COP1‐SPA E3 apparatus to UVR8‐COP1‐SPA complexes underlies a distinct biochemical function of COP1 under UV‐B publication-title: Proc. Natl Acad. Sci. USA – volume: 29 start-page: 3269 year: 2017 end-page: 3285 article-title: Mediator complex subunits MED2, MED5, MED16, and MED23 genetically interact in the regulation of phenylpropanoid biosynthesis publication-title: Plant Cell – volume: 89 start-page: 85 year: 2017b end-page: 103 article-title: The Arabidopsis UDP‐glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation publication-title: Plant J. – volume: 69 start-page: 154 year: 2012 end-page: 167 article-title: Two glycosyltransferases involved in anthocyanin modification delineated by transcriptome independent component analysis in publication-title: Plant J. – volume: 165 start-page: 1424 year: 2014 end-page: 1439 article-title: MYB5 and MYB14 play pivotal roles in seed coat polymer biosynthesis in publication-title: Plant Physiol. – volume: 10 start-page: 15 year: 2019 article-title: Completion of the cytosolic post‐chorismate phenylalanine biosynthetic pathway in plants publication-title: Nat. Commun. – volume: 30 start-page: 1062 year: 2018 end-page: 1076 article-title: The ubiquitin E3 ligase PRU1 regulates WRKY6 degradation to modulate phosphate homeostasis in response to low‐Pi stress in publication-title: Plant Cell – volume: 202 start-page: 132 year: 2014 end-page: 144 article-title: Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB‐bHLH‐WDR complexes and their targets in seed publication-title: New Phytol. – volume: 41 start-page: 2678 year: 2018 end-page: 2692 article-title: Apple bZIP transcription factor MdbZIP44 regulates abscisic acid‐promoted anthocyanin accumulation publication-title: Plant Cell Environ. – volume: 287 start-page: 11446 year: 2012 end-page: 11459 article-title: Arogenate dehydratase isoenzymes profoundly and differentially modulate carbon flux into lignins publication-title: J. Biol. Chem. – volume: 188 start-page: 774 year: 2010 end-page: 786 article-title: EgMYB1, an R2R3 MYB transcription factor from eucalyptus negatively regulates secondary cell wall formation in and poplar publication-title: New Phytol. – volume: 108 start-page: 16475 year: 2011 end-page: 16480 article-title: Integration of low temperature and light signaling during cold acclimation response in publication-title: Proc. Natl Acad. Sci. USA – volume: 52 start-page: 98 year: 2010 end-page: 111 article-title: Flavonoids: new roles for old molecules publication-title: J. Integr. Plant Biol. – volume: 53 start-page: 632 year: 2011 end-page: 640 article-title: Brassinosteroid enhances jasmonate‐induced anthocyanin accumulation in seedlings publication-title: J. Integr. Plant Biol. – volume: 9 year: 2011 article-title: The phenylpropanoid pathway in publication-title: Arabidopsis Book – volume: 12 start-page: 2383 year: 2000 end-page: 2394 article-title: Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis publication-title: Plant Cell – volume: 13 start-page: 99 year: 2008 end-page: 102 article-title: MYB transcription factors that colour our fruit publication-title: Trends Plant Sci. – volume: 139 start-page: 1840 year: 2005 end-page: 1852 article-title: Sucrose‐specific induction of anthocyanin biosynthesis in requires the MYB75/PAP1 gene publication-title: Plant Physiol. – volume: 166 start-page: 614 year: 2014 end-page: 631 article-title: The anthocyanin reduced tomato mutant demonstrates the role of flavonols in tomato lateral root and root hair development publication-title: Plant Physiol. – volume: 223 start-page: 233 year: 2019 end-page: 245 article-title: Mutation of Mediator subunit counteracts the stunted growth and salicylic acid hyper‐accumulation phenotypes of an Arabidopsis mutant publication-title: New Phytol. – volume: 287 start-page: 5434 year: 2012 end-page: 5445 article-title: REF4 and RFR1, subunits of the transcriptional coregulatory complex mediator, are required for phenylpropanoid homeostasis in publication-title: J. Biol. Chem. – volume: 193 start-page: 121 year: 2012 end-page: 136 article-title: Functional characterization of the switchgrass ( ) R2R3‐MYB transcription factor PvMYB4 for improvement of lignocellulosic feedstocks publication-title: New Phytol. – volume: 55 start-page: 940 year: 2008 end-page: 953 article-title: MYBL2 is a new regulator of flavonoid biosynthesis in publication-title: Plant J. – volume: 60 start-page: 497 year: 2009 end-page: 506 article-title: Antioxidant activity and polyphenol content of green tea flavan‐3‐ols and oligomeric proanthocyanidins publication-title: Int. J. Food Sci. Nutr. – volume: 55 start-page: 507 year: 2014 end-page: 516 article-title: AtMYB7, a new player in the regulation of UV‐sunscreens in publication-title: Plant Cell Physiol. – volume: 122 start-page: 403 year: 2000 end-page: 414 article-title: Influence of the testa on seed dormancy, germination, and longevity in publication-title: Plant Physiol. – volume: 64 start-page: 633 year: 2010 end-page: 644 article-title: ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux publication-title: Plant J. – volume: 22 start-page: 832 year: 2010 end-page: 849 article-title: RNAi suppression of reveals that phenylalanine is synthesized predominantly via the arogenate pathway in petunia petals publication-title: Plant Cell – volume: 674 start-page: 57 year: 2010 end-page: 83 article-title: Identification of promoter regions and regulatory sites publication-title: Methods Mol. Biol. – volume: 19 start-page: 6150 year: 2000 end-page: 6161 article-title: Transcriptional repression by AtMYB4 controls production of UV‐protecting sunscreens in publication-title: EMBO J. – volume: 63 start-page: 3749 year: 2012 end-page: 3764 article-title: Metabolite profiling and quantitative genetics of natural variation for flavonoids in publication-title: J. Exp. Bot. – volume: 50 start-page: 660 year: 2007 end-page: 677 article-title: Differential regulation of closely related R2R3‐MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling publication-title: Plant J. – volume: 145 start-page: 601 year: 2007 end-page: 615 article-title: Early steps in proanthocyanidin biosynthesis in the model legume publication-title: Plant Physiol. – volume: 360 start-page: 1014 year: 2018 end-page: 1017 article-title: Feedback regulation of COOLAIR expression controls seed dormancy and flowering time publication-title: Science – volume: 23 start-page: 1795 year: 2011 end-page: 1814 article-title: The Jasmonate‐ZIM‐domain proteins interact with the WD‐Repeat/bHLH/MYB complexes to regulate Jasmonate‐mediated anthocyanin accumulation and trichome initiation in publication-title: Plant Cell – volume: 1 start-page: 15075 year: 2015 article-title: Transcription and processing of primary microRNAs are coupled by Elongator complex in publication-title: Nat. Plants – volume: 114 start-page: 3539 year: 2017 end-page: 3544 article-title: Noncanonical role of Arabidopsis COP1/SPA complex in repressing BIN2‐mediated PIF3 phosphorylation and degradation in darkness publication-title: Proc. Natl Acad. Sci. USA – volume: 282 start-page: 30827 year: 2007 end-page: 30835 article-title: Phenylalanine biosynthesis in identification and characterization of arogenate dehydratases publication-title: J. Biol. Chem. – volume: 97 start-page: 901 year: 2019 end-page: 922 article-title: Imbalance of tyrosine by modulating TyrA arogenate dehydrogenases impacts growth and development of Arabidopsis thaliana publication-title: Plant J. – volume: 178 start-page: 2237 year: 2008 end-page: 2251 article-title: Semidominant mutations in reduced epidermal fluorescence 4 reduce phenylpropanoid content in Arabidopsis publication-title: Genetics – volume: 53 start-page: 814 year: 2008 end-page: 827 article-title: Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in seedlings publication-title: Plant J. – volume: 133 start-page: 1051 year: 2003 end-page: 1071 article-title: Genome‐wide characterization of the lignification toolbox in publication-title: Plant Physiol. – volume: 177 start-page: 115 year: 2018 end-page: 131 article-title: Reduced arogenate dehydratase expression: ramifications for photosynthesis and metabolism publication-title: Plant Physiol. – volume: 8 start-page: 943 year: 2017a article-title: Functional characterization of tea ( ) MYB4a transcription factor using an integrative approach publication-title: Front. Plant Sci. – volume: 165 start-page: 886 year: 2008 end-page: 894 article-title: Expression analysis of anthocyanin regulatory genes in response to different light qualities in publication-title: J. Plant. Physiol. – volume: 63 start-page: 73 year: 2012 end-page: 105 article-title: The shikimate pathway and aromatic amino acid biosynthesis in plants publication-title: Annu. Rev. Plant Biol. – ident: e_1_2_9_9_1 doi: 10.1073/pnas.1107161108 – ident: e_1_2_9_15_1 doi: 10.1104/pp.122.2.403 – ident: e_1_2_9_37_1 doi: 10.1080/09637480701781490 – ident: e_1_2_9_38_1 doi: 10.1111/tpj.14169 – ident: e_1_2_9_11_1 doi: 10.1016/j.molp.2016.09.010 – ident: e_1_2_9_18_1 doi: 10.1038/nplants.2015.75 – ident: e_1_2_9_54_1 doi: 10.1111/j.1365-313X.2011.04779.x – ident: e_1_2_9_52_1 doi: 10.1111/nph.12620 – ident: e_1_2_9_57_1 doi: 10.1016/j.tplants.2010.12.005 – ident: e_1_2_9_46_1 doi: 10.1111/j.1469-8137.2011.03922.x – ident: e_1_2_9_16_1 doi: 10.1105/tpc.17.00282 – ident: e_1_2_9_40_1 doi: 10.1046/j.1365-313X.2003.01916.x – ident: e_1_2_9_51_1 doi: 10.1104/pp.105.066688 – ident: e_1_2_9_50_1 doi: 10.1105/tpc.10.2.135 – ident: e_1_2_9_56_1 doi: 10.1104/pp.109.138180 – ident: e_1_2_9_29_1 doi: 10.1111/tpj.13324 – ident: e_1_2_9_4_1 doi: 10.1111/j.1365-313X.2004.02138.x – ident: e_1_2_9_5_1 doi: 10.1074/jbc.M111.312298 – ident: e_1_2_9_41_1 doi: 10.1111/j.1744-7909.2011.01042.x – ident: e_1_2_9_39_1 doi: 10.1104/pp.107.107326 – ident: e_1_2_9_34_1 doi: 10.1104/pp.114.240507 – ident: e_1_2_9_26_1 doi: 10.1093/emboj/19.22.6150 – ident: e_1_2_9_25_1 doi: 10.1073/pnas.1316622110 – ident: e_1_2_9_13_1 doi: 10.1016/j.jplph.2007.06.010 – ident: e_1_2_9_8_1 doi: 10.1111/j.1744-7909.2010.00905.x – ident: e_1_2_9_14_1 doi: 10.1074/jbc.M111.322164 – ident: e_1_2_9_32_1 doi: 10.1146/annurev-arplant-042811-105439 – ident: e_1_2_9_23_1 doi: 10.1104/pp.17.01766 – ident: e_1_2_9_49_1 doi: 10.1111/j.1365-313X.2007.03078.x – ident: e_1_2_9_36_1 doi: 10.1105/tpc.106.046029 – ident: e_1_2_9_2_1 doi: 10.1016/j.tplants.2007.11.012 – ident: e_1_2_9_43_1 doi: 10.1038/s41467-018-07969-2 – ident: e_1_2_9_20_1 doi: 10.1093/pcp/pct187 – ident: e_1_2_9_24_1 doi: 10.1093/jxb/erq179 – ident: e_1_2_9_12_1 doi: 10.1074/jbc.M702662200 – ident: e_1_2_9_19_1 doi: 10.1111/j.1365-313X.2010.04363.x – ident: e_1_2_9_31_1 doi: 10.1104/pp.114.241877 – ident: e_1_2_9_22_1 doi: 10.1111/j.1365-313X.2007.03373.x – ident: e_1_2_9_48_1 doi: 10.1534/genetics.107.083881 – ident: e_1_2_9_21_1 doi: 10.1199/tab.0152 – ident: e_1_2_9_27_1 doi: 10.1111/j.1469-8137.2010.03432.x – ident: e_1_2_9_45_1 doi: 10.1093/jxb/ers067 – ident: e_1_2_9_28_1 doi: 10.3389/fpls.2017.00943 – ident: e_1_2_9_17_1 doi: 10.1111/j.1365-313X.2008.03564.x – ident: e_1_2_9_53_1 doi: 10.1105/tpc.17.00845 – ident: e_1_2_9_55_1 doi: 10.1073/pnas.0802254105 – ident: e_1_2_9_44_1 doi: 10.1104/pp.103.026484 – ident: e_1_2_9_35_1 doi: 10.1111/nph.15741 – ident: e_1_2_9_42_1 doi: 10.1105/tpc.111.083261 – ident: e_1_2_9_6_1 doi: 10.1038/nature13084 – ident: e_1_2_9_7_1 doi: 10.1105/tpc.12.12.2383 – ident: e_1_2_9_47_1 doi: 10.1007/978-1-60761-854-6_5 – ident: e_1_2_9_3_1 doi: 10.1111/pce.13393 – ident: e_1_2_9_30_1 doi: 10.1073/pnas.1700850114 – ident: e_1_2_9_10_1 doi: 10.1126/science.aar7361 – ident: e_1_2_9_33_1 doi: 10.1105/tpc.109.073247 |
SSID | ssj0017364 |
Score | 2.6962183 |
Snippet | SUMMARY
Flavonoids are major secondary metabolites derived from the plant phenylpropanoid pathway that play important roles in plant development and also have... Flavonoids are major secondary metabolites derived from the plant phenylpropanoid pathway that play important roles in plant development and also have benefits... SUMMARYFlavonoids are major secondary metabolites derived from the plant phenylpropanoid pathway that play important roles in plant development and also have... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 637 |
SubjectTerms | anthocyanins Arabidopsis Arabidopsis - enzymology Arabidopsis - genetics Arabidopsis - physiology Biosynthesis Biosynthetic Pathways Dehydration Enzymes Flavonoids Flavonoids - metabolism Gene expression Helix-loop-helix proteins (basic) Homology mediator Metabolism Metabolites Phenylalanine Prephenate Dehydrogenase - genetics Prephenate Dehydrogenase - metabolism proanthocyanidins Repressor Proteins - genetics Repressor Proteins - metabolism Repressors Secondary metabolites Transcription factors |
Title | Arabidopsis MYB4 plays dual roles in flavonoid biosynthesis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.14570 https://www.ncbi.nlm.nih.gov/pubmed/31626358 https://www.proquest.com/docview/2347489698 https://search.proquest.com/docview/2307145416 |
Volume | 101 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5EPHjx_VhfRPHgpbJJ-tjgaVcUERQRBQWhJE0DRWkXuyusv96Zdlt8IIi3QpOmzczX-SadfAU41F1uI8MDz1faYYISOE8ZazxuFXpXYkhCiqotrsOLe__yIXiYgZNmL0ytD9EuuBEyqvc1AVyb8hPIR0OCeRBRvs4RJkSIblvpKB7JWjoKGbqHUVNMVYWoiqft-TUW_SCYX_lqFXDOF-GpudW6zuT5eDwyx8n7NxXHfz7LEixMiSjr156zDDNpvgJzgwLJ4mQVTvqv2mS2GJZZya4eBz4bvuhJyWjnFqOKxJJlOXMv-q3Ii8wykxXlJEcyie3X4P787O70wpv-Z8FLSH_PS23XUl7hNGZPykYYN0WiApWEUWSFb1KlQ8V1KE2Kocx1rZHcJCGtGGFw506uw2xe5OkmsCSwyud4FV84X3a1Fk5G0qVW9BLei0QHDpoZj4e1nEbcpCE4CXE1CR3YaWwRTxFVxkL6JJQTql4H9tvTiAX6wKHztBhTG9qOFSDH7MBGbcN2FMkr3R3sfVRZ4vfh47uby-pg6-9Nt2FeUCJelXPvwOzodZzuIlsZmb3KLT8A8ovjAA |
link.rule.ids | 315,781,785,1376,27929,27930,46299,46723 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS-QwFL2ILuy-6Oru6vgZxQdfKpOkHxP0RWVl_ERkBPdhKUnTQHFoBzuzMPvrvbedllVZWPat0KRpk5zec9KbU4B93eU2MjzwfKUdCpTAecpY43GrcHYlhiykKNviNuw_-JePweMcHDd7YWp_iHbBjZBRva8J4LQg_QfKxyPCeRChYF9AuNeC6r41j-KRrM2jkKN7GDfFzFeI8njaqq-j0TuK-ZqxViHnfAl-NjdbZ5o8HU7G5jD5_cbH8X-f5jMszrgoO6knzzLMpfkKfDgtkC9Ov8DRybM2mS1GZVaymx-nPhsN9bRktHmLUVJiybKcuaH-VeRFZpnJinKaI5_E8l_h4fz74KzvzX614CVkweeltmtJWjiNAkrZCEOnSFSgkjCKrPBNqnSouA6lSTGaua41kpskpEUjjO_cyW8wnxd5ugYsCazyOV7FF86XXa2Fk5F0qRW9hPci0YG9psvjUe2oETdKBDshrjqhA5vNYMQzUJWxkD555YSq14Hd9jTCgb5x6DwtJlSGdmQFSDM7sFoPYtuK5JX1DtY-qIbi783Hg7vL6mD934vuwMf-4OY6vr64vdqAT4J0eZXdvQnz4-dJuoXkZWy2qzn6AjBF5xw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB-OVsQXW7_q6dWu4kNfUm4_ktzSp17r0VYth7RQQQi72SwESxKaO-H8651JLsFaBPEtkNlsdnZm5zeb2V8A3psxd7HlYaC08ZighD7Q1tmAO43WlVqikKJqi4vo9EqdX4fXAzjszsK0_BD9hht5RrNek4NXzv_m5IuK3DyMMV_fVBGuqoSIvvTcUTyWLXcUQvQAw6ZY0wpRGU_f9G4wuocw7wLWJuLMtuBb965tocn3g-XCHqQ__6Bx_M_BbMPjNRJlR63pPIFBVjyFB9MS0eLqGRwe3Rqbu7Kq85p9_jpVrLoxq5rR0S1GJYk1ywvmb8yPsihzx2xe1qsC0STKP4er2YfL49Ng_aOFICUCviBzY0eJhTeYPmkXY-AUqQ51GsWxE8pm2kSam0jaDGOZHzsruU0j2jLC6M69fAEbRVlkL4GlodOK41OU8EqOjRFextJnTkxSPonFEN51Gk-qlk8j6fIQVELSKGEIo24ukrVL1YmQiphyIj0Zwtv-NjoDfeEwRVYuSYbOY4UIMoew085h34vkDfEOtt5vZuLv3SeX8_Pm4tW_i-7Bw_nJLPl0dvHxNTwSlJQ3pd0j2FjcLrNdRC4L-6ax0F-nDeXU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arabidopsis+MYB4+plays+dual+roles+in+flavonoid+biosynthesis&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Wang%2C+Xiao-Chen&rft.au=Wu%2C+Jie&rft.au=Guan%2C+Meng-Ling&rft.au=Zhao%2C+Cui-Huan&rft.date=2020-02-01&rft.eissn=1365-313X&rft.volume=101&rft.issue=3&rft.spage=637&rft_id=info:doi/10.1111%2Ftpj.14570&rft_id=info%3Apmid%2F31626358&rft.externalDocID=31626358 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon |