Failure Analysis of CFRP Multidirectional Laminates Using the Probabilistic Weibull Distribution Model under Static Loading
The application of carbon fiber reinforced polymer (CFRP) Multidirectional (MD) laminates in aircraft structure have motivated the manufacturers to tailor the mechanical strength in desired directions. The complex stress field owing to multiple orientations with the loading direction increases the i...
Saved in:
Published in | Fibers and polymers Vol. 20; no. 11; pp. 2390 - 2399 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Seoul
The Korean Fiber Society
01.11.2019
Springer Nature B.V 한국섬유공학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The application of carbon fiber reinforced polymer (CFRP) Multidirectional (MD) laminates in aircraft structure have motivated the manufacturers to tailor the mechanical strength in desired directions. The complex stress field owing to multiple orientations with the loading direction increases the intricacy of failure analysis. Hence, the macroscopic and microscopic fracture behaviour of MD CFRP laminates under static loading needs to be explored further. In this study, four different MD CFRP laminates were fabricated using IMA/M21 prepregs by the autoclaving technique. Effect of fiber orientation on static strength i.e. tensile and compressive strength was studied. The strength decreased with the increase in orientation angle. Scanning electron micrographs revealed that irrespective of the lay-up sequence individual layers failed parallel to the fiber direction. Fiber breakage and delamination were the major failure modes in tensile specimens while kinking, matrix failure, in-plane shear, stepped fracture, and fiber-matrix debonding were dominated in compression specimens. The theoretical and experimental data was in good agreement with the Weibull distribution model. |
---|---|
AbstractList | The application of carbon fiber reinforced polymer (CFRP) Multidirectional (MD) laminates in aircraft structure have motivated the manufacturers to tailor the mechanical strength in desired directions. The complex stress field owing to multiple orientations with the loading direction increases the intricacy of failure analysis. Hence, the macroscopic and microscopic fracture behaviour of MD CFRP laminates under static loading needs to be explored further. In this study, four different MD CFRP laminates were fabricated using IMA/M21 prepregs by the autoclaving technique. Effect of fiber orientation on static strength i.e. tensile and compressive strength was studied. The strength decreased with the increase in orientation angle. Scanning electron micrographs revealed that irrespective of the lay-up sequence individual layers failed parallel to the fiber direction. Fiber breakage and delamination were the major failure modes in tensile specimens while kinking, matrix failure, in-plane shear, stepped fracture, and fiber-matrix debonding were dominated in compression specimens. The theoretical and experimental data was in good agreement with the Weibull distribution model. The application of carbon fiber reinforced polymer (CFRP) Multidirectional (MD) laminates in aircraft structurehave motivated the manufacturers to tailor the mechanical strength in desired directions. The complex stress field owing tomultiple orientations with the loading direction increases the intricacy of failure analysis. Hence, the macroscopic andmicroscopic fracture behaviour of MD CFRP laminates under static loading needs to be explored further. In this study, fourdifferent MD CFRP laminates were fabricated using IMA/M21 prepregs by the autoclaving technique. Effect of fiberorientation on static strength i.e. tensile and compressive strength was studied. The strength decreased with the increase inorientation angle. Scanning electron micrographs revealed that irrespective of the lay-up sequence individual layers failedparallel to the fiber direction. Fiber breakage and delamination were the major failure modes in tensile specimens whilekinking, matrix failure, in-plane shear, stepped fracture, and fiber-matrix debonding were dominated in compressionspecimens. The theoretical and experimental data was in good agreement with the Weibull distribution model. KCI Citation Count: 1 |
Author | Behera, Alok Thawre, Manjusha M. Ballal, Atul |
Author_xml | – sequence: 1 givenname: Alok surname: Behera fullname: Behera, Alok email: alokab132@gmail.com organization: Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT) – sequence: 2 givenname: Manjusha M. surname: Thawre fullname: Thawre, Manjusha M. organization: Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT) – sequence: 3 givenname: Atul surname: Ballal fullname: Ballal, Atul organization: Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT) |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002523888$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp1kUtLxDAUhYMo-PwB7gKuXFSTm6RtlsPoqDCi-MBlSNNkjNZGk3Yh_nkzVnDl6t7L_c6Bw9lFm33oLUKHlJxQQqrTRAGAFoTKglLJC7mBdmhdiYIQAZt5B5CFpLLaRrspvRBSUqjYDvpaaN-N0eJZr7vP5BMODs8Xd7f4euwG3_pozeBDfuKlfvO9HmzCj8n3Kzw8W3wbQ6Mb3_k0eIOfrG_GrsNn-Yx5XQvxdWhth8e-tRHfD3rNLYNus8M-2nK6S_bgd-6hx8X5w_yyWN5cXM1ny8JwwYbCOWtKW5naiNqWjlLSGOBCCtKCYaTivG45ECgFM3VOKHVV2pYy3jjKuavZHjqefPvo1KvxKmj_M1dBvUY1u3u4UiUwUYsys0cT-x7Dx2jToF7CGHP8pIABqWXFADJFJ8rEkFK0Tr1H_6bjp6JErftQUx8q96HWfSiZNTBpUmb7lY1_zv-LvgEPa48t |
CitedBy_id | crossref_primary_10_1007_s12633_023_02543_y crossref_primary_10_1002_pc_26736 crossref_primary_10_1007_s12221_021_0110_2 crossref_primary_10_1007_s40033_023_00555_x crossref_primary_10_1016_j_heliyon_2024_e29525 crossref_primary_10_2472_jsms_70_773 crossref_primary_10_1016_j_ijfatigue_2020_105590 crossref_primary_10_1016_j_matpr_2023_05_164 crossref_primary_10_1002_pc_28085 crossref_primary_10_1002_pc_27176 crossref_primary_10_1007_s11043_022_09544_1 crossref_primary_10_1177_1056789521998731 crossref_primary_10_1007_s40034_024_00291_1 crossref_primary_10_1007_s40430_023_04228_4 |
Cites_doi | 10.1016/j.polymertesting.2017.04.010 10.1016/j.carbon.2017.05.083 10.1016/j.compstruct.2018.11.056 10.1016/j.compositesa.2016.09.001 10.1016/j.compositesa.2016.11.007 10.1016/j.compstruct.2016.10.091 10.1023/A:1004406618845 10.1016/j.compositesa.2019.03.034 10.1016/j.compositesa.2017.03.016 10.1016/j.compositesa.2018.09.027 10.1016/j.compositesb.2015.12.005 10.1016/j.compositesb.2017.09.002 10.1016/j.compositesa.2012.03.003 10.1002/mawe.201700191 10.1016/j.compstruct.2017.10.030 10.1016/j.compscitech.2006.12.001 10.1177/0021998313476324 10.1016/j.compstruct.2017.02.009 10.1016/j.mechmat.2010.12.003 10.1016/j.tafmec.2017.02.009 10.1016/S0266-3538(01)00027-6 10.1016/S0266-3538(97)00092-4 10.1016/j.compstruct.2018.06.081 10.1016/j.compstruct.2018.10.019 10.1016/j.compscitech.2018.08.028 10.1016/j.ijsolstr.2014.12.016 10.1016/S0142-1123(98)00073-5 10.1016/j.compositesb.2017.09.016 10.1016/j.tws.2016.12.021 10.1016/j.compstruct.2019.01.027 10.1016/j.compositesa.2005.07.003 10.1016/j.compstruct.2006.02.013 10.1016/j.compstruct.2019.03.004 10.1016/j.compositesa.2014.11.004 10.1115/1.4010337 10.1016/S1359-8368(00)00027-5 10.1016/j.compositesa.2009.08.007 |
ContentType | Journal Article |
Copyright | The Korean Fiber Society 2019 Copyright Springer Nature B.V. 2019 |
Copyright_xml | – notice: The Korean Fiber Society 2019 – notice: Copyright Springer Nature B.V. 2019 |
DBID | AAYXX CITATION 7SR 8FD JG9 ACYCR |
DOI | 10.1007/s12221-019-1194-9 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database Korean Citation Index |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1875-0052 |
EndPage | 2399 |
ExternalDocumentID | oai_kci_go_kr_ARTI_6235856 10_1007_s12221_019_1194_9 |
GroupedDBID | -58 -5G -BR -EM -Y2 -~C .86 .UV .VR 06C 06D 0R~ 0VY 1N0 203 29H 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 6NX 85H 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKAS ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFKRA AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BDATZ BENPR BGLVJ BGNMA CAG CCPQU COF CS3 CSCUP CZ9 D1I DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HCIFZ HF~ HG6 HMJXF HRMNR HZB HZ~ IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z JBSCW JZLTJ KB. KC. KOV LLZTM M4Y MA- MZR NPVJJ NQJWS NU0 O9- O9J P2P P9N PDBOC PF0 PT4 Q2X QOR QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCM SDH SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SQXTU SRMVM SSLCW STPWE SZN T13 TSG TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 ZMTXR ZZE ~A9 AACDK AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 SJYHP 7SR 8FD AAYZH JG9 ACYCR |
ID | FETCH-LOGICAL-c453t-ffec6e7c8c58e6f110bc245950d2c307448d4202653c81979a76ed134bf144f83 |
IEDL.DBID | AGYKE |
ISSN | 1229-9197 |
IngestDate | Fri Nov 17 19:20:09 EST 2023 Mon Nov 04 11:10:21 EST 2024 Thu Sep 12 19:01:06 EDT 2024 Sat Dec 16 12:02:43 EST 2023 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 11 |
Keywords | Multidirectional Compressive strength SEM CFRP Tensile strength |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c453t-ffec6e7c8c58e6f110bc245950d2c307448d4202653c81979a76ed134bf144f83 |
PQID | 2320897322 |
PQPubID | 326332 |
PageCount | 10 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_6235856 proquest_journals_2320897322 crossref_primary_10_1007_s12221_019_1194_9 springer_journals_10_1007_s12221_019_1194_9 |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul – name: Dordrecht |
PublicationTitle | Fibers and polymers |
PublicationTitleAbbrev | Fibers Polym |
PublicationYear | 2019 |
Publisher | The Korean Fiber Society Springer Nature B.V 한국섬유공학회 |
Publisher_xml | – name: The Korean Fiber Society – name: Springer Nature B.V – name: 한국섬유공학회 |
References | MaimiPCamanhoP PMayugoJ ATuronAMech. Mater.20114316910.1016/j.mechmat.2010.12.003 FullerJ DWisnomM RCompos. Part A Appl. Sci. Manuf.201569641:CAS:528:DC%2BC2cXhvFGitrbI10.1016/j.compositesa.2014.11.004 KawaiMTaniguchiTCompos. Part A Appl. Sci. Manuf.20063724310.1016/j.compositesa.2005.07.0031:CAS:528:DC%2BD28Xht1Ghsbk%3D EmersonM JWangYWithersP JConrasdsenKDahlA BDahlV AComp. Sci. Technol.2018168471:CAS:528:DC%2BC1cXhslOlsbzP10.1016/j.compscitech.2018.08.028 RomanowiczMCompos. Part B Eng.201690451:CAS:528:DC%2BC28Xot1WrtQ%3D%3D10.1016/j.compositesb.2015.12.005 DengXHuJWangW XMatsubaraTCompos. Struct.201920850710.1016/j.compstruct.2018.10.019 KawaiMTeranumaTCompos. Part A Appl. Sci. Manuf.20124312521:CAS:528:DC%2BC38Xos1altL4%3D10.1016/j.compositesa.2012.03.003 KawaiMYajimaSHachinoheAKawaseYCompos. Sci. Technol.20016112851:CAS:528:DC%2BD3MXltFylt7o%3D10.1016/S0266-3538(01)00027-6 NareshKShankarKVelmuruganRGuptaN KThin Walled Struct.201812615010.1016/j.tws.2016.12.021 KawaiMItohNJ. Compos. Mater.20144857110.1177/0021998313476324 HuJGaoCHeSChenWLiYZhaoBChenJYangDCompos. Struct.20171719210.1016/j.compstruct.2017.02.009 CaiDTangJZhouGWangXLiCSilberschmidtV VPolym. Test.2017603071:CAS:528:DC%2BC2sXmsFeiu78%3D10.1016/j.polymertesting.2017.04.010 KozlovskiyA LShlimasD IKenzhinaI EZdorovetsM VCompos. Struct.20077938110.1016/j.compstruct.2006.02.013 WangZXiaYCompos. Sci. Technol.199857159910.1016/S0266-3538(97)00092-4 ASTM D3039Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials2017West Conshohocken, PAASTM International GanK WLauxTTaherS TDulieu-BartonJ MThomsenO TCompos. Struct.201818466210.1016/j.compstruct.2017.10.030 OkoliO ISmithG FJ. Mater. Sci.19983354151:CAS:528:DyaK1MXhsl2gtL4%3D10.1023/A:1004406618845 RoschPBruderTWagnerPMat. wiss. u. Werksttech.20184928710.1002/mawe.2017001911:CAS:528:DC%2BC1cXlvFGkt74%3D GongYZhangBMukhopadhyaySHallettS RCompos. Struct.201820168310.1016/j.compstruct.2018.06.081 KawaiMSaitoSCompos. Part A Appl. Sci. Manuf.200940163210.1016/j.compositesa.2009.08.0071:CAS:528:DC%2BD1MXhtFGnsLjF HussainM SAnilchandraA RJagannathanNManjunathaC MMater. Perform.201651321:CAS:528:DC%2BC28XhsVaisr%2FN YaoLCuiHSunYGuoLChenXZhaoMAlderliestenR CCompos. Part A Appl. Sci. Manuf.20181151751:CAS:528:DC%2BC1cXhvVegt7bP10.1016/j.compositesa.2018.09.027 MontesanoJMcCleaveBSinghC VCompos. Part B Eng.2018133531:CAS:528:DC%2BC2sXhsFCktrzF10.1016/j.compositesb.2017.09.016 NareshKShankarKVelmuruganRCompos. Part B Eng.20181331291:CAS:528:DC%2BC2sXhsFCktrzE10.1016/j.compositesb.2017.09.002 BieB XHuangJ YFanDSunTFezzaaKXiaoX HQiM LLuoS NCarbon20171211271:CAS:528:DC%2BC2sXos1eqtrk%3D10.1016/j.carbon.2017.05.083 BisharaMVoglerMRolfesRCompos. Struct.201716911610.1016/j.compstruct.2016.10.091 BlondeauCPappasGBotsisJCompos. Struct.201921646410.1016/j.compstruct.2019.03.004 DirikoluM HAktasABirgorenBTurkish J. Eng. Environ. Sci.20022645 KumagaiYOnoderaSNagumoYOkabeTYoshiokaKCompos. Part A Appl. Sci. Manuf.2017981361:CAS:528:DC%2BC2sXltlOjsr0%3D10.1016/j.compositesa.2017.03.016 CarraroP AQuaresiminMInt. J. Solids Struct.2015583410.1016/j.ijsolstr.2014.12.016 ThomsonDCuiHEriceBPetrinicNCompos. Part A Appl. Sci. Manuf.20191212131:CAS:528:DC%2BC1MXmslWgs7k%3D10.1016/j.compositesa.2019.03.034 MahboobZSawiI EZderoRFawazZBougheraraHCompos. Part A Appl. Sci. Manuf.20169211810.1016/j.compositesa.2016.11.0071:CAS:528:DC%2BC28XhvFais7%2FF WeibullWJ. Appl. Mech.195118293 LeeJSoutisCCompos. Sci. Technol.20076720151:CAS:528:DC%2BD2sXlt1Kgtr4%3D10.1016/j.compscitech.2006.12.001 DanielMIshaiOEngineering Mechanics of Composite Materials20062ndNew YorkOxford University Press316329 MaYZhangYSugaharaTJinSYangYHamadaHCompos. Part A Appl. Sci. Manuf.2016907111:CAS:528:DC%2BC28XhsFGrsL7J10.1016/j.compositesa.2016.09.001 BarberoEFernandez-SaezJNavarroCCompos. Part B Eng.20003137510.1016/S1359-8368(00)00027-5 ASTM D3410Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by Shear Loading2016West Conshohocken, PASTM International PhilippidisT PVassilopoulosA PInt. J. Fatigue.19992125310.1016/S0142-1123(98)00073-5 ShokriehM MSalamat-talabMHeidari-RaraniMTheor. Appl. Fract. Mech.2017902210.1016/j.tafmec.2017.02.009 LiYLiNZhouJChengQCompos. Struct.20192128310.1016/j.compstruct.2019.01.027 QiZLiuYChenWCompos. Struct.201921033910.1016/j.compstruct.2018.11.056 C Blondeau (1194_CR26) 2019; 216 D Thomson (1194_CR10) 2019; 121 M M Shokrieh (1194_CR4) 2017; 90 O I Okoli (1194_CR6) 1998; 33 A L Kozlovskiy (1194_CR15) 2007; 79 P Maimi (1194_CR22) 2011; 43 J Montesano (1194_CR28) 2018; 133 Z Mahboob (1194_CR38) 2016; 92 M Kawai (1194_CR1) 2006; 37 M Daniel (1194_CR7) 2006 X Deng (1194_CR27) 2019; 208 D Cai (1194_CR9) 2017; 60 M H Dirikolu (1194_CR42) 2002; 26 J Hu (1194_CR11) 2017; 171 K Naresh (1194_CR31) 2018; 126 Y Ma (1194_CR12) 2016; 90 B X Bie (1194_CR24) 2017; 121 M J Emerson (1194_CR37) 2018; 168 P Rosch (1194_CR20) 2018; 49 ASTM D3410 (1194_CR35) 2016 Y Kumagai (1194_CR8) 2017; 98 T P Philippidis (1194_CR14) 1999; 21 K Naresh (1194_CR32) 2018; 133 Y Li (1194_CR2) 2019; 212 E Barbero (1194_CR30) 2000; 31 W Weibull (1194_CR29) 1951; 18 L Yao (1194_CR19) 2018; 115 M S Hussain (1194_CR13) 2016; 5 M Bishara (1194_CR40) 2017; 169 J Lee (1194_CR41) 2007; 67 M Kawai (1194_CR16) 2012; 43 P A Carraro (1194_CR36) 2015; 58 Y Gong (1194_CR23) 2018; 201 Z Qi (1194_CR18) 2019; 210 Z Wang (1194_CR33) 1998; 57 M Kawai (1194_CR17) 2009; 40 ASTM D3039 (1194_CR34) 2017 M Romanowicz (1194_CR3) 2016; 90 M Kawai (1194_CR39) 2001; 61 J D Fuller (1194_CR25) 2015; 69 M Kawai (1194_CR5) 2014; 48 K W Gan (1194_CR21) 2018; 184 |
References_xml | – volume: 60 start-page: 307 year: 2017 ident: 1194_CR9 publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2017.04.010 contributor: fullname: D Cai – volume: 5 start-page: 132 year: 2016 ident: 1194_CR13 publication-title: Mater. Perform. contributor: fullname: M S Hussain – volume: 121 start-page: 127 year: 2017 ident: 1194_CR24 publication-title: Carbon doi: 10.1016/j.carbon.2017.05.083 contributor: fullname: B X Bie – volume: 210 start-page: 339 year: 2019 ident: 1194_CR18 publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2018.11.056 contributor: fullname: Z Qi – volume: 90 start-page: 711 year: 2016 ident: 1194_CR12 publication-title: Compos. Part A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2016.09.001 contributor: fullname: Y Ma – volume: 92 start-page: 118 year: 2016 ident: 1194_CR38 publication-title: Compos. Part A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2016.11.007 contributor: fullname: Z Mahboob – volume-title: Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by Shear Loading year: 2016 ident: 1194_CR35 contributor: fullname: ASTM D3410 – volume: 169 start-page: 116 year: 2017 ident: 1194_CR40 publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2016.10.091 contributor: fullname: M Bishara – volume: 33 start-page: 5415 year: 1998 ident: 1194_CR6 publication-title: J. Mater. Sci. doi: 10.1023/A:1004406618845 contributor: fullname: O I Okoli – volume: 26 start-page: 45 year: 2002 ident: 1194_CR42 publication-title: Turkish J. Eng. Environ. Sci. contributor: fullname: M H Dirikolu – volume: 121 start-page: 213 year: 2019 ident: 1194_CR10 publication-title: Compos. Part A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2019.03.034 contributor: fullname: D Thomson – volume: 98 start-page: 136 year: 2017 ident: 1194_CR8 publication-title: Compos. Part A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2017.03.016 contributor: fullname: Y Kumagai – volume: 115 start-page: 175 year: 2018 ident: 1194_CR19 publication-title: Compos. Part A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2018.09.027 contributor: fullname: L Yao – volume: 90 start-page: 45 year: 2016 ident: 1194_CR3 publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2015.12.005 contributor: fullname: M Romanowicz – volume: 133 start-page: 129 year: 2018 ident: 1194_CR32 publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2017.09.002 contributor: fullname: K Naresh – start-page: 316 volume-title: Engineering Mechanics of Composite Materials year: 2006 ident: 1194_CR7 contributor: fullname: M Daniel – volume: 43 start-page: 1252 year: 2012 ident: 1194_CR16 publication-title: Compos. Part A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2012.03.003 contributor: fullname: M Kawai – volume: 49 start-page: 287 year: 2018 ident: 1194_CR20 publication-title: Mat. wiss. u. Werksttech. doi: 10.1002/mawe.201700191 contributor: fullname: P Rosch – volume: 184 start-page: 662 year: 2018 ident: 1194_CR21 publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2017.10.030 contributor: fullname: K W Gan – volume: 67 start-page: 2015 year: 2007 ident: 1194_CR41 publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2006.12.001 contributor: fullname: J Lee – volume: 48 start-page: 571 year: 2014 ident: 1194_CR5 publication-title: J. Compos. Mater. doi: 10.1177/0021998313476324 contributor: fullname: M Kawai – volume-title: Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials year: 2017 ident: 1194_CR34 contributor: fullname: ASTM D3039 – volume: 171 start-page: 92 year: 2017 ident: 1194_CR11 publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2017.02.009 contributor: fullname: J Hu – volume: 43 start-page: 169 year: 2011 ident: 1194_CR22 publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2010.12.003 contributor: fullname: P Maimi – volume: 90 start-page: 22 year: 2017 ident: 1194_CR4 publication-title: Theor. Appl. Fract. Mech. doi: 10.1016/j.tafmec.2017.02.009 contributor: fullname: M M Shokrieh – volume: 61 start-page: 1285 year: 2001 ident: 1194_CR39 publication-title: Compos. Sci. Technol. doi: 10.1016/S0266-3538(01)00027-6 contributor: fullname: M Kawai – volume: 57 start-page: 1599 year: 1998 ident: 1194_CR33 publication-title: Compos. Sci. Technol. doi: 10.1016/S0266-3538(97)00092-4 contributor: fullname: Z Wang – volume: 201 start-page: 683 year: 2018 ident: 1194_CR23 publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2018.06.081 contributor: fullname: Y Gong – volume: 208 start-page: 507 year: 2019 ident: 1194_CR27 publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2018.10.019 contributor: fullname: X Deng – volume: 168 start-page: 47 year: 2018 ident: 1194_CR37 publication-title: Comp. Sci. Technol. doi: 10.1016/j.compscitech.2018.08.028 contributor: fullname: M J Emerson – volume: 58 start-page: 34 year: 2015 ident: 1194_CR36 publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2014.12.016 contributor: fullname: P A Carraro – volume: 21 start-page: 253 year: 1999 ident: 1194_CR14 publication-title: Int. J. Fatigue. doi: 10.1016/S0142-1123(98)00073-5 contributor: fullname: T P Philippidis – volume: 133 start-page: 53 year: 2018 ident: 1194_CR28 publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2017.09.016 contributor: fullname: J Montesano – volume: 126 start-page: 150 year: 2018 ident: 1194_CR31 publication-title: Thin Walled Struct. doi: 10.1016/j.tws.2016.12.021 contributor: fullname: K Naresh – volume: 212 start-page: 83 year: 2019 ident: 1194_CR2 publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2019.01.027 contributor: fullname: Y Li – volume: 37 start-page: 243 year: 2006 ident: 1194_CR1 publication-title: Compos. Part A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2005.07.003 contributor: fullname: M Kawai – volume: 79 start-page: 381 year: 2007 ident: 1194_CR15 publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2006.02.013 contributor: fullname: A L Kozlovskiy – volume: 216 start-page: 464 year: 2019 ident: 1194_CR26 publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2019.03.004 contributor: fullname: C Blondeau – volume: 69 start-page: 64 year: 2015 ident: 1194_CR25 publication-title: Compos. Part A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2014.11.004 contributor: fullname: J D Fuller – volume: 18 start-page: 293 year: 1951 ident: 1194_CR29 publication-title: J. Appl. Mech. doi: 10.1115/1.4010337 contributor: fullname: W Weibull – volume: 31 start-page: 375 year: 2000 ident: 1194_CR30 publication-title: Compos. Part B Eng. doi: 10.1016/S1359-8368(00)00027-5 contributor: fullname: E Barbero – volume: 40 start-page: 1632 year: 2009 ident: 1194_CR17 publication-title: Compos. Part A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2009.08.007 contributor: fullname: M Kawai |
SSID | ssj0061273 |
Score | 2.2956846 |
Snippet | The application of carbon fiber reinforced polymer (CFRP) Multidirectional (MD) laminates in aircraft structure have motivated the manufacturers to tailor the... The application of carbon fiber reinforced polymer (CFRP) Multidirectional (MD) laminates in aircraft structurehave motivated the manufacturers to tailor the... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 2390 |
SubjectTerms | Aircraft structures Autoclaving Breakage Carbon fiber reinforced plastics Chemistry Chemistry and Materials Science Compressive strength Delamination Electron micrographs Failure analysis Failure modes Fiber orientation Fiber reinforced polymers Kinking Laminates Orientation effects Polymer Sciences Prepregs Statistical analysis Stress concentration Stress distribution Tensile strength Weibull distribution 섬유공학 |
Title | Failure Analysis of CFRP Multidirectional Laminates Using the Probabilistic Weibull Distribution Model under Static Loading |
URI | https://link.springer.com/article/10.1007/s12221-019-1194-9 https://www.proquest.com/docview/2320897322 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002523888 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Fibers and Polymers, 2019, 20(11), , pp.2390-2399 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6xcGg5AKVFLKXIqnpq5VVInMQ-rrZsoaUVqroqPVl-Ba0WZVFYLvTPdyYPtrRw4JRDrFjxjGe-8cx8BngXOZ9LY3NuEK9ykaeeS-E89xml0WQIhaTe4a_fsuOJ-Hyenq9AfHd0Uc4GXUayNtTLXjf0ZBT5Kn6IgTdXPVhr-07Xhp9-fTnq7C-67DqvjOMVbmWVd7nMhz5yzxv1yqq4BzT_yY3WLme82bQBXtdMhVRpMhvcLOzA3f7P4_iEv9mCjRaBsmGjMi9gJZTb8GzUXfy2Det_cRS-hN9jM6XSddbRl7B5wUbj72es7t1tXGJ9nshODdXVIHZldSECQ2zJzio0GFSAS3zQ7GeYWox52Ueaqr1pi9F1bJeMmtkqRtgXx53O69L-VzAZH_0YHfP2xgbuRJosOJWgZCF30qGYswKhhXWxSFUa-dihNcFY0IsYw740cQhFcmXyLPjDRNgCA7tCJjuwWs7LsAvM28jEiD6lkUoEZUwUnFAJ6pb1hbRxH953ktNXDTGHXlIw0-pqXF1Nq6tVH96ibPXMTTXRadPzYq5nlcag4URn1C6cZn3Y70Sv2418rRFwRpIYjXDCD50ol68fnXHvSaNfw_O40QVUiX1YXVQ34Q2CnYU9aLX7AHqTePgHox_2Dg |
link.rule.ids | 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swED4N9tDxgFjZRKEwa-KJyVJInMR-rApVYQVVqNV4sxzbQRWoRaE88ee5S2MV0PawpzzEiqV8d7nvcnefAY4j63Jpipwb5Ktc5KnjUljHXUZlNOl9KWl2-Oo6G07F5W1628xxP4Vu91CSrL_U62E3DGWU-ip-ipk3VxvwmeTVSTB_GvfC5xcjdl1WxtUKPVnloZT5t0e8C0Yb86p8xzM_lEbriDPYge2GKrLeCtuv8MnP29DqhxPa2rD1RkxwF14GZkY95izojLBFyfqDmzGrh2xXsav-8cdGhhpgkGSyumOAIQlk4wo9mzplSbiZ_fGzApNTdkZbNUdiMTo37YHR1FnFiKTiutGi7sH_BtPB-aQ_5M3RCtyKNFly6hXJfG6lRTyyEjlAYWORqjRysUW3x6TNiRjzszSxyBlyZfLMu9NEFCVmYKVMvsPmfDH3e8BcEZkYaaI0UgmvjIm8FSpBIyhcKYu4AyfhHevHlYKGXmslEyAaAdEEiFYd-Iko6Hs706R7Tde7hb6vNLL7C53RXG-adaAbQNKNxz1pZIaRJOkh3PBXAG59-5877v_X6h_QGk6uRnp0cf37AL7EK1NCi-rC5rJ69ofIUJbFUW2Rrwtu3Dg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB3xIbVwQJQWseXLQj21sgiJk9hHtBABXdCq6qrcLMd20AqURWF76p_vTBJrAbUHTjnEiqXMOPMm8-YNwJfIulyaMucG8SoXeeq4FNZxl1EZTXpfSeodvr7JLibi6ja97eecPgW2eyhJdj0NpNJUz48fXXW8aHzDsEZpsOInmIVztQyrGIkS4vRN4tPwKcbo3ZaYcbXCU63yUNb81yNeBKbluqleYM5XZdI2-hSbsNHDRnba2fkDLPl6C94Pw7S2LVh_Jiz4Ef4UZkp8cxY0R9isYsPix5i1DbddHGt_ArKRITIMAk7WsgcYAkI2bvCUE2uWRJzZLz8tMVFlZ7RVPx6L0Qy1B0YdaA0jwIrrRrOWj_8JJsX5z-EF78cscCvSZM6JN5L53EqLtskqxAOljUWq0sjFFj8BmMA5EWOuliYW8UOuTJ55d5KIssJsrJLJNqzUs9rvAHNlZGKEjNJIJbwyJvJWqAQdonSVLOMBfA3vWD92ahp6oZtMBtFoEE0G0WoAR2gFfW-nmjSw6Xo30_eNRqR_qTPq8U2zAewFI-n-9D1pRImRJBki3PBbMNzi9n93_Pym1YfwbnxW6NHlzfddWIs7T0KH2oOVefPb7yNYmZcHrUP-BfBN4H0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Failure+Analysis+of+CFRP+Multidirectional+Laminates+Using+the+Probabilistic+Weibull+Distribution+Model+under+Static+Loading&rft.jtitle=Fibers+and+polymers&rft.au=Behera%2C+Alok&rft.au=Thawre%2C+Manjusha+M.&rft.au=Ballal%2C+Atul&rft.date=2019-11-01&rft.pub=The+Korean+Fiber+Society&rft.issn=1229-9197&rft.eissn=1875-0052&rft.volume=20&rft.issue=11&rft.spage=2390&rft.epage=2399&rft_id=info:doi/10.1007%2Fs12221-019-1194-9&rft.externalDocID=10_1007_s12221_019_1194_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1229-9197&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1229-9197&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1229-9197&client=summon |