Mouse models for abdominal aortic aneurysm
Abdominal aortic aneurysm (AAA) rupture is estimated to cause 200,000 deaths each year. Currently, the only treatment for AAA is surgical repair; however, this is only indicated for large asymptomatic, symptomatic or ruptured aneurysms, is not always durable, and is associated with a risk of serious...
Saved in:
Published in | British journal of pharmacology Vol. 179; no. 5; pp. 792 - 810 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abdominal aortic aneurysm (AAA) rupture is estimated to cause 200,000 deaths each year. Currently, the only treatment for AAA is surgical repair; however, this is only indicated for large asymptomatic, symptomatic or ruptured aneurysms, is not always durable, and is associated with a risk of serious perioperative complications. As a result, patients with small asymptomatic aneurysms or who are otherwise unfit for surgery are treated conservatively, but up to 70% of small aneurysms continue to grow, increasing the risk of rupture. There is thus an urgent need to develop drug therapies effective at slowing AAA growth. This review describes the commonly used mouse models for AAA. Recent research in these models highlights key roles for pathways involved in inflammation and cell turnover in AAA pathogenesis. There is also evidence for long non‐coding RNAs and thrombosis in aneurysm pathology. Further well‐designed research in clinically relevant models is expected to be translated into effective AAA drugs.
LINKED ARTICLES
This article is part of a themed issue on Preclinical Models for Cardiovascular disease research (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.5/issuetoc
Innate and adaptive immunity, autophagy, protease‐mediated extracellular matrix remodelling, hydroxyapatite‐mediated microcalcification, epigenetic changes, and intraluminal thrombus are strongly implicated in abdominal aortic aneurysm (AAA). Immune response regulators, autophagy promoting agents, protease inhibitors, siRNA inhibiting hydroxyapatite formation, microRNAs, and coagulation cascade inhibitors have been reported to limit AAA development in mice. |
---|---|
AbstractList | Abdominal aortic aneurysm (AAA) rupture is estimated to cause 200,000 deaths each year. Currently, the only treatment for AAA is surgical repair; however, this is only indicated for large asymptomatic, symptomatic or ruptured aneurysms, is not always durable, and is associated with a risk of serious perioperative complications. As a result, patients with small asymptomatic aneurysms or who are otherwise unfit for surgery are treated conservatively, but up to 70% of small aneurysms continue to grow, increasing the risk of rupture. There is thus an urgent need to develop drug therapies effective at slowing AAA growth. This review describes the commonly used mouse models for AAA. Recent research in these models highlights key roles for pathways involved in inflammation and cell turnover in AAA pathogenesis. There is also evidence for long non‐coding RNAs and thrombosis in aneurysm pathology. Further well‐designed research in clinically relevant models is expected to be translated into effective AAA drugs.LINKED ARTICLESThis article is part of a themed issue on Preclinical Models for Cardiovascular disease research (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.5/issuetoc Abdominal aortic aneurysm (AAA) rupture is estimated to cause 200,000 deaths each year. Currently, the only treatment for AAA is surgical repair; however, this is only indicated for large asymptomatic, symptomatic or ruptured aneurysms, is not always durable, and is associated with a risk of serious perioperative complications. As a result, patients with small asymptomatic aneurysms or who are otherwise unfit for surgery are treated conservatively, but up to 70% of small aneurysms continue to grow, increasing the risk of rupture. There is thus an urgent need to develop drug therapies effective at slowing AAA growth. This review describes the commonly used mouse models for AAA. Recent research in these models highlights key roles for pathways involved in inflammation and cell turnover in AAA pathogenesis. There is also evidence for long non-coding RNAs and thrombosis in aneurysm pathology. Further well-designed research in clinically relevant models is expected to be translated into effective AAA drugs. LINKED ARTICLES: This article is part of a themed issue on Preclinical Models for Cardiovascular disease research (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.5/issuetoc.Abdominal aortic aneurysm (AAA) rupture is estimated to cause 200,000 deaths each year. Currently, the only treatment for AAA is surgical repair; however, this is only indicated for large asymptomatic, symptomatic or ruptured aneurysms, is not always durable, and is associated with a risk of serious perioperative complications. As a result, patients with small asymptomatic aneurysms or who are otherwise unfit for surgery are treated conservatively, but up to 70% of small aneurysms continue to grow, increasing the risk of rupture. There is thus an urgent need to develop drug therapies effective at slowing AAA growth. This review describes the commonly used mouse models for AAA. Recent research in these models highlights key roles for pathways involved in inflammation and cell turnover in AAA pathogenesis. There is also evidence for long non-coding RNAs and thrombosis in aneurysm pathology. Further well-designed research in clinically relevant models is expected to be translated into effective AAA drugs. LINKED ARTICLES: This article is part of a themed issue on Preclinical Models for Cardiovascular disease research (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.5/issuetoc. Abdominal aortic aneurysm (AAA) rupture is estimated to cause 200,000 deaths each year. Currently, the only treatment for AAA is surgical repair; however, this is only indicated for large asymptomatic, symptomatic or ruptured aneurysms, is not always durable, and is associated with a risk of serious perioperative complications. As a result, patients with small asymptomatic aneurysms or who are otherwise unfit for surgery are treated conservatively, but up to 70% of small aneurysms continue to grow, increasing the risk of rupture. There is thus an urgent need to develop drug therapies effective at slowing AAA growth. This review describes the commonly used mouse models for AAA. Recent research in these models highlights key roles for pathways involved in inflammation and cell turnover in AAA pathogenesis. There is also evidence for long non-coding RNAs and thrombosis in aneurysm pathology. Further well-designed research in clinically relevant models is expected to be translated into effective AAA drugs. LINKED ARTICLES: This article is part of a themed issue on Preclinical Models for Cardiovascular disease research (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.5/issuetoc. Abdominal aortic aneurysm (AAA) rupture is estimated to cause 200,000 deaths each year. Currently, the only treatment for AAA is surgical repair; however, this is only indicated for large asymptomatic, symptomatic or ruptured aneurysms, is not always durable, and is associated with a risk of serious perioperative complications. As a result, patients with small asymptomatic aneurysms or who are otherwise unfit for surgery are treated conservatively, but up to 70% of small aneurysms continue to grow, increasing the risk of rupture. There is thus an urgent need to develop drug therapies effective at slowing AAA growth. This review describes the commonly used mouse models for AAA. Recent research in these models highlights key roles for pathways involved in inflammation and cell turnover in AAA pathogenesis. There is also evidence for long non‐coding RNAs and thrombosis in aneurysm pathology. Further well‐designed research in clinically relevant models is expected to be translated into effective AAA drugs. LINKED ARTICLES This article is part of a themed issue on Preclinical Models for Cardiovascular disease research (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.5/issuetoc Innate and adaptive immunity, autophagy, protease‐mediated extracellular matrix remodelling, hydroxyapatite‐mediated microcalcification, epigenetic changes, and intraluminal thrombus are strongly implicated in abdominal aortic aneurysm (AAA). Immune response regulators, autophagy promoting agents, protease inhibitors, siRNA inhibiting hydroxyapatite formation, microRNAs, and coagulation cascade inhibitors have been reported to limit AAA development in mice. |
Author | Krishna, Smriti Murali Golledge, Jonathan Wang, Yutang |
Author_xml | – sequence: 1 givenname: Jonathan orcidid: 0000-0002-5779-8848 surname: Golledge fullname: Golledge, Jonathan email: jonathan.golledge@jcu.edu.au organization: James Cook University – sequence: 2 givenname: Smriti Murali surname: Krishna fullname: Krishna, Smriti Murali organization: James Cook University – sequence: 3 givenname: Yutang surname: Wang fullname: Wang, Yutang organization: Federation University Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32914434$$D View this record in MEDLINE/PubMed |
BookMark | eNp90E1LwzAYB_AgE_eiB7-AFLyo0C1vTdujDnXCRA96Dmn6FDPaZiYtsm9vdNPDQHN5Dvk9D3_-YzRobQsInRI8JeHNivXblCRU4AM0IjwVccIyMkAjjHEaE5JlQzT2foVx-EyTIzRkNCecMz5CV4-29xA1toTaR5V1kSpK25hW1ZGyrjM6Ui30buObY3RYqdrDyW5O0Ovd7ct8ES-f7h_m18tY84TjmFdEsSxjijCCC64501QnQChVQoDQaV4qSkmqS8YgKbIKRCVwyXKoskQpYBN0sb27dva9B9_JxngNdR2ChLCSck4EFiKngZ7v0ZXtXcgelKApoQmnPKizneqLBkq5dqZRbiN_Wgjgcgu0s947qH4JwfKrYRkalt8NBzvbs9p0qjO27Zwy9X8bH6aGzd-n5c3zYrvxCZjgiXE |
CitedBy_id | crossref_primary_10_1016_j_pharmthera_2024_108652 crossref_primary_10_3390_ijms242115955 crossref_primary_10_3389_fimmu_2022_858256 crossref_primary_10_1038_s41392_023_01325_7 crossref_primary_10_1159_000536569 crossref_primary_10_1161_CIRCGEN_123_004397 crossref_primary_10_1016_j_ijcha_2024_101500 crossref_primary_10_1038_s12276_023_01130_w crossref_primary_10_1007_s10557_022_07352_w crossref_primary_10_1080_15384101_2022_2094577 crossref_primary_10_3390_ijms241411701 crossref_primary_10_1016_j_trsl_2023_03_002 crossref_primary_10_1134_S0006297924010085 crossref_primary_10_1161_ATVBAHA_124_320823 crossref_primary_10_1016_j_bcp_2025_116800 crossref_primary_10_3389_fmed_2022_814123 crossref_primary_10_1111_jcmm_70328 crossref_primary_10_23736_S1824_4777_24_01655_3 crossref_primary_10_3390_ijms25020901 crossref_primary_10_1007_s12272_024_01515_z crossref_primary_10_1002_ame2_12572 crossref_primary_10_1177_17085381241257747 crossref_primary_10_1016_j_cjca_2023_09_009 crossref_primary_10_1016_j_heliyon_2023_e17279 crossref_primary_10_1016_j_ejphar_2024_177150 crossref_primary_10_31857_10_31857_S0320972524010089 crossref_primary_10_1007_s10557_021_07175_1 crossref_primary_10_1021_acsnano_4c12263 crossref_primary_10_1016_j_biopha_2022_113340 crossref_primary_10_1016_j_yjmcc_2022_05_001 crossref_primary_10_1007_s10753_024_02055_w crossref_primary_10_1161_ATVBAHA_124_320146 crossref_primary_10_1016_j_intimp_2023_110197 crossref_primary_10_1253_circrep_CR_23_0071 crossref_primary_10_1016_j_ejphar_2023_176307 crossref_primary_10_1021_acsnano_4c00120 crossref_primary_10_3389_fcvm_2023_1221620 crossref_primary_10_1155_2021_6297332 crossref_primary_10_1016_j_carpath_2024_107629 crossref_primary_10_1111_bph_15798 crossref_primary_10_1161_ATVBAHA_121_317058 crossref_primary_10_3389_fcvm_2022_950961 |
Cites_doi | 10.1161/ATVBAHA.117.309897 10.1159/000447263 10.1042/CS20191020 10.1093/eurheartj/ehw257 10.1016/j.avsg.2020.03.002 10.1161/JAHA.119.014757 10.1016/j.atherosclerosis.2019.08.003 10.1016/j.yjmcc.2019.05.002 10.1073/pnas.1900152116 10.1161/ATVBAHA.115.306497 10.1002/jcp.27517 10.1038/s41598-019-44523-6 10.1016/j.ejvs.2010.08.026 10.1038/sj.bjp.0704331 10.1016/j.jvs.2016.12.110 10.21037/cdt.2019.12.08 10.1161/ATVBAHA.119.312659 10.1016/j.atherosclerosis.2012.09.010 10.1161/ATVBAHA.120.314297 10.1016/j.ejvs.2016.07.004 10.1016/j.atherosclerosis.2011.03.006 10.1111/jcmm.15342 10.1111/bph.14751 10.1016/j.atherosclerosis.2017.03.010 10.1016/j.ajpath.2012.04.015 10.1001/jama.2020.5230 10.1161/CIRCULATIONAHA.116.023789 10.1161/HYPERTENSIONAHA.109.140558 10.1161/01.ATV.0000216119.79008.ac 10.1177/1074248418798631 10.1016/j.tips.2018.10.005 10.1111/joim.12958 10.7326/0003-4819-159-12-201312170-00007 10.1155/2015/413189 10.1161/ATVBAHA.117.309999 10.1196/annals.1383.029 10.1016/j.jvs.2019.08.285 10.1161/ATVBAHA.118.312023 10.1161/ATVBAHA.115.305269 10.1007/s10495-019-01540-0 10.1161/HYPERTENSIONAHA.118.12086 10.1016/j.carpath.2012.07.005 10.4049/jimmunol.1800197 10.1067/mva.2002.123757 10.1161/CIRCRESAHA.108.175976 10.1016/j.ejvs.2018.09.020 10.1016/j.ejvs.2018.03.018 10.1111/j.1749-6632.1999.tb07682.x 10.1159/000504848 10.1186/1471-2164-10-298 10.1161/01.RES.0000016501.56641.83 10.1093/cvr/cvy264 10.1111/bph.14857 10.1161/JAHA.119.014044 10.1161/CIRCULATIONAHA.108.806505 10.1161/ATVBAHA.115.305911 10.1161/CIRCGEN.118.002413 10.1074/jbc.M806239200 10.1016/j.jacc.2017.11.053 10.1177/1526602815601405 10.1016/j.jvs.2016.07.105 10.1016/j.nano.2020.102177 10.1161/CIRCRESAHA.108.173682 10.18632/oncotarget.3848 10.1067/mva.2001.117891 10.1161/ATVBAHA.119.312787 10.1007/s11010-019-03567-y 10.1161/CIRCRESAHA.116.308895 10.1007/s00380-018-1301-7 10.1016/j.jvs.2010.08.013 10.1038/s41569-018-0114-9 10.1016/j.ejvs.2020.03.042 10.1093/cvr/cvu257 10.1161/HYPERTENSIONAHA.114.04934 10.1161/01.ATV.0000245819.32762.cb 10.1089/dna.2018.4552 10.1111/bph.14747 10.1016/S0039-6060(99)70114-5 10.1007/s00330-008-0956-3 10.1172/JCI38136 10.1161/ATVBAHA.116.308534 10.1056/NEJMoa1405778 10.1016/j.gheart.2013.12.009 10.1016/j.yjmcc.2019.03.021 10.1093/eurheartj/ehq171 10.1111/jcmm.14554 10.1161/01.ATV.0000058404.92759.32 10.1161/CIRCIMAGING.119.009889 10.1161/CIRCIMAGING.118.008707 10.1038/nrcardio.2017.23 10.1161/ATVBAHA.118.311969 10.1093/cvr/cvx128 10.1111/bph.14753 10.1007/s11883-016-0567-4 10.1172/JCI7818 10.1016/j.ejvs.2018.01.015 10.1002/bjs.9101 10.1038/s41598-019-49682-0 10.1371/journal.pone.0036724 10.1161/ATVBAHA.110.216580 10.1002/bjs.9824 10.14336/AD.2018.1128 10.1038/s41598-020-59842-2 10.1016/j.ejphar.2019.05.032 10.1001/jama.2019.18928 10.1172/JCI8931 10.1161/ATVBAHA.115.305537 10.1042/CS20190924 10.33549/physiolres.933579 10.1073/pnas.1814409116 10.7150/thno.34463 10.1016/S0741-5214(97)70210-6 10.1371/journal.pone.0227165 10.1148/radiol.2016151407 10.1016/j.jvs.2016.05.090 10.1161/01.ATV.0000254680.71485.92 10.1016/j.cell.2017.07.029 10.1016/j.redox.2019.101185 10.1016/j.jvs.2016.08.003 10.1056/NEJMoa013527 10.1161/CIRCULATIONAHA.119.044803 10.1155/2009/352319 10.1161/ATVBAHA.117.309401 10.5551/jat.E611 10.1016/j.jss.2020.01.028 10.2174/1381612821666150826093318 10.1016/j.ejvs.2016.03.012 10.1001/jamacardio.2020.3524 10.1161/01.ATV.0000085631.76095.64 10.1161/01.ATV.0000118013.72016.ea 10.1161/01.CIR.0000038109.84500.1E 10.1001/jama.287.22.2968 10.1161/JAHA.118.009866 10.1161/JAHA.117.007909 10.1016/j.amjsurg.2018.12.054 10.1016/j.yjmcc.2020.04.008 10.1111/bph.14748 10.3390/ijms160511276 10.1038/s41467-019-13017-4 10.1111/bph.14752 10.1111/j.1365-2567.2005.02157.x 10.1161/CIRCULATIONAHA.107.731398 10.1016/j.atherosclerosis.2013.12.017 10.1161/ATVBAHA.119.314113 10.1152/ajpheart.00300.2019 10.1016/j.yjmcc.2018.03.003 10.1093/eurheartj/ehz856 |
ContentType | Journal Article |
Copyright | 2020 The British Pharmacological Society 2020 The British Pharmacological Society. 2022 The British Pharmacological Society |
Copyright_xml | – notice: 2020 The British Pharmacological Society – notice: 2020 The British Pharmacological Society. – notice: 2022 The British Pharmacological Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7TK K9. NAPCQ 7X8 |
DOI | 10.1111/bph.15260 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Calcium & Calcified Tissue Abstracts Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1476-5381 |
EndPage | 810 |
ExternalDocumentID | 32914434 10_1111_bph_15260 BPH15260 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Queensland Government – fundername: National Health and Medical Research Council funderid: 1117601; 1062671; 1079369; 1098717 – fundername: Study, Education and Research Trust Fund – fundername: Townsville Hospital and Health Service |
GroupedDBID | --- .3N .55 .GJ 05W 0R~ 1OC 23N 24P 2WC 31~ 33P 36B 3O- 3SF 3V. 4.4 52U 52V 53G 5GY 6J9 7RV 7X7 8-0 8-1 88E 8AO 8FE 8FH 8FI 8FJ 8R4 8R5 8UM A00 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABDBF ABPVW ABQWH ABUWG ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACUHS ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB B0M BAFTC BAWUL BBNVY BENPR BFHJK BHBCM BHPHI BKEYQ BMXJE BPHCQ BRXPI BVXVI C45 CAG CCPQU COF CS3 DCZOG DIK DRFUL DRMAN DRSTM DU5 E3Z EAD EAP EAS EBC EBD EBS ECV EJD EMB EMK EMOBN ENC ESX EX3 F5P FUBAC FYUFA G-S GODZA GX1 H.X HCIFZ HGLYW HMCUK HYE HZ~ J5H KBYEO LATKE LEEKS LH4 LITHE LK8 LOXES LSO LUTES LW6 LYRES M1P M7P MEWTI MK0 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM MY~ N9A NAPCQ NF~ O66 O9- OIG OK1 OVD P2P P2W P4E PQQKQ PROAC PSQYO Q.N Q2X QB0 RIG ROL RPM RWI SJN SUPJJ SV3 TEORI TR2 TUS UKHRP UPT WBKPD WH7 WHWMO WIH WIJ WIK WIN WOHZO WOW WVDHM WXSBR X7M XV2 Y6R YHG ZGI ZXP ZZTAW ~8M ~S- AAFWJ AAYXX AEYWJ AGHNM AGYGG CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7QP 7TK K9. 7X8 |
ID | FETCH-LOGICAL-c4540-4f1a3883a1310b4c43c2c5e122a66e6c79da2217cd33e5b8fe6f60d39ef85aae3 |
ISSN | 0007-1188 1476-5381 |
IngestDate | Fri Jul 11 09:08:44 EDT 2025 Fri Jul 25 19:08:35 EDT 2025 Mon Jul 21 05:59:50 EDT 2025 Thu Apr 24 22:59:14 EDT 2025 Tue Jul 01 03:00:42 EDT 2025 Wed Jan 22 16:27:20 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | mouse models abdominal aortic aneurysm pathology |
Language | English |
License | 2020 The British Pharmacological Society. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4540-4f1a3883a1310b4c43c2c5e122a66e6c79da2217cd33e5b8fe6f60d39ef85aae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-5779-8848 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/bph.15260 |
PMID | 32914434 |
PQID | 2627125424 |
PQPubID | 42104 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_2441606692 proquest_journals_2627125424 pubmed_primary_32914434 crossref_primary_10_1111_bph_15260 crossref_citationtrail_10_1111_bph_15260 wiley_primary_10_1111_bph_15260_BPH15260 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2022 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | British journal of pharmacology |
PublicationTitleAlternate | Br J Pharmacol |
PublicationYear | 2022 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2019; 10 2019; 12 2004; 24 2011; 53 2019; 16 2020; 15 2019; 19 2019; 289 2019; 322 2019; 202 2020; 13 2020; 288 2020; 323 2020; 10 2008; 102 2009; 119 2016; 37 2016; 36 2018; 7 2001; 134 2018; 39 2009; 10 2019; 24 2019; 23 2006; 26 2015; 373 2008; 117 2020; 177 2019; 317 2002; 90 2014a; 9 2009; 16 2018; 38 2019; 9 2020; 40 2020; 142 2020; 143 2017; 66 2013; 226 2005; 115 2017; 65 1997; 25 2019; 34 2019a; 176 2012; 181 2019; 39 2019; 38 2013; 100 2016; 18 2016; 281 2019; 460 2017; 135 2019; 42 2019; 41 2000; 105 2018; 118 2015; 65 2015; 2015 2020; 26 2017; 261 2019; 856 2019; 217 2001; 34 1999; 878 2019; 176 2003; 23 2015; 35 2010; 55 2013; 22 2015; 105 2015; 102 2020; 60 2019; 57 2020; 57 1999; 126 2017; 113 2014b; 9 2020; 6 2017; 37 2020; 251 2016; 119 2013; 159 2020; 9 2019; 115 2002; 106 2019; 116 2019; 234 2002; 346 2020; 134 2009; 284 2018; 71 2007; 20 2019b; 176 2007; 27 2015; 6 2015; 16 2019; 73 2011; 217 2008; 18 2002; 35 2011; 31 2016; 53 2017; 170 2016; 52 2011; 32 2010; 120 2006; 1 2018; 67 2009; 26 2014; 233 2017; 14 2020 2020; 72 2015; 22 2002; 287 2015; 21 2011; 41 2019 2020; 116 2015 2018; 56 2019; 130 2012; 7 2019; 133 2019; 132 e_1_2_11_70_1 e_1_2_11_93_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_97_1 e_1_2_11_13_1 e_1_2_11_118_1 e_1_2_11_29_1 e_1_2_11_125_1 e_1_2_11_4_1 e_1_2_11_106_1 e_1_2_11_148_1 e_1_2_11_48_1 e_1_2_11_121_1 e_1_2_11_102_1 e_1_2_11_144_1 e_1_2_11_140_1 e_1_2_11_81_1 Chaikof E. L. (e_1_2_11_25_1) 2018; 67 e_1_2_11_20_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_89_1 e_1_2_11_24_1 e_1_2_11_62_1 e_1_2_11_129_1 e_1_2_11_8_1 e_1_2_11_43_1 e_1_2_11_17_1 e_1_2_11_117_1 e_1_2_11_136_1 e_1_2_11_159_1 e_1_2_11_59_1 e_1_2_11_113_1 e_1_2_11_132_1 e_1_2_11_155_1 e_1_2_11_151_1 Golledge J. (e_1_2_11_52_1) 2020; 26 e_1_2_11_50_1 e_1_2_11_92_1 e_1_2_11_31_1 e_1_2_11_77_1 e_1_2_11_58_1 Wanhainen A. (e_1_2_11_154_1) 2020; 116 e_1_2_11_119_1 e_1_2_11_35_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_54_1 e_1_2_11_96_1 e_1_2_11_103_1 e_1_2_11_126_1 e_1_2_11_149_1 Horimatsu T. (e_1_2_11_60_1) 2019 e_1_2_11_5_1 e_1_2_11_145_1 e_1_2_11_141_1 e_1_2_11_160_1 Cooper H. A. (e_1_2_11_30_1) 2020 e_1_2_11_61_1 e_1_2_11_80_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_88_1 e_1_2_11_107_1 Cheuk B. L. (e_1_2_11_28_1) 2007; 20 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_114_1 e_1_2_11_16_1 e_1_2_11_137_1 e_1_2_11_156_1 e_1_2_11_110_1 e_1_2_11_39_1 e_1_2_11_133_1 e_1_2_11_152_1 e_1_2_11_72_1 e_1_2_11_91_1 e_1_2_11_57_1 e_1_2_11_99_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_95_1 e_1_2_11_11_1 e_1_2_11_6_1 e_1_2_11_104_1 e_1_2_11_27_1 e_1_2_11_127_1 e_1_2_11_2_1 Liu Q. (e_1_2_11_85_1) 2019; 19 e_1_2_11_100_1 e_1_2_11_146_1 e_1_2_11_123_1 e_1_2_11_142_1 Shao F. (e_1_2_11_128_1) 2019 e_1_2_11_83_1 e_1_2_11_45_1 e_1_2_11_68_1 e_1_2_11_87_1 e_1_2_11_108_1 e_1_2_11_22_1 e_1_2_11_64_1 e_1_2_11_115_1 e_1_2_11_138_1 e_1_2_11_15_1 e_1_2_11_111_1 e_1_2_11_134_1 e_1_2_11_38_1 e_1_2_11_157_1 Gandhi R. (e_1_2_11_41_1) 2019 e_1_2_11_19_1 Filardo G. (e_1_2_11_37_1) 2015 e_1_2_11_153_1 e_1_2_11_130_1 e_1_2_11_94_1 e_1_2_11_71_1 e_1_2_11_90_1 Zhang Z. (e_1_2_11_161_1) 2019; 42 e_1_2_11_10_1 e_1_2_11_56_1 e_1_2_11_79_1 e_1_2_11_14_1 e_1_2_11_98_1 e_1_2_11_33_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_105_1 e_1_2_11_147_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_101_1 Sampson U. K. (e_1_2_11_122_1) 2014; 9 e_1_2_11_124_1 e_1_2_11_143_1 e_1_2_11_120_1 e_1_2_11_82_1 Liu J. (e_1_2_11_84_1) 2020; 6 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_86_1 e_1_2_11_109_1 e_1_2_11_18_1 e_1_2_11_139_1 e_1_2_11_116_1 e_1_2_11_158_1 e_1_2_11_135_1 e_1_2_11_112_1 e_1_2_11_131_1 e_1_2_11_150_1 |
References_xml | – volume: 9 start-page: 5558 year: 2019 end-page: 5576 article-title: Long noncoding RNA GAS5 induces abdominal aortic aneurysm formation by promoting smooth muscle apoptosis publication-title: Theranostics – year: 2020 article-title: A modified murine abdominal aortic aneurysm rupture model using elastase perfusion and angiotensin II infusion publication-title: Annals of Vascular Surgery – volume: 115 start-page: 262 year: 2005 end-page: 270 article-title: Functional characterization of T cells in abdominal aortic aneurysms publication-title: Immunology – volume: 72 start-page: 1087 year: 2020 end-page: 1096.e1 article-title: Ex vivo expansion of regulatory T cells from abdominal aortic aneurysm patients inhibits aneurysm in humanized murine model publication-title: Journal of Vascular Surgery – volume: 116 start-page: 13006 year: 2019 article-title: Apelin protects against abdominal aortic aneurysm and the therapeutic role of neutral endopeptidase resistant apelin analogs publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 40 start-page: 1352 year: 2020 end-page: 1369 article-title: Runx2 (runt‐related transcription factor 2)‐mediated microcalcification is a novel pathological characteristic and potential mediator of abdominal aortic aneurysm publication-title: Arteriosclerosis, Thrombosis, and Vascular Biology – volume: 132 start-page: 49 year: 2019 end-page: 59 article-title: Smooth muscle‐specific Gsα deletion exaggerates angiotensin II‐induced abdominal aortic aneurysm formation in mice publication-title: Journal of Molecular and Cellular Cardiology – volume: 65 start-page: 52 year: 2017 end-page: 57 article-title: Late rupture of abdominal aortic aneurysm after endovascular repair publication-title: Journal of Vascular Surgery – volume: 102 start-page: 1368 year: 2008 article-title: Adventitial mast cells contribute to pathogenesis in the progression of abdominal aortic aneurysm publication-title: Circulation Research – volume: 10 start-page: 3231 year: 2020 article-title: Noninvasive imaging of vascular permeability to predict the risk of rupture in abdominal aortic aneurysms using an albumin‐binding probe publication-title: Scientific Reports – volume: 116 start-page: 8038 year: 2019 end-page: 8047 article-title: Phospholipid membranes drive abdominal aortic aneurysm development through stimulating coagulation factor activity publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 65 start-page: 225 year: 2017 end-page: 233 article-title: Challenges and opportunities in limiting abdominal aortic aneurysm growth publication-title: Journal of Vascular Surgery – volume: 40 start-page: 1559 year: 2020 end-page: 1573 article-title: Excessive EP4 signaling in smooth muscle cells induces abdominal aortic aneurysm by amplifying inflammation publication-title: Arteriosclerosis, Thrombosis, and Vascular Biology – volume: 56 start-page: 102 year: 2018 end-page: 109 article-title: Four surgical modifications to the classic elastase perfusion aneurysm model enable haemodynamic alterations and extended elastase perfusion publication-title: European Journal of Vascular and Endovascular Surgery – volume: 261 start-page: 78 year: 2017 end-page: 89 article-title: A systematic review investigating the association of microRNAs with human abdominal aortic aneurysms publication-title: Atherosclerosis – volume: 113 start-page: 1230 year: 2017 article-title: Angiotensin II infusion into ApoE mice: A model for aortic dissection rather than abdominal aortic aneurysm? publication-title: Cardiovascular Research – volume: 19 start-page: 1396 year: 2019 end-page: 1402 article-title: Gambogic acid prevents angiotensin II‐induced abdominal aortic aneurysm through inflammatory and oxidative stress dependent targeting the PI3K/Akt/mTOR and NF‐κB signaling pathways publication-title: Molecular Medicine Reports – volume: 52 start-page: 41 year: 2016 end-page: 46 article-title: Editor's choice—High heritability of liability to abdominal aortic aneurysms: A population based twin study publication-title: European Journal of Vascular and Endovascular Surgery – volume: 67 start-page: 573 year: 2018 end-page: 584 article-title: Inhibition or deletion of angiotensin II type 1 receptor suppresses elastase‐induced experimental abdominal aortic aneurysms publication-title: Journal of Vascular Surgery – volume: 35 start-page: 923 year: 2002 end-page: 929 article-title: Doxycycline in patients with abdominal aortic aneurysms and in mice: Comparison of serum levels and effect on aneurysm growth in mice publication-title: Journal of Vascular Surgery – volume: 105 start-page: 1641 year: 2000 end-page: 1649 article-title: Targeted gene disruption of matrix metalloproteinase‐9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms publication-title: Journal of Clinical Investigation – volume: 176 start-page: S21 year: 2019 end-page: S141 article-title: THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein‐coupled receptors publication-title: British Journal of Pharmacology – volume: 27 start-page: 380 year: 2007 end-page: 386 article-title: Bone marrow transplantation reveals that recipient AT1a receptors are required to initiate angiotensin II‐induced atherosclerosis and aneurysms publication-title: Arteriosclerosis, Thrombosis, and Vascular Biology – volume: 130 start-page: 131 year: 2019 end-page: 139 article-title: Smooth muscle‐specific LKB1 deletion exaggerates angiotensin II‐induced abdominal aortic aneurysm in mice publication-title: Journal of Molecular and Cellular Cardiology – volume: 170 start-page: 605 year: 2017 end-page: 635 article-title: The PI3K pathway in human disease publication-title: Cell – volume: 251 start-page: 239 year: 2020 end-page: 247 article-title: Single‐photon emission computed tomography imaging using formyl peptide receptor 1 ligand can diagnose aortic aneurysms in a mouse model publication-title: Journal of Surgical Research – volume: 39 start-page: 212 year: 2019 end-page: 223 article-title: Deficiency of IL12p40 (interleukin 12 p40) promotes Ang II (angiotensin II)‐induced abdominal aortic aneurysm publication-title: Arteriosclerosis, Thrombosis, and Vascular Biology – volume: 284 start-page: 1765 year: 2009 end-page: 1771 article-title: Membrane‐type 1 matrix metalloproteinase regulates macrophage‐dependent elastolytic activity and aneurysm formation in vivo publication-title: The Journal of Biological Chemistry – volume: 18 start-page: 1987 year: 2008 end-page: 1994 article-title: Measurement and determinants of infrarenal aortic thrombus volume publication-title: European Radiology – volume: 9 year: 2020 article-title: Targeting the NLRP3 inflammasome with inhibitor MCC950 prevents aortic aneurysms and dissections in mice publication-title: Journal of the American Heart Association – volume: 10 start-page: 107 year: 2020 end-page: 123 article-title: Kallistatin correlates with inflammation in abdominal aortic aneurysm and suppresses its formation in mice publication-title: Cardiovascular Diagnosis and Therapy – volume: 119 start-page: 2209 year: 2009 end-page: 2216 article-title: Clinical trial of doxycycline for matrix metalloproteinase‐9 inhibition in patients with an abdominal aneurysm: Doxycycline selectively depletes aortic wall neutrophils and cytotoxic T cells publication-title: Circulation – volume: 9 issue: 171–180 year: 2014b article-title: Global and regional burden of aortic dissection and aneurysms: Mortality trends in 21 world regions, 1990 to 2010 publication-title: Global Heart – volume: 13 year: 2020 article-title: CCR2 positron emission tomography for the assessment of abdominal aortic aneurysm inflammation and rupture prediction publication-title: Circulation. Cardiovascular Imaging – volume: 42 start-page: 218 year: 2019 end-page: 227 article-title: Knockdown of lncRNA PVT1 inhibits vascular smooth muscle cell apoptosis and extracellular matrix disruption in a murine abdominal aortic aneurysm model publication-title: Molecules and Cells – volume: 105 start-page: 1605 year: 2000 end-page: 1612 article-title: Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E‐deficient mice publication-title: The Journal of Clinical Investigation – volume: 35 start-page: 2032 year: 2015 end-page: 2041 article-title: Platelet inhibitors reduce rupture in a mouse model of established abdominal aortic aneurysm publication-title: Arteriosclerosis, Thrombosis, and Vascular Biology – volume: 176 start-page: S297 year: 2019b end-page: S396 article-title: THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Enzymes publication-title: British Journal of Pharmacology – volume: 16 start-page: 11276 year: 2015 article-title: Adventitial tertiary lymphoid organs as potential source of microRNA biomarkers for abdominal aortic aneurysm publication-title: International Journal of Molecular Sciences – volume: 16 start-page: 164 year: 2009 end-page: 171 article-title: Involvement of vascular angiotensin II‐forming enzymes in the progression of aortic abdominal aneurysms in angiotensin II‐infused ApoE‐deficient mice publication-title: Journal of Atherosclerosis and Thrombosis – volume: 105 start-page: 213 year: 2015 end-page: 222 article-title: Dissecting abdominal aortic aneurysm in Ang II‐infused mice: Suprarenal branch ruptures and apparent luminal dilatation publication-title: Cardiovascular Research – volume: 52 start-page: 487 year: 2016 end-page: 499 article-title: Animal models used to explore abdominal aortic aneurysms: A systematic review publication-title: European Journal of Vascular and Endovascular Surgery – volume: 41 start-page: 2456 issue: 26 year: 2019 end-page: 2468 article-title: Adipocytes promote interleukin‐18 binding to its receptors during abdominal aortic aneurysm formation in mice publication-title: European Heart Journal – volume: 7 year: 2012 article-title: Inhibition of EP4 signaling attenuates aortic aneurysm formation publication-title: PLoS ONE – volume: 176 start-page: S1 year: 2019a end-page: S20 article-title: THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Other Protein Targets publication-title: British Journal of Pharmacology – volume: 39 start-page: 1614 year: 2019 end-page: 1628 article-title: SGLT‐2 (sodium–glucose cotransporter 2) inhibition reduces Ang II (angiotensin II)‐induced dissecting abdominal aortic aneurysm in ApoE (apolipoprotein E) knockout mice publication-title: Arteriosclerosis, Thrombosis, and Vascular Biology – volume: 10 start-page: 298 year: 2009 article-title: Whole genome expression analysis within the angiotensin II‐apolipoprotein E deficient mouse model of abdominal aortic aneurysm publication-title: BMC Genomics – volume: 23 start-page: 1621 year: 2003 end-page: 1626 article-title: Aortic dissection precedes formation of aneurysms and atherosclerosis in angiotensin II‐infused, apolipoprotein E‐deficient mice publication-title: Arteriosclerosis, Thrombosis, and Vascular Biology – volume: 2015 year: 2015 article-title: Morphological and biomechanical differences in the elastase and AngII apoE rodent models of abdominal aortic aneurysms publication-title: BioMed Research International – volume: 73 start-page: 547 year: 2019 end-page: 560 article-title: Caloric restriction exacerbates angiotensin II‐induced abdominal aortic aneurysm in the absence of p53 publication-title: Hypertension – volume: 120 start-page: 422 year: 2010 end-page: 432 article-title: TGF‐β activity protects against inflammatory aortic aneurysm progression and complications in angiotensin II‐infused mice publication-title: The Journal of Clinical Investigation – volume: 100 start-page: 863 year: 2013 end-page: 872 article-title: Systematic review and meta‐analysis of the early and late outcomes of open and endovascular repair of abdominal aortic aneurysm publication-title: The British Journal of Surgery – volume: 56 start-page: 130 year: 2018 end-page: 135 article-title: The relationship between serum interleukin‐1α and asymptomatic infrarenal abdominal aortic aneurysm size, morphology, and growth rates publication-title: European Journal of Vascular and Endovascular Surgery – volume: 1 start-page: 59 issue: 085 year: 2006 end-page: 73 article-title: Pathophysiology of abdominal aortic aneurysms: Insights from the elastase‐induced model in mice with different genetic backgrounds publication-title: Annals of the New York Academy of Sciences – volume: 23 start-page: 483 year: 2003 end-page: 488 article-title: Differential effects of doxycycline, a broad‐spectrum matrix metalloproteinase inhibitor, on angiotensin II‐induced atherosclerosis and abdominal aortic aneurysms publication-title: Arteriosclerosis, Thrombosis, and Vascular Biology – volume: 233 start-page: 211 year: 2014 end-page: 218 article-title: Differential gene expression in the proximal neck of human abdominal aortic aneurysm publication-title: Atherosclerosis – volume: 31 start-page: 261 year: 2011 end-page: 269 article-title: Deletion of EP4 on bone marrow‐derived cells enhances inflammation and angiotensin II‐induced abdominal aortic aneurysm formation publication-title: Arteriosclerosis, Thrombosis, and Vascular Biology – volume: 176 start-page: S397 year: 2019b end-page: S493 article-title: THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Transporters publication-title: British Journal of Pharmacology – volume: 12 year: 2019 article-title: Interleukin‐6 receptor signaling and abdominal aortic aneurysm growth rates publication-title: Circulation: Genomic and Precision Medicine – volume: 57 start-page: 8 year: 2019 end-page: 93 article-title: Editor's choice—European Society for Vascular Surgery (ESVS) 2019 clinical practice guidelines on the management of abdominal aorto‐iliac artery aneurysms publication-title: European Journal of Vascular and Endovascular Surgery – volume: 6 start-page: 12984 year: 2015 end-page: 12996 article-title: Differential gene expression in human abdominal aortic aneurysm and aortic occlusive disease publication-title: Oncotarget – volume: 53 start-page: 28 year: 2011 end-page: 35 article-title: Thrombus volume is associated with cardiovascular events and aneurysm growth in patients who have abdominal aortic aneurysms publication-title: Journal of Vascular Surgery – volume: 38 start-page: 597 year: 2019 end-page: 606 article-title: Mitochondrial dysfunction in atherosclerosis publication-title: DNA and Cell Biology – volume: 9 year: 2019 article-title: Pharmacological inhibition of Notch signaling regresses pre‐established abdominal aortic aneurysm publication-title: Science Reporter – volume: 322 start-page: 2211 year: 2019 end-page: 2218 article-title: Screening for abdominal aortic aneurysm: US Preventive Services Task Force recommendation statement publication-title: JAMA – volume: 12 year: 2019 article-title: Concurrent molecular magnetic resonance imaging of inflammatory activity and extracellular matrix degradation for the prediction of aneurysm rupture publication-title: Circulation. Cardiovascular Imaging – volume: 37 start-page: 401 year: 2017 end-page: 410 article-title: Translational relevance and recent advances of animal models of abdominal aortic aneurysm publication-title: Arteriosclerosis, Thrombosis, and Vascular Biology – volume: 37 start-page: 3213 year: 2016 end-page: 3221 article-title: An evaluation of the effect of an angiotensin‐converting enzyme inhibitor on the growth rate of small abdominal aortic aneurysms: A randomized placebo‐controlled trial (AARDVARK) publication-title: European Heart Journal – volume: 176 start-page: S247 year: 2019a end-page: S296 article-title: THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Catalytic receptors publication-title: British Journal of Pharmacology – volume: 217 start-page: 57 year: 2011 end-page: 63 article-title: Current status of medical management for abdominal aortic aneurysm publication-title: Atherosclerosis – volume: 37 start-page: 2171 year: 2017 end-page: 2181 article-title: TGFβ (transforming growth factor‐β) blockade induces a human‐like disease in a nondissecting mouse model of abdominal aortic aneurysm publication-title: Arteriosclerosis, Thrombosis, and Vascular Biology – volume: 39 start-page: 446 year: 2019 end-page: 458 article-title: IL (interleukin)‐33 suppresses abdominal aortic aneurysm by enhancing regulatory T‐cell expansion and activity publication-title: Arteriosclerosis, Thrombosis, and Vascular Biology – volume: 53 start-page: 49 year: 2016 end-page: 57 article-title: Extra‐ and intraluminal elastase induce morphologically distinct abdominal aortic aneurysms in mice and thus represent specific subtypes of human disease publication-title: Journal of Vascular Research – volume: 856 year: 2019 article-title: ASB17061, a novel chymase inhibitor, prevented the development of angiotensin II‐induced abdominal aortic aneurysm in apolipoprotein E‐deficient mice publication-title: European Journal of Pharmacology – volume: 25 start-page: 810 year: 1997 end-page: 815 article-title: Prostaglandin E synthesis and cyclooxygenase expression in abdominal aortic aneurysms publication-title: Journal of Vascular Surgery – volume: 134 start-page: 1049 year: 2020 end-page: 1061 article-title: Factor XII blockade inhibits aortic dilatation in angiotensin II‐infused apolipoprotein E‐deficient mice publication-title: Clinical Science (London, England) – volume: 106 start-page: 2503 year: 2002 end-page: 2509 article-title: Inactivation of the lysyl oxidase gene leads to aortic aneurysms, cardiovascular dysfunction, and perinatal death in mice publication-title: Circulation – volume: 26 start-page: 181 year: 2009 end-page: 188 article-title: A systematic review of studies examining inflammation associated cytokines in human abdominal aortic aneurysm samples publication-title: Disease Markers – volume: 126 start-page: 624 year: 1999 end-page: 627 article-title: Differential expression of prostaglandin E and interleukin‐6 in occlusive and aneurysmal aortic disease publication-title: Surgery – volume: 24 start-page: 101185 year: 2019 article-title: Knockout of dihydrofolate reductase in mice induces hypertension and abdominal aortic aneurysm via mitochondrial dysfunction publication-title: Redox Biology – year: 2015 article-title: Surgery for small asymptomatic abdominal aortic aneurysms publication-title: Cochrane Database of Systematic Reviews – volume: 38 start-page: 843 year: 2018 end-page: 853 article-title: Novel role of IL (interleukin)‐1β in neutrophil extracellular trap formation and abdominal aortic aneurysms publication-title: Arteriosclerosis, Thrombosis, and Vascular Biology – volume: 18 start-page: 15 year: 2016 article-title: Epigenetics and peripheral artery disease publication-title: Current Atherosclerosis Reports – volume: 133 start-page: 2203 year: 2019 end-page: 2215 article-title: Depletion of CD11c dendritic cells in apolipoprotein E‐deficient mice limits angiotensin II‐induced abdominal aortic aneurysm formation and growth publication-title: Clinical Science (London, England) – volume: 60 start-page: 254 year: 2020 end-page: 263 article-title: Inhibition of phosphatidylinositol 3‐kinase γ by IPI‐549 attenuates abdominal aortic aneurysm formation in mice publication-title: European Journal of Vascular and Endovascular Surgery – volume: 7 year: 2018 article-title: In vivo molecular characterization of abdominal aortic aneurysms using fibrin‐specific magnetic resonance imaging publication-title: Journal of the American Heart Association – volume: 20 start-page: 391 year: 2007 end-page: 395 article-title: Differential secretion of prostaglandin E , thromboxane A and interleukin‐6 in intact and ruptured abdominal aortic aneurysms publication-title: International Journal of Molecular Medicine – volume: 281 start-page: 772 year: 2016 end-page: 781 article-title: Assessing the stability of aortic aneurysms with pulse wave imaging publication-title: Radiology – volume: 24 start-page: 385 year: 2019 end-page: 394 article-title: Modulation of CD95‐mediated signaling by post‐translational modifications: Towards understanding CD95 signaling networks publication-title: Apoptosis – year: 2019 article-title: B cell‐derived anti‐beta 2 glycoprotein I antibody contributes to hyperhomocysteinaemia‐aggravated abdominal aortic aneurysm publication-title: Cardiovascular Research – volume: 102 start-page: 894 year: 2015 end-page: 901 article-title: Randomized clinical trial of mast cell inhibition in patients with a medium‐sized abdominal aortic aneurysm publication-title: The British Journal of Surgery – volume: 14 start-page: 342 year: 2017 end-page: 360 article-title: Sarcoplasmic reticulum–mitochondria communication in cardiovascular pathophysiology publication-title: Nature Reviews. Cardiology – volume: 26 year: 2020 article-title: Efficacy of telmisartan to slow growth of small abdominal aortic aneurysms: A randomized clinical trial publication-title: JAMA Cardiol – volume: 10 start-page: 699 year: 2019 end-page: 710 article-title: IgE aggravates the senescence of smooth muscle cells in abdominal aortic aneurysm by upregulating LincRNA‐p21 publication-title: Aging and Disease – volume: 26 year: 2020 article-title: Evaluation of a smart activatable MRI nanoprobe to target matrix metalloproteinases in the early‐stages of abdominal aortic aneurysms publication-title: Nanomedicine – volume: 323 start-page: 2029 year: 2020 end-page: 2038 article-title: Effect of doxycycline on aneurysm growth among patients with small infrarenal abdominal aortic aneurysms: A randomized clinical trial publication-title: JAMA – volume: 9 start-page: 8065 year: 2019 article-title: CTLA‐4 protects against angiotensin II‐induced abdominal aortic aneurysm formation in mice publication-title: Scientific Reports – volume: 317 start-page: H981 year: 2019 end-page: H990 article-title: High‐frequency murine ultrasound provides enhanced metrics of BAPN‐induced AAA growth publication-title: American Journal of Physiology—Heart and Circulatory Physiology – volume: 878 start-page: 159 year: 1999 end-page: 178 article-title: MMP inhibition in abdominal aortic aneurysms: Rationale for a prospective randomized clinical trial publication-title: Annals of the New York Academy of Sciences – volume: 24 start-page: 429 year: 2004 end-page: 434 article-title: Mouse models of abdominal aortic aneurysms publication-title: Arteriosclerosis, Thrombosis, and Vascular Biology – volume: 373 start-page: 328 year: 2015 end-page: 338 article-title: Long‐term outcomes of abdominal aortic aneurysm in the medicare population publication-title: The New England Journal of Medicine – year: 2020 article-title: Targeting mitochondrial fission as a potential therapeutic for abdominal aortic aneurysm publication-title: Cardiovascular Research – volume: 143 start-page: 1 year: 2020 end-page: 14 article-title: MiR‐144‐5p limits experimental abdominal aortic aneurysm formation by mitigating M1 macrophage‐associated inflammation: Suppression of TLR2 and OLR1 publication-title: Journal of Molecular and Cellular Cardiology – volume: 118 start-page: 26 year: 2018 end-page: 35 article-title: Necroptosis in cardiovascular disease—A new therapeutic target publication-title: Journal of Molecular and Cellular Cardiology – volume: 135 start-page: 379 year: 2017 end-page: 391 article-title: Female mice with an XY sex chromosome complement develop severe angiotensin II‐induced abdominal aortic aneurysms publication-title: Circulation – volume: 117 start-page: 1302 year: 2008 article-title: Microsomal prostaglandin E synthase‐1 deletion suppresses oxidative stress and angiotensin II‐induced abdominal aortic aneurysm formation publication-title: Circulation – volume: 66 start-page: 899 year: 2017 end-page: 915 article-title: Animal models in the research of abdominal aortic aneurysms development publication-title: Physiological Research – year: 2020 article-title: Randomised‐controlled trial testing the efficacy of telmisartan to slow growth of small abdominal aortic aneurysms publication-title: JAMA Cardiology – volume: 26 start-page: 1137 year: 2006 end-page: 1143 article-title: Selective cyclooxygenase‐2 inhibition with celecoxib decreases angiotensin II‐induced abdominal aortic aneurysm formation in mice publication-title: Arteriosclerosis, Thrombosis, and Vascular Biology – volume: 34 start-page: 875 year: 2019 end-page: 882 article-title: Chemokine (C–X–C motif) receptor 2 blockade by SB265610 inhibited angiotensin II‐induced abdominal aortic aneurysm in Apo E mice publication-title: Heart and Vessels – volume: 7 year: 2018 article-title: Randomized placebo‐controlled trial assessing the effect of 24‐week fenofibrate therapy on circulating markers of abdominal aortic aneurysm: Outcomes from the FAME‐2 trial publication-title: Journal of the American Heart Association – volume: 202 start-page: 1176 year: 2019 end-page: 1185 article-title: Ablation and inhibition of the immunoproteasome catalytic subunit LMP7 attenuate experimental abdominal aortic aneurysm formation in mice publication-title: Journal of Immunology – volume: 16 start-page: 225 year: 2019 end-page: 242 article-title: Abdominal aortic aneurysm: Update on pathogenesis and medical treatments publication-title: Nature Reviews. Cardiology – volume: 34 start-page: 606 year: 2001 end-page: 610 article-title: Use of doxycycline to decrease the growth rate of abdominal aortic aneurysms: A randomized, double‐blind, placebo‐controlled pilot study publication-title: Journal of Vascular Surgery – volume: 35 start-page: 1746 year: 2015 end-page: 1755 article-title: Inflammatory cell phenotypes in AAAs: Their role and potential as targets for therapy publication-title: Arteriosclerosis, Thrombosis, and Vascular Biology – volume: 39 start-page: 1351 year: 2019 end-page: 1368 article-title: Role of vascular smooth muscle cell phenotypic switching and calcification in aortic aneurysm formation publication-title: Arteriosclerosis, Thrombosis, and Vascular Biology – volume: 288 start-page: 6 year: 2020 end-page: 22 article-title: Lack of an effective drug therapy for abdominal aortic aneurysm publication-title: Journal of Internal Medicine – volume: 234 start-page: 7560 year: 2019 end-page: 7568 article-title: Licochalcone A attenuates abdominal aortic aneurysm induced by angiotensin II via regulating the miR‐181b/SIRT1/HO‐1 signaling publication-title: Journal of Cellular Physiology – volume: 66 start-page: 232 year: 2017 end-page: 242 article-title: A novel chronic advanced stage abdominal aortic aneurysm murine model publication-title: Journal of Vascular Surgery – volume: 71 start-page: 513 year: 2018 end-page: 523 article-title: F–sodium fluoride uptake in abdominal aortic aneurysms: The SoFIA 3 study publication-title: Journal of the American College of Cardiology – volume: 115 start-page: 807 year: 2019 end-page: 818 article-title: CD95‐ligand contributes to abdominal aortic aneurysm progression by modulating inflammation publication-title: Cardiovascular Research – volume: 23 start-page: 6766 year: 2019 end-page: 6774 article-title: Regulatory T cells protected against abdominal aortic aneurysm by suppression of the COX‐2 expression publication-title: Journal of Cellular and Molecular Medicine – volume: 6 start-page: 1099 year: 2020 article-title: Hypercholesterolemia accelerates both the initiation and progression of angiotensin II‐induced abdominal aortic aneurysms publication-title: Annals Vascular Medicine Research – volume: 9 start-page: 159 year: 2014a end-page: 170 article-title: Estimation of global and regional incidence and prevalence of abdominal aortic aneurysms 1990 to 2010 publication-title: Global Heart – volume: 226 start-page: 29 year: 2013 end-page: 39 article-title: The calcium chloride‐induced rodent model of abdominal aortic aneurysm publication-title: Atherosclerosis – volume: 10 start-page: 5046 year: 2019 article-title: IL‐27 receptor‐regulated stress myelopoiesis drives abdominal aortic aneurysm development publication-title: Nature Communications – volume: 39 start-page: 1064 year: 2018 end-page: 1076 article-title: Targeting autophagy in aging and aging‐related cardiovascular diseases publication-title: Trends in Pharmacological Sciences – volume: 119 start-page: 1076 year: 2016 end-page: 1088 article-title: Age‐associated sirtuin 1 reduction in vascular smooth muscle links vascular senescence and inflammation to abdominal aortic aneurysm publication-title: Circulation Research – volume: 22 start-page: 734 year: 2015 end-page: 744 article-title: Late rupture of abdominal aortic aneurysm after previous endovascular repair: A systematic review and meta‐analysis publication-title: Journal of Endovascular Therapy – volume: 37 start-page: 2102 year: 2017 end-page: 2113 article-title: TGF‐β (transforming growth factor‐β) signaling protects the thoracic and abdominal aorta from angiotensin II‐induced pathology by distinct mechanisms publication-title: Arteriosclerosis, Thrombosis, and Vascular Biology – year: 2019 article-title: Niacin protects against abdominal aortic aneurysm formation via GPR109A independent mechanisms: Role of NAD /nicotinamide publication-title: Cardiovascular Research – volume: 15 year: 2020 article-title: Nanoparticle‐based targeted delivery of pentagalloyl glucose reverses elastase‐induced abdominal aortic aneurysm and restores aorta to the healthy state in mice publication-title: PLoS ONE – volume: 22 start-page: 126 year: 2013 end-page: 132 article-title: Transforming growth factor‐β and abdominal aortic aneurysms publication-title: Cardiovascular Pathology – volume: 460 start-page: 29 year: 2019 end-page: 36 article-title: Endothelial retinoblastoma protein reduces abdominal aortic aneurysm development via promoting DHFR/NO pathway‐mediated vasoprotection publication-title: Molecular and Cellular Biochemistry – volume: 36 start-page: 69 year: 2016 end-page: 77 article-title: Allergic lung inflammation aggravates angiotensin II‐induced abdominal aortic aneurysms in mice publication-title: Arteriosclerosis, Thrombosis, and Vascular Biology – volume: 9 issue: 8 year: 2020 article-title: Spermidine suppresses development of experimental abdominal aortic aneurysms publication-title: Journal of the American Heart Association – volume: 67 issue: 2–77 year: 2018 article-title: The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm publication-title: Journal of Vascular Surgery – volume: 142 start-page: 483 year: 2020 end-page: 498 article-title: Cyclodextrin prevents abdominal aortic aneurysm via activation of vascular smooth muscle cell TFEB publication-title: Circulation – volume: 57 start-page: 58 year: 2020 end-page: 64 article-title: Ulinastatin inhibits the formation and progression of experimental abdominal aortic aneurysms publication-title: Journal of Vascular Research – volume: 346 start-page: 1445 year: 2002 end-page: 1452 article-title: Long‐term outcomes of immediate repair compared with surveillance of small abdominal aortic aneurysms publication-title: The New England Journal of Medicine – volume: 159 start-page: 815 year: 2013 end-page: 823 article-title: Doxycycline for stabilization of abdominal aortic aneurysms: A randomized trial publication-title: Annals of Internal Medicine – volume: 21 start-page: 4035 year: 2015 end-page: 4048 article-title: Angiotensin II and abdominal aortic aneurysms: An update publication-title: Current Pharmaceutical Design – volume: 90 start-page: 897 year: 2002 end-page: 903 article-title: Reduced atherosclerotic plaque but enhanced aneurysm formation in mice with inactivation of the tissue inhibitor of metalloproteinase‐1 ( ) gene publication-title: Circulation Research – volume: 287 start-page: 2968 year: 2002 end-page: 2972 article-title: Rupture rate of large abdominal aortic aneurysms in patients refusing or unfit for elective repair publication-title: JAMA – volume: 26 start-page: 2605 year: 2006 end-page: 2613 article-title: Abdominal aortic aneurysm: Pathogenesis and implications for management publication-title: Arteriosclerosis, Thrombosis, and Vascular Biology – volume: 32 start-page: 354 year: 2011 end-page: 364 article-title: Evaluation of the diagnostic and prognostic value of plasma ‐dimer for abdominal aortic aneurysm publication-title: European Heart Journal – volume: 217 start-page: 943 year: 2019 end-page: 947 article-title: Predictors of perioperative morbidity and mortality in open abdominal aortic aneurysm repair publication-title: American Journal of Surgery – volume: 289 start-page: 14 year: 2019 end-page: 20 article-title: Deletion of interleukin‐18 attenuates abdominal aortic aneurysm formation publication-title: Atherosclerosis – year: 2020 article-title: AT2R agonist NP‐6A4 mitigates aortic stiffness and proteolytic activity in mouse model of aneurysm publication-title: Journal of Cellular and Molecular Medicine – volume: 116 start-page: 450 year: 2020 end-page: 456 article-title: The effect of ticagrelor on growth of small abdominal aortic aneurysms—A randomized controlled trial publication-title: Cardiovascular Research – volume: 55 start-page: 1267 year: 2010 end-page: 1274 article-title: Pharmacologically induced thoracic and abdominal aortic aneurysms in mice publication-title: Hypertension – volume: 24 start-page: 172 year: 2019 end-page: 181 article-title: Comparison of efficacy between ramipril and carvedilol on limiting the expansion of abdominal aortic aneurysm in mouse model publication-title: Journal of Cardiovascular Pharmacology and Therapeutics – volume: 41 start-page: 13 year: 2011 end-page: 25 article-title: Comparison of surveillance versus aortic endografting for small aneurysm repair (CAESAR): Results from a randomised trial publication-title: European Journal of Vascular and Endovascular Surgery – volume: 36 start-page: 570 year: 2016 end-page: 578 article-title: Asthma associates with human abdominal aortic aneurysm and rupture publication-title: Arteriosclerosis, Thrombosis, and Vascular Biology – volume: 102 start-page: 1529 year: 2008 end-page: 1538 article-title: Chronic apoptosis of vascular smooth muscle cells accelerates atherosclerosis and promotes calcification and medial degeneration publication-title: Circulation Research – year: 2019 article-title: Cell proliferation detected using [ F]FLT PET/CT as an early marker of abdominal aortic aneurysm publication-title: Journal of Nuclear Cardiology – volume: 65 start-page: 889 year: 2015 end-page: 895 article-title: Foxp3 regulatory T cells play a protective role in angiotensin II‐induced aortic aneurysm formation in mice publication-title: Hypertension – volume: 177 start-page: 204 year: 2020 end-page: 216 article-title: Mechanisms underlying the inhibitory effects of probucol on elastase‐induced abdominal aortic aneurysm in mice publication-title: British Journal of Pharmacology – volume: 181 start-page: 706 year: 2012 end-page: 718 article-title: Fenofibrate increases high‐density lipoprotein and sphingosine 1 phosphate concentrations limiting abdominal aortic aneurysm progression in a mouse model publication-title: The American Journal of Pathology – volume: 134 start-page: 865 year: 2001 end-page: 870 article-title: Antagonism of AT2 receptors augments Angiotensin II‐induced abdominal aortic aneurysms and atherosclerosis publication-title: British Journal of Pharmacology – ident: e_1_2_11_95_1 doi: 10.1161/ATVBAHA.117.309897 – ident: e_1_2_11_21_1 doi: 10.1159/000447263 – ident: e_1_2_11_97_1 doi: 10.1042/CS20191020 – ident: e_1_2_11_15_1 doi: 10.1093/eurheartj/ehw257 – ident: e_1_2_11_160_1 doi: 10.1016/j.avsg.2020.03.002 – ident: e_1_2_11_87_1 doi: 10.1161/JAHA.119.014757 – volume: 116 start-page: 450 year: 2020 ident: e_1_2_11_154_1 article-title: The effect of ticagrelor on growth of small abdominal aortic aneurysms—A randomized controlled trial publication-title: Cardiovascular Research – ident: e_1_2_11_137_1 doi: 10.1016/j.atherosclerosis.2019.08.003 – ident: e_1_2_11_114_1 doi: 10.1016/j.yjmcc.2019.05.002 – ident: e_1_2_11_149_1 doi: 10.1073/pnas.1900152116 – ident: e_1_2_11_82_1 doi: 10.1161/ATVBAHA.115.306497 – ident: e_1_2_11_61_1 doi: 10.1002/jcp.27517 – ident: e_1_2_11_11_1 doi: 10.1038/s41598-019-44523-6 – ident: e_1_2_11_22_1 doi: 10.1016/j.ejvs.2010.08.026 – ident: e_1_2_11_33_1 doi: 10.1038/sj.bjp.0704331 – ident: e_1_2_11_156_1 doi: 10.1016/j.jvs.2016.12.110 – ident: e_1_2_11_57_1 doi: 10.21037/cdt.2019.12.08 – ident: e_1_2_11_101_1 doi: 10.1161/ATVBAHA.119.312659 – ident: e_1_2_11_151_1 doi: 10.1016/j.atherosclerosis.2012.09.010 – ident: e_1_2_11_58_1 doi: 10.1161/ATVBAHA.120.314297 – ident: e_1_2_11_92_1 doi: 10.1016/j.ejvs.2016.07.004 – ident: e_1_2_11_47_1 doi: 10.1016/j.atherosclerosis.2011.03.006 – ident: e_1_2_11_131_1 doi: 10.1111/jcmm.15342 – ident: e_1_2_11_5_1 doi: 10.1111/bph.14751 – ident: e_1_2_11_63_1 doi: 10.1016/j.atherosclerosis.2017.03.010 – ident: e_1_2_11_68_1 doi: 10.1016/j.ajpath.2012.04.015 – ident: e_1_2_11_14_1 doi: 10.1001/jama.2020.5230 – ident: e_1_2_11_10_1 doi: 10.1161/CIRCULATIONAHA.116.023789 – ident: e_1_2_11_65_1 doi: 10.1161/HYPERTENSIONAHA.109.140558 – ident: e_1_2_11_66_1 doi: 10.1161/01.ATV.0000216119.79008.ac – ident: e_1_2_11_104_1 doi: 10.1177/1074248418798631 – ident: e_1_2_11_117_1 doi: 10.1016/j.tips.2018.10.005 – ident: e_1_2_11_49_1 doi: 10.1111/joim.12958 – ident: e_1_2_11_96_1 doi: 10.7326/0003-4819-159-12-201312170-00007 – ident: e_1_2_11_110_1 doi: 10.1155/2015/413189 – ident: e_1_2_11_70_1 doi: 10.1161/ATVBAHA.117.309999 – ident: e_1_2_11_141_1 doi: 10.1196/annals.1383.029 – ident: e_1_2_11_138_1 doi: 10.1016/j.jvs.2019.08.285 – ident: e_1_2_11_75_1 doi: 10.1161/ATVBAHA.118.312023 – ident: e_1_2_11_31_1 doi: 10.1161/ATVBAHA.115.305269 – ident: e_1_2_11_126_1 doi: 10.1007/s10495-019-01540-0 – ident: e_1_2_11_42_1 doi: 10.1161/HYPERTENSIONAHA.118.12086 – ident: e_1_2_11_152_1 doi: 10.1016/j.carpath.2012.07.005 – ident: e_1_2_11_72_1 doi: 10.4049/jimmunol.1800197 – ident: e_1_2_11_112_1 doi: 10.1067/mva.2002.123757 – volume: 9 start-page: e110 issue: 171 year: 2014 ident: e_1_2_11_122_1 article-title: Global and regional burden of aortic dissection and aneurysms: Mortality trends in 21 world regions, 1990 to 2010 publication-title: Global Heart – ident: e_1_2_11_29_1 doi: 10.1161/CIRCRESAHA.108.175976 – year: 2019 ident: e_1_2_11_128_1 article-title: B cell‐derived anti‐beta 2 glycoprotein I antibody contributes to hyperhomocysteinaemia‐aggravated abdominal aortic aneurysm publication-title: Cardiovascular Research – ident: e_1_2_11_153_1 doi: 10.1016/j.ejvs.2018.09.020 – ident: e_1_2_11_20_1 doi: 10.1016/j.ejvs.2018.03.018 – ident: e_1_2_11_140_1 doi: 10.1111/j.1749-6632.1999.tb07682.x – year: 2019 ident: e_1_2_11_60_1 article-title: Niacin protects against abdominal aortic aneurysm formation via GPR109A independent mechanisms: Role of NAD+/nicotinamide publication-title: Cardiovascular Research – ident: e_1_2_11_73_1 doi: 10.1159/000504848 – ident: e_1_2_11_120_1 doi: 10.1186/1471-2164-10-298 – ident: e_1_2_11_133_1 doi: 10.1161/01.RES.0000016501.56641.83 – ident: e_1_2_11_88_1 doi: 10.1093/cvr/cvy264 – ident: e_1_2_11_26_1 doi: 10.1111/bph.14857 – ident: e_1_2_11_118_1 doi: 10.1161/JAHA.119.014044 – start-page: CD001835 year: 2015 ident: e_1_2_11_37_1 article-title: Surgery for small asymptomatic abdominal aortic aneurysms publication-title: Cochrane Database of Systematic Reviews – ident: e_1_2_11_78_1 doi: 10.1161/CIRCULATIONAHA.108.806505 – ident: e_1_2_11_83_1 doi: 10.1161/ATVBAHA.115.305911 – ident: e_1_2_11_103_1 doi: 10.1161/CIRCGEN.118.002413 – ident: e_1_2_11_155_1 doi: 10.1074/jbc.M806239200 – ident: e_1_2_11_39_1 doi: 10.1016/j.jacc.2017.11.053 – ident: e_1_2_11_13_1 doi: 10.1177/1526602815601405 – ident: e_1_2_11_90_1 doi: 10.1016/j.jvs.2016.07.105 – ident: e_1_2_11_157_1 doi: 10.1016/j.nano.2020.102177 – year: 2019 ident: e_1_2_11_41_1 article-title: Cell proliferation detected using [18F]FLT PET/CT as an early marker of abdominal aortic aneurysm publication-title: Journal of Nuclear Cardiology – ident: e_1_2_11_145_1 doi: 10.1161/CIRCRESAHA.108.173682 – ident: e_1_2_11_16_1 doi: 10.18632/oncotarget.3848 – ident: e_1_2_11_98_1 doi: 10.1067/mva.2001.117891 – ident: e_1_2_11_109_1 doi: 10.1161/ATVBAHA.119.312787 – volume: 42 start-page: 218 year: 2019 ident: e_1_2_11_161_1 article-title: Knockdown of lncRNA PVT1 inhibits vascular smooth muscle cell apoptosis and extracellular matrix disruption in a murine abdominal aortic aneurysm model publication-title: Molecules and Cells – ident: e_1_2_11_23_1 doi: 10.1007/s11010-019-03567-y – ident: e_1_2_11_27_1 doi: 10.1161/CIRCRESAHA.116.308895 – ident: e_1_2_11_100_1 doi: 10.1007/s00380-018-1301-7 – ident: e_1_2_11_105_1 doi: 10.1016/j.jvs.2010.08.013 – ident: e_1_2_11_44_1 doi: 10.1038/s41569-018-0114-9 – ident: e_1_2_11_86_1 doi: 10.1016/j.ejvs.2020.03.042 – ident: e_1_2_11_144_1 doi: 10.1093/cvr/cvu257 – ident: e_1_2_11_158_1 doi: 10.1161/HYPERTENSIONAHA.114.04934 – ident: e_1_2_11_46_1 doi: 10.1161/01.ATV.0000245819.32762.cb – ident: e_1_2_11_107_1 doi: 10.1089/dna.2018.4552 – ident: e_1_2_11_8_1 doi: 10.1111/bph.14747 – ident: e_1_2_11_116_1 doi: 10.1016/S0039-6060(99)70114-5 – ident: e_1_2_11_53_1 doi: 10.1007/s00330-008-0956-3 – ident: e_1_2_11_150_1 doi: 10.1172/JCI38136 – ident: e_1_2_11_125_1 doi: 10.1161/ATVBAHA.116.308534 – ident: e_1_2_11_124_1 doi: 10.1056/NEJMoa1405778 – ident: e_1_2_11_121_1 doi: 10.1016/j.gheart.2013.12.009 – ident: e_1_2_11_74_1 doi: 10.1016/j.yjmcc.2019.03.021 – ident: e_1_2_11_50_1 doi: 10.1093/eurheartj/ehq171 – ident: e_1_2_11_80_1 doi: 10.1111/jcmm.14554 – ident: e_1_2_11_94_1 doi: 10.1161/01.ATV.0000058404.92759.32 – ident: e_1_2_11_36_1 doi: 10.1161/CIRCIMAGING.119.009889 – ident: e_1_2_11_19_1 doi: 10.1161/CIRCIMAGING.118.008707 – ident: e_1_2_11_89_1 doi: 10.1038/nrcardio.2017.23 – ident: e_1_2_11_129_1 doi: 10.1161/ATVBAHA.118.311969 – ident: e_1_2_11_143_1 doi: 10.1093/cvr/cvx128 – ident: e_1_2_11_7_1 doi: 10.1111/bph.14753 – ident: e_1_2_11_48_1 doi: 10.1007/s11883-016-0567-4 – ident: e_1_2_11_34_1 doi: 10.1172/JCI7818 – volume: 19 start-page: 1396 year: 2019 ident: e_1_2_11_85_1 article-title: Gambogic acid prevents angiotensin II‐induced abdominal aortic aneurysm through inflammatory and oxidative stress dependent targeting the PI3K/Akt/mTOR and NF‐κB signaling pathways publication-title: Molecular Medicine Reports – ident: e_1_2_11_3_1 doi: 10.1016/j.ejvs.2018.01.015 – ident: e_1_2_11_136_1 doi: 10.1002/bjs.9101 – ident: e_1_2_11_130_1 doi: 10.1038/s41598-019-49682-0 – volume: 20 start-page: 391 year: 2007 ident: e_1_2_11_28_1 article-title: Differential secretion of prostaglandin E2, thromboxane A2 and interleukin‐6 in intact and ruptured abdominal aortic aneurysms publication-title: International Journal of Molecular Medicine – ident: e_1_2_11_159_1 doi: 10.1371/journal.pone.0036724 – ident: e_1_2_11_139_1 doi: 10.1161/ATVBAHA.110.216580 – ident: e_1_2_11_134_1 doi: 10.1002/bjs.9824 – ident: e_1_2_11_54_1 doi: 10.14336/AD.2018.1128 – ident: e_1_2_11_2_1 doi: 10.1038/s41598-020-59842-2 – ident: e_1_2_11_142_1 doi: 10.1016/j.ejphar.2019.05.032 – ident: e_1_2_11_147_1 doi: 10.1001/jama.2019.18928 – volume: 67 start-page: e72 issue: 2 year: 2018 ident: e_1_2_11_25_1 article-title: The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm publication-title: Journal of Vascular Surgery – ident: e_1_2_11_113_1 doi: 10.1172/JCI8931 – ident: e_1_2_11_102_1 doi: 10.1161/ATVBAHA.115.305537 – ident: e_1_2_11_67_1 doi: 10.1042/CS20190924 – ident: e_1_2_11_106_1 doi: 10.33549/physiolres.933579 – ident: e_1_2_11_9_1 doi: 10.1073/pnas.1814409116 – ident: e_1_2_11_56_1 doi: 10.7150/thno.34463 – ident: e_1_2_11_59_1 doi: 10.1016/S0741-5214(97)70210-6 – ident: e_1_2_11_35_1 doi: 10.1371/journal.pone.0227165 – ident: e_1_2_11_99_1 doi: 10.1148/radiol.2016151407 – ident: e_1_2_11_115_1 doi: 10.1016/j.jvs.2016.05.090 – ident: e_1_2_11_24_1 doi: 10.1161/01.ATV.0000254680.71485.92 – ident: e_1_2_11_40_1 doi: 10.1016/j.cell.2017.07.029 – ident: e_1_2_11_76_1 doi: 10.1016/j.redox.2019.101185 – ident: e_1_2_11_51_1 doi: 10.1016/j.jvs.2016.08.003 – ident: e_1_2_11_146_1 doi: 10.1056/NEJMoa013527 – ident: e_1_2_11_91_1 doi: 10.1161/CIRCULATIONAHA.119.044803 – ident: e_1_2_11_43_1 doi: 10.1155/2009/352319 – ident: e_1_2_11_12_1 doi: 10.1161/ATVBAHA.117.309401 – ident: e_1_2_11_62_1 doi: 10.5551/jat.E611 – ident: e_1_2_11_127_1 doi: 10.1016/j.jss.2020.01.028 – ident: e_1_2_11_79_1 doi: 10.2174/1381612821666150826093318 – ident: e_1_2_11_64_1 doi: 10.1016/j.ejvs.2016.03.012 – ident: e_1_2_11_45_1 doi: 10.1001/jamacardio.2020.3524 – ident: e_1_2_11_123_1 doi: 10.1161/01.ATV.0000085631.76095.64 – ident: e_1_2_11_32_1 doi: 10.1161/01.ATV.0000118013.72016.ea – ident: e_1_2_11_93_1 doi: 10.1161/01.CIR.0000038109.84500.1E – ident: e_1_2_11_71_1 doi: 10.1001/jama.287.22.2968 – ident: e_1_2_11_111_1 doi: 10.1161/JAHA.118.009866 – year: 2020 ident: e_1_2_11_30_1 article-title: Targeting mitochondrial fission as a potential therapeutic for abdominal aortic aneurysm publication-title: Cardiovascular Research – volume: 6 start-page: 1099 year: 2020 ident: e_1_2_11_84_1 article-title: Hypercholesterolemia accelerates both the initiation and progression of angiotensin II‐induced abdominal aortic aneurysms publication-title: Annals Vascular Medicine Research – ident: e_1_2_11_18_1 doi: 10.1161/JAHA.117.007909 – ident: e_1_2_11_69_1 doi: 10.1016/j.amjsurg.2018.12.054 – ident: e_1_2_11_132_1 doi: 10.1016/j.yjmcc.2020.04.008 – volume: 26 year: 2020 ident: e_1_2_11_52_1 article-title: Efficacy of telmisartan to slow growth of small abdominal aortic aneurysms: A randomized clinical trial publication-title: JAMA Cardiol – ident: e_1_2_11_4_1 doi: 10.1111/bph.14748 – ident: e_1_2_11_135_1 doi: 10.3390/ijms160511276 – ident: e_1_2_11_108_1 doi: 10.1038/s41467-019-13017-4 – ident: e_1_2_11_6_1 doi: 10.1111/bph.14752 – ident: e_1_2_11_38_1 doi: 10.1111/j.1365-2567.2005.02157.x – ident: e_1_2_11_148_1 doi: 10.1161/CIRCULATIONAHA.107.731398 – ident: e_1_2_11_17_1 doi: 10.1016/j.atherosclerosis.2013.12.017 – ident: e_1_2_11_77_1 doi: 10.1161/ATVBAHA.119.314113 – ident: e_1_2_11_119_1 doi: 10.1152/ajpheart.00300.2019 – ident: e_1_2_11_55_1 doi: 10.1016/j.yjmcc.2018.03.003 – ident: e_1_2_11_81_1 doi: 10.1093/eurheartj/ehz856 |
SSID | ssj0014775 |
Score | 2.5609453 |
SecondaryResourceType | review_article |
Snippet | Abdominal aortic aneurysm (AAA) rupture is estimated to cause 200,000 deaths each year. Currently, the only treatment for AAA is surgical repair; however, this... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 792 |
SubjectTerms | abdominal aortic aneurysm Animal models Animals Aortic Aneurysm, Abdominal - drug therapy Aortic aneurysms Aortic Rupture - complications Aortic Rupture - surgery Asymptomatic Cardiovascular diseases Disease Models, Animal Humans Mice mouse models pathology Rupture Thrombosis |
Title | Mouse models for abdominal aortic aneurysm |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbph.15260 https://www.ncbi.nlm.nih.gov/pubmed/32914434 https://www.proquest.com/docview/2627125424 https://www.proquest.com/docview/2441606692 |
Volume | 179 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6CTkJ7mbjTMZBBaEKwTIvtOM7jCkwV0lAlOmk8RbbjDCTWVmv3AL-e49hxUlgl4CWKcrGj850cnePL9wG8MlIzoZlKKFNZwnnNE6Ud3V1OuTBC1nXVrLb4JMZn_ON5dt4pCja7S1b60Py8cV_J_6CK1xBXt0v2H5CNjeIFPEd88YgI4_GvMD7Fst16MZulXw6pq7lX6VLzK0_FatFogSXwNx6jHmnEoiOw7lZ3uiGFoLzejrHH8Ox06f1uss-Xrrm3p46-41s3PO9DyJdrzD0v-iMLWJTGpVWH1kdDnosEI2K6Fi69-Evwi6wX_HKvarchKOvFVye25NUDeuAsLht0GC2wtgsDm-sM2O2t27BFsRigA9g6Hr0fncTZIp7nWWCNcqu0Yk_bcKd9dz3t-KOWWC9Nmtxiehd2QlFAjj3C9-CWnd2H_YkH5ccBmXab5JYHZJ9MenA9gDeNGxDvBgTdgEQ3IN4NSOsGD-Hs5MP03TgJEhiJcdSICa9TxaRkKsU0XHPDmaEmsymlSggrTF5UimJVaSrGbKZlbUUtjipW2FpmSln2CAaz-cw-AVJp_PeEMI6xEaO2mx5PhRbyqNCSMyaH8Lq1UGkCP7yTKfletnUi2rVs7DqEl_HRhSdFuemhvdbMZXDoZUkFzTGl5pQP4UW8jRHNTVOhLdBeJSacqSurCzqExx6e2EsLJ35sg9fm7svRZNyc7G5s5Clsd26_B4PV1bV9hinmSj8PHvYLd3F5sQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mouse+models+for+abdominal+aortic+aneurysm&rft.jtitle=British+journal+of+pharmacology&rft.au=Golledge%2C+Jonathan&rft.au=Krishna%2C+Smriti+Murali&rft.au=Wang%2C+Yutang&rft.date=2022-03-01&rft.eissn=1476-5381&rft.volume=179&rft.issue=5&rft.spage=792&rft_id=info:doi/10.1111%2Fbph.15260&rft_id=info%3Apmid%2F32914434&rft.externalDocID=32914434 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1188&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1188&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1188&client=summon |