Hypervalent aryliodine compounds as precursors for radiofluorination

Over the last 2 decades or so, hypervalent iodine compounds, such as diaryliodonium salts and aryliodonium ylides, have emerged as useful precursors for labeling homoarenes and heteroarenes with no‐carrier‐added cyclotron‐produced [18F]fluoride ion (t1/2 = 109.8 min). They permit rapid and effective...

Full description

Saved in:
Bibliographic Details
Published inJournal of labelled compounds & radiopharmaceuticals Vol. 61; no. 3; pp. 196 - 227
Main Author Pike, Victor W.
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Over the last 2 decades or so, hypervalent iodine compounds, such as diaryliodonium salts and aryliodonium ylides, have emerged as useful precursors for labeling homoarenes and heteroarenes with no‐carrier‐added cyclotron‐produced [18F]fluoride ion (t1/2 = 109.8 min). They permit rapid and effective radiofluorination at electron‐rich as well as electron‐deficient aryl rings, and often with unrestricted choice of ring position. Consequently, hypervalent aryliodine compounds have found special utility as precursors to various small‐molecule 18F‐labeling synthons and to many radiotracers for biomedical imaging with positron emission tomography. This review summarizes this advance in radiofluorination chemistry, with emphasis on precursor synthesis, radiofluorination mechanism, method scope, and method application. Hypervalent iodine compounds, such as diaryliodonium salts and aryliodonium ylides, have emerged as useful precursors for labeling arenes, either as labeling synthons or as PET radiotracers, with no‐carrier‐added [18F]fluoride ion (t1/2 = 109.8 minutes). This review summarizes this advance in radiofluorination chemistry, with emphasis on precursor synthesis, radiofluorination mechanism, method scope, and method application.
AbstractList Over the last 2 decades or so, hypervalent iodine compounds, such as diaryliodonium salts and aryliodonium ylides, have emerged as useful precursors for labeling homoarenes and heteroarenes with no-carrier-added cyclotron-produced [ F]fluoride ion (t  = 109.8 min). They permit rapid and effective radiofluorination at electron-rich as well as electron-deficient aryl rings, and often with unrestricted choice of ring position. Consequently, hypervalent aryliodine compounds have found special utility as precursors to various small-molecule F-labeling synthons and to many radiotracers for biomedical imaging with positron emission tomography. This review summarizes this advance in radiofluorination chemistry, with emphasis on precursor synthesis, radiofluorination mechanism, method scope, and method application.
Over the last 2 decades or so, hypervalent iodine compounds, such as diaryliodonium salts and aryliodonium ylides, have emerged as useful precursors for labeling homoarenes and heteroarenes with no-carrier-added cyclotron-produced [18 F]fluoride ion (t1/2 = 109.8 min). They permit rapid and effective radiofluorination at electron-rich as well as electron-deficient aryl rings, and often with unrestricted choice of ring position. Consequently, hypervalent aryliodine compounds have found special utility as precursors to various small-molecule 18 F-labeling synthons and to many radiotracers for biomedical imaging with positron emission tomography. This review summarizes this advance in radiofluorination chemistry, with emphasis on precursor synthesis, radiofluorination mechanism, method scope, and method application.Over the last 2 decades or so, hypervalent iodine compounds, such as diaryliodonium salts and aryliodonium ylides, have emerged as useful precursors for labeling homoarenes and heteroarenes with no-carrier-added cyclotron-produced [18 F]fluoride ion (t1/2 = 109.8 min). They permit rapid and effective radiofluorination at electron-rich as well as electron-deficient aryl rings, and often with unrestricted choice of ring position. Consequently, hypervalent aryliodine compounds have found special utility as precursors to various small-molecule 18 F-labeling synthons and to many radiotracers for biomedical imaging with positron emission tomography. This review summarizes this advance in radiofluorination chemistry, with emphasis on precursor synthesis, radiofluorination mechanism, method scope, and method application.
Over the last 2 decades or so, hypervalent iodine compounds, such as diaryliodonium salts and aryliodonium ylides, have emerged as useful precursors for labeling homoarenes and heteroarenes with no‐carrier‐added cyclotron‐produced [ 18 F]fluoride ion ( t 1/2  = 109.8 min). They permit rapid and effective radiofluorination at electron‐rich as well as electron‐deficient aryl rings, and often with unrestricted choice of ring position. Consequently, hypervalent aryliodine compounds have found special utility as precursors to various small‐molecule 18 F‐labeling synthons and to many radiotracers for biomedical imaging with positron emission tomography. This review summarizes this advance in radiofluorination chemistry, with emphasis on precursor synthesis, radiofluorination mechanism, method scope, and method application.
Over the last 2 decades or so, hypervalent iodine compounds, such as diaryliodonium salts and aryliodonium ylides, have emerged as useful precursors for labeling homoarenes and heteroarenes with no‐carrier‐added cyclotron‐produced [18F]fluoride ion (t1/2 = 109.8 min). They permit rapid and effective radiofluorination at electron‐rich as well as electron‐deficient aryl rings, and often with unrestricted choice of ring position. Consequently, hypervalent aryliodine compounds have found special utility as precursors to various small‐molecule 18F‐labeling synthons and to many radiotracers for biomedical imaging with positron emission tomography. This review summarizes this advance in radiofluorination chemistry, with emphasis on precursor synthesis, radiofluorination mechanism, method scope, and method application.
Over the last 2 decades or so, hypervalent iodine compounds, such as diaryliodonium salts and aryliodonium ylides, have emerged as useful precursors for labeling homoarenes and heteroarenes with no‐carrier‐added cyclotron‐produced [18F]fluoride ion (t1/2 = 109.8 min). They permit rapid and effective radiofluorination at electron‐rich as well as electron‐deficient aryl rings, and often with unrestricted choice of ring position. Consequently, hypervalent aryliodine compounds have found special utility as precursors to various small‐molecule 18F‐labeling synthons and to many radiotracers for biomedical imaging with positron emission tomography. This review summarizes this advance in radiofluorination chemistry, with emphasis on precursor synthesis, radiofluorination mechanism, method scope, and method application. Hypervalent iodine compounds, such as diaryliodonium salts and aryliodonium ylides, have emerged as useful precursors for labeling arenes, either as labeling synthons or as PET radiotracers, with no‐carrier‐added [18F]fluoride ion (t1/2 = 109.8 minutes). This review summarizes this advance in radiofluorination chemistry, with emphasis on precursor synthesis, radiofluorination mechanism, method scope, and method application.
Author Pike, Victor W.
Author_xml – sequence: 1
  givenname: Victor W.
  orcidid: 0000-0001-9032-2553
  surname: Pike
  fullname: Pike, Victor W.
  email: pikev@mail.nih.gov
  organization: National Institute of Mental Health, National Institutes of Health
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28981159$$D View this record in MEDLINE/PubMed
BookMark eNp90M9P2zAUwHFrAo0WduAfQJG4bIfAc2In9hGVbQVVQkJwthz_kFy5drATUP_7pZTtUImdfHif92R95-goxGAQOsdwhQGq67VX6aqmLXxBMwycl7gm5AjNoG6qkjCoT9A85zXANCPkKzqpGGcYUz5Dt8ttb9Kr9CYMhUxb76J2wRQqbvo4Bp0LmYs-GTWmHFMubExFktpF68eYXJCDi-EMHVvps_n28Z6i518_nxbLcvXw-25xsyoVoQRKrbVizOKGcUUZUE1MV1PddK22tazqjlGsVdMSZYltCFdgOl6BoS3TgG1Xn6Lv-7t9ii-jyYPYuKyM9zKYOGaBOWkb3HLGJ3p5QNdxTGH6nagAc6CYwE5dfKix2xgt-uQ2UwTxt88EfuyBSjHnZOw_gkHs2otde7FrP9nrA6vc8N5nSNL5_228OW-2n58W96vF4_vGHzITlhA
CitedBy_id crossref_primary_10_1021_jacs_8b06730
crossref_primary_10_1039_C9OB01187K
crossref_primary_10_1021_acs_orglett_0c01705
crossref_primary_10_1021_acs_oprd_9b00021
crossref_primary_10_1021_acs_orglett_3c03499
crossref_primary_10_1021_acs_joc_9b00019
crossref_primary_10_3390_molecules25194365
crossref_primary_10_1186_s41181_019_0073_4
crossref_primary_10_1016_j_addr_2021_114086
crossref_primary_10_1039_D1OB01023A
crossref_primary_10_1039_D0OB01401J
crossref_primary_10_1002_ange_201805501
crossref_primary_10_1021_acs_jmedchem_1c01562
crossref_primary_10_1021_acs_joc_4c00593
crossref_primary_10_3390_app12010321
crossref_primary_10_3390_catal10050483
crossref_primary_10_1021_acschemneuro_4c00715
crossref_primary_10_1039_C8CC06211K
crossref_primary_10_3390_ph17121723
crossref_primary_10_1021_acs_chemrev_4c00303
crossref_primary_10_1039_D2NJ02731C
crossref_primary_10_1186_s41181_020_00104_x
crossref_primary_10_1016_j_nucmedbio_2019_10_003
crossref_primary_10_3390_pharmaceutics14102207
crossref_primary_10_1002_tcr_202100086
crossref_primary_10_1038_s41467_023_36377_4
crossref_primary_10_1038_s41467_024_49975_7
crossref_primary_10_1002_ejoc_202000934
crossref_primary_10_1021_acs_joc_4c01505
crossref_primary_10_3390_ijms232415481
crossref_primary_10_1021_acs_orglett_8b03450
crossref_primary_10_1038_s41596_020_0305_9
crossref_primary_10_1021_acs_chemrev_4c00808
crossref_primary_10_1002_ajoc_201800494
crossref_primary_10_1002_anie_201805501
crossref_primary_10_1002_cmdc_202200472
crossref_primary_10_3390_molecules28062732
crossref_primary_10_1007_s40336_018_0280_0
Cites_doi 10.1021/acs.joc.6b02811
10.1039/a802349b
10.1556/JFC-D-13-00034
10.3998/ark.5550190.0004.606
10.1021/acschemneuro.6b00192
10.2174/138161205774424645
10.1021/jo100361d
10.1002/jlcr.1853
10.1021/jm400770g
10.1021/jo00163a022
10.1016/j.apradiso.2005.03.005
10.1021/acschemneuro.6b00445
10.1039/a704062h
10.1016/j.nucmedbio.2009.05.008
10.3390/molecules16097621
10.1007/s00259-013-2558-9
10.1021/jm4012017
10.1039/C6SC00197A
10.1016/j.tetlet.2013.02.018
10.1002/chem.201604803
10.1002/jlcr.25804401312
10.1021/jo01296a050
10.1016/j.bmc.2011.03.029
10.1021/acs.joc.5b02332
10.1007/978-3-540-49527-7_3
10.1016/j.bmcl.2015.04.055
10.2174/1568026614666140202205035
10.1002/chem.201405586
10.3390/molecules18078618
10.1021/acschemneuro.5b00202
10.1039/dt9770000217
10.1002/chem.201000607
10.2174/0929867323666160418114826
10.1002/(SICI)1099-1344(199910)42:10<975::AID-JLCR256>3.0.CO;2-E
10.1039/C4OB01336K
10.1007/3-540-46114-0_2
10.1002/cber.19270600539
10.1016/S0040-4039(98)02710-5
10.1039/c2cc35708a
10.1002/ejoc.201500986
10.1021/jo202517v
10.1007/978-3-540-49527-7_4
10.1039/b412871k
10.1039/c3ob40742j
10.1002/jlcr.3367
10.1038/ncomms5365
10.1021/ol201080c
10.1016/S0022-1139(00)81524-9
10.1039/a906212b
10.3390/molecules21091160
10.1002/jlcr.1898
10.1107/S0567740877006694
10.1002/anie.201606381
10.3390/molecules20010470
10.2967/jnumed.110.075895
10.1002/jlcr.709
10.1021/acs.jmedchem.6b00905
10.1039/c1ob05555k
10.1039/b701864a
10.2174/13852728113179990106
10.1021/bc100263y
10.1021/acs.chemrev.5b00493
10.1002/anie.201505927
10.1021/jo101227j
10.1016/j.bmcl.2015.11.091
10.1021/cr00054a001
10.1002/ejoc.201200695
10.1038/ncomms15761
10.1039/C4RA00674G
10.1039/c1ob06277h
10.1002/jlac.18862350302
10.1021/bc800544p
10.1021/acschemneuro.6b00268
10.1016/j.apradiso.2013.08.011
10.1021/acs.orglett.7b01902
10.1021/jo01296a049
10.1039/C39950002215
10.1021/jm400156p
10.1021/acs.jmedchem.7b00432
10.1039/a809349k
10.1016/0883-2889(91)90179-5
10.1016/j.comptc.2015.05.012
10.1002/ejoc.201100382
10.1021/jm00106a055
10.2967/jnumed.114.151332
10.2967/jnumed.115.162461
10.1002/jlcr.830
10.1016/j.jfluchem.2006.10.018
10.1016/0969-8051(93)90082-6
10.1002/anie.201204687
10.1021/ol501243g
10.1016/j.neuroimage.2008.12.005
10.1021/om5007903
10.1002/ejoc.201701596
10.1021/ja066850h
10.1016/S0040-4039(00)00861-3
10.1021/ol101154h
10.1021/jo00883a004
10.1016/j.bmcl.2016.07.078
10.3998/ark.5550190.p008.225
10.1246/bcsj.45.1860
10.1016/j.nucmedbio.2004.11.001
10.1021/acs.joc.5b02833
10.2967/jnumed.115.160960
10.1016/j.tet.2012.03.113
10.1007/978-3-540-49527-7_2
10.1021/ja01511a020
10.1021/ol4025716
10.1002/jlcr.834
10.1007/s13139-009-0008-1
10.1002/anie.200904689
10.1021/jo00193a039
10.1039/c2cc35005j
10.1016/j.apradiso.2016.04.030
10.1002/ejoc.200800114
10.1021/jo8004974
10.1002/adsc.200700373
10.1016/j.tetlet.2007.10.025
10.1039/c3ob41353e
10.2967/jnumed.114.145730
10.1007/s11307-014-0738-z
10.1021/ja01107a046
10.1016/j.jfluchem.2015.08.006
10.1155/2014/812973
10.1002/jlcr.3285
10.1039/DT9840001709
10.1016/j.tips.2009.05.005
10.1002/ejoc.201601448
10.1016/j.nucmedbio.2009.01.011
10.1039/C7OB00628D
10.1039/b000868k
10.1039/dt9870000193
ContentType Journal Article
Copyright Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Copyright © 2018 John Wiley & Sons, Ltd.
Copyright_xml – notice: Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
– notice: Copyright © 2018 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/jlcr.3570
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1099-1344
EndPage 227
ExternalDocumentID 28981159
10_1002_jlcr_3570
JLCR3570
Genre article
Journal Article
Research Support, N.I.H., Intramural
Review
GrantInformation_xml – fundername: Intramural Research Program of the National Institutes of Health
  funderid: NIMH: ZIA MH002793
– fundername: NIMH NIH HHS
  grantid: ZIA MH002793
– fundername: Intramural NIH HHS
  grantid: ZIA MH002793
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
GWYGA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M6Q
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RX1
SAMSI
SUPJJ
TUS
UB1
V2E
VH1
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWP
WXSBR
WYISQ
XG1
XV2
YCJ
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4540-dddc88f1689c5805d4eb35d6b7df3a23b851dc674cf4f649c0eb920e578d01fb3
IEDL.DBID DR2
ISSN 0362-4803
1099-1344
IngestDate Fri Jul 11 08:43:17 EDT 2025
Fri Jul 25 12:09:32 EDT 2025
Mon Jul 21 06:04:05 EDT 2025
Tue Jul 01 01:20:57 EDT 2025
Thu Apr 24 23:08:09 EDT 2025
Wed Jan 22 16:52:44 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords diaryliodonium salt
fluorine 18
aryliodonium ylide
radiofluorination
radiotracer
PET
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4540-dddc88f1689c5805d4eb35d6b7df3a23b851dc674cf4f649c0eb920e578d01fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-9032-2553
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/10081107
PMID 28981159
PQID 2019051409
PQPubID 1006402
PageCount 32
ParticipantIDs proquest_miscellaneous_1947617989
proquest_journals_2019051409
pubmed_primary_28981159
crossref_primary_10_1002_jlcr_3570
crossref_citationtrail_10_1002_jlcr_3570
wiley_primary_10_1002_jlcr_3570_JLCR3570
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2018
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: March 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Bognor Regis
PublicationTitle Journal of labelled compounds & radiopharmaceuticals
PublicationTitleAlternate J Labelled Comp Radiopharm
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 12
2010; 16
2007; 349
2017; 82
1980; 45
1993; 20
2005; 63
2011; 52
2011; 54
1999; 42
1997; 1
1999; 40
2001; 44
1972; 45
1953; 75
1977
2013; 54
2013; 56
1995; 21
1987
2014; 16
2003; 46
2014; 14
1984
2014; 12
2015; 1066
2015; 56
1976; 41
2015; 58
1886; 235
2017; 60
1984; 49
2004; 47
2015; 54
2014; 41
2011; 9
2010; 44
2016; 7
1986; 27
2016; 21
2013; 82
1983; 83
1998; 1
2005; 3
2012; 48
2003; 224
2016; 26
2005; 11
1927; 60
2014; 33
2016; 23
2009; 45
2017; 8
2000; 41
1992; 19
2011; 13
2011; 16
2008; 73
2011; 19
2009; 48
2012; 51
2013; 18
2014; 5
2013; 15
2009; 52
2014; 4
2014; 3
2013; 17
2013; 11
2000
1991; 42
2015; 178
1982; 21
2011; 22
2005; 32
2016; 116
2016; 81
2016; 115
2012; 68
2010; 75
2007; 129
2015; 6
1959; 81
2007; 128
2009; 20
2012
1991; 34
2011
2010
2017; 23
2008
2007
2003
1999; 2
1999; 1
2012; 77
2016; 59
2016; 57
2016; 55
2009; 36
2015; 25
2009; 30
2017; 15
2015; 20
2015; 21
2017
2017; 19
2015
2014
2013
1983; 48
2007; 48
e_1_2_6_114_1
e_1_2_6_137_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_95_1
e_1_2_6_118_1
e_1_2_6_72_1
e_1_2_6_91_1
e_1_2_6_110_1
e_1_2_6_133_1
e_1_2_6_19_1
e_1_2_6_34_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_99_1
Ochiai M (e_1_2_6_79_1) 2003
e_1_2_6_125_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_106_1
e_1_2_6_129_1
e_1_2_6_41_1
e_1_2_6_83_1
Charlton M (e_1_2_6_107_1) 2013; 56
e_1_2_6_140_1
e_1_2_6_121_1
e_1_2_6_102_1
e_1_2_6_144_1
e_1_2_6_9_1
e_1_2_6_5_1
Zhdankin VV (e_1_2_6_33_1) 2014
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_68_1
e_1_2_6_73_1
e_1_2_6_136_1
Alcock NW (e_1_2_6_29_1) 1984
e_1_2_6_54_1
e_1_2_6_96_1
e_1_2_6_117_1
e_1_2_6_50_1
e_1_2_6_92_1
e_1_2_6_132_1
Terrier F (e_1_2_6_12_1) 2011
e_1_2_6_35_1
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_58_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_105_1
e_1_2_6_128_1
e_1_2_6_65_1
e_1_2_6_80_1
e_1_2_6_109_1
e_1_2_6_61_1
e_1_2_6_120_1
Yan R (e_1_2_6_113_1) 2009; 52
e_1_2_6_101_1
e_1_2_6_124_1
e_1_2_6_143_1
Zhu M (e_1_2_6_60_1) 2008
e_1_2_6_6_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_97_1
e_1_2_6_116_1
e_1_2_6_139_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_93_1
e_1_2_6_131_1
Hamacher K (e_1_2_6_15_1) 1986; 27
e_1_2_6_112_1
e_1_2_6_135_1
Luxen A (e_1_2_6_20_1) 1992; 19
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_85_1
e_1_2_6_104_1
e_1_2_6_43_1
e_1_2_6_127_1
e_1_2_6_81_1
e_1_2_6_108_1
e_1_2_6_142_1
Zhdankin VV (e_1_2_6_31_1) 2014
e_1_2_6_100_1
e_1_2_6_146_1
e_1_2_6_123_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_98_1
e_1_2_6_115_1
Yusubov MS (e_1_2_6_11_1) 2013
e_1_2_6_75_1
e_1_2_6_138_1
e_1_2_6_10_1
e_1_2_6_94_1
e_1_2_6_119_1
e_1_2_6_71_1
e_1_2_6_90_1
e_1_2_6_130_1
e_1_2_6_111_1
e_1_2_6_134_1
e_1_2_6_14_1
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_37_1
e_1_2_6_103_1
e_1_2_6_126_1
e_1_2_6_63_1
e_1_2_6_86_1
e_1_2_6_21_1
Zhdankin VV (e_1_2_6_30_1) 2014
e_1_2_6_40_1
e_1_2_6_82_1
e_1_2_6_141_1
e_1_2_6_122_1
e_1_2_6_145_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_44_1
Bielawski M (e_1_2_6_62_1) 2014; 3
e_1_2_6_67_1
References_xml – volume: 3
  start-page: 19
  year: 2014
  end-page: 22
  article-title: One‐pot synthesis and applications of ‐heteroaryl iodonium salts
  publication-title: ChemOpen
– volume: 55
  start-page: 11882
  year: 2016
  end-page: 11886
  article-title: Efficient pathway for the preparation of aryl(isoquinoline)iodonium‐(III) salts and synthesis of radiofluorinated isoquinolines
  publication-title: Angew Chem Int Ed
– volume: 77
  start-page: 1931
  year: 2012
  end-page: 1938
  article-title: Regiospecific syntheses of functionalized diaryliodonium tosylates via [hydroxy(tosyloxy)iodo]arenes generated in situ from (diacetoxyiodo)arenes
  publication-title: J Org Chem
– volume: 60
  start-page: 1186
  year: 1927
  end-page: 1190
  article-title: Über aromatische Fluorverbindungen, I.: Ein neues Verfahren zu ihrer Darstellung
  publication-title: Ber dtsch Chem Ges A/B
– volume: 56
  start-page: 489
  year: 2015
  end-page: 492
  article-title: Iodonium ylide–mediated radiofluorination of F‐FPEB and validation for human use
  publication-title: J Nucl Med
– volume: 1066
  start-page: 34
  year: 2015
  end-page: 46
  article-title: Computational studies on hypervalent iodonium(III) compounds as activated precursors for F radiofluorination of electron‐rich arenes
  publication-title: Comput Theor Chem
– start-page: 592
  year: 2008
  end-page: 596
  article-title: One‐pot synthesis of diaryliodonium salts using toluenesulfonic acid: a fast entry to electron‐rich diaryliodonium tosylates and triflates
  publication-title: Synlett
– volume: 5
  start-page: 4365
  year: 2014
  end-page: 4371
  article-title: Spirocyclic hypervalent iodine(III)‐mediated radiofluorination of non‐activated and hindered aromatics
  publication-title: Nat Commun
– start-page: 364
  year: 2013
  end-page: 395
  article-title: Applications of iodonium salts and iodonium ylides as precursors for nucleophilic fluorination in positron emission tomography
  publication-title: ARKIVOC
– start-page: 35
  year: 2014
  end-page: 41
– start-page: 99
  year: 2014
  end-page: 105
– start-page: 15
  year: 2007
  end-page: 50
– start-page: 51
  year: 2007
  end-page: 78
– volume: 56
  start-page: 9146
  year: 2013
  end-page: 9155
  article-title: Synthesis and evaluation in monkey of [ F]4‐fluoro‐ ‐methyl‐ ‐(4‐(6‐(methylamino)pyrimidin‐4‐yl)thiazol‐2‐yl)benzamide ([ F]FIMX): a promising radioligand for PET imaging of brain metabotropic glutamate receptor 1 (mGluR1)
  publication-title: J Med Chem
– volume: 48
  start-page: 9052
  year: 2009
  end-page: 9070
  article-title: Diaryliodonium salts: a journey from obscurity to fame
  publication-title: Angew Chem Int Ed
– volume: 16
  start-page: 3224
  year: 2014
  end-page: 3227
  article-title: Copper‐catalyzed [ F]fluorination of (mesityl)(aryl)iodonium salts
  publication-title: Org Lett
– volume: 4
  start-page: 17293
  year: 2014
  end-page: 17299
  article-title: Iodonium ylides for one‐step, no‐carrier‐added radiofluorination of electron rich arenes, exemplified with 4‐(([ F]fluoro‐phenoxy)‐phenylmethyl)piperidine NET and SERT ligands
  publication-title: RSC Adv
– year: 2014
  article-title: F‐Labelled intermediates for radiosynthesis by modular build‐up reactions: newer developments
  publication-title: Biomed Res Int
– volume: 48
  start-page: 8632
  year: 2007
  end-page: 8635
  article-title: A practical route for synthesizing a PET ligand containing [ F]fluorobenzene using reaction of diphenyliodonium salt with [ F]F
  publication-title: Tetrahedron Lett
– volume: 116
  start-page: 719
  year: 2016
  end-page: 766
  article-title: F‐18‐Labeling of arenes and heteroarenes for applications in positron emission tomography
  publication-title: Chem Rev
– year: 2014
– volume: 63
  start-page: 329
  year: 2005
  end-page: 332
  article-title: Module assisted synthesis of the bifunctional labeling agent N‐succinimidyl 4‐[ F]fluorobenzoate ([ F]SFB)
  publication-title: Appl Radiat Isot
– volume: 75
  start-page: 7416
  year: 2010
  end-page: 7419
  article-title: Facile synthesis of Koser's reagent and derivatives from iodine or iodoarenes
  publication-title: J Org Chem
– start-page: 76
  year: 2014
  end-page: 84
– volume: 36
  start-page: 721
  year: 2009
  end-page: 727
  article-title: Improved work‐up procedure for the production of [ F]flumazenil and first results of its use with a high‐resolution research tomograph in human stroke
  publication-title: Nucl Med Biol
– volume: 12
  start-page: 8094
  year: 2014
  end-page: 8099
  article-title: Neither azeotropic drying, nor base nor other additives: a minimalist approach to F‐labeling
  publication-title: Org Biomol Chem
– volume: 9
  start-page: 8346
  year: 2011
  end-page: 8355
  article-title: Facile aromatic radiofluorination of [ F]flumazenil from diaryliodonium salts with evaluation of their stability and selectivity
  publication-title: Org Biomol Chem
– volume: 13
  start-page: 3158
  year: 2011
  end-page: 3161
  article-title: Unprecedented directing group ability of cyclophanes in arene fluorinations with diaryliodonium salts
  publication-title: Org Lett
– volume: 7
  start-page: 4407
  year: 2016
  end-page: 4417
  article-title: Mechanistic studies and radiofluorination of structurally diverse pharmaceuticals with spirocyclic iodonium(III) ylides
  publication-title: Chem Sci
– volume: 178
  start-page: 249
  year: 2015
  end-page: 253
  article-title: Synthesis of F‐arenes from spirocyclic iodonium(III) ylides via continuous‐flow microfluidics
  publication-title: J Fluor Chem
– volume: 25
  start-page: 2532
  year: 2015
  end-page: 2535
  article-title: Design, synthesis and preliminary evaluation of F‐labelled 1,8‐naphthyridin‐ and quinolin‐2‐one‐3‐carboxamide derivatives for PET imaging of CB cannabinoid receptor
  publication-title: Bioorg Med Chem Lett
– volume: 27
  start-page: 235
  year: 1986
  end-page: 238
  article-title: Efficient stereospecific synthesis of no‐carrier‐added 2‐[ F]‐fluoro‐2‐deoxy‐ ‐glucose using aminopolyether supported nucleophilic substitution
  publication-title: J Nucl Med
– start-page: 1
  year: 2011
  end-page: 94
– volume: 129
  start-page: 8018
  year: 2007
  end-page: 8025
  article-title: Nucleophilic F‐fluorination of heteroaromatic iodonium salts with no‐carrier‐added [ F]fluoride ion
  publication-title: J Am Chem Soc
– volume: 59
  start-page: 8955
  year: 2016
  end-page: 8966
  article-title: Enabling efficient positron emission tomography (PET) imaging of synaptic vesicle glycoprotein 2A (SV2A) with a robust and one‐step radiosynthesis of a highly potent F‐labeled ligand ([ F]UCB‐H)
  publication-title: J Med Chem
– volume: 36
  start-page: 403
  year: 2009
  end-page: 409
  article-title: Development of microwave‐based automated nucleophilic [ F]fluorination system and its application to the production of [ F]flumazenil
  publication-title: Nucl Med Biol
– volume: 59
  start-page: 30
  year: 2016
  end-page: 34
  article-title: Efficient automated syntheses of high specific activity 6‐[ F]fluorodopamine using a diaryliodonium salt precursor
  publication-title: J Label Compd Radiopharm
– year: 2017
  article-title: Quinuclidine and DABCO enhance the radiofluorinations of 5‐substituted 2‐halopyridines
  publication-title: Eur J Org Chem
– volume: 6
  start-page: 1870
  year: 2015
  end-page: 1879
  article-title: A practical, automated synthesis of meta‐[ F]fluorobenzylguanidine for clinical use
  publication-title: ACS Chem Neurosci
– volume: 41
  start-page: 322
  year: 2014
  end-page: 332
  article-title: Synthesis and evaluation of F‐labeled benzylguanidine analogs for targeting the human norepinephrine transporter
  publication-title: Eur J Nucl Med Mol Imaging
– volume: 48
  start-page: 10108
  year: 2012
  end-page: 10110
  article-title: New highly soluble dimedone‐derived iodonium ylides: preparation, X‐ray structure, and reaction with carbodiimide leading to oxazole derivatives
  publication-title: Chem Commun
– volume: 26
  start-page: 479
  year: 2016
  end-page: 483
  article-title: Facile synthesis of ‐[ F]fluorohippurate via iodonium ylide–mediated radiofluorination for PET renography
  publication-title: Bioorg Med Chem Lett
– volume: 83
  start-page: 83
  year: 1983
  end-page: 134
  article-title: Effect of conformational change on reactivity in organic chemistry. Evaluations, applications, and extensions of Curtin‐Hammett Winstein‐Holness kinetics
  publication-title: Chem Rev
– volume: 16
  start-page: 7621
  year: 2011
  end-page: 7626
  article-title: Synthesis of no‐carrier‐added 4‐[ F]fluorophenol from 4‐benzyloxyphenyl‐(2‐thienyl)iodonium bromide
  publication-title: Molecules
– volume: 45
  start-page: 1860
  year: 1972
  end-page: 1863
  article-title: Steric effect in the nucleophilic attack of bromide anion on diaryl‐ and aryl‐2‐thienyliodonium ions
  publication-title: Bull Chem Soc Jap
– volume: 12
  start-page: 3352
  year: 2010
  end-page: 3355
  article-title: Improved arene fluorination methodology for I(III) salts
  publication-title: Org Lett
– start-page: 1709
  year: 1984
  end-page: 1716
  article-title: Secondary bonding. Part 13. Aryl‐tellurium(IV) and ‐iodine(III) acetates and trifluoroacetates. The crystal and molecular structures of bis‐( ‐methoxyphenyl)tellurium diacetate, μ‐oxo‐bis[diphenyltrifluoroacetoxytellurium] hydrate, and [bis(trifluoroacetoxy)iodo]benzene
  publication-title: J Chem Soc Dalton Trans
– volume: 42
  start-page: 749
  year: 1991
  end-page: 762
  article-title: Recommendations for fluorine‐18 production
  publication-title: Appl Radiat Isot
– start-page: 649
  year: 2000
  end-page: 650
  article-title: Fluoridation of heteroaromatic iodonium salts—experimental evidence supporting theoretical prediction of the selectivity of the process
  publication-title: Chem Commun
– volume: 115
  start-page: 133
  year: 2016
  end-page: 137
  article-title: Automated synthesis of 4‐[ F]fluoroanisole, [ F]DAA1106 and 4‐[ F]FPhe using Cu‐mediated radiofluorination under “minimalist” conditions
  publication-title: Appl Radiat Isot
– volume: 45
  start-page: 1543
  year: 1980
  end-page: 1544
  article-title: New methodology in iodonium salt synthesis, reactions of [hydroxy(tosyloxy)iodo]arenes with aryltrimethylsilanes
  publication-title: J Org Chem
– volume: 52
  start-page: 216
  year: 2009
  article-title: The first single‐step‐single‐pot synthesis of 4‐[ F]SFB
  publication-title: J Label Compd Radiopharm
– year: 2010
– volume: 11
  start-page: 6300
  year: 2013
  end-page: 6306
  article-title: Single‐step syntheses of no‐carrier‐added functionalized [ F]fluoroarenes as labeling synthons from diaryliodonium salts
  publication-title: Org Biomol Chem
– volume: 3
  start-page: 503
  year: 2005
  end-page: 507
  article-title: Synthesis of F‐labelled cyclooxygenase‐2 (COX‐2) inhibitors via Stille reaction with 4‐[ F]fluoroiodobenzene as radiotracers for positron emission tomography (PET)
  publication-title: Org Biomol Chem
– volume: 68
  start-page: 4112
  year: 2012
  end-page: 4116
  article-title: Convenient preparation of (4‐iodophenyl)aryliodonium salts
  publication-title: Tetrahedron
– volume: 45
  start-page: 1542
  year: 1980
  end-page: 1543
  article-title: [Hydroxy tosyliodo]benzene, a versatile reagent for the mild oxidation of iodoarenes at the iodine atom by ligand transfer
  publication-title: J Org Chem
– volume: 81
  start-page: 342
  year: 1959
  end-page: 351
  article-title: Diaryliodonium salts. IX. The synthesis of substituted diphenyliodonium salts
  publication-title: J Am Chem Soc
– volume: 32
  start-page: 109
  year: 2005
  end-page: 116
  article-title: Preparation of highly specific radioactivity [ F]flumazenil and its evaluation in cynomolgus monkey by positron emission tomography
  publication-title: Nucl Med Biol
– volume: 41
  start-page: 5393
  year: 2000
  end-page: 5396
  article-title: New synthesis of diaryliodonium sulfonates from arylboronic acids
  publication-title: Tetrahedron Lett
– volume: 11
  start-page: 5094
  year: 2013
  end-page: 5099
  article-title: Radiofluorination of diaryliodonium tosylates under aqueous–organic and cryptand‐free conditions
  publication-title: Org Biomol Chem
– volume: 16
  start-page: 619
  year: 2014
  end-page: 625
  article-title: Routine production of [ F]flumazenil from iodonium tosylate using a sample pretreatment method: a 2.5‐year production report
  publication-title: Mol Imaging Biol
– start-page: 79
  year: 2007
  end-page: 111
– volume: 15
  start-page: 5134
  year: 2013
  end-page: 5137
  article-title: Cu‐catalyzed fluorination of diaryliodonium salts with KF
  publication-title: Org Lett
– volume: 52
  start-page: 147
  year: 2011
  end-page: 153
  article-title: Synthesis and in vivo evaluation of ‐ F‐fluorohippurate as a new radiopharmaceutical for assessment of renal function by PET
  publication-title: J Nucl Med
– start-page: 4541
  year: 2012
  end-page: 4547
  article-title: Single‐step radiosyntheses of “ F‐labeled click synthons” from azide‐functionalized diaryliodonium salts
  publication-title: Eur J Org Chem
– volume: 56
  start-page: 4912
  year: 2013
  end-page: 4920
  article-title: Design, synthesis, and initial evaluation of a high affinity positron emission tomography probe for imaging matrix metalloproteinases 2 and 9
  publication-title: J Med Chem
– volume: 19
  start-page: 3939
  year: 2017
  end-page: 3942
  article-title: Cu‐mediated C−H F‐fluorination of electron‐rich (hetero)arenes
  publication-title: Org Lett
– volume: 47
  start-page: 457
  year: 2004
  end-page: 468
  article-title: No‐carrier added synthesis of F‐labelled nucleosides using Stille cross‐coupling reactions with 4‐[ F]fluoroiodobenzene
  publication-title: J Label Compd Radiopharm
– volume: 20
  start-page: 503
  year: 1993
  end-page: 525
  article-title: Radioligands for PET studies of central benzodiazepine receptors and PK (peripheral benzodiazepine) binding sites—current status
  publication-title: Nucl Med Biol
– volume: 54
  start-page: 633
  year: 2011
  end-page: 636
  article-title: A first synthesis of F‐radiolabeled lapatinib: a potential tracer for positron emission tomographic imaging of ErbB1/ErbB2 tyrosine kinase activity
  publication-title: J Label Compd Radiopharm
– volume: 41
  start-page: 3360
  year: 1976
  end-page: 3336
  article-title: The ortho effect in the pyrolysis of iodonium halides. A case for a sterically controlled nucleophilic aromatic (SN) substitution reaction
  publication-title: J Org Chem
– volume: 47
  start-page: 429
  year: 2004
  end-page: 441
  article-title: Comparison of pathways to the versatile synthon of no‐carrier‐added 1‐bromo‐4‐[ F]fluorobenzene
  publication-title: J Label Compd Radiopharm
– volume: 15
  start-page: 4351
  year: 2017
  end-page: 4358
  article-title: F‐Labelling of electron‐rich iodonium ylides: application to the radiosynthesis of potential 5‐HT receptor PET ligands
  publication-title: Org Biomol Chem
– volume: 57
  start-page: 242
  year: 2016
  end-page: 247
  article-title: The PET radioligand F‐FIMX images and quantifies metabotropic glutamate receptor 1 in proportion to the regional density of its gene transcript in human brain
  publication-title: J Nucl Med
– start-page: 193
  year: 1987
  end-page: 196
  article-title: Secondary bonding. Part 14. Structural isomerism in diaryliodonium halides and the structure of di(p‐toly1)iodonium bromide
  publication-title: J Chem Soc Dalton Trans
– start-page: 2853
  year: 2008
  end-page: 2873
  article-title: Chemistry with [ F]fluoride ion
  publication-title: Eur J Org Chem
– volume: 40
  start-page: 1559
  year: 1999
  end-page: 1562
  article-title: Association and dissociation of (Z)‐(β‐bromoalkenyl)‐(phenyl)iodonium bromide in chloroform solution: detection of vinyl‐λ ‐iodane dimer in solution
  publication-title: Tetrahedron Lett
– volume: 44
  start-page: S889
  issue: Suppl. 1
  year: 2001
  end-page: S891
  article-title: Radiofluoridations of ‐substituted nitrobenzenes
  publication-title: J Label Compd Radiopharm
– volume: 73
  start-page: 4602
  year: 2008
  end-page: 4607
  article-title: Regiospecific one‐pot synthesis of diaryliodonium tetrafluoroborates from aryl boronic acids and iodoarenes
  publication-title: J Org Chem
– volume: 20
  start-page: 470
  year: 2015
  end-page: 486
  article-title: 4 [ F]Fluorophenylpiperazines by improved Hartwig‐Buchwald N‐arylation of 4‐[ F]fluoroiodobenzene, formed via hypervalent λ ‐iodane precursors: application to build‐up of the dopamine D ligand [ F]FAUC 316
  publication-title: Molecules
– start-page: 1620
  year: 1977
  end-page: 1622
  article-title: Iodobenzene diacetate
  publication-title: Acta Crystallogr
– volume: 33
  start-page: 5525
  year: 2014
  end-page: 5534
  article-title: Mechanistic investigations of Cu‐catalyzed fluorination of diaryliodonium salts: elaborating the Cu /Cu manifold in copper catalysis
  publication-title: Organometallics
– volume: 21
  start-page: 385
  year: 1982
  end-page: 392
  article-title: Conversion of diaryliodonium salts to fluoroarenes
  publication-title: J Fluor Chem
– volume: 56
  start-page: 7312
  year: 2013
  end-page: 7323
  article-title: 4‐[ F]Fluoro‐ ‐hydroxyphenethylguanidine: a radiopharmaceutical for quantifying regional cardiac sympathetic nerve density with positron emission tomography
  publication-title: J Med Chem
– start-page: 5919
  year: 2015
  end-page: 5924
  article-title: A mild and general one‐pot synthesis of densely functionalized diaryliodonium salts
  publication-title: Eur J Org Chem
– start-page: 2521
  year: 2007
  end-page: 2523
  article-title: High‐yielding one‐pot synthesis of diaryliodonium triflates from arenes and iodine or iodoarenes
  publication-title: Chem Commun
– volume: 21
  start-page: 2215
  year: 1995
  end-page: 2216
  article-title: Reactions of cyclotron‐produced [ F]fluoride with diaryliodonium salts—a novel single‐step route to no‐carrier‐added [ F]fluoroarenes
  publication-title: J Chem Soc Chem Commun
– volume: 224
  start-page: 5
  year: 2003
  end-page: 67
– volume: 22
  start-page: 108
  year: 2011
  end-page: 114
  article-title: General method for labeling siRNA by click chemistry with fluorine‐18 for the purpose of PET imaging
  publication-title: Bioconjug Chem
– volume: 4
  start-page: 86
  year: 2014
  end-page: 91
  article-title: Tolerance of water in microfluidic radiofluorinations: a potential methodological shift?
  publication-title: J Flow Chem
– volume: 34
  start-page: 861
  year: 1991
  end-page: 863
  article-title: Synthesis of high specific activity 6‐[ F]fluorodopamine for positron emission tomography studies of sympathetic nervous tissue
  publication-title: J Med Chem
– start-page: 4439
  year: 2011
  end-page: 4447
  article-title: Radiosyntheses of meta‐substituted [ F]fluoroarenes from [ F]fluoride ion and diaryliodonium tosylates within a microreactor
  publication-title: Eur J Org Chem
– volume: 58
  start-page: 183
  year: 2015
  end-page: 187
  article-title: [ F]6‐Fluoro‐3,4‐dihydroxy‐ ‐phenylalanine—recent modern syntheses for an elusive radiotracer
  publication-title: J Label Compd Radiopharm
– volume: 14
  start-page: 875
  year: 2014
  end-page: 900
  article-title: Radiosyntheses using fluorine‐18: the art and science of late stage fluorination
  publication-title: Curr Top Med Chem
– volume: 56
  start-page: 50
  year: 2013
  end-page: 63
  article-title: Synthesis of 4‐[ F]fluorobenzaldehyde using diaryliodonium salt precursors in a microreactor
  publication-title: J Label Compd Radiopharm
– volume: 1
  start-page: 2043
  year: 1998
  end-page: 2046
  article-title: The synthesis of [ F]fluoroarenes from the reaction of cyclotron‐produced [ F]fluoride ion with diaryliodonium salts
  publication-title: J Chem Soc Perkin
– year: 2017
  article-title: Synthesis and preliminary PET imaging of C and F isotopologues of the ROS1/ALK inhibitor lorlatinib
  publication-title: Nat Commun
– start-page: 453
  year: 2017
  end-page: 458
  article-title: Nucleophilic F‐labeling of spirocyclic iodonium ylide or boronic pinacol ester precursors: advantages and disadvantages
  publication-title: Eur J Org Chem
– volume: 16
  start-page: 10418
  year: 2010
  end-page: 10423
  article-title: Conformational structure and energetics of 2‐methylphenyl(2′‐methoxyphenyl)iodonium chloride: evidence for solution clusters
  publication-title: Chem‐A Eur J
– volume: 1
  start-page: 2463
  year: 1997
  end-page: 2465
  article-title: Synthesis of functionalised unsymmetrical diaryliodonium salts
  publication-title: J Chem Soc Perkin Trans
– volume: 19
  start-page: 2980
  year: 2011
  end-page: 2990
  article-title: Aromatic radiofluorination and biological evaluation of 2‐aryl‐6‐[ F]fluorobenzothiazoles as a potential positron emission tomography imaging probe for β‐amyloid plaques
  publication-title: Bioorg Med Chem
– volume: 17
  start-page: 2138
  year: 2013
  end-page: 2152
  article-title: Synthesis of 4‐[ F]fluorohalobenzenes and palladium‐mediated cross‐coupling reactions for the synthesis of F‐labeled radiotracers
  publication-title: Curr Org Chem
– volume: 18
  start-page: 8618
  year: 2013
  end-page: 8665
  article-title: Recent trends in bioorthogonal click‐radiolabeling reactions using fluorine‐18
  publication-title: Molecules
– volume: 19
  start-page: 149
  year: 1992
  end-page: 158
  article-title: Production of 6‐[ F]fluoro‐L‐DOPA—a critical review
  publication-title: Nucl Med Biol
– volume: 9
  start-page: 6629
  year: 2011
  end-page: 6638
  article-title: Effective syntheses of mGluR5 PET radioligands through the radiofluorination of diaryliodonium salts
  publication-title: Org Biomol Chem
– volume: 56
  start-page: 106
  year: 2015
  end-page: 112
  article-title: In vivo biodistribution of no‐carrier‐added 6‐ F‐fluoro‐3,4‐dihydroxy‐ ‐phenylalanine ( F‐DOPA), produced by a new nucleophilic substitution approach, compared with carrier‐added F‐DOPA, prepared by conventional electrophilic substitution
  publication-title: J Nucl Med
– volume: 46
  start-page: 699
  year: 2003
  end-page: 713
  article-title: Synthesis of 4‐[ F]fluoroiodobenzene and its application in Sonogashira cross‐coupling reactions
  publication-title: J Label Compd Radiopharm
– volume: 20
  start-page: 817
  year: 2009
  end-page: 823
  article-title: New strategy for the preparation of clickable peptides and labeling with 1‐(azidomethyl)‐4‐[ F]‐fluorobenzene for PET
  publication-title: Bioconjug Chem
– volume: 54
  start-page: 224
  year: 2011
  end-page: 228
  article-title: Syntheses of meta‐[ F]fluorobenzaldehyde and meta‐[ F]fluorobenzyl bromide from phenyl(3‐formylphenyl)iodonium salt precursors
  publication-title: J Label Compd Radiopharm
– volume: 75
  start-page: 3332
  year: 2010
  end-page: 3338
  article-title: Fast and high‐yield micro‐reactor syntheses of ortho‐substituted [ F]fluoroarenes from reactions of [ F]fluoride ion with diaryliodonium salts
  publication-title: J Org Chem
– volume: 56
  start-page: 1780
  year: 2015
  end-page: 1785
  article-title: F‐Labeled single‐stranded DNA aptamer for PET imaging of protein tyrosine kinase‐7 expression
  publication-title: J Nucl Med
– volume: 23
  start-page: 4353
  year: 2017
  end-page: 4363
  article-title: Crystal structures of diaryliodonium fluorides and their implications for fluorination mechanisms
  publication-title: Chem A Eur J
– volume: 48
  start-page: 9921
  year: 2012
  end-page: 9923
  article-title: Selective syntheses of no‐carrier‐added 2‐ and 3‐[ F]fluorohalopyridines through the radiofluorination of halopyridinyl(4'‐methoxyphenyl)iodonium tosylates
  publication-title: Chem Commun
– volume: 82
  start-page: 264
  year: 2013
  end-page: 267
  article-title: Bis(4‐benzyloxyphenyl) iodonium salts as effective precursors for the no‐carrier‐added radiosynthesis of 4‐[ F]fluorophenol
  publication-title: Appl Radiat Isot
– volume: 23
  start-page: 1818
  year: 2016
  end-page: 1869
  article-title: Considerations in the development of reversibly binding PET radioligands for brain imaging
  publication-title: Curr Med Chem
– volume: 1
  start-page: 245
  year: 1999
  end-page: 248
  article-title: Facile synthesis of substituted diaryliodonium tosylates by treatment of aryltributylstannanes with Koser's reagent
  publication-title: J Chem Soc Perkin Trans
– start-page: 43
  year: 2003
  end-page: 48
  article-title: On the mechanism of α‐phenylation of β‐keto esters with diaryl‐λ ‐iodanes: evidence for a non‐radical pathway
  publication-title: ARKIVOC
– volume: 45
  start-page: 891
  year: 2009
  end-page: 902
  article-title: [ F]Flumazenil binding to central benzodiazepine receptor studies by PET—quantitative analysis and comparisons with [ C]flumazenil
  publication-title: Neuroimage
– volume: 51
  start-page: 11426
  year: 2012
  end-page: 11437
  article-title: F labeling of arenes
  publication-title: Angew Chem Int Ed
– volume: 349
  start-page: 2610
  year: 2007
  end-page: 2618
  article-title: Efficient and general one‐pot synthesis of diaryliodonium triflates: optimization, scope and limitations
  publication-title: Adv Synth Catal
– volume: 42
  start-page: 975
  year: 1999
  end-page: 985
  article-title: 2‐[ F]Fluoropyridine by no‐carrier‐added nucleophilic aromatic substitution with K[ F]F‐K222
  publication-title: J Label Compd Radiopharm
– volume: 75
  start-page: 2705
  year: 1953
  end-page: 2708
  article-title: Diaryliodonium salts. I. Synthesis
  publication-title: J Am Chem Soc
– volume: 30
  start-page: 431
  year: 2009
  end-page: 440
  article-title: PET radiotracers: crossing the blood‐brain barrier and surviving metabolism
  publication-title: TiPs
– volume: 82
  start-page: 1279
  year: 2017
  end-page: 1284
  article-title: Synthesis of aryl(2,4,6‐trimethoxyphenyl)iodonium trifluoroacetate salts
  publication-title: J Org Chem
– volume: 8
  start-page: 12
  year: 2017
  end-page: 16
  article-title: Fluorine‐18‐labeled antagonist for PET imaging of kappa opioid receptors
  publication-title: ACS Chem Neurosci
– volume: 54
  start-page: 12777
  year: 2015
  end-page: 12781
  article-title: Ortho‐stabilized F‐azido click agents and their application in PET imaging with single‐stranded DNA aptamers
  publication-title: Angew Chem Int Ed
– volume: 21
  start-page: 5972
  year: 2015
  end-page: 5979
  article-title: Copper‐mediated aromatic radiofluorination revisited: efficient production of PET tracers on a preparative scale
  publication-title: Chem A Eur J
– volume: 26
  start-page: 4857
  year: 2016
  end-page: 4860
  article-title: Radiosynthesis and preliminary evaluation of F‐labeled 2‐(1‐(3‐fluorophenyl)‐2‐oxo‐5‐(pyrimidin‐2‐yl)‐1,2‐dihydropyridin‐3‐yl)benzonitrile for imaging AMPA receptors
  publication-title: Bioorg Med Chem Lett
– volume: 48
  start-page: 2534
  year: 1983
  end-page: 2539
  article-title: Regiospecific synthesis of aryl(2‐furyl)iodonium tosylates, a new class of iodonium salts, from [hydroxy(tosyloxy)iodo]arenes and 2‐(trimethylsilyl)furans in organic solvents
  publication-title: J Org Chem
– volume: 54
  start-page: 2067
  year: 2013
  end-page: 2069
  article-title: Simplified synthesis of aryliodonium ylides by a one‐pot procedure
  publication-title: Tetrahedron Lett
– start-page: 217
  year: 1977
  end-page: 219
  article-title: Secondary bonding. Part I. Crystal and molecular structures of (C H ) IX X = (CI, Br, or I)
  publication-title: J Chem Soc Dalton Trans
– volume: 2
  start-page: 2707
  year: 1999
  end-page: 2714
  article-title: An ab initio and MNDO‐d SCF‐MO computational study of stereoelectronic control in extrusion reactions of R I‐F iodine(III) intermediates
  publication-title: J Chem Soc Perkin Trans
– volume: 128
  start-page: 127
  year: 2007
  end-page: 132
  article-title: Radical scavengers: a practical solution to the reproducibility issue in the fluoridation of diaryliodonium salts
  publication-title: J Fluor Chem
– volume: 7
  start-page: 1552
  year: 2016
  end-page: 1564
  article-title: Synthesis and pharmacological evaluation of [ C]granisetron, and [ F]fluoropalonosetron as PET probes for 5‐HT receptor imaging
  publication-title: ACS Chem Neurosci
– volume: 44
  start-page: 25
  year: 2010
  end-page: 32
  article-title: Recent trends in the nucleophilic [ F]‐radiolabeling method with no‐carrier‐added [ F]fluoride
  publication-title: Nucl Med Mol Imaging
– volume: 11
  start-page: 3221
  year: 2005
  end-page: 3235
  article-title: Fluorine‐18‐labelled fluoropyridines: advances in radiopharmaceutical design
  publication-title: Curr Pharm Des
– volume: 81
  start-page: 1998
  year: 2016
  end-page: 2009
  article-title: Unsymmetrical aryl(2,4,6‐trimethoxyphenyl)iodonium salts: one‐pot synthesis, scope, stability, and synthetic studies
  publication-title: J Org Chem
– volume: 235
  start-page: 233
  year: 1886
  end-page: 255
  article-title: Ueber das Verhalten einiger Diazo‐ und Diazoamidoverbindungen
  publication-title: Justus Liebigs Ann Chem
– volume: 60
  start-page: 5222
  year: 2017
  end-page: 5227
  article-title: A facile radiolabeling of [ F]FDPA via spirocyclic iodonium ylides: preliminary PET imaging studies in preclinical models of neuroinflammation
  publication-title: J Med Chem
– volume: 21
  start-page: 1160
  year: 2016
  article-title: Synthesis of a potent aminopyridine‐based nNOS‐inhibitor by two recent no‐carrier‐added F‐labelling methods
  publication-title: Molecules
– volume: 8
  start-page: 996
  year: 2017
  end-page: 1003
  article-title: A potential PET radiotracer for the 5‐HT receptor: synthesis and in vivo evaluation of 4(3‐[ F]fluorophenethoxy)pyrimidine
  publication-title: ACS Chem Neurosci
– volume: 81
  start-page: 297
  year: 2016
  end-page: 302
  article-title: An investigation of (diacetoxyiodo)arenes as precursors for preparing no‐carrier‐added [ F]fluoroarenes from cyclotron‐produced [ F]fluoride ion
  publication-title: J Org Chem
– volume: 49
  start-page: 3643
  year: 1984
  end-page: 3646
  article-title: Direct condensation of [hydroxy(tosyloxy)iodo]arenes with thiophenes. A convenient, mild synthesis of aryl(2‐thienyl)iodonium tosylates
  publication-title: J Org Chem
– ident: e_1_2_6_64_1
  doi: 10.1021/acs.joc.6b02811
– ident: e_1_2_6_82_1
  doi: 10.1039/a802349b
– ident: e_1_2_6_74_1
  doi: 10.1556/JFC-D-13-00034
– start-page: 43
  year: 2003
  ident: e_1_2_6_79_1
  article-title: On the mechanism of α‐phenylation of β‐keto esters with diaryl‐λ3‐iodanes: evidence for a non‐radical pathway
  publication-title: ARKIVOC
  doi: 10.3998/ark.5550190.0004.606
– start-page: 99
  volume-title: Hypervalent Iodine Chemistry: Preparation, Structure and Properties of Polyvalent Iodine Compounds
  year: 2014
  ident: e_1_2_6_31_1
– ident: e_1_2_6_128_1
  doi: 10.1021/acschemneuro.6b00192
– ident: e_1_2_6_17_1
  doi: 10.2174/138161205774424645
– ident: e_1_2_6_66_1
  doi: 10.1021/jo100361d
– ident: e_1_2_6_88_1
  doi: 10.1002/jlcr.1853
– ident: e_1_2_6_134_1
  doi: 10.1021/jm400770g
– ident: e_1_2_6_51_1
  doi: 10.1021/jo00163a022
– ident: e_1_2_6_112_1
  doi: 10.1016/j.apradiso.2005.03.005
– ident: e_1_2_6_132_1
  doi: 10.1021/acschemneuro.6b00445
– ident: e_1_2_6_36_1
  doi: 10.1039/a704062h
– ident: e_1_2_6_125_1
  doi: 10.1016/j.nucmedbio.2009.05.008
– ident: e_1_2_6_38_1
  doi: 10.3390/molecules16097621
– ident: e_1_2_6_114_1
– start-page: 1
  volume-title: Modern Nucleophilic Aromatic Substitution
  year: 2011
  ident: e_1_2_6_12_1
– ident: e_1_2_6_133_1
  doi: 10.1007/s00259-013-2558-9
– ident: e_1_2_6_56_1
  doi: 10.1021/jm4012017
– ident: e_1_2_6_94_1
  doi: 10.1039/C6SC00197A
– ident: e_1_2_6_69_1
  doi: 10.1016/j.tetlet.2013.02.018
– ident: e_1_2_6_26_1
  doi: 10.1002/chem.201604803
– ident: e_1_2_6_16_1
  doi: 10.1002/jlcr.25804401312
– ident: e_1_2_6_50_1
  doi: 10.1021/jo01296a050
– ident: e_1_2_6_57_1
  doi: 10.1016/j.bmc.2011.03.029
– ident: e_1_2_6_32_1
  doi: 10.1021/acs.joc.5b02332
– ident: e_1_2_6_98_1
  doi: 10.1007/978-3-540-49527-7_3
– ident: e_1_2_6_131_1
  doi: 10.1016/j.bmcl.2015.04.055
– ident: e_1_2_6_9_1
  doi: 10.2174/1568026614666140202205035
– ident: e_1_2_6_106_1
  doi: 10.1002/chem.201405586
– ident: e_1_2_6_109_1
  doi: 10.3390/molecules18078618
– ident: e_1_2_6_72_1
  doi: 10.1021/acschemneuro.5b00202
– ident: e_1_2_6_23_1
  doi: 10.1039/dt9770000217
– ident: e_1_2_6_25_1
  doi: 10.1002/chem.201000607
– ident: e_1_2_6_4_1
  doi: 10.2174/0929867323666160418114826
– ident: e_1_2_6_18_1
  doi: 10.1002/(SICI)1099-1344(199910)42:10<975::AID-JLCR256>3.0.CO;2-E
– ident: e_1_2_6_73_1
  doi: 10.1039/C4OB01336K
– ident: e_1_2_6_96_1
– ident: e_1_2_6_80_1
  doi: 10.1007/3-540-46114-0_2
– ident: e_1_2_6_14_1
  doi: 10.1002/cber.19270600539
– ident: e_1_2_6_89_1
  doi: 10.1016/S0040-4039(98)02710-5
– ident: e_1_2_6_27_1
  doi: 10.1039/c2cc35708a
– ident: e_1_2_6_40_1
  doi: 10.1002/ejoc.201500986
– ident: e_1_2_6_34_1
  doi: 10.1021/jo202517v
– ident: e_1_2_6_99_1
  doi: 10.1007/978-3-540-49527-7_4
– ident: e_1_2_6_105_1
  doi: 10.1039/b412871k
– ident: e_1_2_6_75_1
  doi: 10.1039/c3ob40742j
– volume: 27
  start-page: 235
  year: 1986
  ident: e_1_2_6_15_1
  article-title: Efficient stereospecific synthesis of no‐carrier‐added 2‐[18F]‐fluoro‐2‐deoxy‐d‐glucose using aminopolyether supported nucleophilic substitution
  publication-title: J Nucl Med
– ident: e_1_2_6_39_1
  doi: 10.1002/jlcr.3367
– ident: e_1_2_6_68_1
  doi: 10.1038/ncomms5365
– ident: e_1_2_6_90_1
  doi: 10.1021/ol201080c
– ident: e_1_2_6_21_1
  doi: 10.1016/S0022-1139(00)81524-9
– ident: e_1_2_6_85_1
  doi: 10.1039/a906212b
– ident: e_1_2_6_119_1
  doi: 10.3390/molecules21091160
– ident: e_1_2_6_108_1
  doi: 10.1002/jlcr.1898
– ident: e_1_2_6_28_1
  doi: 10.1107/S0567740877006694
– ident: e_1_2_6_65_1
  doi: 10.1002/anie.201606381
– ident: e_1_2_6_102_1
  doi: 10.3390/molecules20010470
– ident: e_1_2_6_142_1
  doi: 10.2967/jnumed.110.075895
– ident: e_1_2_6_101_1
  doi: 10.1002/jlcr.709
– ident: e_1_2_6_41_1
  doi: 10.1021/acs.jmedchem.6b00905
– ident: e_1_2_6_70_1
  doi: 10.1039/c1ob05555k
– ident: e_1_2_6_58_1
  doi: 10.1039/b701864a
– ident: e_1_2_6_100_1
  doi: 10.2174/13852728113179990106
– ident: e_1_2_6_111_1
  doi: 10.1021/bc100263y
– ident: e_1_2_6_10_1
  doi: 10.1021/acs.chemrev.5b00493
– ident: e_1_2_6_118_1
  doi: 10.1002/anie.201505927
– ident: e_1_2_6_55_1
  doi: 10.1021/jo101227j
– ident: e_1_2_6_143_1
  doi: 10.1016/j.bmcl.2015.11.091
– volume: 56
  start-page: 50
  year: 2013
  ident: e_1_2_6_107_1
  article-title: Synthesis of 4‐[18F]fluorobenzaldehyde using diaryliodonium salt precursors in a microreactor
  publication-title: J Label Compd Radiopharm
– ident: e_1_2_6_87_1
  doi: 10.1021/cr00054a001
– ident: e_1_2_6_45_1
  doi: 10.1002/ejoc.201200695
– ident: e_1_2_6_145_1
  doi: 10.1038/ncomms15761
– volume: 19
  start-page: 149
  year: 1992
  ident: e_1_2_6_20_1
  article-title: Production of 6‐[18F]fluoro‐L‐DOPA—a critical review
  publication-title: Nucl Med Biol
– ident: e_1_2_6_95_1
  doi: 10.1039/C4RA00674G
– ident: e_1_2_6_127_1
  doi: 10.1039/c1ob06277h
– ident: e_1_2_6_13_1
  doi: 10.1002/jlac.18862350302
– ident: e_1_2_6_110_1
  doi: 10.1021/bc800544p
– ident: e_1_2_6_141_1
  doi: 10.1021/acschemneuro.6b00268
– ident: e_1_2_6_48_1
  doi: 10.1016/j.apradiso.2013.08.011
– ident: e_1_2_6_78_1
  doi: 10.1021/acs.orglett.7b01902
– ident: e_1_2_6_54_1
  doi: 10.1021/jo01296a049
– ident: e_1_2_6_22_1
  doi: 10.1039/C39950002215
– ident: e_1_2_6_129_1
  doi: 10.1021/jm400156p
– ident: e_1_2_6_146_1
  doi: 10.1021/acs.jmedchem.7b00432
– ident: e_1_2_6_53_1
  doi: 10.1039/a809349k
– start-page: 35
  volume-title: Hypervalent Iodine Chemistry: Preparation, Structure and Properties of Polyvalent Iodine Compounds
  year: 2014
  ident: e_1_2_6_33_1
– volume: 52
  start-page: 216
  year: 2009
  ident: e_1_2_6_113_1
  article-title: The first single‐step‐single‐pot synthesis of 4‐[18F]SFB
  publication-title: J Label Compd Radiopharm
– ident: e_1_2_6_2_1
  doi: 10.1016/0883-2889(91)90179-5
– ident: e_1_2_6_86_1
  doi: 10.1016/j.comptc.2015.05.012
– ident: e_1_2_6_35_1
  doi: 10.1002/ejoc.201100382
– ident: e_1_2_6_135_1
  doi: 10.1021/jm00106a055
– ident: e_1_2_6_140_1
  doi: 10.2967/jnumed.114.151332
– ident: e_1_2_6_130_1
  doi: 10.2967/jnumed.115.162461
– ident: e_1_2_6_103_1
  doi: 10.1002/jlcr.830
– ident: e_1_2_6_91_1
  doi: 10.1016/j.jfluchem.2006.10.018
– ident: e_1_2_6_122_1
  doi: 10.1016/0969-8051(93)90082-6
– ident: e_1_2_6_8_1
  doi: 10.1002/anie.201204687
– ident: e_1_2_6_42_1
  doi: 10.1021/ol501243g
– ident: e_1_2_6_123_1
  doi: 10.1016/j.neuroimage.2008.12.005
– ident: e_1_2_6_93_1
  doi: 10.1021/om5007903
– ident: e_1_2_6_19_1
  doi: 10.1002/ejoc.201701596
– ident: e_1_2_6_37_1
  doi: 10.1021/ja066850h
– ident: e_1_2_6_52_1
  doi: 10.1016/S0040-4039(00)00861-3
– ident: e_1_2_6_77_1
  doi: 10.1021/ol101154h
– ident: e_1_2_6_84_1
  doi: 10.1021/jo00883a004
– ident: e_1_2_6_116_1
  doi: 10.1016/j.bmcl.2016.07.078
– start-page: 364
  year: 2013
  ident: e_1_2_6_11_1
  article-title: Applications of iodonium salts and iodonium ylides as precursors for nucleophilic fluorination in positron emission tomography
  publication-title: ARKIVOC
  doi: 10.3998/ark.5550190.p008.225
– ident: e_1_2_6_83_1
  doi: 10.1246/bcsj.45.1860
– ident: e_1_2_6_124_1
  doi: 10.1016/j.nucmedbio.2004.11.001
– ident: e_1_2_6_63_1
  doi: 10.1021/acs.joc.5b02833
– ident: e_1_2_6_120_1
  doi: 10.2967/jnumed.115.160960
– volume: 3
  start-page: 19
  year: 2014
  ident: e_1_2_6_62_1
  article-title: One‐pot synthesis and applications of N‐heteroaryl iodonium salts
  publication-title: ChemOpen
– ident: e_1_2_6_46_1
  doi: 10.1016/j.tet.2012.03.113
– start-page: 76
  volume-title: Hypervalent Iodine Chemistry: Preparation, Structure and Properties of Polyvalent Iodine Compounds
  year: 2014
  ident: e_1_2_6_30_1
– ident: e_1_2_6_5_1
  doi: 10.1007/978-3-540-49527-7_2
– ident: e_1_2_6_44_1
  doi: 10.1021/ja01511a020
– ident: e_1_2_6_92_1
  doi: 10.1021/ol4025716
– ident: e_1_2_6_104_1
  doi: 10.1002/jlcr.834
– ident: e_1_2_6_7_1
  doi: 10.1007/s13139-009-0008-1
– ident: e_1_2_6_43_1
  doi: 10.1002/anie.200904689
– ident: e_1_2_6_49_1
  doi: 10.1021/jo00193a039
– ident: e_1_2_6_115_1
  doi: 10.1039/c2cc35005j
– ident: e_1_2_6_139_1
  doi: 10.1016/j.apradiso.2016.04.030
– ident: e_1_2_6_6_1
  doi: 10.1002/ejoc.200800114
– ident: e_1_2_6_61_1
  doi: 10.1021/jo8004974
– ident: e_1_2_6_59_1
  doi: 10.1002/adsc.200700373
– ident: e_1_2_6_121_1
  doi: 10.1016/j.tetlet.2007.10.025
– ident: e_1_2_6_47_1
  doi: 10.1039/c3ob41353e
– ident: e_1_2_6_138_1
  doi: 10.2967/jnumed.114.145730
– ident: e_1_2_6_71_1
  doi: 10.1007/s11307-014-0738-z
– ident: e_1_2_6_67_1
  doi: 10.1021/ja01107a046
– ident: e_1_2_6_76_1
  doi: 10.1016/j.jfluchem.2015.08.006
– start-page: 592
  year: 2008
  ident: e_1_2_6_60_1
  article-title: One‐pot synthesis of diaryliodonium salts using toluenesulfonic acid: a fast entry to electron‐rich diaryliodonium tosylates and triflates
  publication-title: Synlett
– ident: e_1_2_6_97_1
  doi: 10.1155/2014/812973
– ident: e_1_2_6_136_1
  doi: 10.1002/jlcr.3285
– ident: e_1_2_6_137_1
– start-page: 1709
  year: 1984
  ident: e_1_2_6_29_1
  article-title: Secondary bonding. Part 13. Aryl‐tellurium(IV) and ‐iodine(III) acetates and trifluoroacetates. The crystal and molecular structures of bis‐(p‐methoxyphenyl)tellurium diacetate, μ‐oxo‐bis[diphenyltrifluoroacetoxytellurium] hydrate, and [bis(trifluoroacetoxy)iodo]benzene
  publication-title: J Chem Soc Dalton Trans
  doi: 10.1039/DT9840001709
– ident: e_1_2_6_3_1
  doi: 10.1016/j.tips.2009.05.005
– ident: e_1_2_6_117_1
  doi: 10.1002/ejoc.201601448
– ident: e_1_2_6_126_1
  doi: 10.1016/j.nucmedbio.2009.01.011
– ident: e_1_2_6_144_1
  doi: 10.1039/C7OB00628D
– ident: e_1_2_6_81_1
  doi: 10.1039/b000868k
– ident: e_1_2_6_24_1
  doi: 10.1039/dt9870000193
SSID ssj0009944
Score 2.3554294
SecondaryResourceType review_article
Snippet Over the last 2 decades or so, hypervalent iodine compounds, such as diaryliodonium salts and aryliodonium ylides, have emerged as useful precursors for...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 196
SubjectTerms Aromatic compounds
aryliodonium ylide
Chemical synthesis
Cyclotrons
diaryliodonium salt
fluorine 18
Fluorine isotopes
Fluorine Radioisotopes - chemistry
Iodine compounds
Labeling
Medical imaging
PET
Positron emission
Positron emission tomography
Positron-Emission Tomography - methods
Precursors
radiofluorination
Radiopharmaceuticals - chemical synthesis
radiotracer
Salts
Title Hypervalent aryliodine compounds as precursors for radiofluorination
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjlcr.3570
https://www.ncbi.nlm.nih.gov/pubmed/28981159
https://www.proquest.com/docview/2019051409
https://www.proquest.com/docview/1947617989
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KL3rx_agvonjwkjZNdpMsnqQqpagHUehBCPsKVENTkubir3cmaVJ8gXgL7OwjMzuZmc3sN4ScK8pjMPOOHQhP25TGyua-hiiFCTBPhvKwBNK-f_CHz3Q0ZuMWuazvwlT4EM2BG2pG-b1GBRcy7y1BQ18TlXU9FmC8jrla6BA9LqGjOKdL6KjQ8WpUIcftNT0_26JvDuZnf7U0OLfr5KVeapVn8tYt5rKr3r-gOP7zXTbI2sIRta6qnbNJWma6RVYGdf23bXI9hBA1g40IZsmCoZNJCnbOWJiEjrWYckvk1izD8_o8zXILvF8rE3qSxkmBWX2lyHfI8-3N02BoL2ou2Aqx-GyttQpDEF_IFQsdpilE20z7MtCxJ1xPgoemlR9QFdPYp1w5RnLXMaD42unH0tsl7Wk6NfvEgt4qoExxoSVVWkrmxFIYGINrobx-h1zU3I_UApAc62IkUQWl7EbIlgjZ0iFnDemsQuH4ieioFmG0UMQ8cvGuPENUrw45bZqBk_hfRExNWuRRn9PAR-A2oNmrRN_MAvFoCE4ztFyUAvx9-mh0N3jEh4O_kx6SVVhgWOW0HZH2PCvMMTg5c3lS7uYPe3v6RA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4hOKQXKIVCaEoN6oGLg2Pv2l6JSxWKUggcEEhcqtW-LAFRjOzkwq9nxo4dQalU9WZpZx-e2fHMrGe_AfhumMjQzAd-oiLrM5YZX8QWoxSu0Dw5JtIKSPvyKh7dsvM7frcCJ81dmBofoj1wI82ovtek4HQgfbxEDX2YmKIf8QQD9jWq6F0FVNdL8Cgh2BI8Kg2iBlcoCI_brq-t0R8u5muPtTI5Zxvwu1lsnWny2J_PdN88v8Fx_N-3-QjrC1_U-1Fvnk1YcdNP0Bk2JeC24HSEUWqBexEtk4djT-5zNHXOozx0KsdUeqr0ngo6si_zovTQAfYKZe_zbDKnxL5K6ttwe_bzZjjyF2UXfENwfL611qQpSjAVhqcBtwwDbm5jndgsUmGk0UmzJk6YyVgWM2ECp0UYONR9GwwyHX2G1Wk-dbvgYW-TMG6EspoZqzUPMq0cjiGsMtGgC0cN-6VZYJJTaYyJrNGUQ0lskcSWLhy2pE81EMd7RL1GhnKhi6UM6bo8J2CvLhy0zchJ-jWipi6fl3IgWBITdhvS7NSyb2fBkDRFvxlbjioJ_n16eT4eXtPD3r-TfoPO6OZyLMe_ri6-wAdcbFqnuPVgdVbM3Vf0eWZ6v9raLw3__l8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB5CCm0vbdJH6jZJldJDLnLW0q60S07BrnHTJJTQQA6FZZ-QxFhGsi_99Z2VLJmkKZTeBDv70Dw0M6vZbwE-Gyo8unkS5yq1MaXexCKzmKUwhe7JUcFrIO3zi2xyRU-v2fUGHLdnYRp8iG7DLVhG_b0OBj63_mgNGno7NWU_ZTnm609oRnhQ6dHlGjtKCLrGjuIkbWGFSHLUdb3vjP6IMO8HrLXHGb-En-1am0KTu_5yofvm1wMYx_98mS14sYpEo5NGdbZhw81ewbNhewHcaxhNMEctURPRL0U49PSmQEfnolCFHi5jqiJVRfMybNhXRVlFGP5GpbI3hZ8uQ1lfLfM3cDX-8mM4iVeXLsQmgPHF1lrDOcqPC8M4YZZius1spnPrU5WkGkM0a7KcGk99RoUhTouEOLR8SwZep29hc1bM3DuIsLfJKTNCWU2N1ZoRr5XDMYRVJh304LDlvjQrRPJwMcZUNljKiQxskYEtPfjUkc4bGI7HiHZbEcqVJVYyCYflWYD16sFB14ycDD9G1MwVy0oOBM2zgNyGNDuN6LtZMCHlGDVjy2EtwL9PL0_Phpfh4f2_k36Ep99HY3n29eLbB3iOa-VNfdsubC7KpdvDgGeh92vF_g07d_0X
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hypervalent+aryliodine+compounds+as+precursors+for+radiofluorination&rft.jtitle=Journal+of+labelled+compounds+%26+radiopharmaceuticals&rft.au=Pike%2C+Victor+W&rft.date=2018-03-01&rft.eissn=1099-1344&rft.volume=61&rft.issue=3&rft.spage=196&rft_id=info:doi/10.1002%2Fjlcr.3570&rft_id=info%3Apmid%2F28981159&rft.externalDocID=28981159
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0362-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0362-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0362-4803&client=summon