Topological Data Analysis for Multivariate Time Series Data
Over the last two decades, topological data analysis (TDA) has emerged as a very powerful data analytic approach that can deal with various data modalities of varying complexities. One of the most commonly used tools in TDA is persistent homology (PH), which can extract topological properties from d...
Saved in:
Published in | Entropy (Basel, Switzerland) Vol. 25; no. 11; p. 1509 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Over the last two decades, topological data analysis (TDA) has emerged as a very powerful data analytic approach that can deal with various data modalities of varying complexities. One of the most commonly used tools in TDA is persistent homology (PH), which can extract topological properties from data at various scales. The aim of this article is to introduce TDA concepts to a statistical audience and provide an approach to analyzing multivariate time series data. The application’s focus will be on multivariate brain signals and brain connectivity networks. Finally, this paper concludes with an overview of some open problems and potential application of TDA to modeling directionality in a brain network, as well as the casting of TDA in the context of mixed effect models to capture variations in the topological properties of data collected from multiple subjects. |
---|---|
AbstractList | Over the last two decades, topological data analysis (TDA) has emerged as a very powerful data analytic approach that can deal with various data modalities of varying complexities. One of the most commonly used tools in TDA is persistent homology (PH), which can extract topological properties from data at various scales. The aim of this article is to introduce TDA concepts to a statistical audience and provide an approach to analyzing multivariate time series data. The application's focus will be on multivariate brain signals and brain connectivity networks. Finally, this paper concludes with an overview of some open problems and potential application of TDA to modeling directionality in a brain network, as well as the casting of TDA in the context of mixed effect models to capture variations in the topological properties of data collected from multiple subjects.Over the last two decades, topological data analysis (TDA) has emerged as a very powerful data analytic approach that can deal with various data modalities of varying complexities. One of the most commonly used tools in TDA is persistent homology (PH), which can extract topological properties from data at various scales. The aim of this article is to introduce TDA concepts to a statistical audience and provide an approach to analyzing multivariate time series data. The application's focus will be on multivariate brain signals and brain connectivity networks. Finally, this paper concludes with an overview of some open problems and potential application of TDA to modeling directionality in a brain network, as well as the casting of TDA in the context of mixed effect models to capture variations in the topological properties of data collected from multiple subjects. Over the last two decades, topological data analysis (TDA) has emerged as a very powerful data analytic approach that can deal with various data modalities of varying complexities. One of the most commonly used tools in TDA is persistent homology (PH), which can extract topological properties from data at various scales. The aim of this article is to introduce TDA concepts to a statistical audience and provide an approach to analyzing multivariate time series data. The application's focus will be on multivariate brain signals and brain connectivity networks. Finally, this paper concludes with an overview of some open problems and potential application of TDA to modeling directionality in a brain network, as well as the casting of TDA in the context of mixed effect models to capture variations in the topological properties of data collected from multiple subjects. |
Audience | Academic |
Author | Chung, Moo K. Ombao, Hernando El-Yaagoubi, Anass B. |
Author_xml | – sequence: 1 givenname: Anass B. surname: El-Yaagoubi fullname: El-Yaagoubi, Anass B. – sequence: 2 givenname: Moo K. surname: Chung fullname: Chung, Moo K. – sequence: 3 givenname: Hernando surname: Ombao fullname: Ombao, Hernando |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37998201$$D View this record in MEDLINE/PubMed |
BookMark | eNplkU1r3DAQhkVJaZJtD_0DxdBLcthEX7YkelqStA2k9NC9i7E8XrTI1layC_n3VeIklBQdJIZHjzTznpKjMY5IyEdGL4Qw9BJ5zRirqXlDThg1Zi0FpUf_nI_Jac57SrngrHlHjoUyRnPKTsiXbTzEEHfeQaiuYYJqM0K4zz5XfUzVjzlM_g8kDxNWWz9g9QuTx_yIvidvewgZPzztK7L9erO9-r6--_nt9mpzt3ayFtO65yipatEIrbk0mtWdbI1s6s5p0ShBgXW84dyg4k0reNtr55TW0HMtDRcrcrtouwh7e0h-gHRvI3j7WIhpZyFN3gW0TcdrJYwSqJgU2EJd1KaRBkTvNIfiOltchxR_z5gnO_jsMAQYMc7Zcl1-KVQtmoJ-foXu45zKcBaKlsEXbkUuFmoH5X0_9nFK4MrqcPCuxNT7Ut8oJQWnlD108-lJO7cDdi_9PEdSgMsFcCnmnLC3zk8w-TgWsw-WUfsQun0Jvdw4f3XjWfo_-xdT8KYe |
CitedBy_id | crossref_primary_10_3389_frai_2023_1293504 crossref_primary_10_3390_e27040328 crossref_primary_10_1109_ACCESS_2024_3512542 crossref_primary_10_7759_cureus_74855 crossref_primary_10_3389_fninf_2024_1387400 crossref_primary_10_1371_journal_pone_0310165 |
Cites_doi | 10.1097/WCO.0b013e32833aa567 10.1371/journal.pone.0053199 10.1371/journal.pone.0126383 10.1109/CVPRW.2016.131 10.1016/j.neuroimage.2021.118245 10.1109/ISBI.2018.8363764 10.1038/30918 10.1088/2632-072X/ac5f8d 10.1109/TNN.2008.2005605 10.1109/TNN.2008.2010350 10.1016/j.pneurobio.2013.12.005 10.1038/nrn2575 10.1016/j.neuroimage.2017.04.039 10.3390/s20040969 10.1056/NEJMoa1204471 10.1016/j.physa.2017.09.028 10.1007/s12561-017-9210-3 10.1007/s00454-002-2885-2 10.1007/s12065-020-00540-3 10.3389/fnins.2016.00123 10.3934/era.2023213 10.1214/09-STS282 10.3389/fnins.2020.00779 10.4236/jamp.2017.59159 10.1007/s41468-017-0008-7 10.2140/involve.2018.11.27 10.1126/science.286.5439.509 10.1090/S0273-0979-09-01249-X 10.1002/hbm.1058 10.1016/j.cag.2021.10.022 10.1109/5.726791 10.1007/BF02925355 10.1016/j.media.2022.102471 10.1214/17-AOAS1119 10.1109/TMI.2020.3030047 10.1007/s00454-006-1276-5 10.1080/03610918.2021.1894335 10.1016/j.media.2021.102233 10.1007/BFb0091924 10.1097/WCO.0b013e32832d93dd 10.1109/TMI.2012.2219590 10.1016/j.euroneuro.2012.10.010 10.1090/S0273-0979-07-01191-3 10.1111/biom.12347 10.1016/S1053-8119(03)00115-0 10.1515/9781400838561 10.1016/j.nicl.2017.08.017 10.1186/1753-4631-1-3 10.3389/fnins.2017.00441 10.1214/15-AOAS886 10.1016/j.ecosta.2022.10.005 10.1007/978-1-4020-2696-6 10.1109/TSP.2007.914341 10.1093/schbul/sbac047 10.1007/978-0-387-78191-4_5 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION NPM 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 DOA |
DOI | 10.3390/e25111509 |
DatabaseName | CrossRef PubMed Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1099-4300 |
ExternalDocumentID | oai_doaj_org_article_6d2573973e7143eba51d29649a3fc82a A774320012 37998201 10_3390_e25111509 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH133614 – fundername: NIBIB NIH HHS grantid: R01 EB028753 |
GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PROAC PTHSS RNS RPM TR2 TUS XSB ~8M NPM PMFND 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 PUEGO |
ID | FETCH-LOGICAL-c453t-f2e407be9388249815d4b9465dc836730a1d26229e726b32bf8cc788af284923 |
IEDL.DBID | BENPR |
ISSN | 1099-4300 |
IngestDate | Wed Aug 27 01:31:53 EDT 2025 Thu Jul 10 20:02:25 EDT 2025 Sun Jul 13 04:18:15 EDT 2025 Tue Jun 10 21:18:27 EDT 2025 Wed Feb 19 02:10:45 EST 2025 Thu Apr 24 23:02:34 EDT 2025 Tue Jul 01 01:58:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | persistence landscape brain dependence networks multivariate time series analysis persistence diagram topological data analysis |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c453t-f2e407be9388249815d4b9465dc836730a1d26229e726b32bf8cc788af284923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2893039075?pq-origsite=%requestingapplication% |
PMID | 37998201 |
PQID | 2893039075 |
PQPubID | 2032401 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6d2573973e7143eba51d29649a3fc82a proquest_miscellaneous_2893837536 proquest_journals_2893039075 gale_infotracacademiconefile_A774320012 pubmed_primary_37998201 crossref_citationtrail_10_3390_e25111509 crossref_primary_10_3390_e25111509 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Entropy (Basel, Switzerland) |
PublicationTitleAlternate | Entropy (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Lei (ref_26) 2022; 48 Alves (ref_19) 2022; 3 Zhou (ref_27) 2022; 102 He (ref_58) 2010; 23 Bullmore (ref_60) 2009; 10 Nichols (ref_69) 2002; 15 Barabasi (ref_62) 1999; 286 Raz (ref_66) 2003; 19 ref_12 ref_56 ref_11 ref_55 ref_54 ref_53 Hasenstab (ref_44) 2015; 71 Watts (ref_61) 1998; 393 Ghrist (ref_5) 2008; 45 ref_17 Edelsbrunner (ref_32) 2007; 37 Wang (ref_45) 2016; 10 ref_59 Cabral (ref_48) 2014; 114 Gidea (ref_8) 2018; 491 Guerrero (ref_47) 2021; 17 Azevedo (ref_18) 2022; 79 Heinsfeld (ref_20) 2018; 17 Stam (ref_43) 2013; 23 ref_65 Sarvamangala (ref_14) 2022; 15 Caputi (ref_52) 2021; 238 James (ref_2) 1996; 66 Bubenik (ref_37) 2015; 16 Ting (ref_46) 2021; 40 Robinson (ref_67) 2017; 1 He (ref_63) 2009; 15 Lee (ref_9) 2012; 31 Carlsson (ref_6) 2009; 46 Bordier (ref_51) 2017; 11 Agami (ref_36) 2023; 52 Micheli (ref_22) 2009; 20 Bassett (ref_64) 2009; 22 Scarselli (ref_21) 2009; 20 ref_34 ref_33 ref_31 Edelsbrunner (ref_4) 2008; 453 (ref_35) 1995; 2 Li (ref_25) 2021; 74 Chung (ref_28) 2009; 21 ref_39 Adler (ref_30) 2010; 6 Cericola (ref_68) 2018; 11 Zhang (ref_23) 2020; 14 Dolz (ref_16) 2018; 170 Hu (ref_49) 2017; 11 Xu (ref_24) 2023; 31 Ombao (ref_57) 2008; 56 Edelsbrunner (ref_3) 2002; 28 Lindquist (ref_41) 2008; 23 Wang (ref_29) 2018; 12 ref_40 ref_1 LeCun (ref_13) 1998; 86 Wager (ref_42) 2013; 368 Bendich (ref_10) 2016; 10 Luo (ref_15) 2017; 5 Takens (ref_38) 1981; 898 ref_7 |
References_xml | – volume: 23 start-page: 341 year: 2010 ident: ref_58 article-title: Graph theoretical modeling of brain connectivity publication-title: Curr. Opin. Neurol. doi: 10.1097/WCO.0b013e32833aa567 – volume: 15 start-page: 333 year: 2009 ident: ref_63 article-title: Neuronal Networks in Alzheimer’s Disease publication-title: Neurosci. – ident: ref_50 doi: 10.1371/journal.pone.0053199 – ident: ref_7 doi: 10.1371/journal.pone.0126383 – ident: ref_39 doi: 10.1109/CVPRW.2016.131 – volume: 238 start-page: 118 year: 2021 ident: ref_52 article-title: Promises and pitfalls of topological data analysis for brain connectivity analysis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2021.118245 – ident: ref_17 doi: 10.1109/ISBI.2018.8363764 – volume: 393 start-page: 440 year: 1998 ident: ref_61 article-title: Collective dynamics of ‘small-world’ networks publication-title: Nature doi: 10.1038/30918 – volume: 3 start-page: 025001 year: 2022 ident: ref_19 article-title: EEG functional connectivity and deep learning for automatic diagnosis of brain disorders: Alzheimer’s disease and schizophrenia publication-title: J. Phys. Complex. doi: 10.1088/2632-072X/ac5f8d – ident: ref_55 – volume: 20 start-page: 61 year: 2009 ident: ref_21 article-title: The Graph Neural Network Model publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2008.2005605 – volume: 20 start-page: 498 year: 2009 ident: ref_22 article-title: Neural Network for Graphs: A Contextual Constructive Approach publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2008.2010350 – ident: ref_65 – volume: 114 start-page: 102 year: 2014 ident: ref_48 article-title: Exploring the network dynamics underlying brain activity during rest publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2013.12.005 – volume: 10 start-page: 186 year: 2009 ident: ref_60 article-title: Complex brain networks: Graph theoretical analysis of structural and functional systems publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2575 – volume: 170 start-page: 456 year: 2018 ident: ref_16 article-title: 3D fully convolutional networks for subcortical segmentation in MRI: A large-scale study publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.04.039 – ident: ref_11 doi: 10.3390/s20040969 – volume: 6 start-page: 124 year: 2010 ident: ref_30 article-title: Persistent Homology for Random Fields and Complexes publication-title: Borrow. Strength Theory Powering Appl. – volume: 368 start-page: 1388 year: 2013 ident: ref_42 article-title: An fMRI-Based Neurologic Signature of Physical Pain publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1204471 – volume: 491 start-page: 820 year: 2018 ident: ref_8 article-title: Topological Data Analysis of Financial Time Series: Landscapes of Crashes publication-title: Phys. A Stat. Mech. Its Appl. doi: 10.1016/j.physa.2017.09.028 – volume: 16 start-page: 77 year: 2015 ident: ref_37 article-title: Statistical Topological Data Analysis Using Persistence Landscapes publication-title: J. Mach. Learn. Res. – volume: 11 start-page: 91 year: 2017 ident: ref_49 article-title: Modeling High-Dimensional Multichannel Brain Signals publication-title: Stat. Biosci. doi: 10.1007/s12561-017-9210-3 – volume: 28 start-page: 511 year: 2002 ident: ref_3 article-title: Topological Persistence and Simplification publication-title: Discret. Comput. Geom. doi: 10.1007/s00454-002-2885-2 – volume: 15 start-page: 1 year: 2022 ident: ref_14 article-title: Convolutional neural networks in medical image understanding: A survey publication-title: Evol. Intell. doi: 10.1007/s12065-020-00540-3 – volume: 10 start-page: 123 year: 2016 ident: ref_45 article-title: An Efficient and Reliable Statistical Method for Estimating Functional Connectivity in Large Scale Brain Networks Using Partial Correlation publication-title: Front. Neurosci. doi: 10.3389/fnins.2016.00123 – volume: 31 start-page: 4185 year: 2023 ident: ref_24 article-title: A comprehensive review of graph convolutional networks: Approaches and applications publication-title: Electron. Res. Arch. doi: 10.3934/era.2023213 – volume: 23 start-page: 439 year: 2008 ident: ref_41 article-title: The Statistical Analysis of fMRI Data publication-title: Stat. Sci. doi: 10.1214/09-STS282 – volume: 14 start-page: 779 year: 2020 ident: ref_23 article-title: A Survey on Deep Learning for Neuroimaging-Based Brain Disorder Analysis publication-title: Front. Neurosci. doi: 10.3389/fnins.2020.00779 – volume: 5 start-page: 1892 year: 2017 ident: ref_15 article-title: Automatic Alzheimer’s Disease Recognition from MRI Data Using Deep Learning Method publication-title: J. Appl. Math. Phys. doi: 10.4236/jamp.2017.59159 – ident: ref_56 – volume: 1 start-page: 241 year: 2017 ident: ref_67 article-title: Hypothesis Testing for Topological Data Analysis publication-title: J. Appl. Comput. Topol. doi: 10.1007/s41468-017-0008-7 – volume: 11 start-page: 27 year: 2018 ident: ref_68 article-title: Extending hypothesis testing with persistent homology to three or more groups publication-title: Involv. A J. Math. doi: 10.2140/involve.2018.11.27 – volume: 286 start-page: 509 year: 1999 ident: ref_62 article-title: Emergence of Scaling in Random Networks publication-title: Science doi: 10.1126/science.286.5439.509 – volume: 46 start-page: 255 year: 2009 ident: ref_6 article-title: Topology and Data publication-title: Bull. Am. Math. Soc. doi: 10.1090/S0273-0979-09-01249-X – volume: 15 start-page: 1 year: 2002 ident: ref_69 article-title: Nonparametric permutation tests for functional neuroimaging: A primer with examples publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.1058 – volume: 102 start-page: 269 year: 2022 ident: ref_27 article-title: Learning persistent homology of 3D point clouds publication-title: Comput. Graph. doi: 10.1016/j.cag.2021.10.022 – volume: 86 start-page: 2278 year: 1998 ident: ref_13 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 66 start-page: 87 year: 1996 ident: ref_2 article-title: Reflections on the history of topology publication-title: Semin. Mat. Fis. Milano doi: 10.1007/BF02925355 – volume: 79 start-page: 102471 year: 2022 ident: ref_18 article-title: A deep graph neural network architecture for modelling spatio-temporal dynamics in resting-state functional MRI data publication-title: Med. Image Anal. doi: 10.1016/j.media.2022.102471 – volume: 12 start-page: 1506 year: 2018 ident: ref_29 article-title: Topological Data Analysis of Single-Trial Electroencephalographic Signals publication-title: Ann. Appl. Stat. doi: 10.1214/17-AOAS1119 – volume: 40 start-page: 468 year: 2021 ident: ref_46 article-title: Detecting Dynamic Community Structure in Functional Brain Networks Across Individuals: A Multilayer Approach publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.3030047 – volume: 37 start-page: 103 year: 2007 ident: ref_32 article-title: Stability of persistence diagrams publication-title: Discret. Comput. Geom. doi: 10.1007/s00454-006-1276-5 – ident: ref_53 – volume: 52 start-page: 1948 year: 2023 ident: ref_36 article-title: Comparison of persistence diagrams publication-title: Commun. Stat.–Simul. Comput. doi: 10.1080/03610918.2021.1894335 – volume: 74 start-page: 102233 year: 2021 ident: ref_25 article-title: BrainGNN: Interpretable Brain Graph Neural Network for fMRI Analysis publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102233 – ident: ref_34 – volume: 17 start-page: 178 year: 2021 ident: ref_47 article-title: Conex-Connect: Learning Patterns in Extremal Brain Connectivity From Multi-Channel EEG Data publication-title: Ann. Appl. Stat. – volume: 2 start-page: 1819 year: 1995 ident: ref_35 article-title: Topological methods publication-title: Handb. Comb. – volume: 898 start-page: 366 year: 1981 ident: ref_38 article-title: Detecting strange attractors in turbulence publication-title: Dyn. Syst. Turbul. Lect. Notes Math. doi: 10.1007/BFb0091924 – volume: 22 start-page: 340 year: 2009 ident: ref_64 article-title: Human brain networks in health and disease publication-title: Curr. Opin. Neurol. doi: 10.1097/WCO.0b013e32832d93dd – volume: 453 start-page: 257 year: 2008 ident: ref_4 article-title: Persistent homology—A survey publication-title: Discret. Comput. Geom. – volume: 31 start-page: 2267 year: 2012 ident: ref_9 article-title: Persistent Brain Network Homology From the Perspective of Dendrogram publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2012.2219590 – volume: 23 start-page: 7 year: 2013 ident: ref_43 article-title: Structure out of chaos: Functional brain network analysis with EEG, MEG, and functional MRI publication-title: Eur. Neuropsychopharmacol. doi: 10.1016/j.euroneuro.2012.10.010 – volume: 45 start-page: 61 year: 2008 ident: ref_5 article-title: Barcodes: The persistent topology of data publication-title: Bull. Am. Math. Soc. doi: 10.1090/S0273-0979-07-01191-3 – volume: 71 start-page: 1090 year: 2015 ident: ref_44 article-title: Identifying longitudinal trends within EEG experiments publication-title: Biometrics doi: 10.1111/biom.12347 – volume: 19 start-page: 226 year: 2003 ident: ref_66 article-title: Statistical tests for fMRI based on experimental randomization publication-title: NeuroImage doi: 10.1016/S1053-8119(03)00115-0 – ident: ref_1 doi: 10.1515/9781400838561 – volume: 17 start-page: 16 year: 2018 ident: ref_20 article-title: Identification of autism spectrum disorder using deep learning and the ABIDE dataset publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2017.08.017 – volume: 21 start-page: 403 year: 2009 ident: ref_28 article-title: Persistence diagrams of cortical surface data publication-title: Inf. Process. Med. Imaging – ident: ref_59 doi: 10.1186/1753-4631-1-3 – volume: 11 start-page: 441 year: 2017 ident: ref_51 article-title: Graph Analysis and Modularity of Brain Functional Connectivity Networks: Searching for the Optimal Threshold publication-title: Front. Neurosci. doi: 10.3389/fnins.2017.00441 – ident: ref_54 – ident: ref_12 – volume: 10 start-page: 198 year: 2016 ident: ref_10 article-title: Persistent homology analysis of brain artery trees publication-title: Ann. Appl. Stat. doi: 10.1214/15-AOAS886 – ident: ref_31 doi: 10.1016/j.ecosta.2022.10.005 – ident: ref_33 doi: 10.1007/978-1-4020-2696-6 – volume: 56 start-page: 2259 year: 2008 ident: ref_57 article-title: Evolutionary Coherence of Nonstationary Signals publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2007.914341 – volume: 48 start-page: 881 year: 2022 ident: ref_26 article-title: Graph Convolutional Networks Reveal Network-Level Functional Dysconnectivity in Schizophrenia publication-title: Schizophr. Bull. doi: 10.1093/schbul/sbac047 – ident: ref_40 doi: 10.1007/978-0-387-78191-4_5 |
SSID | ssj0023216 |
Score | 2.367246 |
Snippet | Over the last two decades, topological data analysis (TDA) has emerged as a very powerful data analytic approach that can deal with various data modalities of... |
SourceID | doaj proquest gale pubmed crossref |
SourceType | Open Website Aggregation Database Index Database Enrichment Source |
StartPage | 1509 |
SubjectTerms | Brain brain dependence networks Data analysis Deep learning Electroencephalography Euclidean space Fourier transforms Homology Information management Medical imaging Multivariate analysis multivariate time series analysis Neural networks Neuroimaging Neurosciences persistence diagram persistence landscape Time series topological data analysis Topology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxYE4itQUEBIsERt4thJxFQ-qgoJpiJ1s2zHmVCLaMrv512cRnxJLKzpDfa7uPdeknvH2IXJeVUNcxtxGh2QGptFqII8Ko0wGvXLxDH1Oz8-yclz-jATs0-jvuibMG8P7IEbyBI3FYomdzSp2xkt4pJeFRaaVzZPGmqEmrcWU63U4kksvY8Qh6gfOCLSoD7Fl-rTmPT__Cv-RjCbQjPeZlstQwxHfmU7bMPNd9n11A8zIEjDO13rcO0mEoJ1hk0b7TtkL5hjSF0dIT31cssmdI9Nx_fT20nUzj2IbCp4HVWJg8wyruCgv2mRx6JMTZFKUdqcSxxJDQhkkhQuS6ThialyayFldYVaA8K2z3rzxdwdsjAVBliUYmhdlmoyoc2czLMcwGVQplnArtZwKNt6gtNoihcFbUDIqQ65gJ13oa_eCOO3oBvCtAsg7-rmAjKq2oyqvzIasEvKiKIThsVY3TYKYEvkVaVGYKycPgVLAtZfJ021R2-poCBRlqH5RcDOup9xaOhNiJ67xcrHYP-Cy4Ad-GR3a-YZFCho0dF_7OWYbdJ8et-82Ge9-m3lTsBianPa3LAf1Ejp1Q priority: 102 providerName: Directory of Open Access Journals |
Title | Topological Data Analysis for Multivariate Time Series Data |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37998201 https://www.proquest.com/docview/2893039075 https://www.proquest.com/docview/2893837536 https://doaj.org/article/6d2573973e7143eba51d29649a3fc82a |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7R9sIFFfEKLau0qgSXqE38iCMOqIVuq0pUCC3S3izbcbig3dLd9vf3m8QbxENcckgmkT3OzHyfk5khOvJGdN2JCYXg1gHSh7pAFBRF65V3iF--LDnf-fO1vvwmr-ZqnjbcVum3yo1P7B11uwy8R34MYgBvCyqnPtz8LLhrFH9dTS00tmgHLtiAfO2cnV9_-TpSLlGVeqgnJHDvcWRADQjU_BaF-mL9f7vkP4BmH3Cmu_QkIcX8dFjap_QoLp7R-9nQ1IBVm39ya5dvqorkQJ95n057D_oLBJlzdkfOu19x1Ys-p9n0fPbxskj9D4oglVgXXRVBt3xsBGCwbEypWukbqVUbjNAwTVe2la6qJtaV9qLynQkBlNZ1iDkAbi9oe7FcxFeUS-Whi1adhFhLx8Vo66hNbYLhRht1ndG7jTpsSLXBuUXFDwuOwJqzo-YyOhxFb4aCGP8SOmOdjgJcw7o_sbz9bpNJWN3CXQAOicg92KN3CtNptGyc6DAwl9FbXhHLlobBBJcSBjAlrlllT4FcBf8SVmW0v1k0m0xwZX-9MBkdjJdhPPxFxC3i8m6QwfyV0Bm9HBZ7HLOowUQBj17__-F79Jg70A_pifu0vb69i2-AU9Z-QltmejFJr-SkZ_s4XszLB71e5iY |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5VAuqIhX-gCDQHCJuvErtiqECu2ypY_TIvVm2Y7DBe223W0rfhT_sTN5IR7i1msyiux5-fuSzAzA62BEXY9MzAWNDpAhljmegiKvggoez69QFFTvfHKqJ1_llzN1tgI_-1oY-q2yz4lNoq7mkd6R7yAxwGyLVE59OL_IaWoUfV3tR2i0bnGUftwgZVu8P9xH-77hfHww_TTJu6kCeZRKLPOaJyQxIVmB4FJaU6hKBiu1qqIRGh3eFxXXnNtUch0ED7WJEYmirzGTW-pzgBn_nhTCUkCZ8eeB3wle6LZ5Ed4c7SRC74i37G9HXjMZ4O_8_weqbU638To86GAp22v96CGspNkj2J22ExTIjmzfLz3rW5gwhLqsqd29Rq6NcJVRKQmjV21p0Yg-huldqOUJrM7ms_QMmFQBdVGpUUyl9NT5tkzalCYamupRlhm869XhYteInOZhfHdISEhzbtBcBq8G0fO2-8a_hD6STgcBapjdXJhffnNd_DldYW5C7CUSDXxPwSvcjtXSelHjwnwGb8kijsIaFxN9V52AW6IGWW4PYbKg_894Blu90VwX7wv3yzszeDncxkilzy9-luZXrQzuXwmdwdPW2MOaRYm0F7HYxv8f_gLWJtOTY3d8eHq0Cfc56rmti9yC1eXlVdpGgLQMzxu3ZODuOAxuAWp8HEE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEC7CBoIXiRh1NGonGPQy7E4_ZxCRxM2Shy5BVsit6e7p8SK7SXaj-NP8d1bNS9SQW64zxdBdz6-mu6oAXvlcVNUoD6mg0QHSB5NiFBRp6ZV3GL98llG986epPvoiT87V-Rr86mph6Fpl5xNrR10uAv0jH2JigN4WUzk1rNprEWfjyfuLy5QmSNFJazdOo1GR0_jzB6Zvy3fHY5T1HueTw9mHo7SdMJAGqcQqrXjEhMbHQiDQlEWeqVL6QmpVhlxoVH6XlVxzXkTDtRfcV3kImDS6Cr16QT0P0PuvG_zGaADrB4fTs899tid4pptWRgKXPYyE5RF9FX8FwHpOwP_R4B-MW8e6ySbcb0Eq22-06gGsxflDeDtr5imQVNnYrRzrGpowBL6sruT9jpk3gldGhSWMfrzFZU26BbO7YMwjGMwX8_gEmFQeeVGqUYhGOuqDa6LOTR5ymvFhTAJvOnbY0LYlp-kY3yymJ8Q523Mugd2e9KLpxXET0QHxtCeg9tn1g8XVV9tao9UleipEYiLS-PfoncLtFFoWTlS4MJfAa5KIJSPHxQTX1irglqhdlt1H0CzoNhpPYLsTmm2tf2n_6GoCO_1rtFs6jHHzuLhuaHD_SugEHjfC7tcsDCbBiMye3v7xl7CBJmA_Hk9Pn8E9jmxuiiS3YbC6uo7PES2t_ItWLxnYO7aE36iDIdM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topological+Data+Analysis+for+Multivariate+Time+Series+Data&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=El-Yaagoubi%2C+Anass+B&rft.au=Chung%2C+Moo+K&rft.au=Ombao%2C+Hernando&rft.date=2023-11-01&rft.eissn=1099-4300&rft.volume=25&rft.issue=11&rft_id=info:doi/10.3390%2Fe25111509&rft_id=info%3Apmid%2F37998201&rft.externalDocID=37998201 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |