3D super-resolution deep-tissue imaging in living mice
Stimulated emission depletion (STED) microscopy enables the three-dimensional (3D) visualization of dynamic nanoscale structures in living cells, offering unique insights into their organization. However, 3D-STED imaging deep inside biological tissue is obstructed by optical aberrations and light sc...
Saved in:
Published in | Optica Vol. 8; no. 4; pp. 442 - 450 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Optical Society of America
20.04.2021
|
Online Access | Get full text |
Cover
Loading…
Abstract | Stimulated emission depletion (STED) microscopy enables the three-dimensional (3D) visualization of dynamic nanoscale structures in living cells, offering unique insights into their organization. However, 3D-STED imaging deep inside biological tissue is obstructed by optical aberrations and light scattering. We present a STED system that overcomes these challenges. Through the combination of two-photon excitation, adaptive optics, red-emitting organic dyes, and a long-working-distance water-immersion objective lens, our system achieves aberration-corrected 3D super-resolution imaging, which we demonstrate 164 µm deep in fixed mouse brain tissue and 76 µm deep in the brain of a living mouse. |
---|---|
AbstractList | Stimulated emission depletion (STED) microscopy enables the three-dimensional (3D) visualization of dynamic nanoscale structures in living cells, offering unique insights into their organization. However, 3D-STED imaging deep inside biological tissue is obstructed by optical aberrations and light scattering. We present a STED system that overcomes these challenges. Through the combination of two-photon excitation, adaptive optics, red-emitting organic dyes, and a long-working-distance water-immersion objective lens, our system achieves aberration-corrected 3D super-resolution imaging, which we demonstrate 164 µm deep in fixed mouse brain tissue and 76 µm deep in the brain of a living mouse.Stimulated emission depletion (STED) microscopy enables the three-dimensional (3D) visualization of dynamic nanoscale structures in living cells, offering unique insights into their organization. However, 3D-STED imaging deep inside biological tissue is obstructed by optical aberrations and light scattering. We present a STED system that overcomes these challenges. Through the combination of two-photon excitation, adaptive optics, red-emitting organic dyes, and a long-working-distance water-immersion objective lens, our system achieves aberration-corrected 3D super-resolution imaging, which we demonstrate 164 µm deep in fixed mouse brain tissue and 76 µm deep in the brain of a living mouse. Stimulated emission depletion (STED) microscopy enables the three-dimensional (3D) visualization of dynamic nanoscale structures in living cells, offering unique insights into their organization. However, 3D-STED imaging deep inside biological tissue is obstructed by optical aberrations and light scattering. We present a STED system that overcomes these challenges. Through the combination of two-photon excitation, adaptive optics, red-emitting organic dyes, and a long-working-distance water-immersion objective lens, our system achieves aberration-corrected 3D super-resolution imaging, which we demonstrate 164 µm deep in fixed mouse brain tissue and 76 µm deep in the brain of a living mouse. |
Author | Bewersdorf, Joerg Zhang, Mengyang Velasco, Mary Grace M. Grutzendler, Jaime Yuan, Peng Kidd, Phylicia Barentine, Andrew E. S. Antonello, Jacopo Booth, Martin J. May, Dennis Allgeyer, Edward S. M’Saad, Ons Greco, Valentina |
Author_xml | – sequence: 1 givenname: Mary Grace M. surname: Velasco fullname: Velasco, Mary Grace M. – sequence: 2 givenname: Mengyang surname: Zhang fullname: Zhang, Mengyang – sequence: 3 givenname: Jacopo orcidid: 0000-0001-5486-315X surname: Antonello fullname: Antonello, Jacopo – sequence: 4 givenname: Peng surname: Yuan fullname: Yuan, Peng – sequence: 5 givenname: Edward S. surname: Allgeyer fullname: Allgeyer, Edward S. – sequence: 6 givenname: Dennis surname: May fullname: May, Dennis – sequence: 7 givenname: Ons surname: M’Saad fullname: M’Saad, Ons – sequence: 8 givenname: Phylicia surname: Kidd fullname: Kidd, Phylicia – sequence: 9 givenname: Andrew E. S. surname: Barentine fullname: Barentine, Andrew E. S. – sequence: 10 givenname: Valentina surname: Greco fullname: Greco, Valentina – sequence: 11 givenname: Jaime surname: Grutzendler fullname: Grutzendler, Jaime – sequence: 12 givenname: Martin J. orcidid: 0000-0002-9525-8981 surname: Booth fullname: Booth, Martin J. – sequence: 13 givenname: Joerg surname: Bewersdorf fullname: Bewersdorf, Joerg |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34239948$$D View this record in MEDLINE/PubMed |
BookMark | eNptUctOwzAQtFARLaVHrihHLimO13aTCxIqT6lSOZSzZTvrYpQmJU4q8fekaosK4rQr7ezMaOac9MqqREIuEzpOQPKb-eviZXo35olMeXJCBgyAx0yA7B3tfTIK4YNSmgCnIqNnpA-cQZbxdEAk3EehXWMd1xiqom18VUY54jpufAgtRn6ll75cRr6MCr_Zbitv8YKcOl0EHO3nkLw9Piymz_Fs_tQ5msWWC2hil3NKnZ0gps7y3DhjWAqomdEZSJdrk1lhKAeGxk24lTYTwjrkYDKZUIQhud3xrluzwtxi2dS6UOu6s1V_qUp79ftS-ne1rDYqZRzEZNIRXO8J6uqzxdColQ8Wi0KXWLVBMSEokzLNoINeHWv9iBzC6gCwA9i6CqFGp6xv9DaxTtoXKqFq24rataJ2rXRf8Z-vA_H_-G_0749S |
CitedBy_id | crossref_primary_10_1038_s43586_024_00335_1 crossref_primary_10_1364_OE_434260 crossref_primary_10_1364_BOE_510512 crossref_primary_10_3788_CJL231342 crossref_primary_10_1088_1361_6463_abff7b crossref_primary_10_1109_TMI_2024_3358191 crossref_primary_10_1364_AO_416585 crossref_primary_10_1002_glia_24103 crossref_primary_10_1038_s41592_024_02535_9 crossref_primary_10_1002_smll_202404482 crossref_primary_10_1016_j_isci_2022_104961 crossref_primary_10_1038_s41592_024_02236_3 crossref_primary_10_1364_OPTICA_530893 crossref_primary_10_1073_pnas_2201861119 crossref_primary_10_1038_s42005_024_01653_2 crossref_primary_10_1021_acsphotonics_4c02468 crossref_primary_10_1364_BOE_444525 crossref_primary_10_1016_j_neures_2021_11_011 crossref_primary_10_3788_AI_2024_20004 crossref_primary_10_1364_BOE_504764 crossref_primary_10_1371_journal_pone_0290550 crossref_primary_10_1117_1_APN_2_1_016009 crossref_primary_10_1017_S155192952200089X crossref_primary_10_3788_IRLA20240011 crossref_primary_10_1523_JNEUROSCI_1125_22_2022 crossref_primary_10_1021_acs_nanolett_4c04867 crossref_primary_10_3389_fimmu_2023_1176594 crossref_primary_10_1063_5_0102527 crossref_primary_10_1088_1361_6501_ace731 crossref_primary_10_1364_BOE_524013 crossref_primary_10_3788_IRLA20220546 crossref_primary_10_1016_j_nbd_2021_105420 crossref_primary_10_1038_s41467_022_28904_6 crossref_primary_10_1016_j_molcel_2021_12_022 crossref_primary_10_1042_BST20240629 crossref_primary_10_1364_OE_532358 crossref_primary_10_1038_s41592_023_01936_6 crossref_primary_10_1039_D4CS01193G crossref_primary_10_1063_5_0066331 crossref_primary_10_1364_AO_455628 crossref_primary_10_1021_acsphotonics_2c00957 crossref_primary_10_1038_s41598_022_13377_w crossref_primary_10_1088_1402_4896_acdf8e crossref_primary_10_1117_1_NPh_11_1_014415 |
Cites_doi | 10.1016/j.bpj.2011.07.027 10.1038/nrm.2017.71 10.1016/j.cell.2015.06.067 10.1103/PhysRevLett.88.163901 10.1038/nchem.1546 10.1364/OE.18.001657 10.1073/pnas.97.15.8206 10.1073/pnas.1807104115 10.1002/jbio.201300041 10.1016/j.bpj.2018.07.028 10.1007/978-1-4939-7265-4_5 10.1364/OE.27.023378 10.1083/jcb.201809107 10.1364/OPTICA.1.000181 10.1111/j.1365-2818.2005.01431.x 10.1088/1361-6463/abac81 10.1038/nmeth.4403 10.1016/j.bpj.2011.05.020 10.1364/OPEX.12.003605 10.1364/OE.24.008862 10.1038/ncomms10778 10.1364/OE.20.020998 10.1038/s41592-018-0145-5 10.1364/JOSA.66.000207 10.1016/j.bpj.2012.12.053 10.1021/nl901398t 10.1021/cb800025k 10.1534/genetics.118.300227 10.1038/nmeth818 10.1038/lsa.2014.46 10.1038/nmeth.4337 10.1364/BOE.10.001999 10.1364/OL.24.000954 10.1038/nmeth.1214 10.1021/acsphotonics.0c00388 10.1111/j.1365-2818.2004.01267.x 10.1038/nmeth.2925 10.1038/ncomms8276 10.1364/OL.19.000780 10.1073/pnas.1819965116 10.1073/pnas.1119129109 10.1364/OPEX.12.006540 10.1038/nbt899 10.1364/BOE.9.003624 10.1126/science.1215369 10.1038/srep15348 10.1007/BF02956173 10.1016/j.cell.2018.02.007 10.1364/OL.40.004915 10.1364/BOE.2.003135 10.1364/OE.17.014567 10.1364/BOE.8.003891 10.1016/j.ymeth.2019.05.020 10.1063/1.5020249 10.1021/acsnano.9b05891 |
ContentType | Journal Article |
Copyright | Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Published by The Optical Society under the terms of the . Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. 2021 |
Copyright_xml | – notice: Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. – notice: Published by The Optical Society under the terms of the . Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. 2021 |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1364/OPTICA.416841 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2334-2536 |
EndPage | 450 |
ExternalDocumentID | PMC8243577 34239948 10_1364_OPTICA_416841 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: P30 DK045735 – fundername: Wellcome Trust grantid: 203285/Z/16/Z – fundername: National Institutes of Health grantid: 1R01NS089734; P30-DK45735; U01 DA047734 – fundername: Wellcome Trust grantid: 203285/B/16/Z; 203285/C/16/Z – fundername: Yale’s Integrated Graduate Program in Physical and Engineering Biology – fundername: European Research Council grantid: AdOMIS 695140 – fundername: G. Harold and Leila Y. Mathers Foundation |
GroupedDBID | 4.4 AAFWJ AAWJZ AAYXX ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS AZSQR BCNDV CITATION DSZJF EBS GROUPED_DOAJ M~E OFLFD OK1 OPJBK ROL ROS TR6 NPM 7X8 5PM |
ID | FETCH-LOGICAL-c453t-fd400fc7ee8fc4dbfbb283ea2ba936fdab9c5b0432ebf74c6c955cfe43b9610e3 |
ISSN | 2334-2536 |
IngestDate | Thu Aug 21 18:31:01 EDT 2025 Fri Jul 11 08:51:08 EDT 2025 Thu Apr 03 06:59:57 EDT 2025 Tue Jul 01 01:58:38 EDT 2025 Thu Apr 24 23:09:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. https://creativecommons.org/licenses/by/4.0 2334-2536/21/040442-09 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c453t-fd400fc7ee8fc4dbfbb283ea2ba936fdab9c5b0432ebf74c6c955cfe43b9610e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5486-315X 0000-0002-9525-8981 |
OpenAccessLink | http://dx.doi.org/10.1364/OPTICA.416841 |
PMID | 34239948 |
PQID | 2550266893 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8243577 proquest_miscellaneous_2550266893 pubmed_primary_34239948 crossref_citationtrail_10_1364_OPTICA_416841 crossref_primary_10_1364_OPTICA_416841 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-20 |
PublicationDateYYYYMMDD | 2021-04-20 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Optica |
PublicationTitleAlternate | Optica |
PublicationYear | 2021 |
Publisher | Optical Society of America |
Publisher_xml | – name: Optical Society of America |
References | Klar (optica-8-4-442-R11) 1999; 24 Abbe (optica-8-4-442-R2) 1873; 9 Turcotte (optica-8-4-442-R42) 2019; 116 Zheng (optica-8-4-442-R41) 2017; 14 Moneron (optica-8-4-442-R25) 2009; 17 Kilian (optica-8-4-442-R53) 2018; 15 Helmchen (optica-8-4-442-R23) 2005; 2 Winter (optica-8-4-442-R24) 2014; 1 Wang (optica-8-4-442-R40) 2014; 11 Schwertner (optica-8-4-442-R31) 2005; 217 Zdankowski (optica-8-4-442-R38) 2020; 14 Lukinavicius (optica-8-4-442-R51) 2013; 5 Barbotin (optica-8-4-442-R20) 2020; 7 Schroeder (optica-8-4-442-R3) 2018; 218 Lenz (optica-8-4-442-R17) 2014; 7 Aviles-Espinosa (optica-8-4-442-R39) 2011; 2 Tonnesen (optica-8-4-442-R55) 2018; 172 Gould (optica-8-4-442-R12) 2012; 20 Galiñanes (optica-8-4-442-R50) 2018; 9 Bianchini (optica-8-4-442-R28) 2012; 109 Masch (optica-8-4-442-R48) 2018; 115 Velasco (optica-8-4-442-R29) 2015; 40 Takasaki (optica-8-4-442-R27) 2013; 104 Hell (optica-8-4-442-R5) 1994; 19 Heine (optica-8-4-442-R22) 2018; 89 Bottanelli (optica-8-4-442-R44) 2016; 7 Ter Veer (optica-8-4-442-R26) 2017; 1663 Booth (optica-8-4-442-R33) 2014; 3 Zdankowski (optica-8-4-442-R37) 2019; 10 Zipfel (optica-8-4-442-R46) 2003; 21 Rankin (optica-8-4-442-R7) 2011; 100 Los (optica-8-4-442-R49) 2008; 3 Barbotin (optica-8-4-442-R19) 2019; 27 Klar (optica-8-4-442-R16) 2000; 97 Grimm (optica-8-4-442-R52) 2017; 14 Török (optica-8-4-442-R10) 2004; 12 Stockhammer (optica-8-4-442-R4) 2020; 54 Deng (optica-8-4-442-R18) 2010; 18 Berning (optica-8-4-442-R9) 2012; 335 Sahl (optica-8-4-442-R1) 2017; 18 Schwertner (optica-8-4-442-R34) 2004; 12 Richardson (optica-8-4-442-R30) 2015; 162 Noll (optica-8-4-442-R47) 1976; 66 Waldchen (optica-8-4-442-R54) 2015; 5 Schmidt (optica-8-4-442-R14) 2009; 9 Urban (optica-8-4-442-R21) 2011; 101 Patton (optica-8-4-442-R36) 2016; 24 Dunst (optica-8-4-442-R6) 2019; 211 Wang (optica-8-4-442-R43) 2015; 6 Turcotte (optica-8-4-442-R32) 2017; 8 Steffens (optica-8-4-442-R8) 2019; 174 Schmidt (optica-8-4-442-R15) 2008; 5 Schwertner (optica-8-4-442-R35) 2004; 213 Barentine (optica-8-4-442-R45) 2018; 115 Dyba (optica-8-4-442-R13) 2002; 88 |
References_xml | – volume: 101 start-page: 1277 year: 2011 ident: optica-8-4-442-R21 publication-title: Biophys. J. doi: 10.1016/j.bpj.2011.07.027 – volume: 18 start-page: 685 year: 2017 ident: optica-8-4-442-R1 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.71 – volume: 162 start-page: 246 year: 2015 ident: optica-8-4-442-R30 publication-title: Cell doi: 10.1016/j.cell.2015.06.067 – volume: 88 start-page: 163901 year: 2002 ident: optica-8-4-442-R13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.163901 – volume: 5 start-page: 132 year: 2013 ident: optica-8-4-442-R51 publication-title: Nature Chem. doi: 10.1038/nchem.1546 – volume: 18 start-page: 1657 year: 2010 ident: optica-8-4-442-R18 publication-title: Opt. Express doi: 10.1364/OE.18.001657 – volume: 97 start-page: 8206 year: 2000 ident: optica-8-4-442-R16 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.97.15.8206 – volume: 115 start-page: E8047 year: 2018 ident: optica-8-4-442-R48 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1807104115 – volume: 7 start-page: 29 year: 2014 ident: optica-8-4-442-R17 publication-title: J. Biophoton. doi: 10.1002/jbio.201300041 – volume: 115 start-page: 951 year: 2018 ident: optica-8-4-442-R45 publication-title: Biophys. J. doi: 10.1016/j.bpj.2018.07.028 – volume: 1663 start-page: 45 year: 2017 ident: optica-8-4-442-R26 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-7265-4_5 – volume: 27 start-page: 23378 year: 2019 ident: optica-8-4-442-R19 publication-title: Opt. Express doi: 10.1364/OE.27.023378 – volume: 218 start-page: 83 year: 2018 ident: optica-8-4-442-R3 publication-title: J. Cell Biol. doi: 10.1083/jcb.201809107 – volume: 1 start-page: 181 year: 2014 ident: optica-8-4-442-R24 publication-title: Optica doi: 10.1364/OPTICA.1.000181 – volume: 217 start-page: 184 year: 2005 ident: optica-8-4-442-R31 publication-title: J. Microsc. doi: 10.1111/j.1365-2818.2005.01431.x – volume: 54 start-page: 033001 year: 2020 ident: optica-8-4-442-R4 publication-title: J. Phys. D doi: 10.1088/1361-6463/abac81 – volume: 14 start-page: 987 year: 2017 ident: optica-8-4-442-R52 publication-title: Nat. Methods doi: 10.1038/nmeth.4403 – volume: 100 start-page: L63 year: 2011 ident: optica-8-4-442-R7 publication-title: Biophys. J. doi: 10.1016/j.bpj.2011.05.020 – volume: 12 start-page: 3605 year: 2004 ident: optica-8-4-442-R10 publication-title: Opt. Express doi: 10.1364/OPEX.12.003605 – volume: 24 start-page: 8862 year: 2016 ident: optica-8-4-442-R36 publication-title: Opt. Express doi: 10.1364/OE.24.008862 – volume: 7 start-page: 10778 year: 2016 ident: optica-8-4-442-R44 publication-title: Nat. Commun. doi: 10.1038/ncomms10778 – volume: 20 start-page: 20998 year: 2012 ident: optica-8-4-442-R12 publication-title: Opt. Express doi: 10.1364/OE.20.020998 – volume: 15 start-page: 755 year: 2018 ident: optica-8-4-442-R53 publication-title: Nat. Methods doi: 10.1038/s41592-018-0145-5 – volume: 66 start-page: 207 year: 1976 ident: optica-8-4-442-R47 publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSA.66.000207 – volume: 104 start-page: 770 year: 2013 ident: optica-8-4-442-R27 publication-title: Biophys. J. doi: 10.1016/j.bpj.2012.12.053 – volume: 9 start-page: 2508 year: 2009 ident: optica-8-4-442-R14 publication-title: Nano Lett. doi: 10.1021/nl901398t – volume: 3 start-page: 373 year: 2008 ident: optica-8-4-442-R49 publication-title: ACS Chem. Biol. doi: 10.1021/cb800025k – volume: 211 start-page: 15 year: 2019 ident: optica-8-4-442-R6 publication-title: Genetics doi: 10.1534/genetics.118.300227 – volume: 2 start-page: 932 year: 2005 ident: optica-8-4-442-R23 publication-title: Nat. Methods doi: 10.1038/nmeth818 – volume: 3 start-page: e165 year: 2014 ident: optica-8-4-442-R33 publication-title: Light Sci. Appl. doi: 10.1038/lsa.2014.46 – volume: 14 start-page: 869 year: 2017 ident: optica-8-4-442-R41 publication-title: Nat. Methods doi: 10.1038/nmeth.4337 – volume: 10 start-page: 1999 year: 2019 ident: optica-8-4-442-R37 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.10.001999 – volume: 24 start-page: 954 year: 1999 ident: optica-8-4-442-R11 publication-title: Opt. Lett. doi: 10.1364/OL.24.000954 – volume: 5 start-page: 539 year: 2008 ident: optica-8-4-442-R15 publication-title: Nat. Methods doi: 10.1038/nmeth.1214 – volume: 7 start-page: 1742 year: 2020 ident: optica-8-4-442-R20 publication-title: ACS Photon. doi: 10.1021/acsphotonics.0c00388 – volume: 213 start-page: 11 year: 2004 ident: optica-8-4-442-R35 publication-title: J. Microsc. doi: 10.1111/j.1365-2818.2004.01267.x – volume: 11 start-page: 625 year: 2014 ident: optica-8-4-442-R40 publication-title: Nat. Methods doi: 10.1038/nmeth.2925 – volume: 6 start-page: 7276 year: 2015 ident: optica-8-4-442-R43 publication-title: Nat. Commun. doi: 10.1038/ncomms8276 – volume: 19 start-page: 780 year: 1994 ident: optica-8-4-442-R5 publication-title: Opt. Lett. doi: 10.1364/OL.19.000780 – volume: 116 start-page: 9586 year: 2019 ident: optica-8-4-442-R42 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1819965116 – volume: 109 start-page: 6390 year: 2012 ident: optica-8-4-442-R28 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1119129109 – volume: 12 start-page: 6540 year: 2004 ident: optica-8-4-442-R34 publication-title: Opt. Express doi: 10.1364/OPEX.12.006540 – volume: 21 start-page: 1369 year: 2003 ident: optica-8-4-442-R46 publication-title: Nat. Biotechnol. doi: 10.1038/nbt899 – volume: 9 start-page: 3624 year: 2018 ident: optica-8-4-442-R50 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.9.003624 – volume: 335 start-page: 551 year: 2012 ident: optica-8-4-442-R9 publication-title: Science doi: 10.1126/science.1215369 – volume: 5 start-page: 15348 year: 2015 ident: optica-8-4-442-R54 publication-title: Sci. Rep. doi: 10.1038/srep15348 – volume: 9 start-page: 413 year: 1873 ident: optica-8-4-442-R2 publication-title: Archiv für mikroskopische Anatomie doi: 10.1007/BF02956173 – volume: 172 start-page: 1108 year: 2018 ident: optica-8-4-442-R55 publication-title: Cell doi: 10.1016/j.cell.2018.02.007 – volume: 40 start-page: 4915 year: 2015 ident: optica-8-4-442-R29 publication-title: Opt. Lett. doi: 10.1364/OL.40.004915 – volume: 2 start-page: 3135 year: 2011 ident: optica-8-4-442-R39 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.2.003135 – volume: 17 start-page: 14567 year: 2009 ident: optica-8-4-442-R25 publication-title: Opt. Express doi: 10.1364/OE.17.014567 – volume: 8 start-page: 3891 year: 2017 ident: optica-8-4-442-R32 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.8.003891 – volume: 174 start-page: 42 year: 2019 ident: optica-8-4-442-R8 publication-title: Methods doi: 10.1016/j.ymeth.2019.05.020 – volume: 89 start-page: 053701 year: 2018 ident: optica-8-4-442-R22 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.5020249 – volume: 14 start-page: 394 year: 2020 ident: optica-8-4-442-R38 publication-title: ACS Nano doi: 10.1021/acsnano.9b05891 |
SSID | ssj0001340590 |
Score | 2.461026 |
Snippet | Stimulated emission depletion (STED) microscopy enables the three-dimensional (3D) visualization of dynamic nanoscale structures in living cells, offering... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 442 |
Title | 3D super-resolution deep-tissue imaging in living mice |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34239948 https://www.proquest.com/docview/2550266893 https://pubmed.ncbi.nlm.nih.gov/PMC8243577 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgERIXxJvyUpAQl5CS2I6THFe7wIIEu4cu2ltkO7aItJtGbXpYfj3jR9OkLdLCJapcJ7E848k345nPCL3DBUsTIUkkY8wjmhdxJGJYV4BkWZbgrMq5qXf-_oOdnNNvF-nF5rRRW13Sian8vbeu5H-kCm0gV1Ml-w-S7R8KDfAb5AtXkDBcbyRjchwuV61aROAz-xeFlVJt1NnpDOsrdwZR3YSXtY0cXPlUtzUePW27QbLOTwVYWs59Dc91-GXBzbKf7kSXTS7sNfcfPRtEMJze620cMLLtvDcnKxdiPVO-uw8x4MTsluB4Y4kwIdCQEs9ZvafNm9J8oDF0YBapY9DaMdeEUZjj07PZ16PDKUDD3JFgjWmxtz5XfRKh3YtjtHS3l-722-gOBocBD5xrG20j1FTZ2pMG_bg94So84eNoAGOAsuN1bCfPDtDI7AG6792I4NDpxEN0SzWP0F2bziuXjxEjx8G2ZgQDzQi8ZgR1EzjNCIxmPEHnnz_Njk4if0JGJGlKukhXYIK1zJTKtaSV0EIAXFQcC14QpisuCpkKw7qohM6oZLJIU6kVJaIA3KzIU3TQgH48R0GRpKpQgC85ialmGvxwkqosEYzxHHMyQR_W01JKTx9vTjG5LPfKYYLe991bx5vyt45v13NcgmUz21W8UfPVsgRnNwaLAYB6gp65Oe8fZXkrC5pPUDaSRt_BsKaP_2nqX5Y9PcfgIWTZi5sO8CW6t1kTr9BBt1ip1wBEO_HG6tgfIOGGQg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+super-resolution+deep-tissue+imaging+in+living+mice&rft.jtitle=Optica&rft.au=Velasco%2C+Mary+Grace+M.&rft.au=Zhang%2C+Mengyang&rft.au=Antonello%2C+Jacopo&rft.au=Yuan%2C+Peng&rft.date=2021-04-20&rft.issn=2334-2536&rft.eissn=2334-2536&rft.volume=8&rft.issue=4&rft.spage=442&rft_id=info:doi/10.1364%2FOPTICA.416841&rft.externalDBID=n%2Fa&rft.externalDocID=10_1364_OPTICA_416841 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2334-2536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2334-2536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2334-2536&client=summon |