Topological Data Analysis for Multivariate Time Series Data

Over the last two decades, topological data analysis (TDA) has emerged as a very powerful data analytic approach that can deal with various data modalities of varying complexities. One of the most commonly used tools in TDA is persistent homology (PH), which can extract topological properties from d...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 25; no. 11; p. 1509
Main Authors El-Yaagoubi, Anass B., Chung, Moo K., Ombao, Hernando
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Over the last two decades, topological data analysis (TDA) has emerged as a very powerful data analytic approach that can deal with various data modalities of varying complexities. One of the most commonly used tools in TDA is persistent homology (PH), which can extract topological properties from data at various scales. The aim of this article is to introduce TDA concepts to a statistical audience and provide an approach to analyzing multivariate time series data. The application’s focus will be on multivariate brain signals and brain connectivity networks. Finally, this paper concludes with an overview of some open problems and potential application of TDA to modeling directionality in a brain network, as well as the casting of TDA in the context of mixed effect models to capture variations in the topological properties of data collected from multiple subjects.
AbstractList Over the last two decades, topological data analysis (TDA) has emerged as a very powerful data analytic approach that can deal with various data modalities of varying complexities. One of the most commonly used tools in TDA is persistent homology (PH), which can extract topological properties from data at various scales. The aim of this article is to introduce TDA concepts to a statistical audience and provide an approach to analyzing multivariate time series data. The application's focus will be on multivariate brain signals and brain connectivity networks. Finally, this paper concludes with an overview of some open problems and potential application of TDA to modeling directionality in a brain network, as well as the casting of TDA in the context of mixed effect models to capture variations in the topological properties of data collected from multiple subjects.Over the last two decades, topological data analysis (TDA) has emerged as a very powerful data analytic approach that can deal with various data modalities of varying complexities. One of the most commonly used tools in TDA is persistent homology (PH), which can extract topological properties from data at various scales. The aim of this article is to introduce TDA concepts to a statistical audience and provide an approach to analyzing multivariate time series data. The application's focus will be on multivariate brain signals and brain connectivity networks. Finally, this paper concludes with an overview of some open problems and potential application of TDA to modeling directionality in a brain network, as well as the casting of TDA in the context of mixed effect models to capture variations in the topological properties of data collected from multiple subjects.
Over the last two decades, topological data analysis (TDA) has emerged as a very powerful data analytic approach that can deal with various data modalities of varying complexities. One of the most commonly used tools in TDA is persistent homology (PH), which can extract topological properties from data at various scales. The aim of this article is to introduce TDA concepts to a statistical audience and provide an approach to analyzing multivariate time series data. The application's focus will be on multivariate brain signals and brain connectivity networks. Finally, this paper concludes with an overview of some open problems and potential application of TDA to modeling directionality in a brain network, as well as the casting of TDA in the context of mixed effect models to capture variations in the topological properties of data collected from multiple subjects.
Audience Academic
Author Chung, Moo K.
Ombao, Hernando
El-Yaagoubi, Anass B.
Author_xml – sequence: 1
  givenname: Anass B.
  surname: El-Yaagoubi
  fullname: El-Yaagoubi, Anass B.
– sequence: 2
  givenname: Moo K.
  surname: Chung
  fullname: Chung, Moo K.
– sequence: 3
  givenname: Hernando
  surname: Ombao
  fullname: Ombao, Hernando
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37998201$$D View this record in MEDLINE/PubMed
BookMark eNplkU1r3DAQhkVJaZJtD_0DxdBLcthEX7YkelqStA2k9NC9i7E8XrTI1layC_n3VeIklBQdJIZHjzTznpKjMY5IyEdGL4Qw9BJ5zRirqXlDThg1Zi0FpUf_nI_Jac57SrngrHlHjoUyRnPKTsiXbTzEEHfeQaiuYYJqM0K4zz5XfUzVjzlM_g8kDxNWWz9g9QuTx_yIvidvewgZPzztK7L9erO9-r6--_nt9mpzt3ayFtO65yipatEIrbk0mtWdbI1s6s5p0ShBgXW84dyg4k0reNtr55TW0HMtDRcrcrtouwh7e0h-gHRvI3j7WIhpZyFN3gW0TcdrJYwSqJgU2EJd1KaRBkTvNIfiOltchxR_z5gnO_jsMAQYMc7Zcl1-KVQtmoJ-foXu45zKcBaKlsEXbkUuFmoH5X0_9nFK4MrqcPCuxNT7Ut8oJQWnlD108-lJO7cDdi_9PEdSgMsFcCnmnLC3zk8w-TgWsw-WUfsQun0Jvdw4f3XjWfo_-xdT8KYe
CitedBy_id crossref_primary_10_3389_frai_2023_1293504
crossref_primary_10_3390_e27040328
crossref_primary_10_1109_ACCESS_2024_3512542
crossref_primary_10_7759_cureus_74855
crossref_primary_10_3389_fninf_2024_1387400
crossref_primary_10_1371_journal_pone_0310165
Cites_doi 10.1097/WCO.0b013e32833aa567
10.1371/journal.pone.0053199
10.1371/journal.pone.0126383
10.1109/CVPRW.2016.131
10.1016/j.neuroimage.2021.118245
10.1109/ISBI.2018.8363764
10.1038/30918
10.1088/2632-072X/ac5f8d
10.1109/TNN.2008.2005605
10.1109/TNN.2008.2010350
10.1016/j.pneurobio.2013.12.005
10.1038/nrn2575
10.1016/j.neuroimage.2017.04.039
10.3390/s20040969
10.1056/NEJMoa1204471
10.1016/j.physa.2017.09.028
10.1007/s12561-017-9210-3
10.1007/s00454-002-2885-2
10.1007/s12065-020-00540-3
10.3389/fnins.2016.00123
10.3934/era.2023213
10.1214/09-STS282
10.3389/fnins.2020.00779
10.4236/jamp.2017.59159
10.1007/s41468-017-0008-7
10.2140/involve.2018.11.27
10.1126/science.286.5439.509
10.1090/S0273-0979-09-01249-X
10.1002/hbm.1058
10.1016/j.cag.2021.10.022
10.1109/5.726791
10.1007/BF02925355
10.1016/j.media.2022.102471
10.1214/17-AOAS1119
10.1109/TMI.2020.3030047
10.1007/s00454-006-1276-5
10.1080/03610918.2021.1894335
10.1016/j.media.2021.102233
10.1007/BFb0091924
10.1097/WCO.0b013e32832d93dd
10.1109/TMI.2012.2219590
10.1016/j.euroneuro.2012.10.010
10.1090/S0273-0979-07-01191-3
10.1111/biom.12347
10.1016/S1053-8119(03)00115-0
10.1515/9781400838561
10.1016/j.nicl.2017.08.017
10.1186/1753-4631-1-3
10.3389/fnins.2017.00441
10.1214/15-AOAS886
10.1016/j.ecosta.2022.10.005
10.1007/978-1-4020-2696-6
10.1109/TSP.2007.914341
10.1093/schbul/sbac047
10.1007/978-0-387-78191-4_5
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
DOA
DOI 10.3390/e25111509
DatabaseName CrossRef
PubMed
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_6d2573973e7143eba51d29649a3fc82a
A774320012
37998201
10_3390_e25111509
Genre Journal Article
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH133614
– fundername: NIBIB NIH HHS
  grantid: R01 EB028753
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
NPM
PMFND
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-c453t-f2e407be9388249815d4b9465dc836730a1d26229e726b32bf8cc788af284923
IEDL.DBID BENPR
ISSN 1099-4300
IngestDate Wed Aug 27 01:31:53 EDT 2025
Thu Jul 10 20:02:25 EDT 2025
Sun Jul 13 04:18:15 EDT 2025
Tue Jun 10 21:18:27 EDT 2025
Wed Feb 19 02:10:45 EST 2025
Thu Apr 24 23:02:34 EDT 2025
Tue Jul 01 01:58:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords persistence landscape
brain dependence networks
multivariate time series analysis
persistence diagram
topological data analysis
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-f2e407be9388249815d4b9465dc836730a1d26229e726b32bf8cc788af284923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2893039075?pq-origsite=%requestingapplication%
PMID 37998201
PQID 2893039075
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_6d2573973e7143eba51d29649a3fc82a
proquest_miscellaneous_2893837536
proquest_journals_2893039075
gale_infotracacademiconefile_A774320012
pubmed_primary_37998201
crossref_citationtrail_10_3390_e25111509
crossref_primary_10_3390_e25111509
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationTitleAlternate Entropy (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Lei (ref_26) 2022; 48
Alves (ref_19) 2022; 3
Zhou (ref_27) 2022; 102
He (ref_58) 2010; 23
Bullmore (ref_60) 2009; 10
Nichols (ref_69) 2002; 15
Barabasi (ref_62) 1999; 286
Raz (ref_66) 2003; 19
ref_12
ref_56
ref_11
ref_55
ref_54
ref_53
Hasenstab (ref_44) 2015; 71
Watts (ref_61) 1998; 393
Ghrist (ref_5) 2008; 45
ref_17
Edelsbrunner (ref_32) 2007; 37
Wang (ref_45) 2016; 10
ref_59
Cabral (ref_48) 2014; 114
Gidea (ref_8) 2018; 491
Guerrero (ref_47) 2021; 17
Azevedo (ref_18) 2022; 79
Heinsfeld (ref_20) 2018; 17
Stam (ref_43) 2013; 23
ref_65
Sarvamangala (ref_14) 2022; 15
Caputi (ref_52) 2021; 238
James (ref_2) 1996; 66
Bubenik (ref_37) 2015; 16
Ting (ref_46) 2021; 40
Robinson (ref_67) 2017; 1
He (ref_63) 2009; 15
Lee (ref_9) 2012; 31
Carlsson (ref_6) 2009; 46
Bordier (ref_51) 2017; 11
Agami (ref_36) 2023; 52
Micheli (ref_22) 2009; 20
Bassett (ref_64) 2009; 22
Scarselli (ref_21) 2009; 20
ref_34
ref_33
ref_31
Edelsbrunner (ref_4) 2008; 453
(ref_35) 1995; 2
Li (ref_25) 2021; 74
Chung (ref_28) 2009; 21
ref_39
Adler (ref_30) 2010; 6
Cericola (ref_68) 2018; 11
Zhang (ref_23) 2020; 14
Dolz (ref_16) 2018; 170
Hu (ref_49) 2017; 11
Xu (ref_24) 2023; 31
Ombao (ref_57) 2008; 56
Edelsbrunner (ref_3) 2002; 28
Lindquist (ref_41) 2008; 23
Wang (ref_29) 2018; 12
ref_40
ref_1
LeCun (ref_13) 1998; 86
Wager (ref_42) 2013; 368
Bendich (ref_10) 2016; 10
Luo (ref_15) 2017; 5
Takens (ref_38) 1981; 898
ref_7
References_xml – volume: 23
  start-page: 341
  year: 2010
  ident: ref_58
  article-title: Graph theoretical modeling of brain connectivity
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/WCO.0b013e32833aa567
– volume: 15
  start-page: 333
  year: 2009
  ident: ref_63
  article-title: Neuronal Networks in Alzheimer’s Disease
  publication-title: Neurosci.
– ident: ref_50
  doi: 10.1371/journal.pone.0053199
– ident: ref_7
  doi: 10.1371/journal.pone.0126383
– ident: ref_39
  doi: 10.1109/CVPRW.2016.131
– volume: 238
  start-page: 118
  year: 2021
  ident: ref_52
  article-title: Promises and pitfalls of topological data analysis for brain connectivity analysis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2021.118245
– ident: ref_17
  doi: 10.1109/ISBI.2018.8363764
– volume: 393
  start-page: 440
  year: 1998
  ident: ref_61
  article-title: Collective dynamics of ‘small-world’ networks
  publication-title: Nature
  doi: 10.1038/30918
– volume: 3
  start-page: 025001
  year: 2022
  ident: ref_19
  article-title: EEG functional connectivity and deep learning for automatic diagnosis of brain disorders: Alzheimer’s disease and schizophrenia
  publication-title: J. Phys. Complex.
  doi: 10.1088/2632-072X/ac5f8d
– ident: ref_55
– volume: 20
  start-page: 61
  year: 2009
  ident: ref_21
  article-title: The Graph Neural Network Model
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2008.2005605
– volume: 20
  start-page: 498
  year: 2009
  ident: ref_22
  article-title: Neural Network for Graphs: A Contextual Constructive Approach
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2008.2010350
– ident: ref_65
– volume: 114
  start-page: 102
  year: 2014
  ident: ref_48
  article-title: Exploring the network dynamics underlying brain activity during rest
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2013.12.005
– volume: 10
  start-page: 186
  year: 2009
  ident: ref_60
  article-title: Complex brain networks: Graph theoretical analysis of structural and functional systems
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2575
– volume: 170
  start-page: 456
  year: 2018
  ident: ref_16
  article-title: 3D fully convolutional networks for subcortical segmentation in MRI: A large-scale study
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.04.039
– ident: ref_11
  doi: 10.3390/s20040969
– volume: 6
  start-page: 124
  year: 2010
  ident: ref_30
  article-title: Persistent Homology for Random Fields and Complexes
  publication-title: Borrow. Strength Theory Powering Appl.
– volume: 368
  start-page: 1388
  year: 2013
  ident: ref_42
  article-title: An fMRI-Based Neurologic Signature of Physical Pain
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1204471
– volume: 491
  start-page: 820
  year: 2018
  ident: ref_8
  article-title: Topological Data Analysis of Financial Time Series: Landscapes of Crashes
  publication-title: Phys. A Stat. Mech. Its Appl.
  doi: 10.1016/j.physa.2017.09.028
– volume: 16
  start-page: 77
  year: 2015
  ident: ref_37
  article-title: Statistical Topological Data Analysis Using Persistence Landscapes
  publication-title: J. Mach. Learn. Res.
– volume: 11
  start-page: 91
  year: 2017
  ident: ref_49
  article-title: Modeling High-Dimensional Multichannel Brain Signals
  publication-title: Stat. Biosci.
  doi: 10.1007/s12561-017-9210-3
– volume: 28
  start-page: 511
  year: 2002
  ident: ref_3
  article-title: Topological Persistence and Simplification
  publication-title: Discret. Comput. Geom.
  doi: 10.1007/s00454-002-2885-2
– volume: 15
  start-page: 1
  year: 2022
  ident: ref_14
  article-title: Convolutional neural networks in medical image understanding: A survey
  publication-title: Evol. Intell.
  doi: 10.1007/s12065-020-00540-3
– volume: 10
  start-page: 123
  year: 2016
  ident: ref_45
  article-title: An Efficient and Reliable Statistical Method for Estimating Functional Connectivity in Large Scale Brain Networks Using Partial Correlation
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2016.00123
– volume: 31
  start-page: 4185
  year: 2023
  ident: ref_24
  article-title: A comprehensive review of graph convolutional networks: Approaches and applications
  publication-title: Electron. Res. Arch.
  doi: 10.3934/era.2023213
– volume: 23
  start-page: 439
  year: 2008
  ident: ref_41
  article-title: The Statistical Analysis of fMRI Data
  publication-title: Stat. Sci.
  doi: 10.1214/09-STS282
– volume: 14
  start-page: 779
  year: 2020
  ident: ref_23
  article-title: A Survey on Deep Learning for Neuroimaging-Based Brain Disorder Analysis
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.00779
– volume: 5
  start-page: 1892
  year: 2017
  ident: ref_15
  article-title: Automatic Alzheimer’s Disease Recognition from MRI Data Using Deep Learning Method
  publication-title: J. Appl. Math. Phys.
  doi: 10.4236/jamp.2017.59159
– ident: ref_56
– volume: 1
  start-page: 241
  year: 2017
  ident: ref_67
  article-title: Hypothesis Testing for Topological Data Analysis
  publication-title: J. Appl. Comput. Topol.
  doi: 10.1007/s41468-017-0008-7
– volume: 11
  start-page: 27
  year: 2018
  ident: ref_68
  article-title: Extending hypothesis testing with persistent homology to three or more groups
  publication-title: Involv. A J. Math.
  doi: 10.2140/involve.2018.11.27
– volume: 286
  start-page: 509
  year: 1999
  ident: ref_62
  article-title: Emergence of Scaling in Random Networks
  publication-title: Science
  doi: 10.1126/science.286.5439.509
– volume: 46
  start-page: 255
  year: 2009
  ident: ref_6
  article-title: Topology and Data
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0273-0979-09-01249-X
– volume: 15
  start-page: 1
  year: 2002
  ident: ref_69
  article-title: Nonparametric permutation tests for functional neuroimaging: A primer with examples
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.1058
– volume: 102
  start-page: 269
  year: 2022
  ident: ref_27
  article-title: Learning persistent homology of 3D point clouds
  publication-title: Comput. Graph.
  doi: 10.1016/j.cag.2021.10.022
– volume: 86
  start-page: 2278
  year: 1998
  ident: ref_13
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 66
  start-page: 87
  year: 1996
  ident: ref_2
  article-title: Reflections on the history of topology
  publication-title: Semin. Mat. Fis. Milano
  doi: 10.1007/BF02925355
– volume: 79
  start-page: 102471
  year: 2022
  ident: ref_18
  article-title: A deep graph neural network architecture for modelling spatio-temporal dynamics in resting-state functional MRI data
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2022.102471
– volume: 12
  start-page: 1506
  year: 2018
  ident: ref_29
  article-title: Topological Data Analysis of Single-Trial Electroencephalographic Signals
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/17-AOAS1119
– volume: 40
  start-page: 468
  year: 2021
  ident: ref_46
  article-title: Detecting Dynamic Community Structure in Functional Brain Networks Across Individuals: A Multilayer Approach
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.3030047
– volume: 37
  start-page: 103
  year: 2007
  ident: ref_32
  article-title: Stability of persistence diagrams
  publication-title: Discret. Comput. Geom.
  doi: 10.1007/s00454-006-1276-5
– ident: ref_53
– volume: 52
  start-page: 1948
  year: 2023
  ident: ref_36
  article-title: Comparison of persistence diagrams
  publication-title: Commun. Stat.–Simul. Comput.
  doi: 10.1080/03610918.2021.1894335
– volume: 74
  start-page: 102233
  year: 2021
  ident: ref_25
  article-title: BrainGNN: Interpretable Brain Graph Neural Network for fMRI Analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102233
– ident: ref_34
– volume: 17
  start-page: 178
  year: 2021
  ident: ref_47
  article-title: Conex-Connect: Learning Patterns in Extremal Brain Connectivity From Multi-Channel EEG Data
  publication-title: Ann. Appl. Stat.
– volume: 2
  start-page: 1819
  year: 1995
  ident: ref_35
  article-title: Topological methods
  publication-title: Handb. Comb.
– volume: 898
  start-page: 366
  year: 1981
  ident: ref_38
  article-title: Detecting strange attractors in turbulence
  publication-title: Dyn. Syst. Turbul. Lect. Notes Math.
  doi: 10.1007/BFb0091924
– volume: 22
  start-page: 340
  year: 2009
  ident: ref_64
  article-title: Human brain networks in health and disease
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/WCO.0b013e32832d93dd
– volume: 453
  start-page: 257
  year: 2008
  ident: ref_4
  article-title: Persistent homology—A survey
  publication-title: Discret. Comput. Geom.
– volume: 31
  start-page: 2267
  year: 2012
  ident: ref_9
  article-title: Persistent Brain Network Homology From the Perspective of Dendrogram
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2012.2219590
– volume: 23
  start-page: 7
  year: 2013
  ident: ref_43
  article-title: Structure out of chaos: Functional brain network analysis with EEG, MEG, and functional MRI
  publication-title: Eur. Neuropsychopharmacol.
  doi: 10.1016/j.euroneuro.2012.10.010
– volume: 45
  start-page: 61
  year: 2008
  ident: ref_5
  article-title: Barcodes: The persistent topology of data
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0273-0979-07-01191-3
– volume: 71
  start-page: 1090
  year: 2015
  ident: ref_44
  article-title: Identifying longitudinal trends within EEG experiments
  publication-title: Biometrics
  doi: 10.1111/biom.12347
– volume: 19
  start-page: 226
  year: 2003
  ident: ref_66
  article-title: Statistical tests for fMRI based on experimental randomization
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(03)00115-0
– ident: ref_1
  doi: 10.1515/9781400838561
– volume: 17
  start-page: 16
  year: 2018
  ident: ref_20
  article-title: Identification of autism spectrum disorder using deep learning and the ABIDE dataset
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2017.08.017
– volume: 21
  start-page: 403
  year: 2009
  ident: ref_28
  article-title: Persistence diagrams of cortical surface data
  publication-title: Inf. Process. Med. Imaging
– ident: ref_59
  doi: 10.1186/1753-4631-1-3
– volume: 11
  start-page: 441
  year: 2017
  ident: ref_51
  article-title: Graph Analysis and Modularity of Brain Functional Connectivity Networks: Searching for the Optimal Threshold
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2017.00441
– ident: ref_54
– ident: ref_12
– volume: 10
  start-page: 198
  year: 2016
  ident: ref_10
  article-title: Persistent homology analysis of brain artery trees
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/15-AOAS886
– ident: ref_31
  doi: 10.1016/j.ecosta.2022.10.005
– ident: ref_33
  doi: 10.1007/978-1-4020-2696-6
– volume: 56
  start-page: 2259
  year: 2008
  ident: ref_57
  article-title: Evolutionary Coherence of Nonstationary Signals
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2007.914341
– volume: 48
  start-page: 881
  year: 2022
  ident: ref_26
  article-title: Graph Convolutional Networks Reveal Network-Level Functional Dysconnectivity in Schizophrenia
  publication-title: Schizophr. Bull.
  doi: 10.1093/schbul/sbac047
– ident: ref_40
  doi: 10.1007/978-0-387-78191-4_5
SSID ssj0023216
Score 2.367246
Snippet Over the last two decades, topological data analysis (TDA) has emerged as a very powerful data analytic approach that can deal with various data modalities of...
SourceID doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage 1509
SubjectTerms Brain
brain dependence networks
Data analysis
Deep learning
Electroencephalography
Euclidean space
Fourier transforms
Homology
Information management
Medical imaging
Multivariate analysis
multivariate time series analysis
Neural networks
Neuroimaging
Neurosciences
persistence diagram
persistence landscape
Time series
topological data analysis
Topology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxYE4itQUEBIsERt4thJxFQ-qgoJpiJ1s2zHmVCLaMrv512cRnxJLKzpDfa7uPdeknvH2IXJeVUNcxtxGh2QGptFqII8Ko0wGvXLxDH1Oz8-yclz-jATs0-jvuibMG8P7IEbyBI3FYomdzSp2xkt4pJeFRaaVzZPGmqEmrcWU63U4kksvY8Qh6gfOCLSoD7Fl-rTmPT__Cv-RjCbQjPeZlstQwxHfmU7bMPNd9n11A8zIEjDO13rcO0mEoJ1hk0b7TtkL5hjSF0dIT31cssmdI9Nx_fT20nUzj2IbCp4HVWJg8wyruCgv2mRx6JMTZFKUdqcSxxJDQhkkhQuS6ThialyayFldYVaA8K2z3rzxdwdsjAVBliUYmhdlmoyoc2czLMcwGVQplnArtZwKNt6gtNoihcFbUDIqQ65gJ13oa_eCOO3oBvCtAsg7-rmAjKq2oyqvzIasEvKiKIThsVY3TYKYEvkVaVGYKycPgVLAtZfJ021R2-poCBRlqH5RcDOup9xaOhNiJ67xcrHYP-Cy4Ad-GR3a-YZFCho0dF_7OWYbdJ8et-82Ge9-m3lTsBianPa3LAf1Ejp1Q
  priority: 102
  providerName: Directory of Open Access Journals
Title Topological Data Analysis for Multivariate Time Series Data
URI https://www.ncbi.nlm.nih.gov/pubmed/37998201
https://www.proquest.com/docview/2893039075
https://www.proquest.com/docview/2893837536
https://doaj.org/article/6d2573973e7143eba51d29649a3fc82a
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7R9sIFFfEKLau0qgSXqE38iCMOqIVuq0pUCC3S3izbcbig3dLd9vf3m8QbxENcckgmkT3OzHyfk5khOvJGdN2JCYXg1gHSh7pAFBRF65V3iF--LDnf-fO1vvwmr-ZqnjbcVum3yo1P7B11uwy8R34MYgBvCyqnPtz8LLhrFH9dTS00tmgHLtiAfO2cnV9_-TpSLlGVeqgnJHDvcWRADQjU_BaF-mL9f7vkP4BmH3Cmu_QkIcX8dFjap_QoLp7R-9nQ1IBVm39ya5dvqorkQJ95n057D_oLBJlzdkfOu19x1Ys-p9n0fPbxskj9D4oglVgXXRVBt3xsBGCwbEypWukbqVUbjNAwTVe2la6qJtaV9qLynQkBlNZ1iDkAbi9oe7FcxFeUS-Whi1adhFhLx8Vo66hNbYLhRht1ndG7jTpsSLXBuUXFDwuOwJqzo-YyOhxFb4aCGP8SOmOdjgJcw7o_sbz9bpNJWN3CXQAOicg92KN3CtNptGyc6DAwl9FbXhHLlobBBJcSBjAlrlllT4FcBf8SVmW0v1k0m0xwZX-9MBkdjJdhPPxFxC3i8m6QwfyV0Bm9HBZ7HLOowUQBj17__-F79Jg70A_pifu0vb69i2-AU9Z-QltmejFJr-SkZ_s4XszLB71e5iY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5VAuqIhX-gCDQHCJuvErtiqECu2ypY_TIvVm2Y7DBe223W0rfhT_sTN5IR7i1msyiux5-fuSzAzA62BEXY9MzAWNDpAhljmegiKvggoez69QFFTvfHKqJ1_llzN1tgI_-1oY-q2yz4lNoq7mkd6R7yAxwGyLVE59OL_IaWoUfV3tR2i0bnGUftwgZVu8P9xH-77hfHww_TTJu6kCeZRKLPOaJyQxIVmB4FJaU6hKBiu1qqIRGh3eFxXXnNtUch0ED7WJEYmirzGTW-pzgBn_nhTCUkCZ8eeB3wle6LZ5Ed4c7SRC74i37G9HXjMZ4O_8_weqbU638To86GAp22v96CGspNkj2J22ExTIjmzfLz3rW5gwhLqsqd29Rq6NcJVRKQmjV21p0Yg-huldqOUJrM7ms_QMmFQBdVGpUUyl9NT5tkzalCYamupRlhm869XhYteInOZhfHdISEhzbtBcBq8G0fO2-8a_hD6STgcBapjdXJhffnNd_DldYW5C7CUSDXxPwSvcjtXSelHjwnwGb8kijsIaFxN9V52AW6IGWW4PYbKg_894Blu90VwX7wv3yzszeDncxkilzy9-luZXrQzuXwmdwdPW2MOaRYm0F7HYxv8f_gLWJtOTY3d8eHq0Cfc56rmti9yC1eXlVdpGgLQMzxu3ZODuOAxuAWp8HEE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEC7CBoIXiRh1NGonGPQy7E4_ZxCRxM2Shy5BVsit6e7p8SK7SXaj-NP8d1bNS9SQW64zxdBdz6-mu6oAXvlcVNUoD6mg0QHSB5NiFBRp6ZV3GL98llG986epPvoiT87V-Rr86mph6Fpl5xNrR10uAv0jH2JigN4WUzk1rNprEWfjyfuLy5QmSNFJazdOo1GR0_jzB6Zvy3fHY5T1HueTw9mHo7SdMJAGqcQqrXjEhMbHQiDQlEWeqVL6QmpVhlxoVH6XlVxzXkTDtRfcV3kImDS6Cr16QT0P0PuvG_zGaADrB4fTs899tid4pptWRgKXPYyE5RF9FX8FwHpOwP_R4B-MW8e6ySbcb0Eq22-06gGsxflDeDtr5imQVNnYrRzrGpowBL6sruT9jpk3gldGhSWMfrzFZU26BbO7YMwjGMwX8_gEmFQeeVGqUYhGOuqDa6LOTR5ymvFhTAJvOnbY0LYlp-kY3yymJ8Q523Mugd2e9KLpxXET0QHxtCeg9tn1g8XVV9tao9UleipEYiLS-PfoncLtFFoWTlS4MJfAa5KIJSPHxQTX1irglqhdlt1H0CzoNhpPYLsTmm2tf2n_6GoCO_1rtFs6jHHzuLhuaHD_SugEHjfC7tcsDCbBiMye3v7xl7CBJmA_Hk9Pn8E9jmxuiiS3YbC6uo7PES2t_ItWLxnYO7aE36iDIdM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topological+Data+Analysis+for+Multivariate+Time+Series+Data&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=El-Yaagoubi%2C+Anass+B&rft.au=Chung%2C+Moo+K&rft.au=Ombao%2C+Hernando&rft.date=2023-11-01&rft.eissn=1099-4300&rft.volume=25&rft.issue=11&rft_id=info:doi/10.3390%2Fe25111509&rft_id=info%3Apmid%2F37998201&rft.externalDocID=37998201
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon