Over 60 h of Stable Water‐Operation for N‐Type Organic Electrochemical Transistors with Fast Response and Ambipolarity

Organic electrochemical transistors (OECTs) are of great interest in low‐power bioelectronics and neuromorphic computing, as they utilize organic mixed ionic‐electronic conductors (OMIECs) to transduce ionic signals into electrical signals. However, the poor environmental stability of OMIEC material...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 11; no. 29; pp. e2400872 - n/a
Main Authors Pan, Tao, Jiang, Xinnian, Doremaele, Eveline R. W., Li, Junyu, Pol, Tom P. A., Yan, Chenshuai, Ye, Gang, Liu, Jian, Hong, Wenjing, Chiechi, Ryan C., Burgt, Yoeri van, Zhang, Yanxi
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.08.2024
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Organic electrochemical transistors (OECTs) are of great interest in low‐power bioelectronics and neuromorphic computing, as they utilize organic mixed ionic‐electronic conductors (OMIECs) to transduce ionic signals into electrical signals. However, the poor environmental stability of OMIEC materials significantly restricts the practical application of OECTs. Therefore, the non‐fused planar naphthalenediimide (NDI)‐dialkoxybithiazole (2Tz) copolymers are fine‐tuned through varying ethylene glycol (EG) side chain lengths from tri(ethylene glycol) to hexa(ethylene glycol) (namely P‐XO, X = 3–6) to achieve OECTs with high‐stability and low threshold voltage. As a result, the NDI‐2Tz copolymers exhibit ambipolarity, rapid response (<10 ms), and ultra‐high n‐type stability. Notably, the P‐6O copolymers display a threshold voltage as low as 0.27 V. They can operate in n‐type mode in an aqueous solution for over 60 h, maintaining an on‐off ratio of over 105. This work sheds light on the design of exceptional n‐type/ambipolar materials for OECTs. It demonstrates the potential of incorporating these ambipolar polymers into water‐operational integrated circuits for long‐term biosensing systems and energy‐efficient brain‐inspired computing. Four NDI‐2Tz copolymers (P‐XO, X = 3–6) with modified EG side chains are synthesized. They exhibit exceptional n‐type operational stability (over 60 h) in OECTs, fast switching (<10 ms), and excellent ambipolar behavior. Increasing the length of side chains enhances the hydrophilicity of the materials, thereby boosting electrochemical doping efficiency. This study reveals EG substitution's impact on NDI‐2Tz copolymers, providing insight for stable, low‐power n‐type/ambipolar materials.
AbstractList Organic electrochemical transistors (OECTs) are of great interest in low‐power bioelectronics and neuromorphic computing, as they utilize organic mixed ionic‐electronic conductors (OMIECs) to transduce ionic signals into electrical signals. However, the poor environmental stability of OMIEC materials significantly restricts the practical application of OECTs. Therefore, the non‐fused planar naphthalenediimide (NDI)‐dialkoxybithiazole (2Tz) copolymers are fine‐tuned through varying ethylene glycol (EG) side chain lengths from tri(ethylene glycol) to hexa(ethylene glycol) (namely P‐XO, X = 3–6) to achieve OECTs with high‐stability and low threshold voltage. As a result, the NDI‐2Tz copolymers exhibit ambipolarity, rapid response (<10 ms), and ultra‐high n‐type stability. Notably, the P‐6O copolymers display a threshold voltage as low as 0.27 V. They can operate in n‐type mode in an aqueous solution for over 60 h, maintaining an on‐off ratio of over 10 5 . This work sheds light on the design of exceptional n‐type/ambipolar materials for OECTs. It demonstrates the potential of incorporating these ambipolar polymers into water‐operational integrated circuits for long‐term biosensing systems and energy‐efficient brain‐inspired computing. Four NDI‐2Tz copolymers (P‐XO, X = 3–6) with modified EG side chains are synthesized. They exhibit exceptional n‐type operational stability (over 60 h) in OECTs, fast switching (<10 ms), and excellent ambipolar behavior. Increasing the length of side chains enhances the hydrophilicity of the materials, thereby boosting electrochemical doping efficiency. This study reveals EG substitution's impact on NDI‐2Tz copolymers, providing insight for stable, low‐power n‐type/ambipolar materials.
Organic electrochemical transistors (OECTs) are of great interest in low‐power bioelectronics and neuromorphic computing, as they utilize organic mixed ionic‐electronic conductors (OMIECs) to transduce ionic signals into electrical signals. However, the poor environmental stability of OMIEC materials significantly restricts the practical application of OECTs. Therefore, the non‐fused planar naphthalenediimide (NDI)‐dialkoxybithiazole (2Tz) copolymers are fine‐tuned through varying ethylene glycol (EG) side chain lengths from tri(ethylene glycol) to hexa(ethylene glycol) (namely P‐XO, X = 3–6) to achieve OECTs with high‐stability and low threshold voltage. As a result, the NDI‐2Tz copolymers exhibit ambipolarity, rapid response (<10 ms), and ultra‐high n‐type stability. Notably, the P‐6O copolymers display a threshold voltage as low as 0.27 V. They can operate in n‐type mode in an aqueous solution for over 60 h, maintaining an on‐off ratio of over 105. This work sheds light on the design of exceptional n‐type/ambipolar materials for OECTs. It demonstrates the potential of incorporating these ambipolar polymers into water‐operational integrated circuits for long‐term biosensing systems and energy‐efficient brain‐inspired computing. Four NDI‐2Tz copolymers (P‐XO, X = 3–6) with modified EG side chains are synthesized. They exhibit exceptional n‐type operational stability (over 60 h) in OECTs, fast switching (<10 ms), and excellent ambipolar behavior. Increasing the length of side chains enhances the hydrophilicity of the materials, thereby boosting electrochemical doping efficiency. This study reveals EG substitution's impact on NDI‐2Tz copolymers, providing insight for stable, low‐power n‐type/ambipolar materials.
Organic electrochemical transistors (OECTs) are of great interest in low-power bioelectronics and neuromorphic computing, as they utilize organic mixed ionic-electronic conductors (OMIECs) to transduce ionic signals into electrical signals. However, the poor environmental stability of OMIEC materials significantly restricts the practical application of OECTs. Therefore, the non-fused planar naphthalenediimide (NDI)-dialkoxybithiazole (2Tz) copolymers are fine-tuned through varying ethylene glycol (EG) side chain lengths from tri(ethylene glycol) to hexa(ethylene glycol) (namely P-XO, X = 3–6) to achieve OECTs with high-stability and low threshold voltage. As a result, the NDI-2Tz copolymers exhibit ambipolarity, rapid response (<10 ms), and ultra-high n-type stability. Notably, the P-6O copolymers display a threshold voltage as low as 0.27 V. They can operate in n-type mode in an aqueous solution for over 60 h, maintaining an on-off ratio of over 105. This work sheds light on the design of exceptional n-type/ambipolar materials for OECTs. It demonstrates the potential of incorporating these ambipolar polymers into water-operational integrated circuits for long-term biosensing systems and energy-efficient brain-inspired computing.
Organic electrochemical transistors (OECTs) are of great interest in low-power bioelectronics and neuromorphic computing, as they utilize organic mixed ionic-electronic conductors (OMIECs) to transduce ionic signals into electrical signals. However, the poor environmental stability of OMIEC materials significantly restricts the practical application of OECTs. Therefore, the non-fused planar naphthalenediimide (NDI)-dialkoxybithiazole (2Tz) copolymers are fine-tuned through varying ethylene glycol (EG) side chain lengths from tri(ethylene glycol) to hexa(ethylene glycol) (namely P-XO, X = 3-6) to achieve OECTs with high-stability and low threshold voltage. As a result, the NDI-2Tz copolymers exhibit ambipolarity, rapid response (<10 ms), and ultra-high n-type stability. Notably, the P-6O copolymers display a threshold voltage as low as 0.27 V. They can operate in n-type mode in an aqueous solution for over 60 h, maintaining an on-off ratio of over 105. This work sheds light on the design of exceptional n-type/ambipolar materials for OECTs. It demonstrates the potential of incorporating these ambipolar polymers into water-operational integrated circuits for long-term biosensing systems and energy-efficient brain-inspired computing.Organic electrochemical transistors (OECTs) are of great interest in low-power bioelectronics and neuromorphic computing, as they utilize organic mixed ionic-electronic conductors (OMIECs) to transduce ionic signals into electrical signals. However, the poor environmental stability of OMIEC materials significantly restricts the practical application of OECTs. Therefore, the non-fused planar naphthalenediimide (NDI)-dialkoxybithiazole (2Tz) copolymers are fine-tuned through varying ethylene glycol (EG) side chain lengths from tri(ethylene glycol) to hexa(ethylene glycol) (namely P-XO, X = 3-6) to achieve OECTs with high-stability and low threshold voltage. As a result, the NDI-2Tz copolymers exhibit ambipolarity, rapid response (<10 ms), and ultra-high n-type stability. Notably, the P-6O copolymers display a threshold voltage as low as 0.27 V. They can operate in n-type mode in an aqueous solution for over 60 h, maintaining an on-off ratio of over 105. This work sheds light on the design of exceptional n-type/ambipolar materials for OECTs. It demonstrates the potential of incorporating these ambipolar polymers into water-operational integrated circuits for long-term biosensing systems and energy-efficient brain-inspired computing.
Organic electrochemical transistors (OECTs) are of great interest in low-power bioelectronics and neuromorphic computing, as they utilize organic mixed ionic-electronic conductors (OMIECs) to transduce ionic signals into electrical signals. However, the poor environmental stability of OMIEC materials significantly restricts the practical application of OECTs. Therefore, the non-fused planar naphthalenediimide (NDI)-dialkoxybithiazole (2Tz) copolymers are fine-tuned through varying ethylene glycol (EG) side chain lengths from tri(ethylene glycol) to hexa(ethylene glycol) (namely P-XO, X = 3-6) to achieve OECTs with high-stability and low threshold voltage. As a result, the NDI-2Tz copolymers exhibit ambipolarity, rapid response (<10 ms), and ultra-high n-type stability. Notably, the P-6O copolymers display a threshold voltage as low as 0.27 V. They can operate in n-type mode in an aqueous solution for over 60 h, maintaining an on-off ratio of over 10 . This work sheds light on the design of exceptional n-type/ambipolar materials for OECTs. It demonstrates the potential of incorporating these ambipolar polymers into water-operational integrated circuits for long-term biosensing systems and energy-efficient brain-inspired computing.
Abstract Organic electrochemical transistors (OECTs) are of great interest in low‐power bioelectronics and neuromorphic computing, as they utilize organic mixed ionic‐electronic conductors (OMIECs) to transduce ionic signals into electrical signals. However, the poor environmental stability of OMIEC materials significantly restricts the practical application of OECTs. Therefore, the non‐fused planar naphthalenediimide (NDI)‐dialkoxybithiazole (2Tz) copolymers are fine‐tuned through varying ethylene glycol (EG) side chain lengths from tri(ethylene glycol) to hexa(ethylene glycol) (namely P‐XO, X = 3–6) to achieve OECTs with high‐stability and low threshold voltage. As a result, the NDI‐2Tz copolymers exhibit ambipolarity, rapid response (<10 ms), and ultra‐high n‐type stability. Notably, the P‐6O copolymers display a threshold voltage as low as 0.27 V. They can operate in n‐type mode in an aqueous solution for over 60 h, maintaining an on‐off ratio of over 105. This work sheds light on the design of exceptional n‐type/ambipolar materials for OECTs. It demonstrates the potential of incorporating these ambipolar polymers into water‐operational integrated circuits for long‐term biosensing systems and energy‐efficient brain‐inspired computing.
Abstract Organic electrochemical transistors (OECTs) are of great interest in low‐power bioelectronics and neuromorphic computing, as they utilize organic mixed ionic‐electronic conductors (OMIECs) to transduce ionic signals into electrical signals. However, the poor environmental stability of OMIEC materials significantly restricts the practical application of OECTs. Therefore, the non‐fused planar naphthalenediimide (NDI)‐dialkoxybithiazole (2Tz) copolymers are fine‐tuned through varying ethylene glycol (EG) side chain lengths from tri(ethylene glycol) to hexa(ethylene glycol) (namely P‐XO, X = 3–6) to achieve OECTs with high‐stability and low threshold voltage. As a result, the NDI‐2Tz copolymers exhibit ambipolarity, rapid response (<10 ms), and ultra‐high n‐type stability. Notably, the P‐6O copolymers display a threshold voltage as low as 0.27 V. They can operate in n‐type mode in an aqueous solution for over 60 h, maintaining an on‐off ratio of over 10 5 . This work sheds light on the design of exceptional n‐type/ambipolar materials for OECTs. It demonstrates the potential of incorporating these ambipolar polymers into water‐operational integrated circuits for long‐term biosensing systems and energy‐efficient brain‐inspired computing.
Author Jiang, Xinnian
Doremaele, Eveline R. W.
Pol, Tom P. A.
Ye, Gang
Yan, Chenshuai
Burgt, Yoeri van
Zhang, Yanxi
Hong, Wenjing
Liu, Jian
Pan, Tao
Li, Junyu
Chiechi, Ryan C.
AuthorAffiliation 5 Key Laboratory for the Green Preparation and Application of Functional Materials Hubei Key Laboratory of Polymer Materials School of Materials Science and Engineering Hubei University Youyi Road 368 Wuhan 430062 P. R. China
3 Sinopec Shanghai Research Institute of Petrochemical Technology Shanghai 201028 P. R. China
2 Microsystems Department of Mechanical Engineering & Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven 5600 MB The Netherlands
4 Molecular Materials and Nanosystems & Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven 5600 MB The Netherlands
6 State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
1 The Institute of Flexible Electronics (IFE, Future Technologies) & IKKEM & State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering Xiamen University Xiamen 361
AuthorAffiliation_xml – name: 1 The Institute of Flexible Electronics (IFE, Future Technologies) & IKKEM & State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
– name: 3 Sinopec Shanghai Research Institute of Petrochemical Technology Shanghai 201028 P. R. China
– name: 4 Molecular Materials and Nanosystems & Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven 5600 MB The Netherlands
– name: 5 Key Laboratory for the Green Preparation and Application of Functional Materials Hubei Key Laboratory of Polymer Materials School of Materials Science and Engineering Hubei University Youyi Road 368 Wuhan 430062 P. R. China
– name: 6 State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
– name: 2 Microsystems Department of Mechanical Engineering & Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven 5600 MB The Netherlands
– name: 7 Department of Chemistry & Organic and Carbon Electronics Cluster North Carolina State University Raleigh NC 27695‐8204 USA
Author_xml – sequence: 1
  givenname: Tao
  surname: Pan
  fullname: Pan, Tao
  organization: Xiamen University
– sequence: 2
  givenname: Xinnian
  surname: Jiang
  fullname: Jiang, Xinnian
  organization: Xiamen University
– sequence: 3
  givenname: Eveline R. W.
  surname: Doremaele
  fullname: Doremaele, Eveline R. W.
  organization: Eindhoven University of Technology
– sequence: 4
  givenname: Junyu
  surname: Li
  fullname: Li, Junyu
  organization: Sinopec Shanghai Research Institute of Petrochemical Technology
– sequence: 5
  givenname: Tom P. A.
  surname: Pol
  fullname: Pol, Tom P. A.
  organization: Eindhoven University of Technology
– sequence: 6
  givenname: Chenshuai
  surname: Yan
  fullname: Yan, Chenshuai
  organization: Xiamen University
– sequence: 7
  givenname: Gang
  orcidid: 0000-0003-1266-0762
  surname: Ye
  fullname: Ye, Gang
  email: g.ye0612@ciac.ac.cn
  organization: Hubei University
– sequence: 8
  givenname: Jian
  surname: Liu
  fullname: Liu, Jian
  organization: Chinese Academy of Sciences
– sequence: 9
  givenname: Wenjing
  surname: Hong
  fullname: Hong, Wenjing
  organization: Xiamen University
– sequence: 10
  givenname: Ryan C.
  surname: Chiechi
  fullname: Chiechi, Ryan C.
  organization: North Carolina State University
– sequence: 11
  givenname: Yoeri van
  surname: Burgt
  fullname: Burgt, Yoeri van
  email: y.b.v.d.burgt@tue.nl
  organization: Eindhoven University of Technology
– sequence: 12
  givenname: Yanxi
  orcidid: 0000-0003-2622-8903
  surname: Zhang
  fullname: Zhang, Yanxi
  email: ifeyxzhang@xmu.edu.cn
  organization: Xiamen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38810112$$D View this record in MEDLINE/PubMed
BookMark eNqFksFuEzEQhleoiJbSK0dkiQuXBNs7u_GeUFTaUqkiEg1wtMZeb-JoY2_tTaqISx-BR-BZeBSeBIeUqOXCydb486cZ-3-eHTjvTJa9ZHTIKOVvsV7HIaccKBUj_iQ74qwSg1wAHDzYH2YnMS4opazIR8DEs-wwF4JRxvhR9m2yNoGU9OePOfENue5RtYZ8xd6EX3ffJ50J2FvvSOMD-Zgq001nyCTM0FlNzlqj--D13CytxpZMA7poY-9DJLe2n5NzjD35ZGLnXTQEXU3GS2U732Kw_eZF9rTBNpqT-_U4-3x-Nj39MLiaXFyejq8GGgqgg4IVXJWIAoqmqHTJGa-0KHImqkaAaigWWgEVoJVArVmOUApdM55zGOVa58fZ5c5be1zILtglho30aOWfgg8ziaG3ujVSAEMzUqigBmhUpbTSpahpARVjCk1yvdu5upVamlob1wdsH0kfnzg7lzO_lozlFHhFk-HNvSH4m5WJvVzaqE3bojN-FWVOS74djpYJff0PuvCr4NJbJUpU6Q-BQ6KGO0oHH2Mwzb4bRuU2J3KbE7nPSbrw6uEMe_xvKhIAO-DWtmbzH50cv_9yLSBN9hvZss4M
Cites_doi 10.1016/j.matt.2023.05.001
10.1002/adfm.202304103
10.1039/D1MH00672J
10.1038/s41563-020-0638-3
10.1021/jacs.2c08850
10.1002/adma.202310503
10.1002/adfm.201804170
10.1126/science.aaw5581
10.1002/adma.201902291
10.1021/acs.chemmater.8b00321
10.1038/s41467-023-42840-z
10.1039/D1TC05229B
10.1039/D1TC02048J
10.1038/s41563-023-01599-w
10.1038/s41928-018-0103-3
10.1021/acs.chemmater.0c02041
10.1002/adma.202305416
10.1038/s41563-022-01239-9
10.1002/adfm.202102903
10.1002/adma.201704916
10.1002/adma.202202972
10.1002/adfm.202010165
10.1021/jacs.1c06713
10.1038/ncomms13066
10.1038/s41928-023-00950-y
10.1126/sciadv.aau7378
10.1038/s41598-020-60812-x
10.1002/anie.202109281
10.1002/adfm.202201593
10.1002/adma.202300034
10.1002/anie.202013998
10.1038/s41586-018-0536-x
10.1126/sciadv.abh1055
10.1002/advs.202303837
10.1021/acsami.0c18599
10.1021/acsami.9b11370
10.1038/ncomms3133
10.1038/s41563-019-0435-z
10.1002/adma.201800941
10.1002/adfm.202203937
10.1002/adma.202200393
10.1002/anie.202213737
10.1002/anie.202313260
10.1016/j.matt.2022.07.016
10.1073/pnas.1608780113
10.1038/natrevmats.2017.86
10.1002/adfm.201904403
10.1039/D2TA00683A
10.1038/nmat4856
10.1002/adma.201802353
10.1039/D2CS00920J
10.1002/adma.202202574
10.1002/adma.202201340
ContentType Journal Article
Copyright 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH
2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH
– notice: 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
NPM
AAYXX
CITATION
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202400872
DatabaseName Wiley Online Library
Wiley Online Library
PubMed
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Databases
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Research Library
Science Database
Research Library (Corporate)
ProQuest Publicly Available Content database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
MEDLINE - Academic
PubMed

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Databases
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_841ae7bab4d44fb9bcbc68d054911bae
10_1002_advs_202400872
38810112
ADVS8490
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22303071; 52273201
– fundername: Netherlands Ministry of Education, Culture, and Science
  funderid: 024.001.035
– fundername: China Postdoctoral Science Foundation Funded Project
  funderid: 2022M723077
– fundername: Jilin Provincial Scientific and Technological Development Program
  funderid: 20230402070GH
– fundername: European Union's Horizon 2020 Research and Innovation Programme
  funderid: 802615
– fundername: National Natural Science Foundation of China
  grantid: 22303071
– fundername: National Natural Science Foundation of China
  grantid: 52273201
– fundername: Jilin Provincial Scientific and Technological Development Program
  grantid: 20230402070GH
– fundername: European Union's Horizon 2020 Research and Innovation Programme
  grantid: 802615
– fundername: China Postdoctoral Science Foundation Funded Project
  grantid: 2022M723077
– fundername: Netherlands Ministry of Education, Culture, and Science
  grantid: 024.001.035
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACGFS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AFPKN
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
EJD
ITC
NPM
AAYXX
CITATION
3V.
7XB
8FK
MBDVC
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c4540-5152b6aa845f59c62129c853189f84bf0a5cb4084cb8acc13a468cd1232473cc3
IEDL.DBID RPM
ISSN 2198-3844
IngestDate Tue Oct 22 15:15:19 EDT 2024
Tue Sep 17 21:28:30 EDT 2024
Sat Oct 26 04:25:04 EDT 2024
Thu Oct 10 22:37:47 EDT 2024
Thu Sep 26 20:41:20 EDT 2024
Sat Nov 02 12:27:38 EDT 2024
Sat Aug 24 00:55:04 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 29
Keywords ambipolar organic mixed ionic‐electronic conductors
organic electrochemical transistors
threshold voltage
stability
Language English
License Attribution
2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4540-5152b6aa845f59c62129c853189f84bf0a5cb4084cb8acc13a468cd1232473cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1266-0762
0000-0003-2622-8903
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304290/
PMID 38810112
PQID 3089810424
PQPubID 4365299
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_841ae7bab4d44fb9bcbc68d054911bae
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11304290
proquest_miscellaneous_3062531806
proquest_journals_3089810424
crossref_primary_10_1002_advs_202400872
pubmed_primary_38810112
wiley_primary_10_1002_advs_202400872_ADVS8490
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2024
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2021; 9
2023; 10
2021; 8
2021; 7
2018; 561
2023; 52
2018; 28
2013; 4
2023; 36
2023; 14
2019; 5
2019; 31
2023; 6
2019; 11
2023; 145
2019; 19
2022; 21
2020; 10
2021; 143
2020; 32
2024; 36
2019; 364
2020; 19
2021; 13
2023; 62
2016; 7
2018; 3
2021; 31
2023; 22
2023
2018; 1
2022; 5
2017; 16
2022; 34
2016; 113
2024; 63
2019; 29
2018; 30
2022; 32
2022; 10
2021; 60
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 1
  start-page: 386
  year: 2018
  publication-title: Nat. Elect.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 364
  start-page: 570
  year: 2019
  publication-title: Science.
– volume: 22
  start-page: 1227
  year: 2023
  publication-title: Nat. Mater.
– year: 2023
  publication-title: Adv. Mater.
– volume: 36
  year: 2024
  publication-title: Adv. Mater.
– volume: 561
  start-page: 516
  year: 2018
  publication-title: Nature.
– volume: 60
  start-page: 9368
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  year: 2023
  publication-title: Adv. Sci.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 16
  start-page: 414
  year: 2017
  publication-title: Nat. Mater.
– volume: 19
  start-page: 13
  year: 2019
  publication-title: Nat. Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 143
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 3
  year: 2018
  publication-title: Nat. Rev. Mater.
– volume: 145
  start-page: 122
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 2945
  year: 2018
  publication-title: Chem. Mater.
– volume: 10
  start-page: 2314
  year: 2022
  publication-title: J. Mater. Chem. C.
– volume: 32
  start-page: 6618
  year: 2020
  publication-title: Chem. Mater.
– volume: 62
  year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 4253
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 21
  start-page: 564
  year: 2022
  publication-title: Nat. Mater.
– volume: 6
  start-page: 3132
  year: 2023
  publication-title: Matter.
– volume: 10
  year: 2022
  publication-title: J. Mater. Chem. A.
– volume: 6
  start-page: 281
  year: 2023
  publication-title: Nat. Elect.
– volume: 5
  start-page: 3375
  year: 2022
  publication-title: Matter.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 52
  start-page: 1001
  year: 2023
  publication-title: Chem. Soc. Rev.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 14
  start-page: 7577
  year: 2023
  publication-title: Nat. Commun.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 2373
  year: 2021
  publication-title: Mater. Horiz.
– volume: 19
  start-page: 679
  year: 2020
  publication-title: Nat. Mater.
– volume: 63
  year: 2024
  publication-title: Angew. Chem., Int. Ed.
– volume: 113
  year: 2016
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 4
  start-page: 2133
  year: 2013
  publication-title: Nat. Commun.
– volume: 36
  year: 2023
  publication-title: Adv. Mater.
– volume: 10
  start-page: 4014
  year: 2020
  publication-title: Sci. Rep.
– volume: 9
  start-page: 8099
  year: 2021
  publication-title: J. Mater. Chem. C.
– ident: e_1_2_8_19_1
  doi: 10.1016/j.matt.2023.05.001
– ident: e_1_2_8_34_1
  doi: 10.1002/adfm.202304103
– ident: e_1_2_8_51_1
  doi: 10.1039/D1MH00672J
– ident: e_1_2_8_20_1
  doi: 10.1038/s41563-020-0638-3
– ident: e_1_2_8_39_1
  doi: 10.1021/jacs.2c08850
– ident: e_1_2_8_33_1
  doi: 10.1002/adma.202310503
– ident: e_1_2_8_16_1
  doi: 10.1002/adfm.201804170
– ident: e_1_2_8_4_1
  doi: 10.1126/science.aaw5581
– ident: e_1_2_8_25_1
  doi: 10.1002/adma.201902291
– ident: e_1_2_8_41_1
  doi: 10.1021/acs.chemmater.8b00321
– ident: e_1_2_8_52_1
  doi: 10.1038/s41467-023-42840-z
– ident: e_1_2_8_49_1
  doi: 10.1039/D1TC05229B
– ident: e_1_2_8_36_1
  doi: 10.1039/D1TC02048J
– ident: e_1_2_8_6_1
  doi: 10.1038/s41563-023-01599-w
– ident: e_1_2_8_3_1
  doi: 10.1038/s41928-018-0103-3
– ident: e_1_2_8_50_1
  doi: 10.1021/acs.chemmater.0c02041
– ident: e_1_2_8_43_1
  doi: 10.1002/adma.202305416
– ident: e_1_2_8_27_1
  doi: 10.1038/s41563-022-01239-9
– ident: e_1_2_8_26_1
  doi: 10.1002/adfm.202102903
– ident: e_1_2_8_24_1
  doi: 10.1002/adma.201704916
– ident: e_1_2_8_7_1
  doi: 10.1002/adma.202202972
– ident: e_1_2_8_23_1
  doi: 10.1002/adfm.202010165
– ident: e_1_2_8_48_1
  doi: 10.1021/jacs.1c06713
– ident: e_1_2_8_22_1
  doi: 10.1038/ncomms13066
– ident: e_1_2_8_1_1
  doi: 10.1038/s41928-023-00950-y
– ident: e_1_2_8_8_1
  doi: 10.1126/sciadv.aau7378
– ident: e_1_2_8_37_1
  doi: 10.1038/s41598-020-60812-x
– ident: e_1_2_8_28_1
  doi: 10.1002/anie.202109281
– ident: e_1_2_8_42_1
  doi: 10.1002/adfm.202201593
– ident: e_1_2_8_10_1
  doi: 10.1002/adma.202300034
– ident: e_1_2_8_29_1
  doi: 10.1002/anie.202013998
– ident: e_1_2_8_11_1
  doi: 10.1038/s41586-018-0536-x
– ident: e_1_2_8_47_1
  doi: 10.1126/sciadv.abh1055
– ident: e_1_2_8_45_1
  doi: 10.1002/advs.202303837
– ident: e_1_2_8_46_1
  doi: 10.1021/acsami.0c18599
– ident: e_1_2_8_30_1
  doi: 10.1021/acsami.9b11370
– ident: e_1_2_8_17_1
  doi: 10.1038/ncomms3133
– ident: e_1_2_8_12_1
  doi: 10.1038/s41563-019-0435-z
– ident: e_1_2_8_13_1
  doi: 10.1002/adma.201800941
– ident: e_1_2_8_31_1
  doi: 10.1002/adfm.202203937
– ident: e_1_2_8_38_1
  doi: 10.1002/adma.202200393
– ident: e_1_2_8_32_1
  doi: 10.1002/anie.202213737
– ident: e_1_2_8_35_1
  doi: 10.1002/anie.202313260
– ident: e_1_2_8_9_1
  doi: 10.1016/j.matt.2022.07.016
– ident: e_1_2_8_21_1
  doi: 10.1073/pnas.1608780113
– ident: e_1_2_8_18_1
  doi: 10.1038/natrevmats.2017.86
– ident: e_1_2_8_15_1
  doi: 10.1002/adfm.201904403
– ident: e_1_2_8_40_1
  doi: 10.1039/D2TA00683A
– ident: e_1_2_8_2_1
  doi: 10.1038/nmat4856
– ident: e_1_2_8_5_1
  doi: 10.1002/adma.201802353
– ident: e_1_2_8_14_1
  doi: 10.1039/D2CS00920J
– ident: e_1_2_8_53_1
  doi: 10.1002/adma.202202574
– ident: e_1_2_8_44_1
  doi: 10.1002/adma.202201340
SSID ssj0001537418
Score 2.3466382
Snippet Organic electrochemical transistors (OECTs) are of great interest in low‐power bioelectronics and neuromorphic computing, as they utilize organic mixed...
Organic electrochemical transistors (OECTs) are of great interest in low-power bioelectronics and neuromorphic computing, as they utilize organic mixed...
Abstract Organic electrochemical transistors (OECTs) are of great interest in low‐power bioelectronics and neuromorphic computing, as they utilize organic...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e2400872
SubjectTerms ambipolar organic mixed ionic‐electronic conductors
Aqueous solutions
Copolymers
Electrolytes
organic electrochemical transistors
Polymer films
Polymers
stability
threshold voltage
Transistors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSh0xFA7FlZtSq7XTWolQaLsYzMxkMslSxYsIVWgrdRdO_lBo516812666SP0EfosfRSfxJNk7uVeLLjpNhlCOD9zvpOcfIeQt8Jh0O06U7asgRIRcVVK1_qyqwEQoDgWUrOJj2fi5IKfXraXS62-Yk1YpgfOgtuXvALfGTDccR6MMtZYIR0iDXRTAz79fZlaSqby--Am0rLMWRpZvQ_uR2TnjiWTsqtXolAi6_8XwnxYKLkMYFMEGj0jTwfoSA_yljfIE98_JxuDc07p-4FB-sMm-XmOBkoF-_vnio4DRUBpvnn6FWHlzd2v3-cTn9VOEbDSMxyJySjNrzItPc6NcezAJEBTNEtkIlMaT23pCKYz-inX1noKvaMH3831JObICOm3yMXo-MvRSTl0WShtZN8rEdDURgBI3oZWWYGxTFkM4pVUQXITGLTWcCa5NRKsrRrgQlqXoFjXWNu8IGv9uPcvCeXBAq6pPBfAXd3KgNkb5th1YI0Pzhfk3VzqepLJNHSmTa511I9e6Kcgh1Epi68iCXYaQNPQg2nox0yjIDtzlerBM6e6YVLJKl74FmRvMY0-FS9KoPfj2_gNZoUoACYKsp0tYLGTRkZKtAp3KFdsY2WrqzP99VXi7a6qeHakWEHKZEaPyEAjMPksuWKv_ocwXpP1uHKuXdwha7ObW_8G8dTM7CbXuQfSkyDQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Databases
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZge-GCWp6BgoyEBBysOomTOCfUol1VSGxRoaI3y09aCZLtZtvfz4zj3bICwTV2Esfj8XwznnxDyOvagdFtGsMqXmoGiDhn0lWeNYXWAFAcD7HYxKd5fXwmPp5X5yngNqS0yvWeGDdq11uMkR-UXLYyx4O694srhlWj8HQ1ldC4S3YK9BQmZOdoOv98ehtlqUqkZ1mzNfLiQLsbZOnG1EnZFFvWKJL2_w1p_pkw-TuQjZZotkvuJwhJD0eZ75E7vntA9pKSDvRtYpJ-95DcnMBCpTWnF7QPFHCl-eHpN0CXS3ay8KPsKaBWOmfoj9Lxx0xLp2NtHJvIBGg0aJFPZKAYuKUzPazo6Zhe66nuHD38aS4X6CYDqn9EzmbTrx-OWSq0wCwS8DHANIWptZaiClVrazBnrQU7nss2SGEC15U1gkthjdTW5qUWtbQuorGmtLZ8TCZd3_mnhIpgNTyz9aLWwhWVDCAWcLOLwEsfnM_Im_WEq8XIp6FG5uRCoWjURjQZOUJ5bHohD3a80C-_q6RWSopc-8ZoI5wQwbTGGltLBzgUNnGj4XX7a2mqpJyDul1KGXm1aQa1wrMS3fn-GvuAYwgTwOuMPBmFvxlJKZEVLYcRyq1lsTXU7Zbu8iJSd-c5ho9anhEWV9B_5kABNvkiRcuf_fs7npN7eM-YmLhPJqvltX8BYGllXiaN-AUtWRNO
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZQuXBBlPITKMhISMAhqpM4jnMsqKuqEi0CKnqz_EsrQXa12XLhwiPwCDxLH6VPwoydTRuBhLg6lmN5Zjzf2ONvCHkuHDjdpjF5zSqdAyIuculqnzel1gBQHAux2MTbQ7F_zA9O6pNrr_gTP8R44IaWEfdrNHBt-p0r0lDtviHdNuZAygY24ZtIG4NJfSV_d3XKUldIz4IV5iC6zivJ-Zq5kZU70yEmnikS-P8Ndf6ZPHkd1EavNLtDbg9wku4m-W-SG767SzYHg-3py4FV-tUW-X4ESksFu_h1SueBAsg0Xzz9BFBzefnj59HCJ1WgAGLpIbRggErTS01L91KxHDuwC9Do4SLBSE_xJJfOdL-i71O-rae6c3T3qzlbYNwMMP8eOZ7tfXyznw-VF3KLjHw5gJzSCK0lr0PdWgH-rbXg2AvZBslNYLq2hjPJrZHa2qLSXEjrIjxrKmur-2Sjm3f-IaE8WA1jtp4LzV1ZywARHcTdZWCVD85n5MV61dUiEWyoRKVcKpSPGuWTkdcolLEXEmPHhvnysxrsTEleaN8YbbjjPJjWWGOFdABMYVc3Gn63vRapGqy1VxWTrSzwEjgjz8bPYGd4eaI7Pz_HPhApwgIwkZEHSQPGmVQSadIKmKGc6MZkqtMv3dlp5PIuCjxPallG8qhG_1gDBWDlg-Qte_Sf_R-TW9iYUhe3ycZqee6fAJxamafRYn4DJA4bVA
  priority: 102
  providerName: Wiley-Blackwell
Title Over 60 h of Stable Water‐Operation for N‐Type Organic Electrochemical Transistors with Fast Response and Ambipolarity
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202400872
https://www.ncbi.nlm.nih.gov/pubmed/38810112
https://www.proquest.com/docview/3089810424
https://www.proquest.com/docview/3062531806
https://pubmed.ncbi.nlm.nih.gov/PMC11304290
https://doaj.org/article/841ae7bab4d44fb9bcbc68d054911bae
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFD5axw03iPEbGJWRkICLrE7iOM7lNrWakNZVg4ndRbZjb5XWtGo7brjhEXgEnoVH4Uk4tpNqFUhI3NqWbfl8zvmOc_wZ4A2v0ekWhYpzmskYGXESizo3cZFKiQSlptY_NnE65icX7MNlfrkDvLsL45P2tZoeNDezg2Z67XMrFzM96PLEBpPT4yRxQXhJBz3oIULvxOjhbnDmJFk6hUaaDmT9xSlzu3RJUbj3azLhdK2SdMsZec3-vxHNP_Ml7_JY74hGD-FByyDJYZjpHuyY5hHstXt0Rd61QtLvH8PXM8Qp4fTnj2sytwR5pbox5DOyy-Wvb9_PFiZYnyBvJWMscTEpCZczNRmG93F0KyhAvFPzmiIr4g5vyUiu1uQ8pNgaIpuaHM7UdOFCZWT2T-BiNPx0fBK3jy3E2onwxchrUsWlFCy3eak5urRSoy9PRGkFU5bKXCtGBdNKSK2TTDIudO0ZWZFpnT2F3WbemOdAmNUS-ywN45LVaS4sBnEYaqeWZsbWJoK33apXi6CpUQX15LRypqo2porgyBll08ppYfuC-fKqahFRCZZIUyipWM2YVaXSSnNRIxfFD7mSONx-Z9Kq3aCrKqOiRAywlEXwelONW8v9L5GNmd-6Nhgc4gJQHsGzgIDNTDoERSC2sLE11e0aRLOX7-7QG0HsYfSPNaiQn3wUrKQv_n-ol3Df9RcSF_dhd728Na-QTK1VH3opm_Th3tFwPDnv-yOJvt9PvwHTaCNl
link.rule.ids 230,315,730,783,787,867,888,2109,11575,21401,27937,27938,33757,33758,43818,46065,46489,50827,50936,53805,53807,74637
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZge4ALojwDBYyEBBysOomTOCfUol0t0G5RaUVvlp-0EiTLZtvfz0zi3bICwTV2Esfj8XwznnxDyKvSgdGtKsMKnmsGiDhl0hWeVZnWAFAcD32xicNZOT0VH8-Ksxhw62Ja5WpP7Ddq11qMke_mXNYyxYO6d_OfDKtG4elqLKFxk2whVZUcka398ezz8XWUpciRnmXF1sizXe2ukKUbUydllW1Yo560_29I88-Eyd-BbG-JJnfJnQgh6d4g821ywzf3yHZU0o6-iUzSb--TqyNYqLTk9Jy2gQKuNN89_QrocsGO5n6QPQXUSmcM_VE6_Jhp6XiojWMjmQDtDVrPJ9JRDNzSie6W9HhIr_VUN47u_TAXc3STAdU_IKeT8cn7KYuFFphFAj4GmCYzpdZSFKGobQnmrLZgx1NZBylM4LqwRnAprJHa2jTXopTW9Wisyq3NH5JR0zb-MaEiWA3PrL0otXBZIQM4cOBmZ4HnPjifkNerCVfzgU9DDczJmULRqLVoErKP8lj3Qh7s_kK7-KaiWikpUu0ro41wQgRTG2tsKR3gUNjEjYbX7aykqaJydup6KSXk5boZ1ArPSnTj20vsA44hTAAvE_JoEP56JLlEVrQURig3lsXGUDdbmovznro7TTF8VPOEsH4F_WcOFGCTL1LU_Mm_v-MFuTU9OTxQBx9mn56S23j_kKS4Q0bLxaV_BsBpaZ5H7fgFZtUWSA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELaglRAXRHk1pYCRkICDtU7iOM4JtbCr8tpWhYreLD9pJUi2m21_P2PHu2UFgmvsJI5nxvONPfkGoRfcgtOta00qWioCiDgnwlaO1IVSAFAs9bHYxOcpPzhhH06r05T_1Ke0yuWaGBdq25mwRz4qqWhEHg7qRj6lRRy9m7yZXZBQQSqctKZyGjfRZs14CYHY5v54enR8veNSlYGqZcncSIuRsleBsTukUYq6WPNMkcD_b6jzz-TJ30Ft9EqTu-hOgpN4b5D_Frrh2ntoKxlsj18lVunX99HVISgt5hSf4c5jwJj6h8PfAGnOyeHMDXqAAcHiKQmxKR5-0jR4PNTJMYlYAEfnFrlFehw2cfFE9Qt8PKTaOqxai_d-6vNZCJkB4T9AJ5Px17cHJBVdICaQ8RHAN4XmSglW-aoxHFxbY8Cn56LxgmlPVWU0o4IZLZQxeakYF8ZGZFaXxpQP0UbbtW4bYeaNgmc2jnHFbFEJD8EchNyFp6Xz1mXo5XLC5Wzg1pADi3Ihg2jkSjQZ2g_yWPUKnNjxQjf_LpOJScFy5WqtNLOMed1oow0XFjApLOhawet2l9KUyVB7ea1WGXq-agYTC-cmqnXdZegDQSJMAOUZejQIfzWSUgSGtBxGKNbUYm2o6y3t-Vmk8c7zsJXU0AyRqEH_mQMJOOWLYA3d-fd3PEO3wDDkp_fTj4_R7XD7kK-4izYW80v3BDDUQj9NxvELgS8afA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Over+60%C2%A0h+of+Stable+Water%E2%80%90Operation+for+N%E2%80%90Type+Organic+Electrochemical+Transistors+with+Fast+Response+and+Ambipolarity&rft.jtitle=Advanced+science&rft.au=Tao+Pan&rft.au=Xinnian+Jiang&rft.au=Eveline+R.+W.+vanDoremaele&rft.au=Junyu+Li&rft.date=2024-08-01&rft.pub=Wiley&rft.eissn=2198-3844&rft.volume=11&rft.issue=29&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadvs.202400872&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_841ae7bab4d44fb9bcbc68d054911bae
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon