Over 60 h of Stable Water‐Operation for N‐Type Organic Electrochemical Transistors with Fast Response and Ambipolarity
Organic electrochemical transistors (OECTs) are of great interest in low‐power bioelectronics and neuromorphic computing, as they utilize organic mixed ionic‐electronic conductors (OMIECs) to transduce ionic signals into electrical signals. However, the poor environmental stability of OMIEC material...
Saved in:
Published in | Advanced science Vol. 11; no. 29; pp. e2400872 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.08.2024
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Organic electrochemical transistors (OECTs) are of great interest in low‐power bioelectronics and neuromorphic computing, as they utilize organic mixed ionic‐electronic conductors (OMIECs) to transduce ionic signals into electrical signals. However, the poor environmental stability of OMIEC materials significantly restricts the practical application of OECTs. Therefore, the non‐fused planar naphthalenediimide (NDI)‐dialkoxybithiazole (2Tz) copolymers are fine‐tuned through varying ethylene glycol (EG) side chain lengths from tri(ethylene glycol) to hexa(ethylene glycol) (namely P‐XO, X = 3–6) to achieve OECTs with high‐stability and low threshold voltage. As a result, the NDI‐2Tz copolymers exhibit ambipolarity, rapid response (<10 ms), and ultra‐high n‐type stability. Notably, the P‐6O copolymers display a threshold voltage as low as 0.27 V. They can operate in n‐type mode in an aqueous solution for over 60 h, maintaining an on‐off ratio of over 105. This work sheds light on the design of exceptional n‐type/ambipolar materials for OECTs. It demonstrates the potential of incorporating these ambipolar polymers into water‐operational integrated circuits for long‐term biosensing systems and energy‐efficient brain‐inspired computing.
Four NDI‐2Tz copolymers (P‐XO, X = 3–6) with modified EG side chains are synthesized. They exhibit exceptional n‐type operational stability (over 60 h) in OECTs, fast switching (<10 ms), and excellent ambipolar behavior. Increasing the length of side chains enhances the hydrophilicity of the materials, thereby boosting electrochemical doping efficiency. This study reveals EG substitution's impact on NDI‐2Tz copolymers, providing insight for stable, low‐power n‐type/ambipolar materials. |
---|---|
AbstractList | Organic electrochemical transistors (OECTs) are of great interest in low‐power bioelectronics and neuromorphic computing, as they utilize organic mixed ionic‐electronic conductors (OMIECs) to transduce ionic signals into electrical signals. However, the poor environmental stability of OMIEC materials significantly restricts the practical application of OECTs. Therefore, the non‐fused planar naphthalenediimide (NDI)‐dialkoxybithiazole (2Tz) copolymers are fine‐tuned through varying ethylene glycol (EG) side chain lengths from tri(ethylene glycol) to hexa(ethylene glycol) (namely P‐XO, X = 3–6) to achieve OECTs with high‐stability and low threshold voltage. As a result, the NDI‐2Tz copolymers exhibit ambipolarity, rapid response (<10 ms), and ultra‐high n‐type stability. Notably, the P‐6O copolymers display a threshold voltage as low as 0.27 V. They can operate in n‐type mode in an aqueous solution for over 60 h, maintaining an on‐off ratio of over 10
5
. This work sheds light on the design of exceptional n‐type/ambipolar materials for OECTs. It demonstrates the potential of incorporating these ambipolar polymers into water‐operational integrated circuits for long‐term biosensing systems and energy‐efficient brain‐inspired computing.
Four NDI‐2Tz copolymers (P‐XO, X = 3–6) with modified EG side chains are synthesized. They exhibit exceptional n‐type operational stability (over 60 h) in OECTs, fast switching (<10 ms), and excellent ambipolar behavior. Increasing the length of side chains enhances the hydrophilicity of the materials, thereby boosting electrochemical doping efficiency. This study reveals EG substitution's impact on NDI‐2Tz copolymers, providing insight for stable, low‐power n‐type/ambipolar materials. Organic electrochemical transistors (OECTs) are of great interest in low‐power bioelectronics and neuromorphic computing, as they utilize organic mixed ionic‐electronic conductors (OMIECs) to transduce ionic signals into electrical signals. However, the poor environmental stability of OMIEC materials significantly restricts the practical application of OECTs. Therefore, the non‐fused planar naphthalenediimide (NDI)‐dialkoxybithiazole (2Tz) copolymers are fine‐tuned through varying ethylene glycol (EG) side chain lengths from tri(ethylene glycol) to hexa(ethylene glycol) (namely P‐XO, X = 3–6) to achieve OECTs with high‐stability and low threshold voltage. As a result, the NDI‐2Tz copolymers exhibit ambipolarity, rapid response (<10 ms), and ultra‐high n‐type stability. Notably, the P‐6O copolymers display a threshold voltage as low as 0.27 V. They can operate in n‐type mode in an aqueous solution for over 60 h, maintaining an on‐off ratio of over 105. This work sheds light on the design of exceptional n‐type/ambipolar materials for OECTs. It demonstrates the potential of incorporating these ambipolar polymers into water‐operational integrated circuits for long‐term biosensing systems and energy‐efficient brain‐inspired computing. Four NDI‐2Tz copolymers (P‐XO, X = 3–6) with modified EG side chains are synthesized. They exhibit exceptional n‐type operational stability (over 60 h) in OECTs, fast switching (<10 ms), and excellent ambipolar behavior. Increasing the length of side chains enhances the hydrophilicity of the materials, thereby boosting electrochemical doping efficiency. This study reveals EG substitution's impact on NDI‐2Tz copolymers, providing insight for stable, low‐power n‐type/ambipolar materials. Organic electrochemical transistors (OECTs) are of great interest in low-power bioelectronics and neuromorphic computing, as they utilize organic mixed ionic-electronic conductors (OMIECs) to transduce ionic signals into electrical signals. However, the poor environmental stability of OMIEC materials significantly restricts the practical application of OECTs. Therefore, the non-fused planar naphthalenediimide (NDI)-dialkoxybithiazole (2Tz) copolymers are fine-tuned through varying ethylene glycol (EG) side chain lengths from tri(ethylene glycol) to hexa(ethylene glycol) (namely P-XO, X = 3–6) to achieve OECTs with high-stability and low threshold voltage. As a result, the NDI-2Tz copolymers exhibit ambipolarity, rapid response (<10 ms), and ultra-high n-type stability. Notably, the P-6O copolymers display a threshold voltage as low as 0.27 V. They can operate in n-type mode in an aqueous solution for over 60 h, maintaining an on-off ratio of over 105. This work sheds light on the design of exceptional n-type/ambipolar materials for OECTs. It demonstrates the potential of incorporating these ambipolar polymers into water-operational integrated circuits for long-term biosensing systems and energy-efficient brain-inspired computing. Organic electrochemical transistors (OECTs) are of great interest in low-power bioelectronics and neuromorphic computing, as they utilize organic mixed ionic-electronic conductors (OMIECs) to transduce ionic signals into electrical signals. However, the poor environmental stability of OMIEC materials significantly restricts the practical application of OECTs. Therefore, the non-fused planar naphthalenediimide (NDI)-dialkoxybithiazole (2Tz) copolymers are fine-tuned through varying ethylene glycol (EG) side chain lengths from tri(ethylene glycol) to hexa(ethylene glycol) (namely P-XO, X = 3-6) to achieve OECTs with high-stability and low threshold voltage. As a result, the NDI-2Tz copolymers exhibit ambipolarity, rapid response (<10 ms), and ultra-high n-type stability. Notably, the P-6O copolymers display a threshold voltage as low as 0.27 V. They can operate in n-type mode in an aqueous solution for over 60 h, maintaining an on-off ratio of over 105. This work sheds light on the design of exceptional n-type/ambipolar materials for OECTs. It demonstrates the potential of incorporating these ambipolar polymers into water-operational integrated circuits for long-term biosensing systems and energy-efficient brain-inspired computing.Organic electrochemical transistors (OECTs) are of great interest in low-power bioelectronics and neuromorphic computing, as they utilize organic mixed ionic-electronic conductors (OMIECs) to transduce ionic signals into electrical signals. However, the poor environmental stability of OMIEC materials significantly restricts the practical application of OECTs. Therefore, the non-fused planar naphthalenediimide (NDI)-dialkoxybithiazole (2Tz) copolymers are fine-tuned through varying ethylene glycol (EG) side chain lengths from tri(ethylene glycol) to hexa(ethylene glycol) (namely P-XO, X = 3-6) to achieve OECTs with high-stability and low threshold voltage. As a result, the NDI-2Tz copolymers exhibit ambipolarity, rapid response (<10 ms), and ultra-high n-type stability. Notably, the P-6O copolymers display a threshold voltage as low as 0.27 V. They can operate in n-type mode in an aqueous solution for over 60 h, maintaining an on-off ratio of over 105. This work sheds light on the design of exceptional n-type/ambipolar materials for OECTs. It demonstrates the potential of incorporating these ambipolar polymers into water-operational integrated circuits for long-term biosensing systems and energy-efficient brain-inspired computing. Organic electrochemical transistors (OECTs) are of great interest in low-power bioelectronics and neuromorphic computing, as they utilize organic mixed ionic-electronic conductors (OMIECs) to transduce ionic signals into electrical signals. However, the poor environmental stability of OMIEC materials significantly restricts the practical application of OECTs. Therefore, the non-fused planar naphthalenediimide (NDI)-dialkoxybithiazole (2Tz) copolymers are fine-tuned through varying ethylene glycol (EG) side chain lengths from tri(ethylene glycol) to hexa(ethylene glycol) (namely P-XO, X = 3-6) to achieve OECTs with high-stability and low threshold voltage. As a result, the NDI-2Tz copolymers exhibit ambipolarity, rapid response (<10 ms), and ultra-high n-type stability. Notably, the P-6O copolymers display a threshold voltage as low as 0.27 V. They can operate in n-type mode in an aqueous solution for over 60 h, maintaining an on-off ratio of over 10 . This work sheds light on the design of exceptional n-type/ambipolar materials for OECTs. It demonstrates the potential of incorporating these ambipolar polymers into water-operational integrated circuits for long-term biosensing systems and energy-efficient brain-inspired computing. Abstract Organic electrochemical transistors (OECTs) are of great interest in low‐power bioelectronics and neuromorphic computing, as they utilize organic mixed ionic‐electronic conductors (OMIECs) to transduce ionic signals into electrical signals. However, the poor environmental stability of OMIEC materials significantly restricts the practical application of OECTs. Therefore, the non‐fused planar naphthalenediimide (NDI)‐dialkoxybithiazole (2Tz) copolymers are fine‐tuned through varying ethylene glycol (EG) side chain lengths from tri(ethylene glycol) to hexa(ethylene glycol) (namely P‐XO, X = 3–6) to achieve OECTs with high‐stability and low threshold voltage. As a result, the NDI‐2Tz copolymers exhibit ambipolarity, rapid response (<10 ms), and ultra‐high n‐type stability. Notably, the P‐6O copolymers display a threshold voltage as low as 0.27 V. They can operate in n‐type mode in an aqueous solution for over 60 h, maintaining an on‐off ratio of over 105. This work sheds light on the design of exceptional n‐type/ambipolar materials for OECTs. It demonstrates the potential of incorporating these ambipolar polymers into water‐operational integrated circuits for long‐term biosensing systems and energy‐efficient brain‐inspired computing. Abstract Organic electrochemical transistors (OECTs) are of great interest in low‐power bioelectronics and neuromorphic computing, as they utilize organic mixed ionic‐electronic conductors (OMIECs) to transduce ionic signals into electrical signals. However, the poor environmental stability of OMIEC materials significantly restricts the practical application of OECTs. Therefore, the non‐fused planar naphthalenediimide (NDI)‐dialkoxybithiazole (2Tz) copolymers are fine‐tuned through varying ethylene glycol (EG) side chain lengths from tri(ethylene glycol) to hexa(ethylene glycol) (namely P‐XO, X = 3–6) to achieve OECTs with high‐stability and low threshold voltage. As a result, the NDI‐2Tz copolymers exhibit ambipolarity, rapid response (<10 ms), and ultra‐high n‐type stability. Notably, the P‐6O copolymers display a threshold voltage as low as 0.27 V. They can operate in n‐type mode in an aqueous solution for over 60 h, maintaining an on‐off ratio of over 10 5 . This work sheds light on the design of exceptional n‐type/ambipolar materials for OECTs. It demonstrates the potential of incorporating these ambipolar polymers into water‐operational integrated circuits for long‐term biosensing systems and energy‐efficient brain‐inspired computing. |
Author | Jiang, Xinnian Doremaele, Eveline R. W. Pol, Tom P. A. Ye, Gang Yan, Chenshuai Burgt, Yoeri van Zhang, Yanxi Hong, Wenjing Liu, Jian Pan, Tao Li, Junyu Chiechi, Ryan C. |
AuthorAffiliation | 5 Key Laboratory for the Green Preparation and Application of Functional Materials Hubei Key Laboratory of Polymer Materials School of Materials Science and Engineering Hubei University Youyi Road 368 Wuhan 430062 P. R. China 3 Sinopec Shanghai Research Institute of Petrochemical Technology Shanghai 201028 P. R. China 2 Microsystems Department of Mechanical Engineering & Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven 5600 MB The Netherlands 4 Molecular Materials and Nanosystems & Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven 5600 MB The Netherlands 6 State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China 1 The Institute of Flexible Electronics (IFE, Future Technologies) & IKKEM & State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering Xiamen University Xiamen 361 |
AuthorAffiliation_xml | – name: 1 The Institute of Flexible Electronics (IFE, Future Technologies) & IKKEM & State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China – name: 3 Sinopec Shanghai Research Institute of Petrochemical Technology Shanghai 201028 P. R. China – name: 4 Molecular Materials and Nanosystems & Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven 5600 MB The Netherlands – name: 5 Key Laboratory for the Green Preparation and Application of Functional Materials Hubei Key Laboratory of Polymer Materials School of Materials Science and Engineering Hubei University Youyi Road 368 Wuhan 430062 P. R. China – name: 6 State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China – name: 2 Microsystems Department of Mechanical Engineering & Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven 5600 MB The Netherlands – name: 7 Department of Chemistry & Organic and Carbon Electronics Cluster North Carolina State University Raleigh NC 27695‐8204 USA |
Author_xml | – sequence: 1 givenname: Tao surname: Pan fullname: Pan, Tao organization: Xiamen University – sequence: 2 givenname: Xinnian surname: Jiang fullname: Jiang, Xinnian organization: Xiamen University – sequence: 3 givenname: Eveline R. W. surname: Doremaele fullname: Doremaele, Eveline R. W. organization: Eindhoven University of Technology – sequence: 4 givenname: Junyu surname: Li fullname: Li, Junyu organization: Sinopec Shanghai Research Institute of Petrochemical Technology – sequence: 5 givenname: Tom P. A. surname: Pol fullname: Pol, Tom P. A. organization: Eindhoven University of Technology – sequence: 6 givenname: Chenshuai surname: Yan fullname: Yan, Chenshuai organization: Xiamen University – sequence: 7 givenname: Gang orcidid: 0000-0003-1266-0762 surname: Ye fullname: Ye, Gang email: g.ye0612@ciac.ac.cn organization: Hubei University – sequence: 8 givenname: Jian surname: Liu fullname: Liu, Jian organization: Chinese Academy of Sciences – sequence: 9 givenname: Wenjing surname: Hong fullname: Hong, Wenjing organization: Xiamen University – sequence: 10 givenname: Ryan C. surname: Chiechi fullname: Chiechi, Ryan C. organization: North Carolina State University – sequence: 11 givenname: Yoeri van surname: Burgt fullname: Burgt, Yoeri van email: y.b.v.d.burgt@tue.nl organization: Eindhoven University of Technology – sequence: 12 givenname: Yanxi orcidid: 0000-0003-2622-8903 surname: Zhang fullname: Zhang, Yanxi email: ifeyxzhang@xmu.edu.cn organization: Xiamen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38810112$$D View this record in MEDLINE/PubMed |
BookMark | eNqFksFuEzEQhleoiJbSK0dkiQuXBNs7u_GeUFTaUqkiEg1wtMZeb-JoY2_tTaqISx-BR-BZeBSeBIeUqOXCydb486cZ-3-eHTjvTJa9ZHTIKOVvsV7HIaccKBUj_iQ74qwSg1wAHDzYH2YnMS4opazIR8DEs-wwF4JRxvhR9m2yNoGU9OePOfENue5RtYZ8xd6EX3ffJ50J2FvvSOMD-Zgq001nyCTM0FlNzlqj--D13CytxpZMA7poY-9DJLe2n5NzjD35ZGLnXTQEXU3GS2U732Kw_eZF9rTBNpqT-_U4-3x-Nj39MLiaXFyejq8GGgqgg4IVXJWIAoqmqHTJGa-0KHImqkaAaigWWgEVoJVArVmOUApdM55zGOVa58fZ5c5be1zILtglho30aOWfgg8ziaG3ujVSAEMzUqigBmhUpbTSpahpARVjCk1yvdu5upVamlob1wdsH0kfnzg7lzO_lozlFHhFk-HNvSH4m5WJvVzaqE3bojN-FWVOS74djpYJff0PuvCr4NJbJUpU6Q-BQ6KGO0oHH2Mwzb4bRuU2J3KbE7nPSbrw6uEMe_xvKhIAO-DWtmbzH50cv_9yLSBN9hvZss4M |
Cites_doi | 10.1016/j.matt.2023.05.001 10.1002/adfm.202304103 10.1039/D1MH00672J 10.1038/s41563-020-0638-3 10.1021/jacs.2c08850 10.1002/adma.202310503 10.1002/adfm.201804170 10.1126/science.aaw5581 10.1002/adma.201902291 10.1021/acs.chemmater.8b00321 10.1038/s41467-023-42840-z 10.1039/D1TC05229B 10.1039/D1TC02048J 10.1038/s41563-023-01599-w 10.1038/s41928-018-0103-3 10.1021/acs.chemmater.0c02041 10.1002/adma.202305416 10.1038/s41563-022-01239-9 10.1002/adfm.202102903 10.1002/adma.201704916 10.1002/adma.202202972 10.1002/adfm.202010165 10.1021/jacs.1c06713 10.1038/ncomms13066 10.1038/s41928-023-00950-y 10.1126/sciadv.aau7378 10.1038/s41598-020-60812-x 10.1002/anie.202109281 10.1002/adfm.202201593 10.1002/adma.202300034 10.1002/anie.202013998 10.1038/s41586-018-0536-x 10.1126/sciadv.abh1055 10.1002/advs.202303837 10.1021/acsami.0c18599 10.1021/acsami.9b11370 10.1038/ncomms3133 10.1038/s41563-019-0435-z 10.1002/adma.201800941 10.1002/adfm.202203937 10.1002/adma.202200393 10.1002/anie.202213737 10.1002/anie.202313260 10.1016/j.matt.2022.07.016 10.1073/pnas.1608780113 10.1038/natrevmats.2017.86 10.1002/adfm.201904403 10.1039/D2TA00683A 10.1038/nmat4856 10.1002/adma.201802353 10.1039/D2CS00920J 10.1002/adma.202202574 10.1002/adma.202201340 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH. 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH – notice: 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH. – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN NPM AAYXX CITATION 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PIMPY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202400872 |
DatabaseName | Wiley Online Library Wiley Online Library PubMed CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Databases ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Research Library Science Database Research Library (Corporate) ProQuest Publicly Available Content database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Databases url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_841ae7bab4d44fb9bcbc68d054911bae 10_1002_advs_202400872 38810112 ADVS8490 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22303071; 52273201 – fundername: Netherlands Ministry of Education, Culture, and Science funderid: 024.001.035 – fundername: China Postdoctoral Science Foundation Funded Project funderid: 2022M723077 – fundername: Jilin Provincial Scientific and Technological Development Program funderid: 20230402070GH – fundername: European Union's Horizon 2020 Research and Innovation Programme funderid: 802615 – fundername: National Natural Science Foundation of China grantid: 22303071 – fundername: National Natural Science Foundation of China grantid: 52273201 – fundername: Jilin Provincial Scientific and Technological Development Program grantid: 20230402070GH – fundername: European Union's Horizon 2020 Research and Innovation Programme grantid: 802615 – fundername: China Postdoctoral Science Foundation Funded Project grantid: 2022M723077 – fundername: Netherlands Ministry of Education, Culture, and Science grantid: 024.001.035 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACGFS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AFPKN AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN EJD ITC NPM AAYXX CITATION 3V. 7XB 8FK MBDVC PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c4540-5152b6aa845f59c62129c853189f84bf0a5cb4084cb8acc13a468cd1232473cc3 |
IEDL.DBID | RPM |
ISSN | 2198-3844 |
IngestDate | Tue Oct 22 15:15:19 EDT 2024 Tue Sep 17 21:28:30 EDT 2024 Sat Oct 26 04:25:04 EDT 2024 Thu Oct 10 22:37:47 EDT 2024 Thu Sep 26 20:41:20 EDT 2024 Sat Nov 02 12:27:38 EDT 2024 Sat Aug 24 00:55:04 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Keywords | ambipolar organic mixed ionic‐electronic conductors organic electrochemical transistors threshold voltage stability |
Language | English |
License | Attribution 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4540-5152b6aa845f59c62129c853189f84bf0a5cb4084cb8acc13a468cd1232473cc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1266-0762 0000-0003-2622-8903 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304290/ |
PMID | 38810112 |
PQID | 3089810424 |
PQPubID | 4365299 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_841ae7bab4d44fb9bcbc68d054911bae pubmedcentral_primary_oai_pubmedcentral_nih_gov_11304290 proquest_miscellaneous_3062531806 proquest_journals_3089810424 crossref_primary_10_1002_advs_202400872 pubmed_primary_38810112 wiley_primary_10_1002_advs_202400872_ADVS8490 |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2021; 9 2023; 10 2021; 8 2021; 7 2018; 561 2023; 52 2018; 28 2013; 4 2023; 36 2023; 14 2019; 5 2019; 31 2023; 6 2019; 11 2023; 145 2019; 19 2022; 21 2020; 10 2021; 143 2020; 32 2024; 36 2019; 364 2020; 19 2021; 13 2023; 62 2016; 7 2018; 3 2021; 31 2023; 22 2023 2018; 1 2022; 5 2017; 16 2022; 34 2016; 113 2024; 63 2019; 29 2018; 30 2022; 32 2022; 10 2021; 60 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 1 start-page: 386 year: 2018 publication-title: Nat. Elect. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – year: 2023 publication-title: Adv. Funct. Mater. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 364 start-page: 570 year: 2019 publication-title: Science. – volume: 22 start-page: 1227 year: 2023 publication-title: Nat. Mater. – year: 2023 publication-title: Adv. Mater. – volume: 36 year: 2024 publication-title: Adv. Mater. – volume: 561 start-page: 516 year: 2018 publication-title: Nature. – volume: 60 start-page: 9368 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 10 year: 2023 publication-title: Adv. Sci. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 16 start-page: 414 year: 2017 publication-title: Nat. Mater. – volume: 19 start-page: 13 year: 2019 publication-title: Nat. Mater. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 143 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 3 year: 2018 publication-title: Nat. Rev. Mater. – volume: 145 start-page: 122 year: 2023 publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 2945 year: 2018 publication-title: Chem. Mater. – volume: 10 start-page: 2314 year: 2022 publication-title: J. Mater. Chem. C. – volume: 32 start-page: 6618 year: 2020 publication-title: Chem. Mater. – volume: 62 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 4253 year: 2021 publication-title: ACS Appl. Mater. Interfaces. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 21 start-page: 564 year: 2022 publication-title: Nat. Mater. – volume: 6 start-page: 3132 year: 2023 publication-title: Matter. – volume: 10 year: 2022 publication-title: J. Mater. Chem. A. – volume: 6 start-page: 281 year: 2023 publication-title: Nat. Elect. – volume: 5 start-page: 3375 year: 2022 publication-title: Matter. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 52 start-page: 1001 year: 2023 publication-title: Chem. Soc. Rev. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces. – volume: 14 start-page: 7577 year: 2023 publication-title: Nat. Commun. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 2373 year: 2021 publication-title: Mater. Horiz. – volume: 19 start-page: 679 year: 2020 publication-title: Nat. Mater. – volume: 63 year: 2024 publication-title: Angew. Chem., Int. Ed. – volume: 113 year: 2016 publication-title: Proc. Natl. Acad. Sci. USA – volume: 4 start-page: 2133 year: 2013 publication-title: Nat. Commun. – volume: 36 year: 2023 publication-title: Adv. Mater. – volume: 10 start-page: 4014 year: 2020 publication-title: Sci. Rep. – volume: 9 start-page: 8099 year: 2021 publication-title: J. Mater. Chem. C. – ident: e_1_2_8_19_1 doi: 10.1016/j.matt.2023.05.001 – ident: e_1_2_8_34_1 doi: 10.1002/adfm.202304103 – ident: e_1_2_8_51_1 doi: 10.1039/D1MH00672J – ident: e_1_2_8_20_1 doi: 10.1038/s41563-020-0638-3 – ident: e_1_2_8_39_1 doi: 10.1021/jacs.2c08850 – ident: e_1_2_8_33_1 doi: 10.1002/adma.202310503 – ident: e_1_2_8_16_1 doi: 10.1002/adfm.201804170 – ident: e_1_2_8_4_1 doi: 10.1126/science.aaw5581 – ident: e_1_2_8_25_1 doi: 10.1002/adma.201902291 – ident: e_1_2_8_41_1 doi: 10.1021/acs.chemmater.8b00321 – ident: e_1_2_8_52_1 doi: 10.1038/s41467-023-42840-z – ident: e_1_2_8_49_1 doi: 10.1039/D1TC05229B – ident: e_1_2_8_36_1 doi: 10.1039/D1TC02048J – ident: e_1_2_8_6_1 doi: 10.1038/s41563-023-01599-w – ident: e_1_2_8_3_1 doi: 10.1038/s41928-018-0103-3 – ident: e_1_2_8_50_1 doi: 10.1021/acs.chemmater.0c02041 – ident: e_1_2_8_43_1 doi: 10.1002/adma.202305416 – ident: e_1_2_8_27_1 doi: 10.1038/s41563-022-01239-9 – ident: e_1_2_8_26_1 doi: 10.1002/adfm.202102903 – ident: e_1_2_8_24_1 doi: 10.1002/adma.201704916 – ident: e_1_2_8_7_1 doi: 10.1002/adma.202202972 – ident: e_1_2_8_23_1 doi: 10.1002/adfm.202010165 – ident: e_1_2_8_48_1 doi: 10.1021/jacs.1c06713 – ident: e_1_2_8_22_1 doi: 10.1038/ncomms13066 – ident: e_1_2_8_1_1 doi: 10.1038/s41928-023-00950-y – ident: e_1_2_8_8_1 doi: 10.1126/sciadv.aau7378 – ident: e_1_2_8_37_1 doi: 10.1038/s41598-020-60812-x – ident: e_1_2_8_28_1 doi: 10.1002/anie.202109281 – ident: e_1_2_8_42_1 doi: 10.1002/adfm.202201593 – ident: e_1_2_8_10_1 doi: 10.1002/adma.202300034 – ident: e_1_2_8_29_1 doi: 10.1002/anie.202013998 – ident: e_1_2_8_11_1 doi: 10.1038/s41586-018-0536-x – ident: e_1_2_8_47_1 doi: 10.1126/sciadv.abh1055 – ident: e_1_2_8_45_1 doi: 10.1002/advs.202303837 – ident: e_1_2_8_46_1 doi: 10.1021/acsami.0c18599 – ident: e_1_2_8_30_1 doi: 10.1021/acsami.9b11370 – ident: e_1_2_8_17_1 doi: 10.1038/ncomms3133 – ident: e_1_2_8_12_1 doi: 10.1038/s41563-019-0435-z – ident: e_1_2_8_13_1 doi: 10.1002/adma.201800941 – ident: e_1_2_8_31_1 doi: 10.1002/adfm.202203937 – ident: e_1_2_8_38_1 doi: 10.1002/adma.202200393 – ident: e_1_2_8_32_1 doi: 10.1002/anie.202213737 – ident: e_1_2_8_35_1 doi: 10.1002/anie.202313260 – ident: e_1_2_8_9_1 doi: 10.1016/j.matt.2022.07.016 – ident: e_1_2_8_21_1 doi: 10.1073/pnas.1608780113 – ident: e_1_2_8_18_1 doi: 10.1038/natrevmats.2017.86 – ident: e_1_2_8_15_1 doi: 10.1002/adfm.201904403 – ident: e_1_2_8_40_1 doi: 10.1039/D2TA00683A – ident: e_1_2_8_2_1 doi: 10.1038/nmat4856 – ident: e_1_2_8_5_1 doi: 10.1002/adma.201802353 – ident: e_1_2_8_14_1 doi: 10.1039/D2CS00920J – ident: e_1_2_8_53_1 doi: 10.1002/adma.202202574 – ident: e_1_2_8_44_1 doi: 10.1002/adma.202201340 |
SSID | ssj0001537418 |
Score | 2.3466382 |
Snippet | Organic electrochemical transistors (OECTs) are of great interest in low‐power bioelectronics and neuromorphic computing, as they utilize organic mixed... Organic electrochemical transistors (OECTs) are of great interest in low-power bioelectronics and neuromorphic computing, as they utilize organic mixed... Abstract Organic electrochemical transistors (OECTs) are of great interest in low‐power bioelectronics and neuromorphic computing, as they utilize organic... |
SourceID | doaj pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | e2400872 |
SubjectTerms | ambipolar organic mixed ionic‐electronic conductors Aqueous solutions Copolymers Electrolytes organic electrochemical transistors Polymer films Polymers stability threshold voltage Transistors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSh0xFA7FlZtSq7XTWolQaLsYzMxkMslSxYsIVWgrdRdO_lBo516812666SP0EfosfRSfxJNk7uVeLLjpNhlCOD9zvpOcfIeQt8Jh0O06U7asgRIRcVVK1_qyqwEQoDgWUrOJj2fi5IKfXraXS62-Yk1YpgfOgtuXvALfGTDccR6MMtZYIR0iDXRTAz79fZlaSqby--Am0rLMWRpZvQ_uR2TnjiWTsqtXolAi6_8XwnxYKLkMYFMEGj0jTwfoSA_yljfIE98_JxuDc07p-4FB-sMm-XmOBkoF-_vnio4DRUBpvnn6FWHlzd2v3-cTn9VOEbDSMxyJySjNrzItPc6NcezAJEBTNEtkIlMaT23pCKYz-inX1noKvaMH3831JObICOm3yMXo-MvRSTl0WShtZN8rEdDURgBI3oZWWYGxTFkM4pVUQXITGLTWcCa5NRKsrRrgQlqXoFjXWNu8IGv9uPcvCeXBAq6pPBfAXd3KgNkb5th1YI0Pzhfk3VzqepLJNHSmTa511I9e6Kcgh1Epi68iCXYaQNPQg2nox0yjIDtzlerBM6e6YVLJKl74FmRvMY0-FS9KoPfj2_gNZoUoACYKsp0tYLGTRkZKtAp3KFdsY2WrqzP99VXi7a6qeHakWEHKZEaPyEAjMPksuWKv_ocwXpP1uHKuXdwha7ObW_8G8dTM7CbXuQfSkyDQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Databases dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZge-GCWp6BgoyEBBysOomTOCfUol1VSGxRoaI3y09aCZLtZtvfz4zj3bICwTV2Esfj8XwznnxDyOvagdFtGsMqXmoGiDhn0lWeNYXWAFAcD7HYxKd5fXwmPp5X5yngNqS0yvWeGDdq11uMkR-UXLYyx4O694srhlWj8HQ1ldC4S3YK9BQmZOdoOv98ehtlqUqkZ1mzNfLiQLsbZOnG1EnZFFvWKJL2_w1p_pkw-TuQjZZotkvuJwhJD0eZ75E7vntA9pKSDvRtYpJ-95DcnMBCpTWnF7QPFHCl-eHpN0CXS3ay8KPsKaBWOmfoj9Lxx0xLp2NtHJvIBGg0aJFPZKAYuKUzPazo6Zhe66nuHD38aS4X6CYDqn9EzmbTrx-OWSq0wCwS8DHANIWptZaiClVrazBnrQU7nss2SGEC15U1gkthjdTW5qUWtbQuorGmtLZ8TCZd3_mnhIpgNTyz9aLWwhWVDCAWcLOLwEsfnM_Im_WEq8XIp6FG5uRCoWjURjQZOUJ5bHohD3a80C-_q6RWSopc-8ZoI5wQwbTGGltLBzgUNnGj4XX7a2mqpJyDul1KGXm1aQa1wrMS3fn-GvuAYwgTwOuMPBmFvxlJKZEVLYcRyq1lsTXU7Zbu8iJSd-c5ho9anhEWV9B_5kABNvkiRcuf_fs7npN7eM-YmLhPJqvltX8BYGllXiaN-AUtWRNO priority: 102 providerName: ProQuest – databaseName: Wiley Online Library dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZQuXBBlPITKMhISMAhqpM4jnMsqKuqEi0CKnqz_EsrQXa12XLhwiPwCDxLH6VPwoydTRuBhLg6lmN5Zjzf2ONvCHkuHDjdpjF5zSqdAyIuculqnzel1gBQHAux2MTbQ7F_zA9O6pNrr_gTP8R44IaWEfdrNHBt-p0r0lDtviHdNuZAygY24ZtIG4NJfSV_d3XKUldIz4IV5iC6zivJ-Zq5kZU70yEmnikS-P8Ndf6ZPHkd1EavNLtDbg9wku4m-W-SG767SzYHg-3py4FV-tUW-X4ESksFu_h1SueBAsg0Xzz9BFBzefnj59HCJ1WgAGLpIbRggErTS01L91KxHDuwC9Do4SLBSE_xJJfOdL-i71O-rae6c3T3qzlbYNwMMP8eOZ7tfXyznw-VF3KLjHw5gJzSCK0lr0PdWgH-rbXg2AvZBslNYLq2hjPJrZHa2qLSXEjrIjxrKmur-2Sjm3f-IaE8WA1jtp4LzV1ZywARHcTdZWCVD85n5MV61dUiEWyoRKVcKpSPGuWTkdcolLEXEmPHhvnysxrsTEleaN8YbbjjPJjWWGOFdABMYVc3Gn63vRapGqy1VxWTrSzwEjgjz8bPYGd4eaI7Pz_HPhApwgIwkZEHSQPGmVQSadIKmKGc6MZkqtMv3dlp5PIuCjxPallG8qhG_1gDBWDlg-Qte_Sf_R-TW9iYUhe3ycZqee6fAJxamafRYn4DJA4bVA priority: 102 providerName: Wiley-Blackwell |
Title | Over 60 h of Stable Water‐Operation for N‐Type Organic Electrochemical Transistors with Fast Response and Ambipolarity |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202400872 https://www.ncbi.nlm.nih.gov/pubmed/38810112 https://www.proquest.com/docview/3089810424 https://www.proquest.com/docview/3062531806 https://pubmed.ncbi.nlm.nih.gov/PMC11304290 https://doaj.org/article/841ae7bab4d44fb9bcbc68d054911bae |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFD5axw03iPEbGJWRkICLrE7iOM7lNrWakNZVg4ndRbZjb5XWtGo7brjhEXgEnoVH4Uk4tpNqFUhI3NqWbfl8zvmOc_wZ4A2v0ekWhYpzmskYGXESizo3cZFKiQSlptY_NnE65icX7MNlfrkDvLsL45P2tZoeNDezg2Z67XMrFzM96PLEBpPT4yRxQXhJBz3oIULvxOjhbnDmJFk6hUaaDmT9xSlzu3RJUbj3azLhdK2SdMsZec3-vxHNP_Ml7_JY74hGD-FByyDJYZjpHuyY5hHstXt0Rd61QtLvH8PXM8Qp4fTnj2sytwR5pbox5DOyy-Wvb9_PFiZYnyBvJWMscTEpCZczNRmG93F0KyhAvFPzmiIr4g5vyUiu1uQ8pNgaIpuaHM7UdOFCZWT2T-BiNPx0fBK3jy3E2onwxchrUsWlFCy3eak5urRSoy9PRGkFU5bKXCtGBdNKSK2TTDIudO0ZWZFpnT2F3WbemOdAmNUS-ywN45LVaS4sBnEYaqeWZsbWJoK33apXi6CpUQX15LRypqo2porgyBll08ppYfuC-fKqahFRCZZIUyipWM2YVaXSSnNRIxfFD7mSONx-Z9Kq3aCrKqOiRAywlEXwelONW8v9L5GNmd-6Nhgc4gJQHsGzgIDNTDoERSC2sLE11e0aRLOX7-7QG0HsYfSPNaiQn3wUrKQv_n-ol3Df9RcSF_dhd728Na-QTK1VH3opm_Th3tFwPDnv-yOJvt9PvwHTaCNl |
link.rule.ids | 230,315,730,783,787,867,888,2109,11575,21401,27937,27938,33757,33758,43818,46065,46489,50827,50936,53805,53807,74637 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZge4ALojwDBYyEBBysOomTOCfUol0t0G5RaUVvlp-0EiTLZtvfz0zi3bICwTV2Esfj8XwznnxDyKvSgdGtKsMKnmsGiDhl0hWeVZnWAFAcD32xicNZOT0VH8-Ksxhw62Ja5WpP7Ddq11qMke_mXNYyxYO6d_OfDKtG4elqLKFxk2whVZUcka398ezz8XWUpciRnmXF1sizXe2ukKUbUydllW1Yo560_29I88-Eyd-BbG-JJnfJnQgh6d4g821ywzf3yHZU0o6-iUzSb--TqyNYqLTk9Jy2gQKuNN89_QrocsGO5n6QPQXUSmcM_VE6_Jhp6XiojWMjmQDtDVrPJ9JRDNzSie6W9HhIr_VUN47u_TAXc3STAdU_IKeT8cn7KYuFFphFAj4GmCYzpdZSFKGobQnmrLZgx1NZBylM4LqwRnAprJHa2jTXopTW9Wisyq3NH5JR0zb-MaEiWA3PrL0otXBZIQM4cOBmZ4HnPjifkNerCVfzgU9DDczJmULRqLVoErKP8lj3Qh7s_kK7-KaiWikpUu0ro41wQgRTG2tsKR3gUNjEjYbX7aykqaJydup6KSXk5boZ1ArPSnTj20vsA44hTAAvE_JoEP56JLlEVrQURig3lsXGUDdbmovznro7TTF8VPOEsH4F_WcOFGCTL1LU_Mm_v-MFuTU9OTxQBx9mn56S23j_kKS4Q0bLxaV_BsBpaZ5H7fgFZtUWSA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELaglRAXRHk1pYCRkICDtU7iOM4JtbCr8tpWhYreLD9pJUi2m21_P2PHu2UFgmvsJI5nxvONPfkGoRfcgtOta00qWioCiDgnwlaO1IVSAFAs9bHYxOcpPzhhH06r05T_1Ke0yuWaGBdq25mwRz4qqWhEHg7qRj6lRRy9m7yZXZBQQSqctKZyGjfRZs14CYHY5v54enR8veNSlYGqZcncSIuRsleBsTukUYq6WPNMkcD_b6jzz-TJ30Ft9EqTu-hOgpN4b5D_Frrh2ntoKxlsj18lVunX99HVISgt5hSf4c5jwJj6h8PfAGnOyeHMDXqAAcHiKQmxKR5-0jR4PNTJMYlYAEfnFrlFehw2cfFE9Qt8PKTaOqxai_d-6vNZCJkB4T9AJ5Px17cHJBVdICaQ8RHAN4XmSglW-aoxHFxbY8Cn56LxgmlPVWU0o4IZLZQxeakYF8ZGZFaXxpQP0UbbtW4bYeaNgmc2jnHFbFEJD8EchNyFp6Xz1mXo5XLC5Wzg1pADi3Ihg2jkSjQZ2g_yWPUKnNjxQjf_LpOJScFy5WqtNLOMed1oow0XFjApLOhawet2l9KUyVB7ea1WGXq-agYTC-cmqnXdZegDQSJMAOUZejQIfzWSUgSGtBxGKNbUYm2o6y3t-Vmk8c7zsJXU0AyRqEH_mQMJOOWLYA3d-fd3PEO3wDDkp_fTj4_R7XD7kK-4izYW80v3BDDUQj9NxvELgS8afA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Over+60%C2%A0h+of+Stable+Water%E2%80%90Operation+for+N%E2%80%90Type+Organic+Electrochemical+Transistors+with+Fast+Response+and+Ambipolarity&rft.jtitle=Advanced+science&rft.au=Tao+Pan&rft.au=Xinnian+Jiang&rft.au=Eveline+R.+W.+vanDoremaele&rft.au=Junyu+Li&rft.date=2024-08-01&rft.pub=Wiley&rft.eissn=2198-3844&rft.volume=11&rft.issue=29&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadvs.202400872&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_841ae7bab4d44fb9bcbc68d054911bae |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |