Hypervalent aryliodine compounds as precursors for radiofluorination
Over the last 2 decades or so, hypervalent iodine compounds, such as diaryliodonium salts and aryliodonium ylides, have emerged as useful precursors for labeling homoarenes and heteroarenes with no‐carrier‐added cyclotron‐produced [18F]fluoride ion (t1/2 = 109.8 min). They permit rapid and effective...
Saved in:
Published in | Journal of labelled compounds & radiopharmaceuticals Vol. 61; no. 3; pp. 196 - 227 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Over the last 2 decades or so, hypervalent iodine compounds, such as diaryliodonium salts and aryliodonium ylides, have emerged as useful precursors for labeling homoarenes and heteroarenes with no‐carrier‐added cyclotron‐produced [18F]fluoride ion (t1/2 = 109.8 min). They permit rapid and effective radiofluorination at electron‐rich as well as electron‐deficient aryl rings, and often with unrestricted choice of ring position. Consequently, hypervalent aryliodine compounds have found special utility as precursors to various small‐molecule 18F‐labeling synthons and to many radiotracers for biomedical imaging with positron emission tomography. This review summarizes this advance in radiofluorination chemistry, with emphasis on precursor synthesis, radiofluorination mechanism, method scope, and method application.
Hypervalent iodine compounds, such as diaryliodonium salts and aryliodonium ylides, have emerged as useful precursors for labeling arenes, either as labeling synthons or as PET radiotracers, with no‐carrier‐added [18F]fluoride ion (t1/2 = 109.8 minutes). This review summarizes this advance in radiofluorination chemistry, with emphasis on precursor synthesis, radiofluorination mechanism, method scope, and method application. |
---|---|
AbstractList | Over the last 2 decades or so, hypervalent iodine compounds, such as diaryliodonium salts and aryliodonium ylides, have emerged as useful precursors for labeling homoarenes and heteroarenes with no-carrier-added cyclotron-produced [
F]fluoride ion (t
= 109.8 min). They permit rapid and effective radiofluorination at electron-rich as well as electron-deficient aryl rings, and often with unrestricted choice of ring position. Consequently, hypervalent aryliodine compounds have found special utility as precursors to various small-molecule
F-labeling synthons and to many radiotracers for biomedical imaging with positron emission tomography. This review summarizes this advance in radiofluorination chemistry, with emphasis on precursor synthesis, radiofluorination mechanism, method scope, and method application. Over the last 2 decades or so, hypervalent iodine compounds, such as diaryliodonium salts and aryliodonium ylides, have emerged as useful precursors for labeling homoarenes and heteroarenes with no-carrier-added cyclotron-produced [18 F]fluoride ion (t1/2 = 109.8 min). They permit rapid and effective radiofluorination at electron-rich as well as electron-deficient aryl rings, and often with unrestricted choice of ring position. Consequently, hypervalent aryliodine compounds have found special utility as precursors to various small-molecule 18 F-labeling synthons and to many radiotracers for biomedical imaging with positron emission tomography. This review summarizes this advance in radiofluorination chemistry, with emphasis on precursor synthesis, radiofluorination mechanism, method scope, and method application.Over the last 2 decades or so, hypervalent iodine compounds, such as diaryliodonium salts and aryliodonium ylides, have emerged as useful precursors for labeling homoarenes and heteroarenes with no-carrier-added cyclotron-produced [18 F]fluoride ion (t1/2 = 109.8 min). They permit rapid and effective radiofluorination at electron-rich as well as electron-deficient aryl rings, and often with unrestricted choice of ring position. Consequently, hypervalent aryliodine compounds have found special utility as precursors to various small-molecule 18 F-labeling synthons and to many radiotracers for biomedical imaging with positron emission tomography. This review summarizes this advance in radiofluorination chemistry, with emphasis on precursor synthesis, radiofluorination mechanism, method scope, and method application. Over the last 2 decades or so, hypervalent iodine compounds, such as diaryliodonium salts and aryliodonium ylides, have emerged as useful precursors for labeling homoarenes and heteroarenes with no‐carrier‐added cyclotron‐produced [ 18 F]fluoride ion ( t 1/2 = 109.8 min). They permit rapid and effective radiofluorination at electron‐rich as well as electron‐deficient aryl rings, and often with unrestricted choice of ring position. Consequently, hypervalent aryliodine compounds have found special utility as precursors to various small‐molecule 18 F‐labeling synthons and to many radiotracers for biomedical imaging with positron emission tomography. This review summarizes this advance in radiofluorination chemistry, with emphasis on precursor synthesis, radiofluorination mechanism, method scope, and method application. Over the last 2 decades or so, hypervalent iodine compounds, such as diaryliodonium salts and aryliodonium ylides, have emerged as useful precursors for labeling homoarenes and heteroarenes with no‐carrier‐added cyclotron‐produced [18F]fluoride ion (t1/2 = 109.8 min). They permit rapid and effective radiofluorination at electron‐rich as well as electron‐deficient aryl rings, and often with unrestricted choice of ring position. Consequently, hypervalent aryliodine compounds have found special utility as precursors to various small‐molecule 18F‐labeling synthons and to many radiotracers for biomedical imaging with positron emission tomography. This review summarizes this advance in radiofluorination chemistry, with emphasis on precursor synthesis, radiofluorination mechanism, method scope, and method application. Over the last 2 decades or so, hypervalent iodine compounds, such as diaryliodonium salts and aryliodonium ylides, have emerged as useful precursors for labeling homoarenes and heteroarenes with no‐carrier‐added cyclotron‐produced [18F]fluoride ion (t1/2 = 109.8 min). They permit rapid and effective radiofluorination at electron‐rich as well as electron‐deficient aryl rings, and often with unrestricted choice of ring position. Consequently, hypervalent aryliodine compounds have found special utility as precursors to various small‐molecule 18F‐labeling synthons and to many radiotracers for biomedical imaging with positron emission tomography. This review summarizes this advance in radiofluorination chemistry, with emphasis on precursor synthesis, radiofluorination mechanism, method scope, and method application. Hypervalent iodine compounds, such as diaryliodonium salts and aryliodonium ylides, have emerged as useful precursors for labeling arenes, either as labeling synthons or as PET radiotracers, with no‐carrier‐added [18F]fluoride ion (t1/2 = 109.8 minutes). This review summarizes this advance in radiofluorination chemistry, with emphasis on precursor synthesis, radiofluorination mechanism, method scope, and method application. |
Author | Pike, Victor W. |
Author_xml | – sequence: 1 givenname: Victor W. orcidid: 0000-0001-9032-2553 surname: Pike fullname: Pike, Victor W. email: pikev@mail.nih.gov organization: National Institute of Mental Health, National Institutes of Health |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28981159$$D View this record in MEDLINE/PubMed |
BookMark | eNp90M9P2zAUwHFrAo0WduAfQJG4bIfAc2In9hGVbQVVQkJwthz_kFy5drATUP_7pZTtUImdfHif92R95-goxGAQOsdwhQGq67VX6aqmLXxBMwycl7gm5AjNoG6qkjCoT9A85zXANCPkKzqpGGcYUz5Dt8ttb9Kr9CYMhUxb76J2wRQqbvo4Bp0LmYs-GTWmHFMubExFktpF68eYXJCDi-EMHVvps_n28Z6i518_nxbLcvXw-25xsyoVoQRKrbVizOKGcUUZUE1MV1PddK22tazqjlGsVdMSZYltCFdgOl6BoS3TgG1Xn6Lv-7t9ii-jyYPYuKyM9zKYOGaBOWkb3HLGJ3p5QNdxTGH6nagAc6CYwE5dfKix2xgt-uQ2UwTxt88EfuyBSjHnZOw_gkHs2otde7FrP9nrA6vc8N5nSNL5_228OW-2n58W96vF4_vGHzITlhA |
CitedBy_id | crossref_primary_10_1021_jacs_8b06730 crossref_primary_10_1039_C9OB01187K crossref_primary_10_1021_acs_orglett_0c01705 crossref_primary_10_1021_acs_oprd_9b00021 crossref_primary_10_1021_acs_orglett_3c03499 crossref_primary_10_1021_acs_joc_9b00019 crossref_primary_10_3390_molecules25194365 crossref_primary_10_1186_s41181_019_0073_4 crossref_primary_10_1016_j_addr_2021_114086 crossref_primary_10_1039_D1OB01023A crossref_primary_10_1039_D0OB01401J crossref_primary_10_1002_ange_201805501 crossref_primary_10_1021_acs_jmedchem_1c01562 crossref_primary_10_1021_acs_joc_4c00593 crossref_primary_10_3390_app12010321 crossref_primary_10_3390_catal10050483 crossref_primary_10_1021_acschemneuro_4c00715 crossref_primary_10_1039_C8CC06211K crossref_primary_10_3390_ph17121723 crossref_primary_10_1021_acs_chemrev_4c00303 crossref_primary_10_1039_D2NJ02731C crossref_primary_10_1186_s41181_020_00104_x crossref_primary_10_1016_j_nucmedbio_2019_10_003 crossref_primary_10_3390_pharmaceutics14102207 crossref_primary_10_1002_tcr_202100086 crossref_primary_10_1038_s41467_023_36377_4 crossref_primary_10_1038_s41467_024_49975_7 crossref_primary_10_1002_ejoc_202000934 crossref_primary_10_1021_acs_joc_4c01505 crossref_primary_10_3390_ijms232415481 crossref_primary_10_1021_acs_orglett_8b03450 crossref_primary_10_1038_s41596_020_0305_9 crossref_primary_10_1021_acs_chemrev_4c00808 crossref_primary_10_1002_ajoc_201800494 crossref_primary_10_1002_anie_201805501 crossref_primary_10_1002_cmdc_202200472 crossref_primary_10_3390_molecules28062732 crossref_primary_10_1007_s40336_018_0280_0 |
Cites_doi | 10.1021/acs.joc.6b02811 10.1039/a802349b 10.1556/JFC-D-13-00034 10.3998/ark.5550190.0004.606 10.1021/acschemneuro.6b00192 10.2174/138161205774424645 10.1021/jo100361d 10.1002/jlcr.1853 10.1021/jm400770g 10.1021/jo00163a022 10.1016/j.apradiso.2005.03.005 10.1021/acschemneuro.6b00445 10.1039/a704062h 10.1016/j.nucmedbio.2009.05.008 10.3390/molecules16097621 10.1007/s00259-013-2558-9 10.1021/jm4012017 10.1039/C6SC00197A 10.1016/j.tetlet.2013.02.018 10.1002/chem.201604803 10.1002/jlcr.25804401312 10.1021/jo01296a050 10.1016/j.bmc.2011.03.029 10.1021/acs.joc.5b02332 10.1007/978-3-540-49527-7_3 10.1016/j.bmcl.2015.04.055 10.2174/1568026614666140202205035 10.1002/chem.201405586 10.3390/molecules18078618 10.1021/acschemneuro.5b00202 10.1039/dt9770000217 10.1002/chem.201000607 10.2174/0929867323666160418114826 10.1002/(SICI)1099-1344(199910)42:10<975::AID-JLCR256>3.0.CO;2-E 10.1039/C4OB01336K 10.1007/3-540-46114-0_2 10.1002/cber.19270600539 10.1016/S0040-4039(98)02710-5 10.1039/c2cc35708a 10.1002/ejoc.201500986 10.1021/jo202517v 10.1007/978-3-540-49527-7_4 10.1039/b412871k 10.1039/c3ob40742j 10.1002/jlcr.3367 10.1038/ncomms5365 10.1021/ol201080c 10.1016/S0022-1139(00)81524-9 10.1039/a906212b 10.3390/molecules21091160 10.1002/jlcr.1898 10.1107/S0567740877006694 10.1002/anie.201606381 10.3390/molecules20010470 10.2967/jnumed.110.075895 10.1002/jlcr.709 10.1021/acs.jmedchem.6b00905 10.1039/c1ob05555k 10.1039/b701864a 10.2174/13852728113179990106 10.1021/bc100263y 10.1021/acs.chemrev.5b00493 10.1002/anie.201505927 10.1021/jo101227j 10.1016/j.bmcl.2015.11.091 10.1021/cr00054a001 10.1002/ejoc.201200695 10.1038/ncomms15761 10.1039/C4RA00674G 10.1039/c1ob06277h 10.1002/jlac.18862350302 10.1021/bc800544p 10.1021/acschemneuro.6b00268 10.1016/j.apradiso.2013.08.011 10.1021/acs.orglett.7b01902 10.1021/jo01296a049 10.1039/C39950002215 10.1021/jm400156p 10.1021/acs.jmedchem.7b00432 10.1039/a809349k 10.1016/0883-2889(91)90179-5 10.1016/j.comptc.2015.05.012 10.1002/ejoc.201100382 10.1021/jm00106a055 10.2967/jnumed.114.151332 10.2967/jnumed.115.162461 10.1002/jlcr.830 10.1016/j.jfluchem.2006.10.018 10.1016/0969-8051(93)90082-6 10.1002/anie.201204687 10.1021/ol501243g 10.1016/j.neuroimage.2008.12.005 10.1021/om5007903 10.1002/ejoc.201701596 10.1021/ja066850h 10.1016/S0040-4039(00)00861-3 10.1021/ol101154h 10.1021/jo00883a004 10.1016/j.bmcl.2016.07.078 10.3998/ark.5550190.p008.225 10.1246/bcsj.45.1860 10.1016/j.nucmedbio.2004.11.001 10.1021/acs.joc.5b02833 10.2967/jnumed.115.160960 10.1016/j.tet.2012.03.113 10.1007/978-3-540-49527-7_2 10.1021/ja01511a020 10.1021/ol4025716 10.1002/jlcr.834 10.1007/s13139-009-0008-1 10.1002/anie.200904689 10.1021/jo00193a039 10.1039/c2cc35005j 10.1016/j.apradiso.2016.04.030 10.1002/ejoc.200800114 10.1021/jo8004974 10.1002/adsc.200700373 10.1016/j.tetlet.2007.10.025 10.1039/c3ob41353e 10.2967/jnumed.114.145730 10.1007/s11307-014-0738-z 10.1021/ja01107a046 10.1016/j.jfluchem.2015.08.006 10.1155/2014/812973 10.1002/jlcr.3285 10.1039/DT9840001709 10.1016/j.tips.2009.05.005 10.1002/ejoc.201601448 10.1016/j.nucmedbio.2009.01.011 10.1039/C7OB00628D 10.1039/b000868k 10.1039/dt9870000193 |
ContentType | Journal Article |
Copyright | Published 2017. This article is a U.S. Government work and is in the public domain in the USA. Copyright © 2018 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Published 2017. This article is a U.S. Government work and is in the public domain in the USA. – notice: Copyright © 2018 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/jlcr.3570 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1099-1344 |
EndPage | 227 |
ExternalDocumentID | 28981159 10_1002_jlcr_3570 JLCR3570 |
Genre | article Journal Article Research Support, N.I.H., Intramural Review |
GrantInformation_xml | – fundername: Intramural Research Program of the National Institutes of Health funderid: NIMH: ZIA MH002793 – fundername: NIMH NIH HHS grantid: ZIA MH002793 – fundername: Intramural NIH HHS grantid: ZIA MH002793 |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GWYGA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES M6Q MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RX1 SAMSI SUPJJ TUS UB1 V2E VH1 W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWP WXSBR WYISQ XG1 XV2 YCJ ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c4540-dddc88f1689c5805d4eb35d6b7df3a23b851dc674cf4f649c0eb920e578d01fb3 |
IEDL.DBID | DR2 |
ISSN | 0362-4803 1099-1344 |
IngestDate | Fri Jul 11 08:43:17 EDT 2025 Fri Jul 25 12:09:32 EDT 2025 Mon Jul 21 06:04:05 EDT 2025 Tue Jul 01 01:20:57 EDT 2025 Thu Apr 24 23:08:09 EDT 2025 Wed Jan 22 16:52:44 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | diaryliodonium salt fluorine 18 aryliodonium ylide radiofluorination radiotracer PET |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Published 2017. This article is a U.S. Government work and is in the public domain in the USA. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4540-dddc88f1689c5805d4eb35d6b7df3a23b851dc674cf4f649c0eb920e578d01fb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-9032-2553 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/10081107 |
PMID | 28981159 |
PQID | 2019051409 |
PQPubID | 1006402 |
PageCount | 32 |
ParticipantIDs | proquest_miscellaneous_1947617989 proquest_journals_2019051409 pubmed_primary_28981159 crossref_primary_10_1002_jlcr_3570 crossref_citationtrail_10_1002_jlcr_3570 wiley_primary_10_1002_jlcr_3570_JLCR3570 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2018 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: March 2018 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Bognor Regis |
PublicationTitle | Journal of labelled compounds & radiopharmaceuticals |
PublicationTitleAlternate | J Labelled Comp Radiopharm |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 12 2010; 16 2007; 349 2017; 82 1980; 45 1993; 20 2005; 63 2011; 52 2011; 54 1999; 42 1997; 1 1999; 40 2001; 44 1972; 45 1953; 75 1977 2013; 54 2013; 56 1995; 21 1987 2014; 16 2003; 46 2014; 14 1984 2014; 12 2015; 1066 2015; 56 1976; 41 2015; 58 1886; 235 2017; 60 1984; 49 2004; 47 2015; 54 2014; 41 2011; 9 2010; 44 2016; 7 1986; 27 2016; 21 2013; 82 1983; 83 1998; 1 2005; 3 2012; 48 2003; 224 2016; 26 2005; 11 1927; 60 2014; 33 2016; 23 2009; 45 2017; 8 2000; 41 1992; 19 2011; 13 2011; 16 2008; 73 2011; 19 2009; 48 2012; 51 2013; 18 2014; 5 2013; 15 2009; 52 2014; 4 2014; 3 2013; 17 2013; 11 2000 1991; 42 2015; 178 1982; 21 2011; 22 2005; 32 2016; 116 2016; 81 2016; 115 2012; 68 2010; 75 2007; 129 2015; 6 1959; 81 2007; 128 2009; 20 2012 1991; 34 2011 2010 2017; 23 2008 2007 2003 1999; 2 1999; 1 2012; 77 2016; 59 2016; 57 2016; 55 2009; 36 2015; 25 2009; 30 2017; 15 2015; 20 2015; 21 2017 2017; 19 2015 2014 2013 1983; 48 2007; 48 e_1_2_6_114_1 e_1_2_6_137_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_95_1 e_1_2_6_118_1 e_1_2_6_72_1 e_1_2_6_91_1 e_1_2_6_110_1 e_1_2_6_133_1 e_1_2_6_19_1 e_1_2_6_34_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_99_1 Ochiai M (e_1_2_6_79_1) 2003 e_1_2_6_125_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_106_1 e_1_2_6_129_1 e_1_2_6_41_1 e_1_2_6_83_1 Charlton M (e_1_2_6_107_1) 2013; 56 e_1_2_6_140_1 e_1_2_6_121_1 e_1_2_6_102_1 e_1_2_6_144_1 e_1_2_6_9_1 e_1_2_6_5_1 Zhdankin VV (e_1_2_6_33_1) 2014 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_68_1 e_1_2_6_73_1 e_1_2_6_136_1 Alcock NW (e_1_2_6_29_1) 1984 e_1_2_6_54_1 e_1_2_6_96_1 e_1_2_6_117_1 e_1_2_6_50_1 e_1_2_6_92_1 e_1_2_6_132_1 Terrier F (e_1_2_6_12_1) 2011 e_1_2_6_35_1 e_1_2_6_39_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_58_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_105_1 e_1_2_6_128_1 e_1_2_6_65_1 e_1_2_6_80_1 e_1_2_6_109_1 e_1_2_6_61_1 e_1_2_6_120_1 Yan R (e_1_2_6_113_1) 2009; 52 e_1_2_6_101_1 e_1_2_6_124_1 e_1_2_6_143_1 Zhu M (e_1_2_6_60_1) 2008 e_1_2_6_6_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_97_1 e_1_2_6_116_1 e_1_2_6_139_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_93_1 e_1_2_6_131_1 Hamacher K (e_1_2_6_15_1) 1986; 27 e_1_2_6_112_1 e_1_2_6_135_1 Luxen A (e_1_2_6_20_1) 1992; 19 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_85_1 e_1_2_6_104_1 e_1_2_6_43_1 e_1_2_6_127_1 e_1_2_6_81_1 e_1_2_6_108_1 e_1_2_6_142_1 Zhdankin VV (e_1_2_6_31_1) 2014 e_1_2_6_100_1 e_1_2_6_146_1 e_1_2_6_123_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_98_1 e_1_2_6_115_1 Yusubov MS (e_1_2_6_11_1) 2013 e_1_2_6_75_1 e_1_2_6_138_1 e_1_2_6_10_1 e_1_2_6_94_1 e_1_2_6_119_1 e_1_2_6_71_1 e_1_2_6_90_1 e_1_2_6_130_1 e_1_2_6_111_1 e_1_2_6_134_1 e_1_2_6_14_1 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_37_1 e_1_2_6_103_1 e_1_2_6_126_1 e_1_2_6_63_1 e_1_2_6_86_1 e_1_2_6_21_1 Zhdankin VV (e_1_2_6_30_1) 2014 e_1_2_6_40_1 e_1_2_6_82_1 e_1_2_6_141_1 e_1_2_6_122_1 e_1_2_6_145_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_44_1 Bielawski M (e_1_2_6_62_1) 2014; 3 e_1_2_6_67_1 |
References_xml | – volume: 3 start-page: 19 year: 2014 end-page: 22 article-title: One‐pot synthesis and applications of ‐heteroaryl iodonium salts publication-title: ChemOpen – volume: 55 start-page: 11882 year: 2016 end-page: 11886 article-title: Efficient pathway for the preparation of aryl(isoquinoline)iodonium‐(III) salts and synthesis of radiofluorinated isoquinolines publication-title: Angew Chem Int Ed – volume: 77 start-page: 1931 year: 2012 end-page: 1938 article-title: Regiospecific syntheses of functionalized diaryliodonium tosylates via [hydroxy(tosyloxy)iodo]arenes generated in situ from (diacetoxyiodo)arenes publication-title: J Org Chem – volume: 60 start-page: 1186 year: 1927 end-page: 1190 article-title: Über aromatische Fluorverbindungen, I.: Ein neues Verfahren zu ihrer Darstellung publication-title: Ber dtsch Chem Ges A/B – volume: 56 start-page: 489 year: 2015 end-page: 492 article-title: Iodonium ylide–mediated radiofluorination of F‐FPEB and validation for human use publication-title: J Nucl Med – volume: 1066 start-page: 34 year: 2015 end-page: 46 article-title: Computational studies on hypervalent iodonium(III) compounds as activated precursors for F radiofluorination of electron‐rich arenes publication-title: Comput Theor Chem – start-page: 592 year: 2008 end-page: 596 article-title: One‐pot synthesis of diaryliodonium salts using toluenesulfonic acid: a fast entry to electron‐rich diaryliodonium tosylates and triflates publication-title: Synlett – volume: 5 start-page: 4365 year: 2014 end-page: 4371 article-title: Spirocyclic hypervalent iodine(III)‐mediated radiofluorination of non‐activated and hindered aromatics publication-title: Nat Commun – start-page: 364 year: 2013 end-page: 395 article-title: Applications of iodonium salts and iodonium ylides as precursors for nucleophilic fluorination in positron emission tomography publication-title: ARKIVOC – start-page: 35 year: 2014 end-page: 41 – start-page: 99 year: 2014 end-page: 105 – start-page: 15 year: 2007 end-page: 50 – start-page: 51 year: 2007 end-page: 78 – volume: 56 start-page: 9146 year: 2013 end-page: 9155 article-title: Synthesis and evaluation in monkey of [ F]4‐fluoro‐ ‐methyl‐ ‐(4‐(6‐(methylamino)pyrimidin‐4‐yl)thiazol‐2‐yl)benzamide ([ F]FIMX): a promising radioligand for PET imaging of brain metabotropic glutamate receptor 1 (mGluR1) publication-title: J Med Chem – volume: 48 start-page: 9052 year: 2009 end-page: 9070 article-title: Diaryliodonium salts: a journey from obscurity to fame publication-title: Angew Chem Int Ed – volume: 16 start-page: 3224 year: 2014 end-page: 3227 article-title: Copper‐catalyzed [ F]fluorination of (mesityl)(aryl)iodonium salts publication-title: Org Lett – volume: 4 start-page: 17293 year: 2014 end-page: 17299 article-title: Iodonium ylides for one‐step, no‐carrier‐added radiofluorination of electron rich arenes, exemplified with 4‐(([ F]fluoro‐phenoxy)‐phenylmethyl)piperidine NET and SERT ligands publication-title: RSC Adv – year: 2014 article-title: F‐Labelled intermediates for radiosynthesis by modular build‐up reactions: newer developments publication-title: Biomed Res Int – volume: 48 start-page: 8632 year: 2007 end-page: 8635 article-title: A practical route for synthesizing a PET ligand containing [ F]fluorobenzene using reaction of diphenyliodonium salt with [ F]F publication-title: Tetrahedron Lett – volume: 116 start-page: 719 year: 2016 end-page: 766 article-title: F‐18‐Labeling of arenes and heteroarenes for applications in positron emission tomography publication-title: Chem Rev – year: 2014 – volume: 63 start-page: 329 year: 2005 end-page: 332 article-title: Module assisted synthesis of the bifunctional labeling agent N‐succinimidyl 4‐[ F]fluorobenzoate ([ F]SFB) publication-title: Appl Radiat Isot – volume: 75 start-page: 7416 year: 2010 end-page: 7419 article-title: Facile synthesis of Koser's reagent and derivatives from iodine or iodoarenes publication-title: J Org Chem – start-page: 76 year: 2014 end-page: 84 – volume: 36 start-page: 721 year: 2009 end-page: 727 article-title: Improved work‐up procedure for the production of [ F]flumazenil and first results of its use with a high‐resolution research tomograph in human stroke publication-title: Nucl Med Biol – volume: 12 start-page: 8094 year: 2014 end-page: 8099 article-title: Neither azeotropic drying, nor base nor other additives: a minimalist approach to F‐labeling publication-title: Org Biomol Chem – volume: 9 start-page: 8346 year: 2011 end-page: 8355 article-title: Facile aromatic radiofluorination of [ F]flumazenil from diaryliodonium salts with evaluation of their stability and selectivity publication-title: Org Biomol Chem – volume: 13 start-page: 3158 year: 2011 end-page: 3161 article-title: Unprecedented directing group ability of cyclophanes in arene fluorinations with diaryliodonium salts publication-title: Org Lett – volume: 7 start-page: 4407 year: 2016 end-page: 4417 article-title: Mechanistic studies and radiofluorination of structurally diverse pharmaceuticals with spirocyclic iodonium(III) ylides publication-title: Chem Sci – volume: 178 start-page: 249 year: 2015 end-page: 253 article-title: Synthesis of F‐arenes from spirocyclic iodonium(III) ylides via continuous‐flow microfluidics publication-title: J Fluor Chem – volume: 25 start-page: 2532 year: 2015 end-page: 2535 article-title: Design, synthesis and preliminary evaluation of F‐labelled 1,8‐naphthyridin‐ and quinolin‐2‐one‐3‐carboxamide derivatives for PET imaging of CB cannabinoid receptor publication-title: Bioorg Med Chem Lett – volume: 27 start-page: 235 year: 1986 end-page: 238 article-title: Efficient stereospecific synthesis of no‐carrier‐added 2‐[ F]‐fluoro‐2‐deoxy‐ ‐glucose using aminopolyether supported nucleophilic substitution publication-title: J Nucl Med – start-page: 1 year: 2011 end-page: 94 – volume: 129 start-page: 8018 year: 2007 end-page: 8025 article-title: Nucleophilic F‐fluorination of heteroaromatic iodonium salts with no‐carrier‐added [ F]fluoride ion publication-title: J Am Chem Soc – volume: 59 start-page: 8955 year: 2016 end-page: 8966 article-title: Enabling efficient positron emission tomography (PET) imaging of synaptic vesicle glycoprotein 2A (SV2A) with a robust and one‐step radiosynthesis of a highly potent F‐labeled ligand ([ F]UCB‐H) publication-title: J Med Chem – volume: 36 start-page: 403 year: 2009 end-page: 409 article-title: Development of microwave‐based automated nucleophilic [ F]fluorination system and its application to the production of [ F]flumazenil publication-title: Nucl Med Biol – volume: 59 start-page: 30 year: 2016 end-page: 34 article-title: Efficient automated syntheses of high specific activity 6‐[ F]fluorodopamine using a diaryliodonium salt precursor publication-title: J Label Compd Radiopharm – year: 2017 article-title: Quinuclidine and DABCO enhance the radiofluorinations of 5‐substituted 2‐halopyridines publication-title: Eur J Org Chem – volume: 6 start-page: 1870 year: 2015 end-page: 1879 article-title: A practical, automated synthesis of meta‐[ F]fluorobenzylguanidine for clinical use publication-title: ACS Chem Neurosci – volume: 41 start-page: 322 year: 2014 end-page: 332 article-title: Synthesis and evaluation of F‐labeled benzylguanidine analogs for targeting the human norepinephrine transporter publication-title: Eur J Nucl Med Mol Imaging – volume: 48 start-page: 10108 year: 2012 end-page: 10110 article-title: New highly soluble dimedone‐derived iodonium ylides: preparation, X‐ray structure, and reaction with carbodiimide leading to oxazole derivatives publication-title: Chem Commun – volume: 26 start-page: 479 year: 2016 end-page: 483 article-title: Facile synthesis of ‐[ F]fluorohippurate via iodonium ylide–mediated radiofluorination for PET renography publication-title: Bioorg Med Chem Lett – volume: 83 start-page: 83 year: 1983 end-page: 134 article-title: Effect of conformational change on reactivity in organic chemistry. Evaluations, applications, and extensions of Curtin‐Hammett Winstein‐Holness kinetics publication-title: Chem Rev – volume: 16 start-page: 7621 year: 2011 end-page: 7626 article-title: Synthesis of no‐carrier‐added 4‐[ F]fluorophenol from 4‐benzyloxyphenyl‐(2‐thienyl)iodonium bromide publication-title: Molecules – volume: 45 start-page: 1860 year: 1972 end-page: 1863 article-title: Steric effect in the nucleophilic attack of bromide anion on diaryl‐ and aryl‐2‐thienyliodonium ions publication-title: Bull Chem Soc Jap – volume: 12 start-page: 3352 year: 2010 end-page: 3355 article-title: Improved arene fluorination methodology for I(III) salts publication-title: Org Lett – start-page: 1709 year: 1984 end-page: 1716 article-title: Secondary bonding. Part 13. Aryl‐tellurium(IV) and ‐iodine(III) acetates and trifluoroacetates. The crystal and molecular structures of bis‐( ‐methoxyphenyl)tellurium diacetate, μ‐oxo‐bis[diphenyltrifluoroacetoxytellurium] hydrate, and [bis(trifluoroacetoxy)iodo]benzene publication-title: J Chem Soc Dalton Trans – volume: 42 start-page: 749 year: 1991 end-page: 762 article-title: Recommendations for fluorine‐18 production publication-title: Appl Radiat Isot – start-page: 649 year: 2000 end-page: 650 article-title: Fluoridation of heteroaromatic iodonium salts—experimental evidence supporting theoretical prediction of the selectivity of the process publication-title: Chem Commun – volume: 115 start-page: 133 year: 2016 end-page: 137 article-title: Automated synthesis of 4‐[ F]fluoroanisole, [ F]DAA1106 and 4‐[ F]FPhe using Cu‐mediated radiofluorination under “minimalist” conditions publication-title: Appl Radiat Isot – volume: 45 start-page: 1543 year: 1980 end-page: 1544 article-title: New methodology in iodonium salt synthesis, reactions of [hydroxy(tosyloxy)iodo]arenes with aryltrimethylsilanes publication-title: J Org Chem – volume: 52 start-page: 216 year: 2009 article-title: The first single‐step‐single‐pot synthesis of 4‐[ F]SFB publication-title: J Label Compd Radiopharm – year: 2010 – volume: 11 start-page: 6300 year: 2013 end-page: 6306 article-title: Single‐step syntheses of no‐carrier‐added functionalized [ F]fluoroarenes as labeling synthons from diaryliodonium salts publication-title: Org Biomol Chem – volume: 3 start-page: 503 year: 2005 end-page: 507 article-title: Synthesis of F‐labelled cyclooxygenase‐2 (COX‐2) inhibitors via Stille reaction with 4‐[ F]fluoroiodobenzene as radiotracers for positron emission tomography (PET) publication-title: Org Biomol Chem – volume: 68 start-page: 4112 year: 2012 end-page: 4116 article-title: Convenient preparation of (4‐iodophenyl)aryliodonium salts publication-title: Tetrahedron – volume: 45 start-page: 1542 year: 1980 end-page: 1543 article-title: [Hydroxy tosyliodo]benzene, a versatile reagent for the mild oxidation of iodoarenes at the iodine atom by ligand transfer publication-title: J Org Chem – volume: 81 start-page: 342 year: 1959 end-page: 351 article-title: Diaryliodonium salts. IX. The synthesis of substituted diphenyliodonium salts publication-title: J Am Chem Soc – volume: 32 start-page: 109 year: 2005 end-page: 116 article-title: Preparation of highly specific radioactivity [ F]flumazenil and its evaluation in cynomolgus monkey by positron emission tomography publication-title: Nucl Med Biol – volume: 41 start-page: 5393 year: 2000 end-page: 5396 article-title: New synthesis of diaryliodonium sulfonates from arylboronic acids publication-title: Tetrahedron Lett – volume: 11 start-page: 5094 year: 2013 end-page: 5099 article-title: Radiofluorination of diaryliodonium tosylates under aqueous–organic and cryptand‐free conditions publication-title: Org Biomol Chem – volume: 16 start-page: 619 year: 2014 end-page: 625 article-title: Routine production of [ F]flumazenil from iodonium tosylate using a sample pretreatment method: a 2.5‐year production report publication-title: Mol Imaging Biol – start-page: 79 year: 2007 end-page: 111 – volume: 15 start-page: 5134 year: 2013 end-page: 5137 article-title: Cu‐catalyzed fluorination of diaryliodonium salts with KF publication-title: Org Lett – volume: 52 start-page: 147 year: 2011 end-page: 153 article-title: Synthesis and in vivo evaluation of ‐ F‐fluorohippurate as a new radiopharmaceutical for assessment of renal function by PET publication-title: J Nucl Med – start-page: 4541 year: 2012 end-page: 4547 article-title: Single‐step radiosyntheses of “ F‐labeled click synthons” from azide‐functionalized diaryliodonium salts publication-title: Eur J Org Chem – volume: 56 start-page: 4912 year: 2013 end-page: 4920 article-title: Design, synthesis, and initial evaluation of a high affinity positron emission tomography probe for imaging matrix metalloproteinases 2 and 9 publication-title: J Med Chem – volume: 19 start-page: 3939 year: 2017 end-page: 3942 article-title: Cu‐mediated C−H F‐fluorination of electron‐rich (hetero)arenes publication-title: Org Lett – volume: 47 start-page: 457 year: 2004 end-page: 468 article-title: No‐carrier added synthesis of F‐labelled nucleosides using Stille cross‐coupling reactions with 4‐[ F]fluoroiodobenzene publication-title: J Label Compd Radiopharm – volume: 20 start-page: 503 year: 1993 end-page: 525 article-title: Radioligands for PET studies of central benzodiazepine receptors and PK (peripheral benzodiazepine) binding sites—current status publication-title: Nucl Med Biol – volume: 54 start-page: 633 year: 2011 end-page: 636 article-title: A first synthesis of F‐radiolabeled lapatinib: a potential tracer for positron emission tomographic imaging of ErbB1/ErbB2 tyrosine kinase activity publication-title: J Label Compd Radiopharm – volume: 41 start-page: 3360 year: 1976 end-page: 3336 article-title: The ortho effect in the pyrolysis of iodonium halides. A case for a sterically controlled nucleophilic aromatic (SN) substitution reaction publication-title: J Org Chem – volume: 47 start-page: 429 year: 2004 end-page: 441 article-title: Comparison of pathways to the versatile synthon of no‐carrier‐added 1‐bromo‐4‐[ F]fluorobenzene publication-title: J Label Compd Radiopharm – volume: 15 start-page: 4351 year: 2017 end-page: 4358 article-title: F‐Labelling of electron‐rich iodonium ylides: application to the radiosynthesis of potential 5‐HT receptor PET ligands publication-title: Org Biomol Chem – volume: 57 start-page: 242 year: 2016 end-page: 247 article-title: The PET radioligand F‐FIMX images and quantifies metabotropic glutamate receptor 1 in proportion to the regional density of its gene transcript in human brain publication-title: J Nucl Med – start-page: 193 year: 1987 end-page: 196 article-title: Secondary bonding. Part 14. Structural isomerism in diaryliodonium halides and the structure of di(p‐toly1)iodonium bromide publication-title: J Chem Soc Dalton Trans – start-page: 2853 year: 2008 end-page: 2873 article-title: Chemistry with [ F]fluoride ion publication-title: Eur J Org Chem – volume: 40 start-page: 1559 year: 1999 end-page: 1562 article-title: Association and dissociation of (Z)‐(β‐bromoalkenyl)‐(phenyl)iodonium bromide in chloroform solution: detection of vinyl‐λ ‐iodane dimer in solution publication-title: Tetrahedron Lett – volume: 44 start-page: S889 issue: Suppl. 1 year: 2001 end-page: S891 article-title: Radiofluoridations of ‐substituted nitrobenzenes publication-title: J Label Compd Radiopharm – volume: 73 start-page: 4602 year: 2008 end-page: 4607 article-title: Regiospecific one‐pot synthesis of diaryliodonium tetrafluoroborates from aryl boronic acids and iodoarenes publication-title: J Org Chem – volume: 20 start-page: 470 year: 2015 end-page: 486 article-title: 4 [ F]Fluorophenylpiperazines by improved Hartwig‐Buchwald N‐arylation of 4‐[ F]fluoroiodobenzene, formed via hypervalent λ ‐iodane precursors: application to build‐up of the dopamine D ligand [ F]FAUC 316 publication-title: Molecules – start-page: 1620 year: 1977 end-page: 1622 article-title: Iodobenzene diacetate publication-title: Acta Crystallogr – volume: 33 start-page: 5525 year: 2014 end-page: 5534 article-title: Mechanistic investigations of Cu‐catalyzed fluorination of diaryliodonium salts: elaborating the Cu /Cu manifold in copper catalysis publication-title: Organometallics – volume: 21 start-page: 385 year: 1982 end-page: 392 article-title: Conversion of diaryliodonium salts to fluoroarenes publication-title: J Fluor Chem – volume: 56 start-page: 7312 year: 2013 end-page: 7323 article-title: 4‐[ F]Fluoro‐ ‐hydroxyphenethylguanidine: a radiopharmaceutical for quantifying regional cardiac sympathetic nerve density with positron emission tomography publication-title: J Med Chem – start-page: 5919 year: 2015 end-page: 5924 article-title: A mild and general one‐pot synthesis of densely functionalized diaryliodonium salts publication-title: Eur J Org Chem – start-page: 2521 year: 2007 end-page: 2523 article-title: High‐yielding one‐pot synthesis of diaryliodonium triflates from arenes and iodine or iodoarenes publication-title: Chem Commun – volume: 21 start-page: 2215 year: 1995 end-page: 2216 article-title: Reactions of cyclotron‐produced [ F]fluoride with diaryliodonium salts—a novel single‐step route to no‐carrier‐added [ F]fluoroarenes publication-title: J Chem Soc Chem Commun – volume: 224 start-page: 5 year: 2003 end-page: 67 – volume: 22 start-page: 108 year: 2011 end-page: 114 article-title: General method for labeling siRNA by click chemistry with fluorine‐18 for the purpose of PET imaging publication-title: Bioconjug Chem – volume: 4 start-page: 86 year: 2014 end-page: 91 article-title: Tolerance of water in microfluidic radiofluorinations: a potential methodological shift? publication-title: J Flow Chem – volume: 34 start-page: 861 year: 1991 end-page: 863 article-title: Synthesis of high specific activity 6‐[ F]fluorodopamine for positron emission tomography studies of sympathetic nervous tissue publication-title: J Med Chem – start-page: 4439 year: 2011 end-page: 4447 article-title: Radiosyntheses of meta‐substituted [ F]fluoroarenes from [ F]fluoride ion and diaryliodonium tosylates within a microreactor publication-title: Eur J Org Chem – volume: 58 start-page: 183 year: 2015 end-page: 187 article-title: [ F]6‐Fluoro‐3,4‐dihydroxy‐ ‐phenylalanine—recent modern syntheses for an elusive radiotracer publication-title: J Label Compd Radiopharm – volume: 14 start-page: 875 year: 2014 end-page: 900 article-title: Radiosyntheses using fluorine‐18: the art and science of late stage fluorination publication-title: Curr Top Med Chem – volume: 56 start-page: 50 year: 2013 end-page: 63 article-title: Synthesis of 4‐[ F]fluorobenzaldehyde using diaryliodonium salt precursors in a microreactor publication-title: J Label Compd Radiopharm – volume: 1 start-page: 2043 year: 1998 end-page: 2046 article-title: The synthesis of [ F]fluoroarenes from the reaction of cyclotron‐produced [ F]fluoride ion with diaryliodonium salts publication-title: J Chem Soc Perkin – year: 2017 article-title: Synthesis and preliminary PET imaging of C and F isotopologues of the ROS1/ALK inhibitor lorlatinib publication-title: Nat Commun – start-page: 453 year: 2017 end-page: 458 article-title: Nucleophilic F‐labeling of spirocyclic iodonium ylide or boronic pinacol ester precursors: advantages and disadvantages publication-title: Eur J Org Chem – volume: 16 start-page: 10418 year: 2010 end-page: 10423 article-title: Conformational structure and energetics of 2‐methylphenyl(2′‐methoxyphenyl)iodonium chloride: evidence for solution clusters publication-title: Chem‐A Eur J – volume: 1 start-page: 2463 year: 1997 end-page: 2465 article-title: Synthesis of functionalised unsymmetrical diaryliodonium salts publication-title: J Chem Soc Perkin Trans – volume: 19 start-page: 2980 year: 2011 end-page: 2990 article-title: Aromatic radiofluorination and biological evaluation of 2‐aryl‐6‐[ F]fluorobenzothiazoles as a potential positron emission tomography imaging probe for β‐amyloid plaques publication-title: Bioorg Med Chem – volume: 17 start-page: 2138 year: 2013 end-page: 2152 article-title: Synthesis of 4‐[ F]fluorohalobenzenes and palladium‐mediated cross‐coupling reactions for the synthesis of F‐labeled radiotracers publication-title: Curr Org Chem – volume: 18 start-page: 8618 year: 2013 end-page: 8665 article-title: Recent trends in bioorthogonal click‐radiolabeling reactions using fluorine‐18 publication-title: Molecules – volume: 19 start-page: 149 year: 1992 end-page: 158 article-title: Production of 6‐[ F]fluoro‐L‐DOPA—a critical review publication-title: Nucl Med Biol – volume: 9 start-page: 6629 year: 2011 end-page: 6638 article-title: Effective syntheses of mGluR5 PET radioligands through the radiofluorination of diaryliodonium salts publication-title: Org Biomol Chem – volume: 56 start-page: 106 year: 2015 end-page: 112 article-title: In vivo biodistribution of no‐carrier‐added 6‐ F‐fluoro‐3,4‐dihydroxy‐ ‐phenylalanine ( F‐DOPA), produced by a new nucleophilic substitution approach, compared with carrier‐added F‐DOPA, prepared by conventional electrophilic substitution publication-title: J Nucl Med – volume: 46 start-page: 699 year: 2003 end-page: 713 article-title: Synthesis of 4‐[ F]fluoroiodobenzene and its application in Sonogashira cross‐coupling reactions publication-title: J Label Compd Radiopharm – volume: 20 start-page: 817 year: 2009 end-page: 823 article-title: New strategy for the preparation of clickable peptides and labeling with 1‐(azidomethyl)‐4‐[ F]‐fluorobenzene for PET publication-title: Bioconjug Chem – volume: 54 start-page: 224 year: 2011 end-page: 228 article-title: Syntheses of meta‐[ F]fluorobenzaldehyde and meta‐[ F]fluorobenzyl bromide from phenyl(3‐formylphenyl)iodonium salt precursors publication-title: J Label Compd Radiopharm – volume: 75 start-page: 3332 year: 2010 end-page: 3338 article-title: Fast and high‐yield micro‐reactor syntheses of ortho‐substituted [ F]fluoroarenes from reactions of [ F]fluoride ion with diaryliodonium salts publication-title: J Org Chem – volume: 56 start-page: 1780 year: 2015 end-page: 1785 article-title: F‐Labeled single‐stranded DNA aptamer for PET imaging of protein tyrosine kinase‐7 expression publication-title: J Nucl Med – volume: 23 start-page: 4353 year: 2017 end-page: 4363 article-title: Crystal structures of diaryliodonium fluorides and their implications for fluorination mechanisms publication-title: Chem A Eur J – volume: 48 start-page: 9921 year: 2012 end-page: 9923 article-title: Selective syntheses of no‐carrier‐added 2‐ and 3‐[ F]fluorohalopyridines through the radiofluorination of halopyridinyl(4'‐methoxyphenyl)iodonium tosylates publication-title: Chem Commun – volume: 82 start-page: 264 year: 2013 end-page: 267 article-title: Bis(4‐benzyloxyphenyl) iodonium salts as effective precursors for the no‐carrier‐added radiosynthesis of 4‐[ F]fluorophenol publication-title: Appl Radiat Isot – volume: 23 start-page: 1818 year: 2016 end-page: 1869 article-title: Considerations in the development of reversibly binding PET radioligands for brain imaging publication-title: Curr Med Chem – volume: 1 start-page: 245 year: 1999 end-page: 248 article-title: Facile synthesis of substituted diaryliodonium tosylates by treatment of aryltributylstannanes with Koser's reagent publication-title: J Chem Soc Perkin Trans – start-page: 43 year: 2003 end-page: 48 article-title: On the mechanism of α‐phenylation of β‐keto esters with diaryl‐λ ‐iodanes: evidence for a non‐radical pathway publication-title: ARKIVOC – volume: 45 start-page: 891 year: 2009 end-page: 902 article-title: [ F]Flumazenil binding to central benzodiazepine receptor studies by PET—quantitative analysis and comparisons with [ C]flumazenil publication-title: Neuroimage – volume: 51 start-page: 11426 year: 2012 end-page: 11437 article-title: F labeling of arenes publication-title: Angew Chem Int Ed – volume: 349 start-page: 2610 year: 2007 end-page: 2618 article-title: Efficient and general one‐pot synthesis of diaryliodonium triflates: optimization, scope and limitations publication-title: Adv Synth Catal – volume: 42 start-page: 975 year: 1999 end-page: 985 article-title: 2‐[ F]Fluoropyridine by no‐carrier‐added nucleophilic aromatic substitution with K[ F]F‐K222 publication-title: J Label Compd Radiopharm – volume: 75 start-page: 2705 year: 1953 end-page: 2708 article-title: Diaryliodonium salts. I. Synthesis publication-title: J Am Chem Soc – volume: 30 start-page: 431 year: 2009 end-page: 440 article-title: PET radiotracers: crossing the blood‐brain barrier and surviving metabolism publication-title: TiPs – volume: 82 start-page: 1279 year: 2017 end-page: 1284 article-title: Synthesis of aryl(2,4,6‐trimethoxyphenyl)iodonium trifluoroacetate salts publication-title: J Org Chem – volume: 8 start-page: 12 year: 2017 end-page: 16 article-title: Fluorine‐18‐labeled antagonist for PET imaging of kappa opioid receptors publication-title: ACS Chem Neurosci – volume: 54 start-page: 12777 year: 2015 end-page: 12781 article-title: Ortho‐stabilized F‐azido click agents and their application in PET imaging with single‐stranded DNA aptamers publication-title: Angew Chem Int Ed – volume: 21 start-page: 5972 year: 2015 end-page: 5979 article-title: Copper‐mediated aromatic radiofluorination revisited: efficient production of PET tracers on a preparative scale publication-title: Chem A Eur J – volume: 26 start-page: 4857 year: 2016 end-page: 4860 article-title: Radiosynthesis and preliminary evaluation of F‐labeled 2‐(1‐(3‐fluorophenyl)‐2‐oxo‐5‐(pyrimidin‐2‐yl)‐1,2‐dihydropyridin‐3‐yl)benzonitrile for imaging AMPA receptors publication-title: Bioorg Med Chem Lett – volume: 48 start-page: 2534 year: 1983 end-page: 2539 article-title: Regiospecific synthesis of aryl(2‐furyl)iodonium tosylates, a new class of iodonium salts, from [hydroxy(tosyloxy)iodo]arenes and 2‐(trimethylsilyl)furans in organic solvents publication-title: J Org Chem – volume: 54 start-page: 2067 year: 2013 end-page: 2069 article-title: Simplified synthesis of aryliodonium ylides by a one‐pot procedure publication-title: Tetrahedron Lett – start-page: 217 year: 1977 end-page: 219 article-title: Secondary bonding. Part I. Crystal and molecular structures of (C H ) IX X = (CI, Br, or I) publication-title: J Chem Soc Dalton Trans – volume: 2 start-page: 2707 year: 1999 end-page: 2714 article-title: An ab initio and MNDO‐d SCF‐MO computational study of stereoelectronic control in extrusion reactions of R I‐F iodine(III) intermediates publication-title: J Chem Soc Perkin Trans – volume: 128 start-page: 127 year: 2007 end-page: 132 article-title: Radical scavengers: a practical solution to the reproducibility issue in the fluoridation of diaryliodonium salts publication-title: J Fluor Chem – volume: 7 start-page: 1552 year: 2016 end-page: 1564 article-title: Synthesis and pharmacological evaluation of [ C]granisetron, and [ F]fluoropalonosetron as PET probes for 5‐HT receptor imaging publication-title: ACS Chem Neurosci – volume: 44 start-page: 25 year: 2010 end-page: 32 article-title: Recent trends in the nucleophilic [ F]‐radiolabeling method with no‐carrier‐added [ F]fluoride publication-title: Nucl Med Mol Imaging – volume: 11 start-page: 3221 year: 2005 end-page: 3235 article-title: Fluorine‐18‐labelled fluoropyridines: advances in radiopharmaceutical design publication-title: Curr Pharm Des – volume: 81 start-page: 1998 year: 2016 end-page: 2009 article-title: Unsymmetrical aryl(2,4,6‐trimethoxyphenyl)iodonium salts: one‐pot synthesis, scope, stability, and synthetic studies publication-title: J Org Chem – volume: 235 start-page: 233 year: 1886 end-page: 255 article-title: Ueber das Verhalten einiger Diazo‐ und Diazoamidoverbindungen publication-title: Justus Liebigs Ann Chem – volume: 60 start-page: 5222 year: 2017 end-page: 5227 article-title: A facile radiolabeling of [ F]FDPA via spirocyclic iodonium ylides: preliminary PET imaging studies in preclinical models of neuroinflammation publication-title: J Med Chem – volume: 21 start-page: 1160 year: 2016 article-title: Synthesis of a potent aminopyridine‐based nNOS‐inhibitor by two recent no‐carrier‐added F‐labelling methods publication-title: Molecules – volume: 8 start-page: 996 year: 2017 end-page: 1003 article-title: A potential PET radiotracer for the 5‐HT receptor: synthesis and in vivo evaluation of 4(3‐[ F]fluorophenethoxy)pyrimidine publication-title: ACS Chem Neurosci – volume: 81 start-page: 297 year: 2016 end-page: 302 article-title: An investigation of (diacetoxyiodo)arenes as precursors for preparing no‐carrier‐added [ F]fluoroarenes from cyclotron‐produced [ F]fluoride ion publication-title: J Org Chem – volume: 49 start-page: 3643 year: 1984 end-page: 3646 article-title: Direct condensation of [hydroxy(tosyloxy)iodo]arenes with thiophenes. A convenient, mild synthesis of aryl(2‐thienyl)iodonium tosylates publication-title: J Org Chem – ident: e_1_2_6_64_1 doi: 10.1021/acs.joc.6b02811 – ident: e_1_2_6_82_1 doi: 10.1039/a802349b – ident: e_1_2_6_74_1 doi: 10.1556/JFC-D-13-00034 – start-page: 43 year: 2003 ident: e_1_2_6_79_1 article-title: On the mechanism of α‐phenylation of β‐keto esters with diaryl‐λ3‐iodanes: evidence for a non‐radical pathway publication-title: ARKIVOC doi: 10.3998/ark.5550190.0004.606 – start-page: 99 volume-title: Hypervalent Iodine Chemistry: Preparation, Structure and Properties of Polyvalent Iodine Compounds year: 2014 ident: e_1_2_6_31_1 – ident: e_1_2_6_128_1 doi: 10.1021/acschemneuro.6b00192 – ident: e_1_2_6_17_1 doi: 10.2174/138161205774424645 – ident: e_1_2_6_66_1 doi: 10.1021/jo100361d – ident: e_1_2_6_88_1 doi: 10.1002/jlcr.1853 – ident: e_1_2_6_134_1 doi: 10.1021/jm400770g – ident: e_1_2_6_51_1 doi: 10.1021/jo00163a022 – ident: e_1_2_6_112_1 doi: 10.1016/j.apradiso.2005.03.005 – ident: e_1_2_6_132_1 doi: 10.1021/acschemneuro.6b00445 – ident: e_1_2_6_36_1 doi: 10.1039/a704062h – ident: e_1_2_6_125_1 doi: 10.1016/j.nucmedbio.2009.05.008 – ident: e_1_2_6_38_1 doi: 10.3390/molecules16097621 – ident: e_1_2_6_114_1 – start-page: 1 volume-title: Modern Nucleophilic Aromatic Substitution year: 2011 ident: e_1_2_6_12_1 – ident: e_1_2_6_133_1 doi: 10.1007/s00259-013-2558-9 – ident: e_1_2_6_56_1 doi: 10.1021/jm4012017 – ident: e_1_2_6_94_1 doi: 10.1039/C6SC00197A – ident: e_1_2_6_69_1 doi: 10.1016/j.tetlet.2013.02.018 – ident: e_1_2_6_26_1 doi: 10.1002/chem.201604803 – ident: e_1_2_6_16_1 doi: 10.1002/jlcr.25804401312 – ident: e_1_2_6_50_1 doi: 10.1021/jo01296a050 – ident: e_1_2_6_57_1 doi: 10.1016/j.bmc.2011.03.029 – ident: e_1_2_6_32_1 doi: 10.1021/acs.joc.5b02332 – ident: e_1_2_6_98_1 doi: 10.1007/978-3-540-49527-7_3 – ident: e_1_2_6_131_1 doi: 10.1016/j.bmcl.2015.04.055 – ident: e_1_2_6_9_1 doi: 10.2174/1568026614666140202205035 – ident: e_1_2_6_106_1 doi: 10.1002/chem.201405586 – ident: e_1_2_6_109_1 doi: 10.3390/molecules18078618 – ident: e_1_2_6_72_1 doi: 10.1021/acschemneuro.5b00202 – ident: e_1_2_6_23_1 doi: 10.1039/dt9770000217 – ident: e_1_2_6_25_1 doi: 10.1002/chem.201000607 – ident: e_1_2_6_4_1 doi: 10.2174/0929867323666160418114826 – ident: e_1_2_6_18_1 doi: 10.1002/(SICI)1099-1344(199910)42:10<975::AID-JLCR256>3.0.CO;2-E – ident: e_1_2_6_73_1 doi: 10.1039/C4OB01336K – ident: e_1_2_6_96_1 – ident: e_1_2_6_80_1 doi: 10.1007/3-540-46114-0_2 – ident: e_1_2_6_14_1 doi: 10.1002/cber.19270600539 – ident: e_1_2_6_89_1 doi: 10.1016/S0040-4039(98)02710-5 – ident: e_1_2_6_27_1 doi: 10.1039/c2cc35708a – ident: e_1_2_6_40_1 doi: 10.1002/ejoc.201500986 – ident: e_1_2_6_34_1 doi: 10.1021/jo202517v – ident: e_1_2_6_99_1 doi: 10.1007/978-3-540-49527-7_4 – ident: e_1_2_6_105_1 doi: 10.1039/b412871k – ident: e_1_2_6_75_1 doi: 10.1039/c3ob40742j – volume: 27 start-page: 235 year: 1986 ident: e_1_2_6_15_1 article-title: Efficient stereospecific synthesis of no‐carrier‐added 2‐[18F]‐fluoro‐2‐deoxy‐d‐glucose using aminopolyether supported nucleophilic substitution publication-title: J Nucl Med – ident: e_1_2_6_39_1 doi: 10.1002/jlcr.3367 – ident: e_1_2_6_68_1 doi: 10.1038/ncomms5365 – ident: e_1_2_6_90_1 doi: 10.1021/ol201080c – ident: e_1_2_6_21_1 doi: 10.1016/S0022-1139(00)81524-9 – ident: e_1_2_6_85_1 doi: 10.1039/a906212b – ident: e_1_2_6_119_1 doi: 10.3390/molecules21091160 – ident: e_1_2_6_108_1 doi: 10.1002/jlcr.1898 – ident: e_1_2_6_28_1 doi: 10.1107/S0567740877006694 – ident: e_1_2_6_65_1 doi: 10.1002/anie.201606381 – ident: e_1_2_6_102_1 doi: 10.3390/molecules20010470 – ident: e_1_2_6_142_1 doi: 10.2967/jnumed.110.075895 – ident: e_1_2_6_101_1 doi: 10.1002/jlcr.709 – ident: e_1_2_6_41_1 doi: 10.1021/acs.jmedchem.6b00905 – ident: e_1_2_6_70_1 doi: 10.1039/c1ob05555k – ident: e_1_2_6_58_1 doi: 10.1039/b701864a – ident: e_1_2_6_100_1 doi: 10.2174/13852728113179990106 – ident: e_1_2_6_111_1 doi: 10.1021/bc100263y – ident: e_1_2_6_10_1 doi: 10.1021/acs.chemrev.5b00493 – ident: e_1_2_6_118_1 doi: 10.1002/anie.201505927 – ident: e_1_2_6_55_1 doi: 10.1021/jo101227j – ident: e_1_2_6_143_1 doi: 10.1016/j.bmcl.2015.11.091 – volume: 56 start-page: 50 year: 2013 ident: e_1_2_6_107_1 article-title: Synthesis of 4‐[18F]fluorobenzaldehyde using diaryliodonium salt precursors in a microreactor publication-title: J Label Compd Radiopharm – ident: e_1_2_6_87_1 doi: 10.1021/cr00054a001 – ident: e_1_2_6_45_1 doi: 10.1002/ejoc.201200695 – ident: e_1_2_6_145_1 doi: 10.1038/ncomms15761 – volume: 19 start-page: 149 year: 1992 ident: e_1_2_6_20_1 article-title: Production of 6‐[18F]fluoro‐L‐DOPA—a critical review publication-title: Nucl Med Biol – ident: e_1_2_6_95_1 doi: 10.1039/C4RA00674G – ident: e_1_2_6_127_1 doi: 10.1039/c1ob06277h – ident: e_1_2_6_13_1 doi: 10.1002/jlac.18862350302 – ident: e_1_2_6_110_1 doi: 10.1021/bc800544p – ident: e_1_2_6_141_1 doi: 10.1021/acschemneuro.6b00268 – ident: e_1_2_6_48_1 doi: 10.1016/j.apradiso.2013.08.011 – ident: e_1_2_6_78_1 doi: 10.1021/acs.orglett.7b01902 – ident: e_1_2_6_54_1 doi: 10.1021/jo01296a049 – ident: e_1_2_6_22_1 doi: 10.1039/C39950002215 – ident: e_1_2_6_129_1 doi: 10.1021/jm400156p – ident: e_1_2_6_146_1 doi: 10.1021/acs.jmedchem.7b00432 – ident: e_1_2_6_53_1 doi: 10.1039/a809349k – start-page: 35 volume-title: Hypervalent Iodine Chemistry: Preparation, Structure and Properties of Polyvalent Iodine Compounds year: 2014 ident: e_1_2_6_33_1 – volume: 52 start-page: 216 year: 2009 ident: e_1_2_6_113_1 article-title: The first single‐step‐single‐pot synthesis of 4‐[18F]SFB publication-title: J Label Compd Radiopharm – ident: e_1_2_6_2_1 doi: 10.1016/0883-2889(91)90179-5 – ident: e_1_2_6_86_1 doi: 10.1016/j.comptc.2015.05.012 – ident: e_1_2_6_35_1 doi: 10.1002/ejoc.201100382 – ident: e_1_2_6_135_1 doi: 10.1021/jm00106a055 – ident: e_1_2_6_140_1 doi: 10.2967/jnumed.114.151332 – ident: e_1_2_6_130_1 doi: 10.2967/jnumed.115.162461 – ident: e_1_2_6_103_1 doi: 10.1002/jlcr.830 – ident: e_1_2_6_91_1 doi: 10.1016/j.jfluchem.2006.10.018 – ident: e_1_2_6_122_1 doi: 10.1016/0969-8051(93)90082-6 – ident: e_1_2_6_8_1 doi: 10.1002/anie.201204687 – ident: e_1_2_6_42_1 doi: 10.1021/ol501243g – ident: e_1_2_6_123_1 doi: 10.1016/j.neuroimage.2008.12.005 – ident: e_1_2_6_93_1 doi: 10.1021/om5007903 – ident: e_1_2_6_19_1 doi: 10.1002/ejoc.201701596 – ident: e_1_2_6_37_1 doi: 10.1021/ja066850h – ident: e_1_2_6_52_1 doi: 10.1016/S0040-4039(00)00861-3 – ident: e_1_2_6_77_1 doi: 10.1021/ol101154h – ident: e_1_2_6_84_1 doi: 10.1021/jo00883a004 – ident: e_1_2_6_116_1 doi: 10.1016/j.bmcl.2016.07.078 – start-page: 364 year: 2013 ident: e_1_2_6_11_1 article-title: Applications of iodonium salts and iodonium ylides as precursors for nucleophilic fluorination in positron emission tomography publication-title: ARKIVOC doi: 10.3998/ark.5550190.p008.225 – ident: e_1_2_6_83_1 doi: 10.1246/bcsj.45.1860 – ident: e_1_2_6_124_1 doi: 10.1016/j.nucmedbio.2004.11.001 – ident: e_1_2_6_63_1 doi: 10.1021/acs.joc.5b02833 – ident: e_1_2_6_120_1 doi: 10.2967/jnumed.115.160960 – volume: 3 start-page: 19 year: 2014 ident: e_1_2_6_62_1 article-title: One‐pot synthesis and applications of N‐heteroaryl iodonium salts publication-title: ChemOpen – ident: e_1_2_6_46_1 doi: 10.1016/j.tet.2012.03.113 – start-page: 76 volume-title: Hypervalent Iodine Chemistry: Preparation, Structure and Properties of Polyvalent Iodine Compounds year: 2014 ident: e_1_2_6_30_1 – ident: e_1_2_6_5_1 doi: 10.1007/978-3-540-49527-7_2 – ident: e_1_2_6_44_1 doi: 10.1021/ja01511a020 – ident: e_1_2_6_92_1 doi: 10.1021/ol4025716 – ident: e_1_2_6_104_1 doi: 10.1002/jlcr.834 – ident: e_1_2_6_7_1 doi: 10.1007/s13139-009-0008-1 – ident: e_1_2_6_43_1 doi: 10.1002/anie.200904689 – ident: e_1_2_6_49_1 doi: 10.1021/jo00193a039 – ident: e_1_2_6_115_1 doi: 10.1039/c2cc35005j – ident: e_1_2_6_139_1 doi: 10.1016/j.apradiso.2016.04.030 – ident: e_1_2_6_6_1 doi: 10.1002/ejoc.200800114 – ident: e_1_2_6_61_1 doi: 10.1021/jo8004974 – ident: e_1_2_6_59_1 doi: 10.1002/adsc.200700373 – ident: e_1_2_6_121_1 doi: 10.1016/j.tetlet.2007.10.025 – ident: e_1_2_6_47_1 doi: 10.1039/c3ob41353e – ident: e_1_2_6_138_1 doi: 10.2967/jnumed.114.145730 – ident: e_1_2_6_71_1 doi: 10.1007/s11307-014-0738-z – ident: e_1_2_6_67_1 doi: 10.1021/ja01107a046 – ident: e_1_2_6_76_1 doi: 10.1016/j.jfluchem.2015.08.006 – start-page: 592 year: 2008 ident: e_1_2_6_60_1 article-title: One‐pot synthesis of diaryliodonium salts using toluenesulfonic acid: a fast entry to electron‐rich diaryliodonium tosylates and triflates publication-title: Synlett – ident: e_1_2_6_97_1 doi: 10.1155/2014/812973 – ident: e_1_2_6_136_1 doi: 10.1002/jlcr.3285 – ident: e_1_2_6_137_1 – start-page: 1709 year: 1984 ident: e_1_2_6_29_1 article-title: Secondary bonding. Part 13. Aryl‐tellurium(IV) and ‐iodine(III) acetates and trifluoroacetates. The crystal and molecular structures of bis‐(p‐methoxyphenyl)tellurium diacetate, μ‐oxo‐bis[diphenyltrifluoroacetoxytellurium] hydrate, and [bis(trifluoroacetoxy)iodo]benzene publication-title: J Chem Soc Dalton Trans doi: 10.1039/DT9840001709 – ident: e_1_2_6_3_1 doi: 10.1016/j.tips.2009.05.005 – ident: e_1_2_6_117_1 doi: 10.1002/ejoc.201601448 – ident: e_1_2_6_126_1 doi: 10.1016/j.nucmedbio.2009.01.011 – ident: e_1_2_6_144_1 doi: 10.1039/C7OB00628D – ident: e_1_2_6_81_1 doi: 10.1039/b000868k – ident: e_1_2_6_24_1 doi: 10.1039/dt9870000193 |
SSID | ssj0009944 |
Score | 2.3554294 |
SecondaryResourceType | review_article |
Snippet | Over the last 2 decades or so, hypervalent iodine compounds, such as diaryliodonium salts and aryliodonium ylides, have emerged as useful precursors for... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 196 |
SubjectTerms | Aromatic compounds aryliodonium ylide Chemical synthesis Cyclotrons diaryliodonium salt fluorine 18 Fluorine isotopes Fluorine Radioisotopes - chemistry Iodine compounds Labeling Medical imaging PET Positron emission Positron emission tomography Positron-Emission Tomography - methods Precursors radiofluorination Radiopharmaceuticals - chemical synthesis radiotracer Salts |
Title | Hypervalent aryliodine compounds as precursors for radiofluorination |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjlcr.3570 https://www.ncbi.nlm.nih.gov/pubmed/28981159 https://www.proquest.com/docview/2019051409 https://www.proquest.com/docview/1947617989 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KL3rx_agvonjwkjZNdpMsnqQqpagHUehBCPsKVENTkubir3cmaVJ8gXgL7OwjMzuZmc3sN4ScK8pjMPOOHQhP25TGyua-hiiFCTBPhvKwBNK-f_CHz3Q0ZuMWuazvwlT4EM2BG2pG-b1GBRcy7y1BQ18TlXU9FmC8jrla6BA9LqGjOKdL6KjQ8WpUIcftNT0_26JvDuZnf7U0OLfr5KVeapVn8tYt5rKr3r-gOP7zXTbI2sIRta6qnbNJWma6RVYGdf23bXI9hBA1g40IZsmCoZNJCnbOWJiEjrWYckvk1izD8_o8zXILvF8rE3qSxkmBWX2lyHfI8-3N02BoL2ou2Aqx-GyttQpDEF_IFQsdpilE20z7MtCxJ1xPgoemlR9QFdPYp1w5RnLXMaD42unH0tsl7Wk6NfvEgt4qoExxoSVVWkrmxFIYGINrobx-h1zU3I_UApAc62IkUQWl7EbIlgjZ0iFnDemsQuH4ieioFmG0UMQ8cvGuPENUrw45bZqBk_hfRExNWuRRn9PAR-A2oNmrRN_MAvFoCE4ztFyUAvx9-mh0N3jEh4O_kx6SVVhgWOW0HZH2PCvMMTg5c3lS7uYPe3v6RA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4hOKQXKIVCaEoN6oGLg2Pv2l6JSxWKUggcEEhcqtW-LAFRjOzkwq9nxo4dQalU9WZpZx-e2fHMrGe_AfhumMjQzAd-oiLrM5YZX8QWoxSu0Dw5JtIKSPvyKh7dsvM7frcCJ81dmBofoj1wI82ovtek4HQgfbxEDX2YmKIf8QQD9jWq6F0FVNdL8Cgh2BI8Kg2iBlcoCI_brq-t0R8u5muPtTI5Zxvwu1lsnWny2J_PdN88v8Fx_N-3-QjrC1_U-1Fvnk1YcdNP0Bk2JeC24HSEUWqBexEtk4djT-5zNHXOozx0KsdUeqr0ngo6si_zovTQAfYKZe_zbDKnxL5K6ttwe_bzZjjyF2UXfENwfL611qQpSjAVhqcBtwwDbm5jndgsUmGk0UmzJk6YyVgWM2ECp0UYONR9GwwyHX2G1Wk-dbvgYW-TMG6EspoZqzUPMq0cjiGsMtGgC0cN-6VZYJJTaYyJrNGUQ0lskcSWLhy2pE81EMd7RL1GhnKhi6UM6bo8J2CvLhy0zchJ-jWipi6fl3IgWBITdhvS7NSyb2fBkDRFvxlbjioJ_n16eT4eXtPD3r-TfoPO6OZyLMe_ri6-wAdcbFqnuPVgdVbM3Vf0eWZ6v9raLw3__l8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB5CCm0vbdJH6jZJldJDLnLW0q60S07BrnHTJJTQQA6FZZ-QxFhGsi_99Z2VLJmkKZTeBDv70Dw0M6vZbwE-Gyo8unkS5yq1MaXexCKzmKUwhe7JUcFrIO3zi2xyRU-v2fUGHLdnYRp8iG7DLVhG_b0OBj63_mgNGno7NWU_ZTnm609oRnhQ6dHlGjtKCLrGjuIkbWGFSHLUdb3vjP6IMO8HrLXHGb-En-1am0KTu_5yofvm1wMYx_98mS14sYpEo5NGdbZhw81ewbNhewHcaxhNMEctURPRL0U49PSmQEfnolCFHi5jqiJVRfMybNhXRVlFGP5GpbI3hZ8uQ1lfLfM3cDX-8mM4iVeXLsQmgPHF1lrDOcqPC8M4YZZius1spnPrU5WkGkM0a7KcGk99RoUhTouEOLR8SwZep29hc1bM3DuIsLfJKTNCWU2N1ZoRr5XDMYRVJh304LDlvjQrRPJwMcZUNljKiQxskYEtPfjUkc4bGI7HiHZbEcqVJVYyCYflWYD16sFB14ycDD9G1MwVy0oOBM2zgNyGNDuN6LtZMCHlGDVjy2EtwL9PL0_Phpfh4f2_k36Ep99HY3n29eLbB3iOa-VNfdsubC7KpdvDgGeh92vF_g07d_0X |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hypervalent+aryliodine+compounds+as+precursors+for+radiofluorination&rft.jtitle=Journal+of+labelled+compounds+%26+radiopharmaceuticals&rft.au=Pike%2C+Victor+W&rft.date=2018-03-01&rft.eissn=1099-1344&rft.volume=61&rft.issue=3&rft.spage=196&rft_id=info:doi/10.1002%2Fjlcr.3570&rft_id=info%3Apmid%2F28981159&rft.externalDocID=28981159 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0362-4803&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0362-4803&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0362-4803&client=summon |