Prognostic relevance of genetic alterations in diffuse lower-grade gliomas

Diffuse lower-grade gliomas (LGGs) are genetically classified into 3 distinct subtypes based on isocitrate dehydrogenase (IDH) mutation status and codeletion of chromosome 1p and 19q (1p/19q). However, the subtype-specific effects of additional genetic lesions on survival are largely unknown. Using...

Full description

Saved in:
Bibliographic Details
Published inNeuro-oncology (Charlottesville, Va.) Vol. 20; no. 1; pp. 66 - 77
Main Authors Aoki, Kosuke, Nakamura, Hideo, Suzuki, Hiromichi, Matsuo, Keitaro, Kataoka, Keisuke, Shimamura, Teppei, Motomura, Kazuya, Ohka, Fumiharu, Shiina, Satoshi, Yamamoto, Takashi, Nagata, Yasunobu, Yoshizato, Tetsuichi, Mizoguchi, Masahiro, Abe, Tatsuya, Momii, Yasutomo, Muragaki, Yoshihiro, Watanabe, Reiko, Ito, Ichiro, Sanada, Masashi, Yajima, Hironori, Morita, Naoya, Takeuchi, Ichiro, Miyano, Satoru, Wakabayashi, Toshihiko, Ogawa, Seishi, Natsume, Atsushi
Format Journal Article
LanguageEnglish
Published England Oxford University Press 10.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Diffuse lower-grade gliomas (LGGs) are genetically classified into 3 distinct subtypes based on isocitrate dehydrogenase (IDH) mutation status and codeletion of chromosome 1p and 19q (1p/19q). However, the subtype-specific effects of additional genetic lesions on survival are largely unknown. Using Cox proportional hazards regression modeling, we investigated the subtype-specific effects of genetic alterations and clinicopathological factors on survival in each LGG subtype, in a Japanese cohort of LGG cases fully genotyped for driver mutations and copy number variations associated with LGGs (n = 308). The results were validated using a dataset from 414 LGG cases available from The Cancer Genome Atlas (TCGA). In Oligodendroglioma, IDH-mutant and 1p/19q codeleted, NOTCH1 mutations (P = 0.0041) and incomplete resection (P = 0.0019) were significantly associated with shorter survival. In Astrocytoma, IDH-mutant, PIK3R1 mutations (P = 0.0014) and altered retinoblastoma pathway genes (RB1, CDKN2A, and CDK4) (P = 0.013) were independent predictors of poor survival. In IDH-wildtype LGGs, co-occurrence of 7p gain, 10q loss, mutation in the TERT promoter (P = 0.024), and grade III histology (P < 0.0001) independently predicted poor survival. IDH-wildtype LGGs without any of these factors were diagnosed at a younger age (P = 0.042), and were less likely to have genetic lesions characteristic of glioblastoma, in comparison with other IDH-wildtype LGGs, suggesting that they likely represented biologically different subtypes. These results were largely confirmed in the cohort of TCGA. Subtype-specific genetic lesions can be used to stratify patients within each LGG subtype. enabling better prognostication and management.
AbstractList Diffuse lower-grade gliomas (LGGs) are genetically classified into 3 distinct subtypes based on isocitrate dehydrogenase (IDH) mutation status and codeletion of chromosome 1p and 19q (1p/19q). However, the subtype-specific effects of additional genetic lesions on survival are largely unknown. Using Cox proportional hazards regression modeling, we investigated the subtype-specific effects of genetic alterations and clinicopathological factors on survival in each LGG subtype, in a Japanese cohort of LGG cases fully genotyped for driver mutations and copy number variations associated with LGGs (n = 308). The results were validated using a dataset from 414 LGG cases available from The Cancer Genome Atlas (TCGA). In Oligodendroglioma, IDH-mutant and 1p/19q codeleted, NOTCH1 mutations (P = 0.0041) and incomplete resection (P = 0.0019) were significantly associated with shorter survival. In Astrocytoma, IDH-mutant, PIK3R1 mutations (P = 0.0014) and altered retinoblastoma pathway genes (RB1, CDKN2A, and CDK4) (P = 0.013) were independent predictors of poor survival. In IDH-wildtype LGGs, co-occurrence of 7p gain, 10q loss, mutation in the TERT promoter (P = 0.024), and grade III histology (P < 0.0001) independently predicted poor survival. IDH-wildtype LGGs without any of these factors were diagnosed at a younger age (P = 0.042), and were less likely to have genetic lesions characteristic of glioblastoma, in comparison with other IDH-wildtype LGGs, suggesting that they likely represented biologically different subtypes. These results were largely confirmed in the cohort of TCGA. Subtype-specific genetic lesions can be used to stratify patients within each LGG subtype. enabling better prognostication and management.
Diffuse lower-grade gliomas (LGGs) are genetically classified into 3 distinct subtypes based on isocitrate dehydrogenase (IDH) mutation status and codeletion of chromosome 1p and 19q (1p/19q). However, the subtype-specific effects of additional genetic lesions on survival are largely unknown.BackgroundDiffuse lower-grade gliomas (LGGs) are genetically classified into 3 distinct subtypes based on isocitrate dehydrogenase (IDH) mutation status and codeletion of chromosome 1p and 19q (1p/19q). However, the subtype-specific effects of additional genetic lesions on survival are largely unknown.Using Cox proportional hazards regression modeling, we investigated the subtype-specific effects of genetic alterations and clinicopathological factors on survival in each LGG subtype, in a Japanese cohort of LGG cases fully genotyped for driver mutations and copy number variations associated with LGGs (n = 308). The results were validated using a dataset from 414 LGG cases available from The Cancer Genome Atlas (TCGA).MethodsUsing Cox proportional hazards regression modeling, we investigated the subtype-specific effects of genetic alterations and clinicopathological factors on survival in each LGG subtype, in a Japanese cohort of LGG cases fully genotyped for driver mutations and copy number variations associated with LGGs (n = 308). The results were validated using a dataset from 414 LGG cases available from The Cancer Genome Atlas (TCGA).In Oligodendroglioma, IDH-mutant and 1p/19q codeleted, NOTCH1 mutations (P = 0.0041) and incomplete resection (P = 0.0019) were significantly associated with shorter survival. In Astrocytoma, IDH-mutant, PIK3R1 mutations (P = 0.0014) and altered retinoblastoma pathway genes (RB1, CDKN2A, and CDK4) (P = 0.013) were independent predictors of poor survival. In IDH-wildtype LGGs, co-occurrence of 7p gain, 10q loss, mutation in the TERT promoter (P = 0.024), and grade III histology (P < 0.0001) independently predicted poor survival. IDH-wildtype LGGs without any of these factors were diagnosed at a younger age (P = 0.042), and were less likely to have genetic lesions characteristic of glioblastoma, in comparison with other IDH-wildtype LGGs, suggesting that they likely represented biologically different subtypes. These results were largely confirmed in the cohort of TCGA.ResultsIn Oligodendroglioma, IDH-mutant and 1p/19q codeleted, NOTCH1 mutations (P = 0.0041) and incomplete resection (P = 0.0019) were significantly associated with shorter survival. In Astrocytoma, IDH-mutant, PIK3R1 mutations (P = 0.0014) and altered retinoblastoma pathway genes (RB1, CDKN2A, and CDK4) (P = 0.013) were independent predictors of poor survival. In IDH-wildtype LGGs, co-occurrence of 7p gain, 10q loss, mutation in the TERT promoter (P = 0.024), and grade III histology (P < 0.0001) independently predicted poor survival. IDH-wildtype LGGs without any of these factors were diagnosed at a younger age (P = 0.042), and were less likely to have genetic lesions characteristic of glioblastoma, in comparison with other IDH-wildtype LGGs, suggesting that they likely represented biologically different subtypes. These results were largely confirmed in the cohort of TCGA.Subtype-specific genetic lesions can be used to stratify patients within each LGG subtype. enabling better prognostication and management.ConclusionsSubtype-specific genetic lesions can be used to stratify patients within each LGG subtype. enabling better prognostication and management.
Author Sanada, Masashi
Ogawa, Seishi
Yajima, Hironori
Natsume, Atsushi
Abe, Tatsuya
Morita, Naoya
Ohka, Fumiharu
Yoshizato, Tetsuichi
Nakamura, Hideo
Momii, Yasutomo
Miyano, Satoru
Yamamoto, Takashi
Kataoka, Keisuke
Nagata, Yasunobu
Shimamura, Teppei
Mizoguchi, Masahiro
Motomura, Kazuya
Ito, Ichiro
Aoki, Kosuke
Watanabe, Reiko
Wakabayashi, Toshihiko
Shiina, Satoshi
Muragaki, Yoshihiro
Takeuchi, Ichiro
Matsuo, Keitaro
Suzuki, Hiromichi
AuthorAffiliation Department of Neurosurgery, Tokyo Women’s Medical University, Tokyo, Japan
Department of Scientific and Engineering Simulation, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
Department of Neurosurgery, School of Medicine, Kumamoto University, Kumamoto, Japan
Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
Department of Neurosurgery, School of Medicine, Oita University, Oita, Japan
Department of Neurosurgery, Nagoya University School of Medicine, Nagoya, Japan
Division of Diagnostic Pathology, Shizuoka Cancer Center, Shizuoka, Japan
RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
Department of Neurosurgery, Faculty of Medicine, Saga University, Saga, Japan
Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyot
AuthorAffiliation_xml – name: Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
– name: Center for Materials Research by Information Integration, National Institute for Materials Science, Tsukuba, Japan
– name: Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
– name: Division of Systems Biology, Nagoya University School of Medicine, Nagoya, Japan
– name: RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
– name: Department of Neurosurgery, Faculty of Medicine, Saga University, Saga, Japan
– name: Department of Neurosurgery, School of Medicine, Oita University, Oita, Japan
– name: Department of Neurosurgery, Nagoya University School of Medicine, Nagoya, Japan
– name: Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
– name: Department of Scientific and Engineering Simulation, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
– name: Department of Neurosurgery, Tokyo Women’s Medical University, Tokyo, Japan
– name: Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
– name: Department of Computer Science/Research Institute for Information Science, Nagoya Institute of Technology, Nagoya, Japan
– name: Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
– name: Division of Diagnostic Pathology, Shizuoka Cancer Center, Shizuoka, Japan
– name: Department of Neurosurgery, School of Medicine, Kumamoto University, Kumamoto, Japan
Author_xml – sequence: 1
  givenname: Kosuke
  surname: Aoki
  fullname: Aoki, Kosuke
– sequence: 2
  givenname: Hideo
  surname: Nakamura
  fullname: Nakamura, Hideo
– sequence: 3
  givenname: Hiromichi
  surname: Suzuki
  fullname: Suzuki, Hiromichi
– sequence: 4
  givenname: Keitaro
  orcidid: 0000-0003-1761-6314
  surname: Matsuo
  fullname: Matsuo, Keitaro
– sequence: 5
  givenname: Keisuke
  surname: Kataoka
  fullname: Kataoka, Keisuke
– sequence: 6
  givenname: Teppei
  surname: Shimamura
  fullname: Shimamura, Teppei
– sequence: 7
  givenname: Kazuya
  surname: Motomura
  fullname: Motomura, Kazuya
– sequence: 8
  givenname: Fumiharu
  surname: Ohka
  fullname: Ohka, Fumiharu
– sequence: 9
  givenname: Satoshi
  surname: Shiina
  fullname: Shiina, Satoshi
– sequence: 10
  givenname: Takashi
  surname: Yamamoto
  fullname: Yamamoto, Takashi
– sequence: 11
  givenname: Yasunobu
  surname: Nagata
  fullname: Nagata, Yasunobu
– sequence: 12
  givenname: Tetsuichi
  surname: Yoshizato
  fullname: Yoshizato, Tetsuichi
– sequence: 13
  givenname: Masahiro
  surname: Mizoguchi
  fullname: Mizoguchi, Masahiro
– sequence: 14
  givenname: Tatsuya
  surname: Abe
  fullname: Abe, Tatsuya
– sequence: 15
  givenname: Yasutomo
  surname: Momii
  fullname: Momii, Yasutomo
– sequence: 16
  givenname: Yoshihiro
  surname: Muragaki
  fullname: Muragaki, Yoshihiro
– sequence: 17
  givenname: Reiko
  surname: Watanabe
  fullname: Watanabe, Reiko
– sequence: 18
  givenname: Ichiro
  surname: Ito
  fullname: Ito, Ichiro
– sequence: 19
  givenname: Masashi
  surname: Sanada
  fullname: Sanada, Masashi
– sequence: 20
  givenname: Hironori
  surname: Yajima
  fullname: Yajima, Hironori
– sequence: 21
  givenname: Naoya
  surname: Morita
  fullname: Morita, Naoya
– sequence: 22
  givenname: Ichiro
  surname: Takeuchi
  fullname: Takeuchi, Ichiro
– sequence: 23
  givenname: Satoru
  surname: Miyano
  fullname: Miyano, Satoru
– sequence: 24
  givenname: Toshihiko
  surname: Wakabayashi
  fullname: Wakabayashi, Toshihiko
– sequence: 25
  givenname: Seishi
  surname: Ogawa
  fullname: Ogawa, Seishi
– sequence: 26
  givenname: Atsushi
  surname: Natsume
  fullname: Natsume, Atsushi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29016839$$D View this record in MEDLINE/PubMed
BookMark eNp1kUlPwzAUhC0EogscuaIcuYR6ibNckFDFqkpwgLPlOi_ByLGLnRT496QLFSBxetbz5xlrZoT2rbOA0AnB5wQXbGKhc1ZNrPsgjO6hIeGUxTxP0_31mcY5J9kAjUJ4xZgSnpJDNKAFJmnOiiG6f_Suti60WkUeDCylVRC5KqrBwmopTQtettrZEGkblbqqugCRce_g49rLEqLaaNfIcIQOKmkCHG_nGD1fXz1Nb-PZw83d9HIWq4SzNq4wS2gGVKVVgQvFWUmB4IQTBjhNSqrynHCVVzmeSyLZHMp8zhSnieK4JKRkY3Sx0V108wZKBbb10oiF1430n8JJLX7fWP0iarcUPEv7RLJe4Gwr4N1bB6EVjQ4KjJEWXBcEKXgfD0s47tHTn147k-8AeyDeAMq7EDxUO4RgsSpIbAoSm4J6nv3hlW7X8fZf1eafV1_cu5lF
CitedBy_id crossref_primary_10_3390_cancers12071817
crossref_primary_10_1136_bcr_2024_260450
crossref_primary_10_3389_fonc_2022_891543
crossref_primary_10_1038_s41598_022_25928_2
crossref_primary_10_1007_s11912_020_00937_4
crossref_primary_10_1186_s40478_020_01078_2
crossref_primary_10_3389_fonc_2022_967159
crossref_primary_10_1016_j_heliyon_2024_e37712
crossref_primary_10_1186_s40478_018_0633_y
crossref_primary_10_1080_14737175_2023_2285472
crossref_primary_10_1186_s40478_020_01044_y
crossref_primary_10_1016_j_wneu_2018_03_069
crossref_primary_10_1097_PAP_0000000000000186
crossref_primary_10_1016_j_bbamcr_2023_119482
crossref_primary_10_1002_cam4_6476
crossref_primary_10_1007_s00401_024_02802_1
crossref_primary_10_1158_1078_0432_CCR_18_4144
crossref_primary_10_3389_pore_2022_1610408
crossref_primary_10_3390_cancers13112540
crossref_primary_10_1186_s40478_019_0746_y
crossref_primary_10_3390_cells8090998
crossref_primary_10_1007_s11060_022_03995_9
crossref_primary_10_3348_kjr_2022_0732
crossref_primary_10_1016_j_csbj_2022_06_065
crossref_primary_10_1186_s12967_019_1987_z
crossref_primary_10_3389_fneur_2022_874826
crossref_primary_10_1007_s10014_021_00424_z
crossref_primary_10_1227_neu_0000000000001875
crossref_primary_10_1007_s10014_021_00409_y
crossref_primary_10_1038_s41598_022_22924_4
crossref_primary_10_3389_fonc_2022_839302
crossref_primary_10_1016_j_rx_2023_10_004
crossref_primary_10_3390_cancers16112032
crossref_primary_10_1007_s10014_020_00358_y
crossref_primary_10_1007_s11060_022_03960_6
crossref_primary_10_32074_1591_951X_823
crossref_primary_10_1007_s11910_021_01153_8
crossref_primary_10_1007_s12017_018_8507_9
crossref_primary_10_3174_ng_2100034
crossref_primary_10_3389_fonc_2021_803975
crossref_primary_10_1097_PPO_0000000000000758
crossref_primary_10_1093_jnen_nlab008
crossref_primary_10_3389_fimmu_2024_1447879
crossref_primary_10_3390_cancers16051009
crossref_primary_10_1007_s11060_024_04585_7
crossref_primary_10_1093_neuros_nyy513
crossref_primary_10_1016_j_devcel_2022_06_006
crossref_primary_10_1007_s00401_021_02395_z
crossref_primary_10_3389_fneur_2021_755681
crossref_primary_10_1016_j_canlet_2022_215914
crossref_primary_10_3389_fgene_2019_01055
crossref_primary_10_1186_s12944_023_01843_x
crossref_primary_10_1158_1078_0432_CCR_22_1133
crossref_primary_10_1016_j_ncrna_2023_10_003
crossref_primary_10_1016_j_canlet_2020_01_027
crossref_primary_10_1007_s11060_020_03528_2
crossref_primary_10_3389_fonc_2021_696214
crossref_primary_10_3389_fimmu_2022_871564
crossref_primary_10_1007_s11060_022_04040_5
crossref_primary_10_2139_ssrn_3971153
crossref_primary_10_1007_s11060_020_03505_9
crossref_primary_10_1200_EDBK_280967
crossref_primary_10_1038_s41379_021_00795_w
crossref_primary_10_1158_1078_0432_CCR_24_0901
crossref_primary_10_1186_s40478_024_01889_7
crossref_primary_10_1111_bpa_12826
crossref_primary_10_1007_s10014_023_00458_5
crossref_primary_10_3389_fneur_2022_1074593
crossref_primary_10_4132_jptm_2020_10_22
crossref_primary_10_3389_fcell_2022_886989
crossref_primary_10_7887_jcns_30_374
crossref_primary_10_1227_neu_0000000000002260
crossref_primary_10_4103_glioma_glioma_19_21
crossref_primary_10_1016_j_wneu_2019_03_040
crossref_primary_10_1007_s00401_020_02127_9
crossref_primary_10_1016_j_rxeng_2024_03_002
crossref_primary_10_1007_s00401_018_1913_0
crossref_primary_10_1042_BSR20211939
crossref_primary_10_1093_oncolo_oyac023
crossref_primary_10_1111_bpa_13107
crossref_primary_10_1007_s10014_022_00426_5
crossref_primary_10_1093_jnen_nlz082
crossref_primary_10_7887_jcns_28_699
crossref_primary_10_1080_02688697_2020_1847249
crossref_primary_10_1053_j_semdp_2021_11_003
crossref_primary_10_3389_fonc_2022_922025
crossref_primary_10_3390_cancers14215409
crossref_primary_10_1093_neuonc_noaa015
crossref_primary_10_1111_bpa_13233
crossref_primary_10_1016_j_wneu_2018_07_193
crossref_primary_10_1093_carcin_bgz102
crossref_primary_10_1007_s10014_019_00348_9
crossref_primary_10_1111_bpa_12801
crossref_primary_10_1038_s41374_021_00667_6
crossref_primary_10_1007_s11060_020_03676_5
crossref_primary_10_3389_fonc_2021_796795
crossref_primary_10_1007_s10014_023_00450_z
crossref_primary_10_1016_j_ejca_2022_08_016
crossref_primary_10_3389_fncel_2023_1146686
crossref_primary_10_1016_j_brainresbull_2021_07_013
crossref_primary_10_1038_s41698_021_00143_w
crossref_primary_10_1093_jnen_nlad063
crossref_primary_10_2139_ssrn_4191903
crossref_primary_10_2147_IJGM_S394872
crossref_primary_10_1007_s10014_018_0312_5
crossref_primary_10_1155_2019_3917040
crossref_primary_10_1007_s11523_020_00754_6
crossref_primary_10_1212_CON_0000000000000935
crossref_primary_10_1016_j_ygeno_2023_110601
crossref_primary_10_3389_fmolb_2022_743515
crossref_primary_10_1007_s10014_019_00339_w
crossref_primary_10_1016_j_ctrv_2020_102124
crossref_primary_10_1016_j_wneu_2019_02_031
crossref_primary_10_32604_oncologie_2022_020890
crossref_primary_10_1093_jnen_nlz025
crossref_primary_10_1007_s11060_018_2867_8
crossref_primary_10_1002_cam4_5097
crossref_primary_10_1038_s41582_019_0220_2
crossref_primary_10_1093_noajnl_vdaa042
crossref_primary_10_1038_s41379_021_00778_x
crossref_primary_10_1093_braincomms_fcae108
crossref_primary_10_1158_1078_0432_CCR_23_1180
crossref_primary_10_1021_acsami_1c01754
crossref_primary_10_3390_brainsci13040548
crossref_primary_10_1186_s43094_024_00608_2
crossref_primary_10_1093_neuonc_noz186
crossref_primary_10_1007_s00401_024_02761_7
crossref_primary_10_2490_jjrmc_56_613
crossref_primary_10_3390_brainsci12020181
crossref_primary_10_3389_fonc_2023_1131642
crossref_primary_10_3390_biomedicines12102256
crossref_primary_10_1007_s11060_020_03677_4
crossref_primary_10_1186_s12885_022_09548_7
crossref_primary_10_1093_jnen_nlz012
crossref_primary_10_1055_s_0041_1741061
crossref_primary_10_3389_fnmol_2022_928355
crossref_primary_10_1177_19714009231173107
crossref_primary_10_1111_nan_12671
crossref_primary_10_3390_cancers15051512
crossref_primary_10_1007_s11060_024_04737_9
crossref_primary_10_3389_fonc_2022_714338
crossref_primary_10_4103_ijpm_ijpm_183_21
crossref_primary_10_3389_fonc_2022_866623
crossref_primary_10_1038_s41598_023_46701_z
crossref_primary_10_3390_brainsci13050817
crossref_primary_10_1007_s10014_023_00463_8
crossref_primary_10_1007_s44178_022_00014_9
crossref_primary_10_1158_0008_5472_CAN_21_0985
crossref_primary_10_1093_noajnl_vdae069
crossref_primary_10_3934_mbe_2020217
crossref_primary_10_1007_s11060_024_04883_0
crossref_primary_10_3389_fimmu_2022_1018942
crossref_primary_10_3390_genes14091693
crossref_primary_10_18632_aging_205881
crossref_primary_10_3389_fonc_2023_1196614
crossref_primary_10_1007_s11060_023_04368_6
crossref_primary_10_1007_s00761_018_0502_0
crossref_primary_10_1016_j_prro_2022_05_004
crossref_primary_10_1007_s00401_019_02067_z
crossref_primary_10_1111_ene_13826
crossref_primary_10_2217_cns_2021_0005
crossref_primary_10_1007_s10014_023_00459_4
crossref_primary_10_3390_cancers16061202
crossref_primary_10_1002_cam4_4471
crossref_primary_10_1038_s41598_022_14751_4
crossref_primary_10_3389_fneur_2022_1024869
crossref_primary_10_1093_noajnl_vdad085
crossref_primary_10_1111_bpa_13300
crossref_primary_10_1093_jnen_nly130
crossref_primary_10_1186_s10020_022_00454_z
crossref_primary_10_1111_bpa_12799
crossref_primary_10_1007_s00330_024_10611_z
crossref_primary_10_1093_neuonc_noae112
crossref_primary_10_25259_SNI_55_2022
crossref_primary_10_3390_medsci6040085
crossref_primary_10_1093_noajnl_vdaa126
crossref_primary_10_3174_ajnr_A6983
crossref_primary_10_1007_s11060_023_04250_5
crossref_primary_10_1093_neuonc_noab088
crossref_primary_10_1007_s00432_021_03511_y
crossref_primary_10_1186_s12935_019_0867_1
crossref_primary_10_3390_biom14070801
crossref_primary_10_4103_glioma_glioma_11_20
crossref_primary_10_1016_j_canlet_2020_10_050
crossref_primary_10_3389_fonc_2021_652133
crossref_primary_10_1093_noajnl_vdz048
crossref_primary_10_3390_cells9102304
crossref_primary_10_1097_MNM_0000000000001202
crossref_primary_10_3390_biomedicines13010201
crossref_primary_10_3348_kjr_2024_0982
crossref_primary_10_1097_PPO_0000000000000542
crossref_primary_10_3389_fimmu_2022_824586
crossref_primary_10_3389_fgene_2020_00253
crossref_primary_10_1093_noajnl_vdad069
crossref_primary_10_1186_s40478_022_01420_w
crossref_primary_10_1186_s40478_022_01466_w
crossref_primary_10_3390_biology13110885
crossref_primary_10_3390_cancers11091231
crossref_primary_10_1002_jcp_27430
crossref_primary_10_1097_RCT_0000000000001132
crossref_primary_10_3390_brainsci13030447
crossref_primary_10_1038_s41698_018_0067_9
crossref_primary_10_1093_neuonc_noac282
crossref_primary_10_1002_jmri_28945
crossref_primary_10_3171_2019_3_JNS19211
crossref_primary_10_1093_neuonc_noaa097
crossref_primary_10_1093_noajnl_vdz032
crossref_primary_10_1007_s11060_021_03776_w
crossref_primary_10_1093_jnen_nlaa083
crossref_primary_10_1111_cns_14340
crossref_primary_10_3390_cimb45070335
crossref_primary_10_1186_s40478_023_01683_x
crossref_primary_10_3389_fonc_2024_1515538
crossref_primary_10_1177_10668969241291891
crossref_primary_10_1016_j_ccell_2022_07_011
crossref_primary_10_2139_ssrn_4179404
crossref_primary_10_3389_fgene_2023_1124439
crossref_primary_10_1186_s12920_018_0407_1
crossref_primary_10_3390_ijms241310456
crossref_primary_10_1080_15592294_2024_2318506
crossref_primary_10_1002_jmri_28378
crossref_primary_10_1038_s41598_021_93937_8
crossref_primary_10_1093_neuonc_noae221
crossref_primary_10_1111_bpa_13062
crossref_primary_10_3171_2022_1_JNS212514
crossref_primary_10_1097_CCO_0000000000000482
crossref_primary_10_1093_neuonc_noae107
crossref_primary_10_1007_s00401_021_02337_9
crossref_primary_10_1007_s11912_020_01006_6
crossref_primary_10_2176_jns_nmc_2024_0105
Cites_doi 10.1056/NEJMoa1402121
10.1080/01621459.1997.10473615
10.1093/nar/gkt126
10.1016/j.cell.2015.12.028
10.1093/neuonc/nov189
10.1016/j.ccell.2015.10.008
10.1200/JCO.2014.59.0166
10.1200/JCO.2009.21.9832
10.1158/1078-0432.CCR-09-0715
10.1007/s10014-011-0029-1
10.1038/ng.3273
10.1126/science.1206923
10.1200/JCO.2002.08.121
10.1126/science.1102160
10.1158/1078-0432.CCR-11-2977
10.1200/JCO.2000.18.3.636
10.1038/nature02820
10.1038/nature07385
10.1200/JCO.2012.43.2229
10.1007/s00401-015-1438-8
10.1007/s00401-009-0561-9
10.1200/JCO.2007.13.9337
10.1200/JCO.2012.43.2674
10.1056/NEJMoa0808710
10.1007/s00401-008-0455-2
10.1002/ana.24443
10.1016/j.ccr.2014.06.005
10.1016/j.ejca.2005.08.010
10.1371/journal.pone.0055119
10.1038/nrc2602
10.1084/jem.20111855
10.1038/ng.3457
10.1016/j.ccell.2016.03.025
10.1158/0008-5472.CAN-05-0465
10.1038/nm.3678
10.18632/oncotarget.1765
10.1186/s40478-015-0265-4
10.1007/s00401-016-1545-1
10.1097/NEN.0000000000000188
10.1016/j.cell.2013.09.034
10.1007/s00401-015-1398-z
ContentType Journal Article
Copyright The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2017
Copyright_xml – notice: The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
– notice: The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2017
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1093/neuonc/nox132
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1523-5866
EndPage 77
ExternalDocumentID PMC5761527
29016839
10_1093_neuonc_nox132
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ; ; ;
  grantid: 15cm0106056h0005; 16cm0106501h0001
GroupedDBID ---
.2P
.I3
.XZ
.ZR
0R~
123
18M
2WC
36B
4.4
48X
53G
5VS
5WD
70D
AABZA
AACZT
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAYXX
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABKDP
ABNHQ
ABNKS
ABPQP
ABPTD
ABQLI
ABQNK
ABVGC
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACUFI
ACUTO
ACYHN
ADBBV
ADEYI
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEGXH
AEJOX
AEKSI
AEMDU
AEMQT
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFXAL
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AGUTN
AHMMS
AHXPO
AIAGR
AIJHB
AJBYB
AJEEA
AJNCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
AOIJS
APIBT
APWMN
ATGXG
AXUDD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BTRTY
BVRKM
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBS
EE~
EJD
EMB
EMOBN
ENERS
F5P
F9B
FECEO
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HYE
HZ~
IOX
J21
JXSIZ
KBUDW
KOP
KQ8
KSI
KSN
MHKGH
N9A
NGC
NOMLY
NOYVH
O9-
OAUYM
OAWHX
OCZFY
ODMLO
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
P6G
PAFKI
PEELM
Q1.
Q5Y
RD5
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJX
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
~91
NPM
7X8
1TH
5PM
ID FETCH-LOGICAL-c453t-f03427e2c6f909c53d2e104513e064d2c8815c8f80ba1a3bed8b3c524c50d11d3
ISSN 1522-8517
1523-5866
IngestDate Thu Aug 21 14:08:59 EDT 2025
Thu Jul 10 19:19:24 EDT 2025
Mon Jul 21 06:07:44 EDT 2025
Tue Jul 01 03:28:50 EDT 2025
Thu Apr 24 23:12:56 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords prognostic factor
diffuse lower-grade glioma
genetic alteration
Language English
License The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c453t-f03427e2c6f909c53d2e104513e064d2c8815c8f80ba1a3bed8b3c524c50d11d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors jointly directed this work.
These authors equally contributed to this work.
ORCID 0000-0003-1761-6314
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5761527
PMID 29016839
PQID 1950163450
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5761527
proquest_miscellaneous_1950163450
pubmed_primary_29016839
crossref_primary_10_1093_neuonc_nox132
crossref_citationtrail_10_1093_neuonc_nox132
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-10
PublicationDateYYYYMMDD 2018-01-10
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-10
  day: 10
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: US
PublicationTitle Neuro-oncology (Charlottesville, Va.)
PublicationTitleAlternate Neuro Oncol
PublicationYear 2018
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References ( key 20180109222205_CIT0033) 2011; 333
( key 20180109222205_CIT0035) 2011; 208
( key 20180109222205_CIT0011) 2013; 31
( key 20180109222205_CIT0027) 2004
( key 20180109222205_CIT0036) 2014; 20
POLA network ( key 20180109222205_CIT0014) 2015; 78
( key 20180109222205_CIT0001) 2016; 131
TCGA Research Network ( key 20180109222205_CIT0020) 2016; 164
( key 20180109222205_CIT0023) 2005; 65
( key 20180109222205_CIT0018) 2014; 5
( key 20180109222205_CIT0039) 2004; 430
( key 20180109222205_CIT0019) 2009; 15
( key 20180109222205_CIT0040) 2009; 9
( key 20180109222205_CIT0041) 2015; 129
( key 20180109222205_CIT0028) 1999; 14
( key 20180109222205_CIT0017) 2016; 29
( key 20180109222205_CIT0004) 2011; 28
( key 20180109222205_CIT0026) 2013; 8
( key 20180109222205_CIT0007) 2008; 116
TCGA Research Network ( key 20180109222205_CIT0021) 2013; 155
( key 20180109222205_CIT0032) 2014; 26
( key 20180109222205_CIT0029) 1997; 92
European Organization for Research and Treatment of Cancer Brain Tumor Cooperative Group; European Organization for Research and Treatment of Cancer Radiotherapy Cooperative Group ( key 20180109222205_CIT0030) 2002; 20
( key 20180109222205_CIT0038) 2016; 48
( key 20180109222205_CIT0006) 2009; 360
( key 20180109222205_CIT0042) 2015; 129
( key 20180109222205_CIT0009) 2009; 27
Cancer Genome Atlas Research Network ( key 20180109222205_CIT0013) 2015; 372
( key 20180109222205_CIT0002) 2015; 17
( key 20180109222205_CIT0015) 2015; 3
( key 20180109222205_CIT0003) 2015; 47
( key 20180109222205_CIT0043) 2015; 33
( key 20180109222205_CIT0031) 2008; 26
( key 20180109222205_CIT0012) 2013; 31
Cancer Genome Atlas Research Network ( key 20180109222205_CIT0024) 2008; 455
( key 20180109222205_CIT0005) 2000; 18
( key 20180109222205_CIT0016) 2015; 74
( key 20180109222205_CIT0037) 2015; 28
( key 20180109222205_CIT0034) 2004; 306
( key 20180109222205_CIT0025) 2005; 41
( key 20180109222205_CIT0008) 2009; 118
( key 20180109222205_CIT0022) 2013; 41
( key 20180109222205_CIT0010) 2012; 18
References_xml – volume: 372
  start-page: 2481
  issue: 26
  year: 2015
  ident: key 20180109222205_CIT0013
  article-title: Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1402121
– volume: 92
  start-page: 179
  issue: 437
  year: 1997
  ident: key 20180109222205_CIT0029
  article-title: Bayesian model averaging for linear regression models
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1997.10473615
– volume: 41
  start-page: e89
  issue: 7
  year: 2013
  ident: key 20180109222205_CIT0022
  article-title: An empirical Bayesian framework for somatic mutation detection from cancer genome sequencing data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt126
– volume: 164
  start-page: 550
  issue: 3
  year: 2016
  ident: key 20180109222205_CIT0020
  article-title: Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.028
– volume: 17
  start-page: iv1
  year: 2015
  ident: key 20180109222205_CIT0002
  article-title: CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/nov189
– volume: 28
  start-page: 730
  issue: 6
  year: 2015
  ident: key 20180109222205_CIT0037
  article-title: A tumor suppressor function for notch signaling in forebrain tumor subtypes
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2015.10.008
– volume: 14
  start-page: 382
  issue: 4
  year: 1999
  ident: key 20180109222205_CIT0028
  article-title: Bayesian model averaging: a tutorial
  publication-title: Stat Sci
– volume: 33
  start-page: 1943
  issue: 17
  year: 2015
  ident: key 20180109222205_CIT0043
  article-title: Evidence-based diagnostic algorithm for glioma: analysis of the results of pathology panel review and molecular parameters of EORTC 26951 and 26882 trials
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2014.59.0166
– volume: 27
  start-page: 4150
  issue: 25
  year: 2009
  ident: key 20180109222205_CIT0009
  article-title: Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2009.21.9832
– volume: 15
  start-page: 6002
  issue: 19
  year: 2009
  ident: key 20180109222205_CIT0019
  article-title: IDH1 mutations as molecular signature and predictive factor of secondary glioblastomas
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-09-0715
– volume: 28
  start-page: 177
  issue: 3
  year: 2011
  ident: key 20180109222205_CIT0004
  article-title: Genetic profile of astrocytic and oligodendroglial gliomas
  publication-title: Brain Tumor Pathol
  doi: 10.1007/s10014-011-0029-1
– volume: 47
  start-page: 458
  issue: 5
  year: 2015
  ident: key 20180109222205_CIT0003
  article-title: Mutational landscape and clonal architecture in grade II and III gliomas
  publication-title: Nat Genet
  doi: 10.1038/ng.3273
– volume: 333
  start-page: 1154
  issue: 6046
  year: 2011
  ident: key 20180109222205_CIT0033
  article-title: Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1
  publication-title: Science
  doi: 10.1126/science.1206923
– volume: 20
  start-page: 2076
  issue: 8
  year: 2002
  ident: key 20180109222205_CIT0030
  article-title: Prognostic factors for survival in adult patients with cerebral low-grade glioma
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2002.08.121
– volume: 306
  start-page: 269
  issue: 5694
  year: 2004
  ident: key 20180109222205_CIT0034
  article-title: Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia
  publication-title: Science
  doi: 10.1126/science.1102160
– volume: 18
  start-page: 2490
  issue: 9
  year: 2012
  ident: key 20180109222205_CIT0010
  article-title: IDH mutation and neuroglial developmental features define clinically distinct subclasses of lower grade diffuse astrocytic glioma
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-11-2977
– volume: 18
  start-page: 636
  issue: 3
  year: 2000
  ident: key 20180109222205_CIT0005
  article-title: Alterations of chromosome arms 1p and 19q as predictors of survival in oligodendrogliomas, astrocytomas, and mixed oligoastrocytomas
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2000.18.3.636
– volume: 430
  start-page: 797
  issue: 7001
  year: 2004
  ident: key 20180109222205_CIT0039
  article-title: Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control
  publication-title: Nature
  doi: 10.1038/nature02820
– volume: 455
  start-page: 1061
  issue: 7216
  year: 2008
  ident: key 20180109222205_CIT0024
  article-title: Comprehensive genomic characterization defines human glioblastoma genes and core pathways
  publication-title: Nature
  doi: 10.1038/nature07385
– volume: 31
  start-page: 344
  issue: 3
  year: 2013
  ident: key 20180109222205_CIT0011
  article-title: Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2012.43.2229
– volume: 129
  start-page: 867
  issue: 6
  year: 2015
  ident: key 20180109222205_CIT0042
  article-title: IDH mutant diffuse and anaplastic astrocytomas have similar age at presentation and little difference in survival: a grading problem for WHO
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-015-1438-8
– volume: 118
  start-page: 469
  issue: 4
  year: 2009
  ident: key 20180109222205_CIT0008
  article-title: Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1010 diffuse gliomas
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-009-0561-9
– volume: 26
  start-page: 1338
  issue: 8
  year: 2008
  ident: key 20180109222205_CIT0031
  article-title: Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2007.13.9337
– volume: 31
  start-page: 337
  issue: 3
  year: 2013
  ident: key 20180109222205_CIT0012
  article-title: Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2012.43.2674
– volume: 360
  start-page: 765
  issue: 8
  year: 2009
  ident: key 20180109222205_CIT0006
  article-title: IDH1 and IDH2 mutations in gliomas
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0808710
– volume: 116
  start-page: 597
  issue: 6
  year: 2008
  ident: key 20180109222205_CIT0007
  article-title: Analysis of the IDH1 codon 132 mutation in brain tumors
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-008-0455-2
– volume: 78
  start-page: 355
  issue: 3
  year: 2015
  ident: key 20180109222205_CIT0014
  article-title: CIC inactivating mutations identify aggressive subset of 1p19q codeleted gliomas
  publication-title: Ann Neurol
  doi: 10.1002/ana.24443
– volume: 26
  start-page: 288
  issue: 2
  year: 2014
  ident: key 20180109222205_CIT0032
  article-title: Most human non-GCIMP glioblastoma subtypes evolve from a common proneural-like precursor glioma
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2014.06.005
– volume: 41
  start-page: 2381
  issue: 16
  year: 2005
  ident: key 20180109222205_CIT0025
  article-title: Chromatin modifier enzymes, the histone code and cancer
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2005.08.010
– volume: 8
  start-page: e55119
  issue: 1
  year: 2013
  ident: key 20180109222205_CIT0026
  article-title: The spectrum of SWI/SNF mutations, ubiquitous in human cancers
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0055119
– volume: 9
  start-page: 153
  issue: 3
  year: 2009
  ident: key 20180109222205_CIT0040
  article-title: Cell cycle, CDKs and cancer: a changing paradigm
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2602
– volume: 208
  start-page: 1931
  issue: 10
  year: 2011
  ident: key 20180109222205_CIT0035
  article-title: Oncogenic and tumor suppressor functions of Notch in cancer: it’s NOTCH what you think
  publication-title: J Exp Med
  doi: 10.1084/jem.20111855
– volume: 48
  start-page: 59
  issue: 1
  year: 2016
  ident: key 20180109222205_CIT0038
  article-title: Integrated genomic characterization of IDH1-mutant glioma malignant progression
  publication-title: Nat Genet
  doi: 10.1038/ng.3457
– volume: 29
  start-page: 737
  issue: 5
  year: 2016
  ident: key 20180109222205_CIT0017
  article-title: Integrated genomics for pinpointing survival loci within arm-level somatic copy number alterations
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.03.025
– volume: 65
  start-page: 6071
  issue: 14
  year: 2005
  ident: key 20180109222205_CIT0023
  article-title: A robust algorithm for copy number detection using high-density oligonucleotide single nucleotide polymorphism genotyping arrays
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-05-0465
– volume: 20
  start-page: 1199
  issue: 10
  year: 2014
  ident: key 20180109222205_CIT0036
  article-title: A new tumor suppressor role for the Notch pathway in bladder cancer
  publication-title: Nat Med
  doi: 10.1038/nm.3678
– volume: 5
  start-page: 1515
  issue: 6
  year: 2014
  ident: key 20180109222205_CIT0018
  article-title: Mutations in IDH1, IDH2, and in the TERT promoter define clinically distinct subgroups of adult malignant gliomas
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.1765
– volume-title: Multiple imputation for nonresponse in surveys
  year: 2004
  ident: key 20180109222205_CIT0027
– volume: 3
  start-page: 88
  year: 2015
  ident: key 20180109222205_CIT0015
  article-title: PI3 kinase mutations and mutational load as poor prognostic markers in diffuse glioma patients
  publication-title: Acta Neuropathol Commun
  doi: 10.1186/s40478-015-0265-4
– volume: 131
  start-page: 803
  issue: 6
  year: 2016
  ident: key 20180109222205_CIT0001
  article-title: The 2016 World Health Organization classification of tumors of the central nervous system: a summary
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-016-1545-1
– volume: 74
  start-page: 442
  issue: 5
  year: 2015
  ident: key 20180109222205_CIT0016
  article-title: CDKN2A loss is associated with shortened overall survival in lower-grade (World Health Organization grades II-III) astrocytomas
  publication-title: J Neuropathol Exp Neurol
  doi: 10.1097/NEN.0000000000000188
– volume: 155
  start-page: 462
  issue: 2
  year: 2013
  ident: key 20180109222205_CIT0021
  article-title: The somatic genomic landscape of glioblastoma
  publication-title: Cell
  doi: 10.1016/j.cell.2013.09.034
– volume: 129
  start-page: 585
  issue: 4
  year: 2015
  ident: key 20180109222205_CIT0041
  article-title: IDH mutation status and role of WHO grade and mitotic index in overall survival in grade II-III diffuse gliomas
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-015-1398-z
SSID ssj0021561
Score 2.599394
Snippet Diffuse lower-grade gliomas (LGGs) are genetically classified into 3 distinct subtypes based on isocitrate dehydrogenase (IDH) mutation status and codeletion...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 66
SubjectTerms Basic and Translational Investigations
Title Prognostic relevance of genetic alterations in diffuse lower-grade gliomas
URI https://www.ncbi.nlm.nih.gov/pubmed/29016839
https://www.proquest.com/docview/1950163450
https://pubmed.ncbi.nlm.nih.gov/PMC5761527
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZtCqWX0ne3L1QovWyV-CE78rH0wTYhoYcEcjOyJCduHCt47VLy66uRZK8320DbizG2LGHNh9BoZr4PoXeSBaWgHLKnFCO0kIwUBQtJVtIYuGVKWkBE9-AwXRzTvZPkZJWraqtLumJbXP2xruR_rGqeGbtClew_WHbs1Dww98a-5mosbK5_ZePvrYY8OUfDXCsbzYfdn_lAWSLW2nImD9niIIbSL9W8BmU0ctpyqeandTVmCP0YmJz6VhPdCEfPBGFeiMnrzuxKf0LpoM2N5dvTQwTt1K_39bI_H6FyyM_5RW-FjOaLSiq9ikBd9V4uu2qhLPqsWp2Md8teu4qhquOtnh5LhJARR3yCqvJLaRSThDlNlWGtjYINTLmF0zXbWM8d11WjevPTcKN_he44dGLdywtrXggIp8wxI12j0B5e3UZ3IuNNgNDF52_7o19uXNjQ06-a8XbcaDtuLCCL9l-v71w23JHrWbWTbcrRA3Tf-xf4owPLQ3RLNY_Q3QOfQfEY7a0wg0fMYF1ijxk8wQyuGuwxgyeYwR4zT9Dx1y9HnxbE62kQQZO4IyXQPe6qSKRlFmQiiWWkQuAXipXZmMpIMBYmgpUsKHjI40JJVsQiiahIAhmGMn6KthrdqOcIZyxTVAgVlWlqJcu5oFlaqDJjkvM0m6EPw1zlwpPNg-ZJnbukhzh3s5y7WZ6h92PzS8eyclPDt8PE52YdhOAWb5TulznIGRvfgibBDD1zhhi7Giw4Q7trJhobAMf6-pumOrNc68YdB-HnFzf2-RLdW8H_Fdrq2l69NvvUrnhjUfYbHlSbRw
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prognostic+relevance+of+genetic+alterations+in+diffuse+lower-grade+gliomas&rft.jtitle=Neuro-oncology+%28Charlottesville%2C+Va.%29&rft.au=Aoki%2C+Kosuke&rft.au=Nakamura%2C+Hideo&rft.au=Suzuki%2C+Hiromichi&rft.au=Matsuo%2C+Keitaro&rft.date=2018-01-10&rft.eissn=1523-5866&rft.volume=20&rft.issue=1&rft.spage=66&rft_id=info:doi/10.1093%2Fneuonc%2Fnox132&rft_id=info%3Apmid%2F29016839&rft.externalDocID=29016839
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1522-8517&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1522-8517&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1522-8517&client=summon