Noncanonical regulation of phosphatidylserine metabolism by a Sec14-like protein and a lipid kinase

The yeast phosphatidylserine (PtdSer) decarboxylase Psd2 is proposed to engage in a membrane contact site (MCS) for PtdSer decarboxylation to phosphatidylethanolamine (PtdEtn). This proposed MCS harbors Psd2, the Sec14-like phosphatidylinositol transfer protein (PITP) Sfh4, the Stt4 phosphatidylinos...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of cell biology Vol. 219; no. 5
Main Authors Wang, Yaxi, Yuan, Peihua, Grabon, Aby, Tripathi, Ashutosh, Lee, Dongju, Rodriguez, Martin, Lönnfors, Max, Eisenberg-Bord, Michal, Wang, Zehua, Man Lam, Sin, Schuldiner, Maya, Bankaitis, Vytas A.
Format Journal Article
LanguageEnglish
Published United States Rockefeller University Press 04.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The yeast phosphatidylserine (PtdSer) decarboxylase Psd2 is proposed to engage in a membrane contact site (MCS) for PtdSer decarboxylation to phosphatidylethanolamine (PtdEtn). This proposed MCS harbors Psd2, the Sec14-like phosphatidylinositol transfer protein (PITP) Sfh4, the Stt4 phosphatidylinositol (PtdIns) 4-OH kinase, the Scs2 tether, and an uncharacterized protein. We report that, of these components, only Sfh4 and Stt4 regulate Psd2 activity in vivo. They do so via distinct mechanisms. Sfh4 operates via a mechanism for which its PtdIns-transfer activity is dispensable but requires an Sfh4-Psd2 physical interaction. The other requires Stt4-mediated production of PtdIns-4-phosphate (PtdIns4P), where Stt4 (along with the Sac1 PtdIns4P phosphatase and endoplasmic reticulum–plasma membrane tethers) indirectly modulate Psd2 activity via a PtdIns4P homeostatic mechanism that influences PtdSer accessibility to Psd2. These results identify an example in which the biological function of a Sec14-like PITP is cleanly uncoupled from its canonical in vitro PtdIns-transfer activity and challenge popular functional assumptions regarding lipid-transfer protein involvements in MCS function.
AbstractList The yeast phosphatidylserine (PtdSer) decarboxylase Psd2 is proposed to engage in a membrane contact site (MCS) for PtdSer decarboxylation to phosphatidylethanolamine (PtdEtn). This proposed MCS harbors Psd2, the Sec14-like phosphatidylinositol transfer protein (PITP) Sfh4, the Stt4 phosphatidylinositol (PtdIns) 4-OH kinase, the Scs2 tether, and an uncharacterized protein. We report that, of these components, only Sfh4 and Stt4 regulate Psd2 activity in vivo. They do so via distinct mechanisms. Sfh4 operates via a mechanism for which its PtdIns-transfer activity is dispensable but requires an Sfh4-Psd2 physical interaction. The other requires Stt4-mediated production of PtdIns-4-phosphate (PtdIns4P), where Stt4 (along with the Sac1 PtdIns4P phosphatase and endoplasmic reticulum-plasma membrane tethers) indirectly modulate Psd2 activity via a PtdIns4P homeostatic mechanism that influences PtdSer accessibility to Psd2. These results identify an example in which the biological function of a Sec14-like PITP is cleanly uncoupled from its canonical in vitro PtdIns-transfer activity and challenge popular functional assumptions regarding lipid-transfer protein involvements in MCS function.The yeast phosphatidylserine (PtdSer) decarboxylase Psd2 is proposed to engage in a membrane contact site (MCS) for PtdSer decarboxylation to phosphatidylethanolamine (PtdEtn). This proposed MCS harbors Psd2, the Sec14-like phosphatidylinositol transfer protein (PITP) Sfh4, the Stt4 phosphatidylinositol (PtdIns) 4-OH kinase, the Scs2 tether, and an uncharacterized protein. We report that, of these components, only Sfh4 and Stt4 regulate Psd2 activity in vivo. They do so via distinct mechanisms. Sfh4 operates via a mechanism for which its PtdIns-transfer activity is dispensable but requires an Sfh4-Psd2 physical interaction. The other requires Stt4-mediated production of PtdIns-4-phosphate (PtdIns4P), where Stt4 (along with the Sac1 PtdIns4P phosphatase and endoplasmic reticulum-plasma membrane tethers) indirectly modulate Psd2 activity via a PtdIns4P homeostatic mechanism that influences PtdSer accessibility to Psd2. These results identify an example in which the biological function of a Sec14-like PITP is cleanly uncoupled from its canonical in vitro PtdIns-transfer activity and challenge popular functional assumptions regarding lipid-transfer protein involvements in MCS function.
Yeast Psd2-catalyzed decarboxylation of phosphatidylserine to phosphatidylethanolamine is activated in a noncanonical mechanism by the Sec14-like phosphatidylinositol-transfer protein Sfh4 via a specific protein–protein interaction, and by Stt4 PtdIns 4-OH kinase–mediated control of phosphatidylserine accessibility to the enzyme. The yeast phosphatidylserine (PtdSer) decarboxylase Psd2 is proposed to engage in a membrane contact site (MCS) for PtdSer decarboxylation to phosphatidylethanolamine (PtdEtn). This proposed MCS harbors Psd2, the Sec14-like phosphatidylinositol transfer protein (PITP) Sfh4, the Stt4 phosphatidylinositol (PtdIns) 4-OH kinase, the Scs2 tether, and an uncharacterized protein. We report that, of these components, only Sfh4 and Stt4 regulate Psd2 activity in vivo. They do so via distinct mechanisms. Sfh4 operates via a mechanism for which its PtdIns-transfer activity is dispensable but requires an Sfh4-Psd2 physical interaction. The other requires Stt4-mediated production of PtdIns-4-phosphate (PtdIns4 P ), where Stt4 (along with the Sac1 PtdIns4 P phosphatase and endoplasmic reticulum–plasma membrane tethers) indirectly modulate Psd2 activity via a PtdIns4 P homeostatic mechanism that influences PtdSer accessibility to Psd2. These results identify an example in which the biological function of a Sec14-like PITP is cleanly uncoupled from its canonical in vitro PtdIns-transfer activity and challenge popular functional assumptions regarding lipid-transfer protein involvements in MCS function.
The yeast phosphatidylserine (PtdSer) decarboxylase Psd2 is proposed to engage in a membrane contact site (MCS) for PtdSer decarboxylation to phosphatidylethanolamine (PtdEtn). This proposed MCS harbors Psd2, the Sec14-like phosphatidylinositol transfer protein (PITP) Sfh4, the Stt4 phosphatidylinositol (PtdIns) 4-OH kinase, the Scs2 tether, and an uncharacterized protein. We report that, of these components, only Sfh4 and Stt4 regulate Psd2 activity in vivo. They do so via distinct mechanisms. Sfh4 operates via a mechanism for which its PtdIns-transfer activity is dispensable but requires an Sfh4-Psd2 physical interaction. The other requires Stt4-mediated production of PtdIns-4-phosphate (PtdIns4P), where Stt4 (along with the Sac1 PtdIns4P phosphatase and endoplasmic reticulum-plasma membrane tethers) indirectly modulate Psd2 activity via a PtdIns4P homeostatic mechanism that influences PtdSer accessibility to Psd2. These results identify an example in which the biological function of a Sec14-like PITP is cleanly uncoupled from its canonical in vitro PtdIns-transfer activity and challenge popular functional assumptions regarding lipid-transfer protein involvements in MCS function.
Author Eisenberg-Bord, Michal
Rodriguez, Martin
Man Lam, Sin
Bankaitis, Vytas A.
Tripathi, Ashutosh
Wang, Yaxi
Lönnfors, Max
Wang, Zehua
Lee, Dongju
Yuan, Peihua
Grabon, Aby
Schuldiner, Maya
AuthorAffiliation 3 Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
1 Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX
4 University of Chinese Academy of Sciences, Beijing, China
5 State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
6 Department of Chemistry, Texas A&M University, College Station, TX
2 Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, College Station, TX
AuthorAffiliation_xml – name: 1 Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX
– name: 6 Department of Chemistry, Texas A&M University, College Station, TX
– name: 4 University of Chinese Academy of Sciences, Beijing, China
– name: 5 State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
– name: 2 Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, College Station, TX
– name: 3 Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
Author_xml – sequence: 1
  givenname: Yaxi
  orcidid: 0000-0003-3278-6127
  surname: Wang
  fullname: Wang, Yaxi
– sequence: 2
  givenname: Peihua
  surname: Yuan
  fullname: Yuan, Peihua
– sequence: 3
  givenname: Aby
  surname: Grabon
  fullname: Grabon, Aby
– sequence: 4
  givenname: Ashutosh
  surname: Tripathi
  fullname: Tripathi, Ashutosh
– sequence: 5
  givenname: Dongju
  surname: Lee
  fullname: Lee, Dongju
– sequence: 6
  givenname: Martin
  surname: Rodriguez
  fullname: Rodriguez, Martin
– sequence: 7
  givenname: Max
  orcidid: 0000-0002-3655-9733
  surname: Lönnfors
  fullname: Lönnfors, Max
– sequence: 8
  givenname: Michal
  surname: Eisenberg-Bord
  fullname: Eisenberg-Bord, Michal
– sequence: 9
  givenname: Zehua
  surname: Wang
  fullname: Wang, Zehua
– sequence: 10
  givenname: Sin
  surname: Man Lam
  fullname: Man Lam, Sin
– sequence: 11
  givenname: Maya
  orcidid: 0000-0001-9947-115X
  surname: Schuldiner
  fullname: Schuldiner, Maya
– sequence: 12
  givenname: Vytas A.
  orcidid: 0000-0002-1654-6759
  surname: Bankaitis
  fullname: Bankaitis, Vytas A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32303746$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1vFSEUhompsbfVpVvD0s1UvpnZmJjGr6Spi9Y1AeZMLy0DI8w1uf9eauuNmnRFyHl4XuA9QUcpJ0DoNSVnlPT83a13Z4zQgWjK-mdoQ6UgXU8FOUIbQhjtBsnkMTqp9ZYQIrTgL9AxZ5xwLdQG-cucvG3O4G3EBW520a4hJ5wnvGxzXbZtO-5jhRIS4BlW63IMdcZujy2-Ak9FF8Md4KXkFULCNo1tEMMSRnwXkq3wEj2fbDO8elxP0fdPH6_Pv3QX3z5_Pf9w0Xkh-dqBY4r3yvXSsqFXSno3We0c0dx5pRQftR6VBzpOlvP2eOskdZMQVDHuWM9P0fsH77JzM4we0lpsNEsJsy17k20w_05S2Jqb_NNoOgy9pE3w9lFQ8o8d1NXMoXqI0SbIu2oYH-ig9SDvs978nXUI-fOzDegeAF9yrQWmA0KJuW_OtObMobnG8_94H9bfVbSrhvjEqV-Fqp3f
CitedBy_id crossref_primary_10_1016_j_biochi_2024_09_007
crossref_primary_10_1038_s41598_023_38237_z
crossref_primary_10_1016_j_celrep_2022_110452
crossref_primary_10_1016_j_bbalip_2021_158990
crossref_primary_10_1107_S2059798322005666
crossref_primary_10_3389_fcell_2021_737907
crossref_primary_10_3390_ijms22136754
crossref_primary_10_26508_lsa_202201430
crossref_primary_10_1016_j_jbior_2022_100891
crossref_primary_10_1128_mbio_03873_21
crossref_primary_10_3389_fcell_2020_615856
crossref_primary_10_3389_fcell_2020_00663
crossref_primary_10_1002_1873_3468_14558
Cites_doi 10.1074/jbc.M117.791467
10.1091/mbc.12.8.2396
10.1074/jbc.270.11.6062
10.1038/ncb3271
10.1083/jcb.201704122
10.1111/j.1600-0854.2010.01085.x
10.1016/S1534-5807(02)00168-5
10.1016/j.tibs.2009.10.008
10.1074/jbc.M401583200
10.1016/j.ceb.2006.06.011
10.1126/science.aan5835
10.1016/j.devcel.2017.12.026
10.1074/jbc.M109043200
10.1371/journal.pgen.1005511
10.1016/j.ceb.2019.03.012
10.1038/35179
10.1038/347561a0
10.1016/j.tcb.2010.10.002
10.1016/S1097-2765(00)80366-4
10.1126/science.aab1346
10.1016/j.tibs.2005.05.008
10.1371/journal.pbio.2003864
10.1074/jbc.273.21.13189
10.1016/j.devcel.2018.02.025
10.1083/jcb.201606078
10.1074/jbc.274.19.12990
10.1091/mbc.E16-04-0221
10.1016/j.devcel.2012.11.004
10.1038/s41467-019-09253-3
10.1038/nature22369
10.1016/j.molcel.2007.11.026
10.1016/S0021-9258(19)36940-6
10.1002/j.1460-2075.1996.tb01036.x
10.1083/jcb.200201037
10.1038/s41467-018-03957-8
10.1038/nchembio.1389
10.1091/mbc.e09-06-0519
10.15252/embr.201439151
10.1074/jbc.RA117.000596
10.1083/jcb.108.4.1271
10.1091/mbc.e05-04-0344
10.1083/jcb.201206095
10.1016/j.cell.2010.12.034
10.1083/jcb.109.6.2939
10.1016/S0021-9258(19)74506-2
10.1083/jcb.200504104
10.1016/j.celrep.2015.06.022
10.1002/yea.3004
10.1083/jcb.200804003
10.1083/jcb.201807019
10.1074/jbc.M003923200
10.1091/mbc.e13-11-0634
10.1074/jbc.M113.518217
10.2337/dc19-0100
10.1091/mbc.10.7.2235
10.1074/jbc.275.19.14446
10.7554/eLife.07253
10.1083/jcb.201704115
10.1146/annurev.cellbio.042308.113334
10.1074/jbc.RA119.011153
10.1083/jcb.201502033
10.1126/science.aab1370
10.1021/bi00396a048
10.1091/mbc.01-10-0476
ContentType Journal Article
Copyright 2020 Wang et al.
2020 Wang et al. 2020
Copyright_xml – notice: 2020 Wang et al.
– notice: 2020 Wang et al. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1083/jcb.201907128
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Control of phosphatidylserine metabolism by a PITP
EISSN 1540-8140
ExternalDocumentID PMC7199851
32303746
10_1083_jcb_201907128
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM131804
– fundername: ;
– fundername: ;
  grantid: SFB1190
– fundername: ;
  grantid: R35 GM131804
GroupedDBID ---
-DZ
-~X
.55
123
18M
29K
2WC
34G
36B
39C
4.4
53G
85S
AAYXX
ABDNZ
ABOCM
ABPPZ
ABRJW
ABZEH
ACGFO
ACGOD
ACIWK
ACKOT
ACNCT
ACPRK
ADBBV
AEILP
AENEX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C45
CITATION
CS3
D-I
D0L
DIK
DU5
E3Z
EBS
EMB
F5P
F9R
FRP
GX1
H13
HF~
HYE
IH2
JZ9
KQ8
N9A
NHB
O5R
O5S
OK1
P2P
PQQKQ
R.V
RHI
RNS
RXW
SJN
TAE
TN5
TR2
TRP
TWZ
UBX
UHB
UKR
UPT
W8F
WH7
WOQ
X7M
YKV
YNH
YOC
YQT
YSK
YWH
YZZ
ZCA
~KM
CGR
CUY
CVF
ECM
EIF
NPM
RHF
RPM
VQA
YIN
7X8
5PM
ID FETCH-LOGICAL-c453t-eb26386b85a298665cbfa7bb073bc6663d77d6ce1dfa33108ab51bf441623b283
ISSN 0021-9525
1540-8140
IngestDate Thu Aug 21 14:10:16 EDT 2025
Fri Jul 11 08:16:01 EDT 2025
Wed Feb 19 02:28:31 EST 2025
Thu Apr 24 22:54:46 EDT 2025
Tue Jul 01 02:00:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License 2020 Wang et al.
This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c453t-eb26386b85a298665cbfa7bb073bc6663d77d6ce1dfa33108ab51bf441623b283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3655-9733
0000-0003-3278-6127
0000-0001-9947-115X
0000-0002-1654-6759
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7199851
PMID 32303746
PQID 2391977958
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7199851
proquest_miscellaneous_2391977958
pubmed_primary_32303746
crossref_primary_10_1083_jcb_201907128
crossref_citationtrail_10_1083_jcb_201907128
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-04
PublicationDateYYYYMMDD 2020-05-04
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-04
  day: 04
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of cell biology
PublicationTitleAlternate J Cell Biol
PublicationYear 2020
Publisher Rockefeller University Press
Publisher_xml – name: Rockefeller University Press
References Friedman (2023072804180973200_bib17) 2018
Levine (2023072804180973200_bib28) 2006; 18
Huang (2023072804180973200_bib23) 2016; 27
Cleves (2023072804180973200_bib11) 1989; 109
Manford (2023072804180973200_bib31) 2012; 23
Huang (2023072804180973200_bib24) 2018; 44
Stefan (2023072804180973200_bib49) 2002; 13
Li (2023072804180973200_bib29) 2002; 157
Wu (2023072804180973200_bib64) 2000; 275
Chung (2023072804180973200_bib8) 2015; 16
Bankaitis (2023072804180973200_bib3) 1990; 347
Rivas (2023072804180973200_bib42) 1999; 10
Wang (2023072804180973200_bib62) 2019; 59
Tani (2023072804180973200_bib53) 2014; 31
Gulshan (2023072804180973200_bib21) 2010; 21
Nile (2023072804180973200_bib36) 2014; 10
Fang (2023072804180973200_bib15) 1996; 15
Trotter (2023072804180973200_bib59) 1998; 273
Somerharju (2023072804180973200_bib48) 1987; 26
Audhya (2023072804180973200_bib1) 2002; 2
Murley (2023072804180973200_bib33) 2015; 209
Eisenberg-Bord (2023072804180973200_bib13) 2018; 217
Chung (2023072804180973200_bib9) 2015; 349
Guo (2023072804180973200_bib22) 1999; 274
Sha (2023072804180973200_bib46) 1998; 391
Clancey (2023072804180973200_bib10) 1993; 268
Xie (2023072804180973200_bib65) 2018; 44
Scorrano (2023072804180973200_bib45) 2019; 10
Nakatsu (2023072804180973200_bib34) 2012; 199
Elbaz-Alon (2023072804180973200_bib14) 2015; 12
Kanehara (2023072804180973200_bib26) 2015; 11
Raychaudhuri (2023072804180973200_bib39) 2010; 26
Graham (2023072804180973200_bib20) 2011; 21
Baskin (2023072804180973200_bib6) 2016; 18
Voelker (2023072804180973200_bib61) 2005; 30
Boumann (2023072804180973200_bib7) 2006; 17
Bankaitis (2023072804180973200_bib5) 2010; 35
Trotter (2023072804180973200_bib57) 1995; 270
Schaaf (2023072804180973200_bib44) 2008; 29
Ile (2023072804180973200_bib25) 2010; 11
Quon (2023072804180973200_bib38) 2018; 16
Wu (2023072804180973200_bib63) 2018; 361
Kumar (2023072804180973200_bib27) 2018; 217
Foti (2023072804180973200_bib16) 2001; 12
Phillips (2023072804180973200_bib37) 1999; 4
Ren (2023072804180973200_bib40) 2014; 25
Storey (2023072804180973200_bib51) 2001; 276
Stefan (2023072804180973200_bib50) 2011; 144
Tian (2023072804180973200_bib55) 2018; 293
Moser von Filseck (2023072804180973200_bib32) 2015; 349
Roy (2023072804180973200_bib43) 2004; 279
De (2023072804180973200_bib12) 2017; 216
Shai (2023072804180973200_bib47) 2018; 9
Teixeira (2023072804180973200_bib54) 2018; 217
Valm (2023072804180973200_bib60) 2017; 546
Grabon (2023072804180973200_bib19) 2017; 292
Lu (2023072804180973200_bib30) 2019; 42
Nemoto (2023072804180973200_bib35) 2000; 275
Strahl (2023072804180973200_bib52) 2005; 171
Baird (2023072804180973200_bib2) 2008; 183
Tripathi (2023072804180973200_bib56) 2019; 294
Riekhof (2023072804180973200_bib41) 2014; 289
Bankaitis (2023072804180973200_bib4) 1989; 108
Gatta (2023072804180973200_bib18) 2015; 4
Trotter (2023072804180973200_bib58) 1993; 268
References_xml – volume: 292
  start-page: 14438
  year: 2017
  ident: 2023072804180973200_bib19
  article-title: Dynamics and energetics of the mammalian phosphatidylinositol transfer protein phospholipid exchange cycle
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M117.791467
– volume: 12
  start-page: 2396
  year: 2001
  ident: 2023072804180973200_bib16
  article-title: Sac1 lipid phosphatase and Stt4 phosphatidylinositol 4-kinase regulate a pool of phosphatidylinositol 4-phosphate that functions in the control of the actin cytoskeleton and vacuole morphology
  publication-title: Mol. Biol. Cell.
  doi: 10.1091/mbc.12.8.2396
– volume: 270
  start-page: 6062
  year: 1995
  ident: 2023072804180973200_bib57
  article-title: Identification of a non-mitochondrial phosphatidylserine decarboxylase activity (PSD2) in the yeast Saccharomyces cerevisiae
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.270.11.6062
– volume: 18
  start-page: 132
  year: 2016
  ident: 2023072804180973200_bib6
  article-title: The leukodystrophy protein FAM126A (hyccin) regulates PtdIns(4)P synthesis at the plasma membrane
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3271
– volume: 217
  start-page: 269
  year: 2018
  ident: 2023072804180973200_bib13
  article-title: Identification of seipin-linked factors that act as determinants of a lipid droplet subpopulation
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201704122
– volume: 11
  start-page: 1151
  year: 2010
  ident: 2023072804180973200_bib25
  article-title: Zebrafish class 1 phosphatidylinositol transfer proteins: PITPbeta and double cone cell outer segment integrity in retina
  publication-title: Traffic.
  doi: 10.1111/j.1600-0854.2010.01085.x
– volume: 2
  start-page: 593
  year: 2002
  ident: 2023072804180973200_bib1
  article-title: Stt4 PI 4-kinase localizes to the plasma membrane and functions in the Pkc1-mediated MAP kinase cascade
  publication-title: Dev. Cell.
  doi: 10.1016/S1534-5807(02)00168-5
– volume: 35
  start-page: 150
  year: 2010
  ident: 2023072804180973200_bib5
  article-title: The Sec14 superfamily and mechanisms for crosstalk between lipid metabolism and lipid signaling
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2009.10.008
– volume: 279
  start-page: 44683
  year: 2004
  ident: 2023072804180973200_bib43
  article-title: Multiple pools of phosphatidylinositol 4-phosphate detected using the pleckstrin homology domain of Osh2p
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M401583200
– volume: 18
  start-page: 371
  year: 2006
  ident: 2023072804180973200_bib28
  article-title: Inter-organelle membrane contact sites: through a glass, darkly
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2006.06.011
– volume: 361
  year: 2018
  ident: 2023072804180973200_bib63
  article-title: Here, there, and everywhere: The importance of ER membrane contact sites
  publication-title: Science.
  doi: 10.1126/science.aan5835
– volume: 44
  start-page: 378
  year: 2018
  ident: 2023072804180973200_bib24
  article-title: A Lipid Transfer Protein Signaling Axis Exerts Dual Control of Cell-Cycle and Membrane Trafficking Systems
  publication-title: Dev. Cell.
  doi: 10.1016/j.devcel.2017.12.026
– volume: 276
  start-page: 48539
  year: 2001
  ident: 2023072804180973200_bib51
  article-title: Phosphatidylethanolamine has an essential role in Saccharomyces cerevisiae that is independent of its ability to form hexagonal phase structures
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109043200
– volume: 11
  year: 2015
  ident: 2023072804180973200_bib26
  article-title: Arabidopsis AtPLC2 Is a Primary Phosphoinositide-Specific Phospholipase C in Phosphoinositide Metabolism and the Endoplasmic Reticulum Stress Response
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1005511
– volume: 59
  start-page: 58
  year: 2019
  ident: 2023072804180973200_bib62
  article-title: An equal opportunity collaboration between lipid metabolism and proteins in the control of membrane trafficking in the trans-Golgi and endosomal systems
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2019.03.012
– volume: 391
  start-page: 506
  year: 1998
  ident: 2023072804180973200_bib46
  article-title: Crystal structure of the Saccharomyces cerevisiae phosphatidylinositol-transfer protein
  publication-title: Nature.
  doi: 10.1038/35179
– volume: 347
  start-page: 561
  year: 1990
  ident: 2023072804180973200_bib3
  article-title: An essential role for a phospholipid transfer protein in yeast Golgi function
  publication-title: Nature.
  doi: 10.1038/347561a0
– volume: 21
  start-page: 113
  year: 2011
  ident: 2023072804180973200_bib20
  article-title: Coordination of Golgi functions by phosphatidylinositol 4-kinases
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2010.10.002
– volume: 4
  start-page: 187
  year: 1999
  ident: 2023072804180973200_bib37
  article-title: Yeast Sec14p deficient in phosphatidylinositol transfer activity is functional in vivo
  publication-title: Mol. Cell.
  doi: 10.1016/S1097-2765(00)80366-4
– volume: 349
  start-page: 432
  year: 2015
  ident: 2023072804180973200_bib32
  article-title: Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate
  publication-title: Science.
  doi: 10.1126/science.aab1346
– volume: 30
  start-page: 396
  year: 2005
  ident: 2023072804180973200_bib61
  article-title: Bridging gaps in phospholipid transport
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2005.05.008
– volume: 16
  year: 2018
  ident: 2023072804180973200_bib38
  article-title: Endoplasmic reticulum-plasma membrane contact sites integrate sterol and phospholipid regulation
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.2003864
– volume: 273
  start-page: 13189
  year: 1998
  ident: 2023072804180973200_bib59
  article-title: A genetic screen for aminophospholipid transport mutants identifies the phosphatidylinositol 4-kinase, STT4p, as an essential component in phosphatidylserine metabolism
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.21.13189
– volume: 44
  start-page: 725
  year: 2018
  ident: 2023072804180973200_bib65
  article-title: A Golgi Lipid Signaling Pathway Controls Apical Golgi Distribution and Cell Polarity during Neurogenesis
  publication-title: Dev. Cell.
  doi: 10.1016/j.devcel.2018.02.025
– volume: 216
  start-page: 425
  year: 2017
  ident: 2023072804180973200_bib12
  article-title: The Vps13p-Cdc31p complex is directly required for TGN late endosome transport and TGN homotypic fusion
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201606078
– volume: 274
  start-page: 12990
  year: 1999
  ident: 2023072804180973200_bib22
  article-title: SAC1-like domains of yeast SAC1, INP52, and INP53 and of human synaptojanin encode polyphosphoinositide phosphatases
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.19.12990
– volume: 27
  start-page: 2317
  year: 2016
  ident: 2023072804180973200_bib23
  article-title: Two-ligand priming mechanism for potentiated phosphoinositide synthesis is an evolutionarily conserved feature of Sec14-like phosphatidylinositol and phosphatidylcholine exchange proteins
  publication-title: Mol. Biol. Cell.
  doi: 10.1091/mbc.E16-04-0221
– volume: 23
  start-page: 1129
  year: 2012
  ident: 2023072804180973200_bib31
  article-title: ER-to-plasma membrane tethering proteins regulate cell signaling and ER morphology
  publication-title: Dev. Cell.
  doi: 10.1016/j.devcel.2012.11.004
– volume: 10
  start-page: 1287
  year: 2019
  ident: 2023072804180973200_bib45
  article-title: Coming together to define membrane contact sites
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09253-3
– volume: 546
  start-page: 162
  year: 2017
  ident: 2023072804180973200_bib60
  article-title: Applying systems-level spectral imaging and analysis to reveal the organelle interactome
  publication-title: Nature.
  doi: 10.1038/nature22369
– volume: 29
  start-page: 191
  year: 2008
  ident: 2023072804180973200_bib44
  article-title: Functional anatomy of phospholipid binding and regulation of phosphoinositide homeostasis by proteins of the sec14 superfamily
  publication-title: Mol. Cell.
  doi: 10.1016/j.molcel.2007.11.026
– volume: 268
  start-page: 21416
  year: 1993
  ident: 2023072804180973200_bib58
  article-title: Phosphatidylserine decarboxylase from Saccharomyces cerevisiae. Isolation of mutants, cloning of the gene, and creation of a null allele
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)36940-6
– volume: 15
  start-page: 6447
  year: 1996
  ident: 2023072804180973200_bib15
  article-title: Kes1p shares homology with human oxysterol binding protein and participates in a novel regulatory pathway for yeast Golgi-derived transport vesicle biogenesis
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1996.tb01036.x
– volume: 157
  start-page: 63
  year: 2002
  ident: 2023072804180973200_bib29
  article-title: Analysis of oxysterol binding protein homologue Kes1p function in regulation of Sec14p-dependent protein transport from the yeast Golgi complex
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200201037
– volume: 9
  start-page: 1761
  year: 2018
  ident: 2023072804180973200_bib47
  article-title: Systematic mapping of contact sites reveals tethers and a function for the peroxisome-mitochondria contact
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03957-8
– volume: 10
  start-page: 76
  year: 2014
  ident: 2023072804180973200_bib36
  article-title: PITPs as targets for selectively interfering with phosphoinositide signaling in cells
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1389
– volume: 21
  start-page: 443
  year: 2010
  ident: 2023072804180973200_bib21
  article-title: Compartment-specific synthesis of phosphatidylethanolamine is required for normal heavy metal resistance
  publication-title: Mol. Biol. Cell.
  doi: 10.1091/mbc.e09-06-0519
– volume: 16
  start-page: 312
  year: 2015
  ident: 2023072804180973200_bib8
  article-title: Plasticity of PI4KIIIα interactions at the plasma membrane
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201439151
– volume: 293
  start-page: 5636
  year: 2018
  ident: 2023072804180973200_bib55
  article-title: Oxysterol-binding protein homologs mediate sterol transport from the endoplasmic reticulum to mitochondria in yeast
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA117.000596
– volume: 108
  start-page: 1271
  year: 1989
  ident: 2023072804180973200_bib4
  article-title: The Saccharomyces cerevisiae SEC14 gene encodes a cytosolic factor that is required for transport of secretory proteins from the yeast Golgi complex
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.108.4.1271
– volume: 17
  start-page: 1006
  year: 2006
  ident: 2023072804180973200_bib7
  article-title: Depletion of phosphatidylcholine in yeast induces shortening and increased saturation of the lipid acyl chains: evidence for regulation of intrinsic membrane curvature in a eukaryote
  publication-title: Mol. Biol. Cell.
  doi: 10.1091/mbc.e05-04-0344
– volume: 199
  start-page: 1003
  year: 2012
  ident: 2023072804180973200_bib34
  article-title: PtdIns4P synthesis by PI4KIIIα at the plasma membrane and its impact on plasma membrane identity
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201206095
– volume: 144
  start-page: 389
  year: 2011
  ident: 2023072804180973200_bib50
  article-title: Osh proteins regulate phosphoinositide metabolism at ER-plasma membrane contact sites
  publication-title: Cell.
  doi: 10.1016/j.cell.2010.12.034
– volume: 109
  start-page: 2939
  year: 1989
  ident: 2023072804180973200_bib11
  article-title: Mutations in the SAC1 gene suppress defects in yeast Golgi and yeast actin function
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.109.6.2939
– volume: 268
  start-page: 24580
  year: 1993
  ident: 2023072804180973200_bib10
  article-title: Cloning of a gene (PSD1) encoding phosphatidylserine decarboxylase from Saccharomyces cerevisiae by complementation of an Escherichia coli mutant
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)74506-2
– volume: 171
  start-page: 967
  year: 2005
  ident: 2023072804180973200_bib52
  article-title: Yeast phosphatidylinositol 4-kinase, Pik1, has essential roles at the Golgi and in the nucleus
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200504104
– volume: 12
  start-page: 7
  year: 2015
  ident: 2023072804180973200_bib14
  article-title: Lam6 Regulates the Extent of Contacts between Organelles
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.06.022
– start-page: 261
  volume-title: Dev. Cell.
  year: 2018
  ident: 2023072804180973200_bib17
  article-title: Lipid Homeostasis Is Maintained by Dual Targeting of the Mitochondrial PE Biosynthesis Enzyme to the ER
– volume: 31
  start-page: 145
  year: 2014
  ident: 2023072804180973200_bib53
  article-title: Involvement of Sac1 phosphoinositide phosphatase in the metabolism of phosphatidylserine in the yeast Saccharomyces cerevisiae
  publication-title: Yeast.
  doi: 10.1002/yea.3004
– volume: 183
  start-page: 1061
  year: 2008
  ident: 2023072804180973200_bib2
  article-title: Assembly of the PtdIns 4-kinase Stt4 complex at the plasma membrane requires Ypp1 and Efr3
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200804003
– volume: 217
  start-page: 3625
  year: 2018
  ident: 2023072804180973200_bib27
  article-title: VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201807019
– volume: 275
  start-page: 34293
  year: 2000
  ident: 2023072804180973200_bib35
  article-title: Functional characterization of a mammalian Sac1 and mutants exhibiting substrate-specific defects in phosphoinositide phosphatase activity
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M003923200
– volume: 25
  start-page: 712
  year: 2014
  ident: 2023072804180973200_bib40
  article-title: A phosphatidylinositol transfer protein integrates phosphoinositide signaling with lipid droplet metabolism to regulate a developmental program of nutrient stress-induced membrane biogenesis
  publication-title: Mol. Biol. Cell.
  doi: 10.1091/mbc.e13-11-0634
– volume: 289
  start-page: 5809
  year: 2014
  ident: 2023072804180973200_bib41
  article-title: An assembly of proteins and lipid domains regulates transport of phosphatidylserine to phosphatidylserine decarboxylase 2 in Saccharomyces cerevisiae
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.518217
– volume: 42
  start-page: 2117
  year: 2019
  ident: 2023072804180973200_bib30
  article-title: High-Coverage Targeted Lipidomics Reveals Novel Serum Lipid Predictors and Lipid Pathway Dysregulation Antecedent to Type 2 Diabetes Onset in Normoglycemic Chinese Adults
  publication-title: Diabetes Care.
  doi: 10.2337/dc19-0100
– volume: 10
  start-page: 2235
  year: 1999
  ident: 2023072804180973200_bib42
  article-title: Pleiotropic alterations in lipid metabolism in yeast sac1 mutants: relationship to “bypass Sec14p” and inositol auxotrophy
  publication-title: Mol. Biol. Cell.
  doi: 10.1091/mbc.10.7.2235
– volume: 275
  start-page: 14446
  year: 2000
  ident: 2023072804180973200_bib64
  article-title: A new gene involved in the transport-dependent metabolism of phosphatidylserine, PSTB2/PDR17, shares sequence similarity with the gene encoding the phosphatidylinositol/phosphatidylcholine transfer protein, SEC14
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.275.19.14446
– volume: 4
  year: 2015
  ident: 2023072804180973200_bib18
  article-title: A new family of StART domain proteins at membrane contact sites has a role in ER-PM sterol transport
  publication-title: eLife.
  doi: 10.7554/eLife.07253
– volume: 217
  start-page: 127
  year: 2018
  ident: 2023072804180973200_bib54
  article-title: Regulation of lipid droplets by metabolically controlled Ldo isoforms
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201704115
– volume: 26
  start-page: 157
  year: 2010
  ident: 2023072804180973200_bib39
  article-title: The diverse functions of oxysterol-binding proteins
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev.cellbio.042308.113334
– volume: 294
  start-page: 19081
  year: 2019
  ident: 2023072804180973200_bib56
  article-title: Functional diversification of the chemical landscapes of yeast Sec14-like phosphatidylinositol transfer protein lipid-binding cavities
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA119.011153
– volume: 209
  start-page: 539
  year: 2015
  ident: 2023072804180973200_bib33
  article-title: Ltc1 is an ER-localized sterol transporter and a component of ER-mitochondria and ER-vacuole contacts
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201502033
– volume: 349
  start-page: 428
  year: 2015
  ident: 2023072804180973200_bib9
  article-title: PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts
  publication-title: Science.
  doi: 10.1126/science.aab1370
– volume: 26
  start-page: 7193
  year: 1987
  ident: 2023072804180973200_bib48
  article-title: Determination of the acyl chain specificity of the bovine liver phosphatidylcholine transfer protein. Application of pyrene-labeled phosphatidylcholine species
  publication-title: Biochemistry.
  doi: 10.1021/bi00396a048
– volume: 13
  start-page: 542
  year: 2002
  ident: 2023072804180973200_bib49
  article-title: The yeast synaptojanin-like proteins control the cellular distribution of phosphatidylinositol (4,5)-bisphosphate
  publication-title: Mol. Biol. Cell.
  doi: 10.1091/mbc.01-10-0476
SSID ssj0004743
Score 2.4129763
Snippet The yeast phosphatidylserine (PtdSer) decarboxylase Psd2 is proposed to engage in a membrane contact site (MCS) for PtdSer decarboxylation to...
Yeast Psd2-catalyzed decarboxylation of phosphatidylserine to phosphatidylethanolamine is activated in a noncanonical mechanism by the Sec14-like...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms 1-Phosphatidylinositol 4-Kinase - genetics
Biological Transport - genetics
Cell Metabolism
Lipid Metabolism - genetics
Membrane Proteins - genetics
Metabolism
Phosphatidylethanolamines - genetics
Phosphatidylethanolamines - metabolism
Phosphatidylserines - genetics
Phosphatidylserines - metabolism
Phospholipid Transfer Proteins - genetics
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Title Noncanonical regulation of phosphatidylserine metabolism by a Sec14-like protein and a lipid kinase
URI https://www.ncbi.nlm.nih.gov/pubmed/32303746
https://www.proquest.com/docview/2391977958
https://pubmed.ncbi.nlm.nih.gov/PMC7199851
Volume 219
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELZWRaC-IO4ul4yEeFlS4pybR1QBFahVQVupPEVxYiuhIYmyicTyM_jFzMTOsV2QoC_RruMc8nz5PDP2zBDy0jFlzJZgnViMm4YDDGjwQDAjAGOCC0e6to-Bwien3vG58_HCvZjNfk12LbUNP4x__jGu5DpShTaQK0bJ_odkh5tCA_wG-cIRJAzHf5LxaVnAyJQqtLFWVeW1Alil5bpK4W-yydddiB8WiwaJ51gVA3TOCF3tzDHy7BJjpUqseqkyty7yrMqSxWVW9Cs330ZITRRY9PkvdBKn0S-vuONr9CMbCKVVTtYzkaXtMAt8qOFlVP4CPly-qrOuRHLXvE7bplynU7-E1S2pm6Nf8gvQuZC4-FDvBD1OCRl3iLgq9vlQaA52TPRMmlOS7ok1G9fBd8gftEkk_5jjjj0w-pkKO58AofreIcEGu8v2nSspuLtJ_ezkyMewQ4zKv2GB6YHc-enzJAO9r3di6hfXeVvh2W-2nrxPbvWP2VZ5duyYq9txJ_rN6g65reVK3yqU3SUzUdwjN1Wp0s19Ek-xRkes0VLSXazREWuUb2hER6xRjTUKWIMTHdaowtoDcv7-3ero2NAFOozYce3GENwC-vb40o2sABMnxlxGPucwbfAY7GI78f3EiwVLZGSDHbGMuMu4BA0clG4Oiu1DsgcvLg4IlUwwDMIGfR3mFMeO_IQHiZ0w6ZlSetacvO7HMIx19nosopKH3S6KpR3C6IfD6M_Jq6F7pdK2_K3ji14gIRArfjlRIcp2HVp2wMA4Clzo80gJaLhVL9k58bdEN3TApO3bZ4os7ZK3a3Q9vvaVT8j--Lk9JXtN3YpnoBg3_HmH1N9RAbza
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noncanonical+regulation+of+phosphatidylserine+metabolism+by+a+Sec14-like+protein+and+a+lipid+kinase&rft.jtitle=The+Journal+of+cell+biology&rft.au=Wang%2C+Yaxi&rft.au=Yuan%2C+Peihua&rft.au=Grabon%2C+Aby&rft.au=Tripathi%2C+Ashutosh&rft.date=2020-05-04&rft.pub=Rockefeller+University+Press&rft.issn=0021-9525&rft.eissn=1540-8140&rft.volume=219&rft.issue=5&rft_id=info:doi/10.1083%2Fjcb.201907128&rft_id=info%3Apmid%2F32303746&rft.externalDocID=PMC7199851
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9525&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9525&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9525&client=summon