Noncanonical regulation of phosphatidylserine metabolism by a Sec14-like protein and a lipid kinase
The yeast phosphatidylserine (PtdSer) decarboxylase Psd2 is proposed to engage in a membrane contact site (MCS) for PtdSer decarboxylation to phosphatidylethanolamine (PtdEtn). This proposed MCS harbors Psd2, the Sec14-like phosphatidylinositol transfer protein (PITP) Sfh4, the Stt4 phosphatidylinos...
Saved in:
Published in | The Journal of cell biology Vol. 219; no. 5 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Rockefeller University Press
04.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The yeast phosphatidylserine (PtdSer) decarboxylase Psd2 is proposed to engage in a membrane contact site (MCS) for PtdSer decarboxylation to phosphatidylethanolamine (PtdEtn). This proposed MCS harbors Psd2, the Sec14-like phosphatidylinositol transfer protein (PITP) Sfh4, the Stt4 phosphatidylinositol (PtdIns) 4-OH kinase, the Scs2 tether, and an uncharacterized protein. We report that, of these components, only Sfh4 and Stt4 regulate Psd2 activity in vivo. They do so via distinct mechanisms. Sfh4 operates via a mechanism for which its PtdIns-transfer activity is dispensable but requires an Sfh4-Psd2 physical interaction. The other requires Stt4-mediated production of PtdIns-4-phosphate (PtdIns4P), where Stt4 (along with the Sac1 PtdIns4P phosphatase and endoplasmic reticulum–plasma membrane tethers) indirectly modulate Psd2 activity via a PtdIns4P homeostatic mechanism that influences PtdSer accessibility to Psd2. These results identify an example in which the biological function of a Sec14-like PITP is cleanly uncoupled from its canonical in vitro PtdIns-transfer activity and challenge popular functional assumptions regarding lipid-transfer protein involvements in MCS function. |
---|---|
AbstractList | The yeast phosphatidylserine (PtdSer) decarboxylase Psd2 is proposed to engage in a membrane contact site (MCS) for PtdSer decarboxylation to phosphatidylethanolamine (PtdEtn). This proposed MCS harbors Psd2, the Sec14-like phosphatidylinositol transfer protein (PITP) Sfh4, the Stt4 phosphatidylinositol (PtdIns) 4-OH kinase, the Scs2 tether, and an uncharacterized protein. We report that, of these components, only Sfh4 and Stt4 regulate Psd2 activity in vivo. They do so via distinct mechanisms. Sfh4 operates via a mechanism for which its PtdIns-transfer activity is dispensable but requires an Sfh4-Psd2 physical interaction. The other requires Stt4-mediated production of PtdIns-4-phosphate (PtdIns4P), where Stt4 (along with the Sac1 PtdIns4P phosphatase and endoplasmic reticulum-plasma membrane tethers) indirectly modulate Psd2 activity via a PtdIns4P homeostatic mechanism that influences PtdSer accessibility to Psd2. These results identify an example in which the biological function of a Sec14-like PITP is cleanly uncoupled from its canonical in vitro PtdIns-transfer activity and challenge popular functional assumptions regarding lipid-transfer protein involvements in MCS function.The yeast phosphatidylserine (PtdSer) decarboxylase Psd2 is proposed to engage in a membrane contact site (MCS) for PtdSer decarboxylation to phosphatidylethanolamine (PtdEtn). This proposed MCS harbors Psd2, the Sec14-like phosphatidylinositol transfer protein (PITP) Sfh4, the Stt4 phosphatidylinositol (PtdIns) 4-OH kinase, the Scs2 tether, and an uncharacterized protein. We report that, of these components, only Sfh4 and Stt4 regulate Psd2 activity in vivo. They do so via distinct mechanisms. Sfh4 operates via a mechanism for which its PtdIns-transfer activity is dispensable but requires an Sfh4-Psd2 physical interaction. The other requires Stt4-mediated production of PtdIns-4-phosphate (PtdIns4P), where Stt4 (along with the Sac1 PtdIns4P phosphatase and endoplasmic reticulum-plasma membrane tethers) indirectly modulate Psd2 activity via a PtdIns4P homeostatic mechanism that influences PtdSer accessibility to Psd2. These results identify an example in which the biological function of a Sec14-like PITP is cleanly uncoupled from its canonical in vitro PtdIns-transfer activity and challenge popular functional assumptions regarding lipid-transfer protein involvements in MCS function. Yeast Psd2-catalyzed decarboxylation of phosphatidylserine to phosphatidylethanolamine is activated in a noncanonical mechanism by the Sec14-like phosphatidylinositol-transfer protein Sfh4 via a specific protein–protein interaction, and by Stt4 PtdIns 4-OH kinase–mediated control of phosphatidylserine accessibility to the enzyme. The yeast phosphatidylserine (PtdSer) decarboxylase Psd2 is proposed to engage in a membrane contact site (MCS) for PtdSer decarboxylation to phosphatidylethanolamine (PtdEtn). This proposed MCS harbors Psd2, the Sec14-like phosphatidylinositol transfer protein (PITP) Sfh4, the Stt4 phosphatidylinositol (PtdIns) 4-OH kinase, the Scs2 tether, and an uncharacterized protein. We report that, of these components, only Sfh4 and Stt4 regulate Psd2 activity in vivo. They do so via distinct mechanisms. Sfh4 operates via a mechanism for which its PtdIns-transfer activity is dispensable but requires an Sfh4-Psd2 physical interaction. The other requires Stt4-mediated production of PtdIns-4-phosphate (PtdIns4 P ), where Stt4 (along with the Sac1 PtdIns4 P phosphatase and endoplasmic reticulum–plasma membrane tethers) indirectly modulate Psd2 activity via a PtdIns4 P homeostatic mechanism that influences PtdSer accessibility to Psd2. These results identify an example in which the biological function of a Sec14-like PITP is cleanly uncoupled from its canonical in vitro PtdIns-transfer activity and challenge popular functional assumptions regarding lipid-transfer protein involvements in MCS function. The yeast phosphatidylserine (PtdSer) decarboxylase Psd2 is proposed to engage in a membrane contact site (MCS) for PtdSer decarboxylation to phosphatidylethanolamine (PtdEtn). This proposed MCS harbors Psd2, the Sec14-like phosphatidylinositol transfer protein (PITP) Sfh4, the Stt4 phosphatidylinositol (PtdIns) 4-OH kinase, the Scs2 tether, and an uncharacterized protein. We report that, of these components, only Sfh4 and Stt4 regulate Psd2 activity in vivo. They do so via distinct mechanisms. Sfh4 operates via a mechanism for which its PtdIns-transfer activity is dispensable but requires an Sfh4-Psd2 physical interaction. The other requires Stt4-mediated production of PtdIns-4-phosphate (PtdIns4P), where Stt4 (along with the Sac1 PtdIns4P phosphatase and endoplasmic reticulum-plasma membrane tethers) indirectly modulate Psd2 activity via a PtdIns4P homeostatic mechanism that influences PtdSer accessibility to Psd2. These results identify an example in which the biological function of a Sec14-like PITP is cleanly uncoupled from its canonical in vitro PtdIns-transfer activity and challenge popular functional assumptions regarding lipid-transfer protein involvements in MCS function. |
Author | Eisenberg-Bord, Michal Rodriguez, Martin Man Lam, Sin Bankaitis, Vytas A. Tripathi, Ashutosh Wang, Yaxi Lönnfors, Max Wang, Zehua Lee, Dongju Yuan, Peihua Grabon, Aby Schuldiner, Maya |
AuthorAffiliation | 3 Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel 1 Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 4 University of Chinese Academy of Sciences, Beijing, China 5 State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China 6 Department of Chemistry, Texas A&M University, College Station, TX 2 Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, College Station, TX |
AuthorAffiliation_xml | – name: 1 Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX – name: 6 Department of Chemistry, Texas A&M University, College Station, TX – name: 4 University of Chinese Academy of Sciences, Beijing, China – name: 5 State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China – name: 2 Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, College Station, TX – name: 3 Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel |
Author_xml | – sequence: 1 givenname: Yaxi orcidid: 0000-0003-3278-6127 surname: Wang fullname: Wang, Yaxi – sequence: 2 givenname: Peihua surname: Yuan fullname: Yuan, Peihua – sequence: 3 givenname: Aby surname: Grabon fullname: Grabon, Aby – sequence: 4 givenname: Ashutosh surname: Tripathi fullname: Tripathi, Ashutosh – sequence: 5 givenname: Dongju surname: Lee fullname: Lee, Dongju – sequence: 6 givenname: Martin surname: Rodriguez fullname: Rodriguez, Martin – sequence: 7 givenname: Max orcidid: 0000-0002-3655-9733 surname: Lönnfors fullname: Lönnfors, Max – sequence: 8 givenname: Michal surname: Eisenberg-Bord fullname: Eisenberg-Bord, Michal – sequence: 9 givenname: Zehua surname: Wang fullname: Wang, Zehua – sequence: 10 givenname: Sin surname: Man Lam fullname: Man Lam, Sin – sequence: 11 givenname: Maya orcidid: 0000-0001-9947-115X surname: Schuldiner fullname: Schuldiner, Maya – sequence: 12 givenname: Vytas A. orcidid: 0000-0002-1654-6759 surname: Bankaitis fullname: Bankaitis, Vytas A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32303746$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1vFSEUhompsbfVpVvD0s1UvpnZmJjGr6Spi9Y1AeZMLy0DI8w1uf9eauuNmnRFyHl4XuA9QUcpJ0DoNSVnlPT83a13Z4zQgWjK-mdoQ6UgXU8FOUIbQhjtBsnkMTqp9ZYQIrTgL9AxZ5xwLdQG-cucvG3O4G3EBW520a4hJ5wnvGxzXbZtO-5jhRIS4BlW63IMdcZujy2-Ak9FF8Md4KXkFULCNo1tEMMSRnwXkq3wEj2fbDO8elxP0fdPH6_Pv3QX3z5_Pf9w0Xkh-dqBY4r3yvXSsqFXSno3We0c0dx5pRQftR6VBzpOlvP2eOskdZMQVDHuWM9P0fsH77JzM4we0lpsNEsJsy17k20w_05S2Jqb_NNoOgy9pE3w9lFQ8o8d1NXMoXqI0SbIu2oYH-ig9SDvs978nXUI-fOzDegeAF9yrQWmA0KJuW_OtObMobnG8_94H9bfVbSrhvjEqV-Fqp3f |
CitedBy_id | crossref_primary_10_1016_j_biochi_2024_09_007 crossref_primary_10_1038_s41598_023_38237_z crossref_primary_10_1016_j_celrep_2022_110452 crossref_primary_10_1016_j_bbalip_2021_158990 crossref_primary_10_1107_S2059798322005666 crossref_primary_10_3389_fcell_2021_737907 crossref_primary_10_3390_ijms22136754 crossref_primary_10_26508_lsa_202201430 crossref_primary_10_1016_j_jbior_2022_100891 crossref_primary_10_1128_mbio_03873_21 crossref_primary_10_3389_fcell_2020_615856 crossref_primary_10_3389_fcell_2020_00663 crossref_primary_10_1002_1873_3468_14558 |
Cites_doi | 10.1074/jbc.M117.791467 10.1091/mbc.12.8.2396 10.1074/jbc.270.11.6062 10.1038/ncb3271 10.1083/jcb.201704122 10.1111/j.1600-0854.2010.01085.x 10.1016/S1534-5807(02)00168-5 10.1016/j.tibs.2009.10.008 10.1074/jbc.M401583200 10.1016/j.ceb.2006.06.011 10.1126/science.aan5835 10.1016/j.devcel.2017.12.026 10.1074/jbc.M109043200 10.1371/journal.pgen.1005511 10.1016/j.ceb.2019.03.012 10.1038/35179 10.1038/347561a0 10.1016/j.tcb.2010.10.002 10.1016/S1097-2765(00)80366-4 10.1126/science.aab1346 10.1016/j.tibs.2005.05.008 10.1371/journal.pbio.2003864 10.1074/jbc.273.21.13189 10.1016/j.devcel.2018.02.025 10.1083/jcb.201606078 10.1074/jbc.274.19.12990 10.1091/mbc.E16-04-0221 10.1016/j.devcel.2012.11.004 10.1038/s41467-019-09253-3 10.1038/nature22369 10.1016/j.molcel.2007.11.026 10.1016/S0021-9258(19)36940-6 10.1002/j.1460-2075.1996.tb01036.x 10.1083/jcb.200201037 10.1038/s41467-018-03957-8 10.1038/nchembio.1389 10.1091/mbc.e09-06-0519 10.15252/embr.201439151 10.1074/jbc.RA117.000596 10.1083/jcb.108.4.1271 10.1091/mbc.e05-04-0344 10.1083/jcb.201206095 10.1016/j.cell.2010.12.034 10.1083/jcb.109.6.2939 10.1016/S0021-9258(19)74506-2 10.1083/jcb.200504104 10.1016/j.celrep.2015.06.022 10.1002/yea.3004 10.1083/jcb.200804003 10.1083/jcb.201807019 10.1074/jbc.M003923200 10.1091/mbc.e13-11-0634 10.1074/jbc.M113.518217 10.2337/dc19-0100 10.1091/mbc.10.7.2235 10.1074/jbc.275.19.14446 10.7554/eLife.07253 10.1083/jcb.201704115 10.1146/annurev.cellbio.042308.113334 10.1074/jbc.RA119.011153 10.1083/jcb.201502033 10.1126/science.aab1370 10.1021/bi00396a048 10.1091/mbc.01-10-0476 |
ContentType | Journal Article |
Copyright | 2020 Wang et al. 2020 Wang et al. 2020 |
Copyright_xml | – notice: 2020 Wang et al. – notice: 2020 Wang et al. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1083/jcb.201907128 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Control of phosphatidylserine metabolism by a PITP |
EISSN | 1540-8140 |
ExternalDocumentID | PMC7199851 32303746 10_1083_jcb_201907128 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM131804 – fundername: ; – fundername: ; grantid: SFB1190 – fundername: ; grantid: R35 GM131804 |
GroupedDBID | --- -DZ -~X .55 123 18M 29K 2WC 34G 36B 39C 4.4 53G 85S AAYXX ABDNZ ABOCM ABPPZ ABRJW ABZEH ACGFO ACGOD ACIWK ACKOT ACNCT ACPRK ADBBV AEILP AENEX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW C45 CITATION CS3 D-I D0L DIK DU5 E3Z EBS EMB F5P F9R FRP GX1 H13 HF~ HYE IH2 JZ9 KQ8 N9A NHB O5R O5S OK1 P2P PQQKQ R.V RHI RNS RXW SJN TAE TN5 TR2 TRP TWZ UBX UHB UKR UPT W8F WH7 WOQ X7M YKV YNH YOC YQT YSK YWH YZZ ZCA ~KM CGR CUY CVF ECM EIF NPM RHF RPM VQA YIN 7X8 5PM |
ID | FETCH-LOGICAL-c453t-eb26386b85a298665cbfa7bb073bc6663d77d6ce1dfa33108ab51bf441623b283 |
ISSN | 0021-9525 1540-8140 |
IngestDate | Thu Aug 21 14:10:16 EDT 2025 Fri Jul 11 08:16:01 EDT 2025 Wed Feb 19 02:28:31 EST 2025 Thu Apr 24 22:54:46 EDT 2025 Tue Jul 01 02:00:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | 2020 Wang et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c453t-eb26386b85a298665cbfa7bb073bc6663d77d6ce1dfa33108ab51bf441623b283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3655-9733 0000-0003-3278-6127 0000-0001-9947-115X 0000-0002-1654-6759 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7199851 |
PMID | 32303746 |
PQID | 2391977958 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7199851 proquest_miscellaneous_2391977958 pubmed_primary_32303746 crossref_primary_10_1083_jcb_201907128 crossref_citationtrail_10_1083_jcb_201907128 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-04 |
PublicationDateYYYYMMDD | 2020-05-04 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of cell biology |
PublicationTitleAlternate | J Cell Biol |
PublicationYear | 2020 |
Publisher | Rockefeller University Press |
Publisher_xml | – name: Rockefeller University Press |
References | Friedman (2023072804180973200_bib17) 2018 Levine (2023072804180973200_bib28) 2006; 18 Huang (2023072804180973200_bib23) 2016; 27 Cleves (2023072804180973200_bib11) 1989; 109 Manford (2023072804180973200_bib31) 2012; 23 Huang (2023072804180973200_bib24) 2018; 44 Stefan (2023072804180973200_bib49) 2002; 13 Li (2023072804180973200_bib29) 2002; 157 Wu (2023072804180973200_bib64) 2000; 275 Chung (2023072804180973200_bib8) 2015; 16 Bankaitis (2023072804180973200_bib3) 1990; 347 Rivas (2023072804180973200_bib42) 1999; 10 Wang (2023072804180973200_bib62) 2019; 59 Tani (2023072804180973200_bib53) 2014; 31 Gulshan (2023072804180973200_bib21) 2010; 21 Nile (2023072804180973200_bib36) 2014; 10 Fang (2023072804180973200_bib15) 1996; 15 Trotter (2023072804180973200_bib59) 1998; 273 Somerharju (2023072804180973200_bib48) 1987; 26 Audhya (2023072804180973200_bib1) 2002; 2 Murley (2023072804180973200_bib33) 2015; 209 Eisenberg-Bord (2023072804180973200_bib13) 2018; 217 Chung (2023072804180973200_bib9) 2015; 349 Guo (2023072804180973200_bib22) 1999; 274 Sha (2023072804180973200_bib46) 1998; 391 Clancey (2023072804180973200_bib10) 1993; 268 Xie (2023072804180973200_bib65) 2018; 44 Scorrano (2023072804180973200_bib45) 2019; 10 Nakatsu (2023072804180973200_bib34) 2012; 199 Elbaz-Alon (2023072804180973200_bib14) 2015; 12 Kanehara (2023072804180973200_bib26) 2015; 11 Raychaudhuri (2023072804180973200_bib39) 2010; 26 Graham (2023072804180973200_bib20) 2011; 21 Baskin (2023072804180973200_bib6) 2016; 18 Voelker (2023072804180973200_bib61) 2005; 30 Boumann (2023072804180973200_bib7) 2006; 17 Bankaitis (2023072804180973200_bib5) 2010; 35 Trotter (2023072804180973200_bib57) 1995; 270 Schaaf (2023072804180973200_bib44) 2008; 29 Ile (2023072804180973200_bib25) 2010; 11 Quon (2023072804180973200_bib38) 2018; 16 Wu (2023072804180973200_bib63) 2018; 361 Kumar (2023072804180973200_bib27) 2018; 217 Foti (2023072804180973200_bib16) 2001; 12 Phillips (2023072804180973200_bib37) 1999; 4 Ren (2023072804180973200_bib40) 2014; 25 Storey (2023072804180973200_bib51) 2001; 276 Stefan (2023072804180973200_bib50) 2011; 144 Tian (2023072804180973200_bib55) 2018; 293 Moser von Filseck (2023072804180973200_bib32) 2015; 349 Roy (2023072804180973200_bib43) 2004; 279 De (2023072804180973200_bib12) 2017; 216 Shai (2023072804180973200_bib47) 2018; 9 Teixeira (2023072804180973200_bib54) 2018; 217 Valm (2023072804180973200_bib60) 2017; 546 Grabon (2023072804180973200_bib19) 2017; 292 Lu (2023072804180973200_bib30) 2019; 42 Nemoto (2023072804180973200_bib35) 2000; 275 Strahl (2023072804180973200_bib52) 2005; 171 Baird (2023072804180973200_bib2) 2008; 183 Tripathi (2023072804180973200_bib56) 2019; 294 Riekhof (2023072804180973200_bib41) 2014; 289 Bankaitis (2023072804180973200_bib4) 1989; 108 Gatta (2023072804180973200_bib18) 2015; 4 Trotter (2023072804180973200_bib58) 1993; 268 |
References_xml | – volume: 292 start-page: 14438 year: 2017 ident: 2023072804180973200_bib19 article-title: Dynamics and energetics of the mammalian phosphatidylinositol transfer protein phospholipid exchange cycle publication-title: J. Biol. Chem. doi: 10.1074/jbc.M117.791467 – volume: 12 start-page: 2396 year: 2001 ident: 2023072804180973200_bib16 article-title: Sac1 lipid phosphatase and Stt4 phosphatidylinositol 4-kinase regulate a pool of phosphatidylinositol 4-phosphate that functions in the control of the actin cytoskeleton and vacuole morphology publication-title: Mol. Biol. Cell. doi: 10.1091/mbc.12.8.2396 – volume: 270 start-page: 6062 year: 1995 ident: 2023072804180973200_bib57 article-title: Identification of a non-mitochondrial phosphatidylserine decarboxylase activity (PSD2) in the yeast Saccharomyces cerevisiae publication-title: J. Biol. Chem. doi: 10.1074/jbc.270.11.6062 – volume: 18 start-page: 132 year: 2016 ident: 2023072804180973200_bib6 article-title: The leukodystrophy protein FAM126A (hyccin) regulates PtdIns(4)P synthesis at the plasma membrane publication-title: Nat. Cell Biol. doi: 10.1038/ncb3271 – volume: 217 start-page: 269 year: 2018 ident: 2023072804180973200_bib13 article-title: Identification of seipin-linked factors that act as determinants of a lipid droplet subpopulation publication-title: J. Cell Biol. doi: 10.1083/jcb.201704122 – volume: 11 start-page: 1151 year: 2010 ident: 2023072804180973200_bib25 article-title: Zebrafish class 1 phosphatidylinositol transfer proteins: PITPbeta and double cone cell outer segment integrity in retina publication-title: Traffic. doi: 10.1111/j.1600-0854.2010.01085.x – volume: 2 start-page: 593 year: 2002 ident: 2023072804180973200_bib1 article-title: Stt4 PI 4-kinase localizes to the plasma membrane and functions in the Pkc1-mediated MAP kinase cascade publication-title: Dev. Cell. doi: 10.1016/S1534-5807(02)00168-5 – volume: 35 start-page: 150 year: 2010 ident: 2023072804180973200_bib5 article-title: The Sec14 superfamily and mechanisms for crosstalk between lipid metabolism and lipid signaling publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2009.10.008 – volume: 279 start-page: 44683 year: 2004 ident: 2023072804180973200_bib43 article-title: Multiple pools of phosphatidylinositol 4-phosphate detected using the pleckstrin homology domain of Osh2p publication-title: J. Biol. Chem. doi: 10.1074/jbc.M401583200 – volume: 18 start-page: 371 year: 2006 ident: 2023072804180973200_bib28 article-title: Inter-organelle membrane contact sites: through a glass, darkly publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2006.06.011 – volume: 361 year: 2018 ident: 2023072804180973200_bib63 article-title: Here, there, and everywhere: The importance of ER membrane contact sites publication-title: Science. doi: 10.1126/science.aan5835 – volume: 44 start-page: 378 year: 2018 ident: 2023072804180973200_bib24 article-title: A Lipid Transfer Protein Signaling Axis Exerts Dual Control of Cell-Cycle and Membrane Trafficking Systems publication-title: Dev. Cell. doi: 10.1016/j.devcel.2017.12.026 – volume: 276 start-page: 48539 year: 2001 ident: 2023072804180973200_bib51 article-title: Phosphatidylethanolamine has an essential role in Saccharomyces cerevisiae that is independent of its ability to form hexagonal phase structures publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109043200 – volume: 11 year: 2015 ident: 2023072804180973200_bib26 article-title: Arabidopsis AtPLC2 Is a Primary Phosphoinositide-Specific Phospholipase C in Phosphoinositide Metabolism and the Endoplasmic Reticulum Stress Response publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1005511 – volume: 59 start-page: 58 year: 2019 ident: 2023072804180973200_bib62 article-title: An equal opportunity collaboration between lipid metabolism and proteins in the control of membrane trafficking in the trans-Golgi and endosomal systems publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2019.03.012 – volume: 391 start-page: 506 year: 1998 ident: 2023072804180973200_bib46 article-title: Crystal structure of the Saccharomyces cerevisiae phosphatidylinositol-transfer protein publication-title: Nature. doi: 10.1038/35179 – volume: 347 start-page: 561 year: 1990 ident: 2023072804180973200_bib3 article-title: An essential role for a phospholipid transfer protein in yeast Golgi function publication-title: Nature. doi: 10.1038/347561a0 – volume: 21 start-page: 113 year: 2011 ident: 2023072804180973200_bib20 article-title: Coordination of Golgi functions by phosphatidylinositol 4-kinases publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2010.10.002 – volume: 4 start-page: 187 year: 1999 ident: 2023072804180973200_bib37 article-title: Yeast Sec14p deficient in phosphatidylinositol transfer activity is functional in vivo publication-title: Mol. Cell. doi: 10.1016/S1097-2765(00)80366-4 – volume: 349 start-page: 432 year: 2015 ident: 2023072804180973200_bib32 article-title: Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate publication-title: Science. doi: 10.1126/science.aab1346 – volume: 30 start-page: 396 year: 2005 ident: 2023072804180973200_bib61 article-title: Bridging gaps in phospholipid transport publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2005.05.008 – volume: 16 year: 2018 ident: 2023072804180973200_bib38 article-title: Endoplasmic reticulum-plasma membrane contact sites integrate sterol and phospholipid regulation publication-title: PLoS Biol. doi: 10.1371/journal.pbio.2003864 – volume: 273 start-page: 13189 year: 1998 ident: 2023072804180973200_bib59 article-title: A genetic screen for aminophospholipid transport mutants identifies the phosphatidylinositol 4-kinase, STT4p, as an essential component in phosphatidylserine metabolism publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.21.13189 – volume: 44 start-page: 725 year: 2018 ident: 2023072804180973200_bib65 article-title: A Golgi Lipid Signaling Pathway Controls Apical Golgi Distribution and Cell Polarity during Neurogenesis publication-title: Dev. Cell. doi: 10.1016/j.devcel.2018.02.025 – volume: 216 start-page: 425 year: 2017 ident: 2023072804180973200_bib12 article-title: The Vps13p-Cdc31p complex is directly required for TGN late endosome transport and TGN homotypic fusion publication-title: J. Cell Biol. doi: 10.1083/jcb.201606078 – volume: 274 start-page: 12990 year: 1999 ident: 2023072804180973200_bib22 article-title: SAC1-like domains of yeast SAC1, INP52, and INP53 and of human synaptojanin encode polyphosphoinositide phosphatases publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.19.12990 – volume: 27 start-page: 2317 year: 2016 ident: 2023072804180973200_bib23 article-title: Two-ligand priming mechanism for potentiated phosphoinositide synthesis is an evolutionarily conserved feature of Sec14-like phosphatidylinositol and phosphatidylcholine exchange proteins publication-title: Mol. Biol. Cell. doi: 10.1091/mbc.E16-04-0221 – volume: 23 start-page: 1129 year: 2012 ident: 2023072804180973200_bib31 article-title: ER-to-plasma membrane tethering proteins regulate cell signaling and ER morphology publication-title: Dev. Cell. doi: 10.1016/j.devcel.2012.11.004 – volume: 10 start-page: 1287 year: 2019 ident: 2023072804180973200_bib45 article-title: Coming together to define membrane contact sites publication-title: Nat. Commun. doi: 10.1038/s41467-019-09253-3 – volume: 546 start-page: 162 year: 2017 ident: 2023072804180973200_bib60 article-title: Applying systems-level spectral imaging and analysis to reveal the organelle interactome publication-title: Nature. doi: 10.1038/nature22369 – volume: 29 start-page: 191 year: 2008 ident: 2023072804180973200_bib44 article-title: Functional anatomy of phospholipid binding and regulation of phosphoinositide homeostasis by proteins of the sec14 superfamily publication-title: Mol. Cell. doi: 10.1016/j.molcel.2007.11.026 – volume: 268 start-page: 21416 year: 1993 ident: 2023072804180973200_bib58 article-title: Phosphatidylserine decarboxylase from Saccharomyces cerevisiae. Isolation of mutants, cloning of the gene, and creation of a null allele publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)36940-6 – volume: 15 start-page: 6447 year: 1996 ident: 2023072804180973200_bib15 article-title: Kes1p shares homology with human oxysterol binding protein and participates in a novel regulatory pathway for yeast Golgi-derived transport vesicle biogenesis publication-title: EMBO J. doi: 10.1002/j.1460-2075.1996.tb01036.x – volume: 157 start-page: 63 year: 2002 ident: 2023072804180973200_bib29 article-title: Analysis of oxysterol binding protein homologue Kes1p function in regulation of Sec14p-dependent protein transport from the yeast Golgi complex publication-title: J. Cell Biol. doi: 10.1083/jcb.200201037 – volume: 9 start-page: 1761 year: 2018 ident: 2023072804180973200_bib47 article-title: Systematic mapping of contact sites reveals tethers and a function for the peroxisome-mitochondria contact publication-title: Nat. Commun. doi: 10.1038/s41467-018-03957-8 – volume: 10 start-page: 76 year: 2014 ident: 2023072804180973200_bib36 article-title: PITPs as targets for selectively interfering with phosphoinositide signaling in cells publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1389 – volume: 21 start-page: 443 year: 2010 ident: 2023072804180973200_bib21 article-title: Compartment-specific synthesis of phosphatidylethanolamine is required for normal heavy metal resistance publication-title: Mol. Biol. Cell. doi: 10.1091/mbc.e09-06-0519 – volume: 16 start-page: 312 year: 2015 ident: 2023072804180973200_bib8 article-title: Plasticity of PI4KIIIα interactions at the plasma membrane publication-title: EMBO Rep. doi: 10.15252/embr.201439151 – volume: 293 start-page: 5636 year: 2018 ident: 2023072804180973200_bib55 article-title: Oxysterol-binding protein homologs mediate sterol transport from the endoplasmic reticulum to mitochondria in yeast publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA117.000596 – volume: 108 start-page: 1271 year: 1989 ident: 2023072804180973200_bib4 article-title: The Saccharomyces cerevisiae SEC14 gene encodes a cytosolic factor that is required for transport of secretory proteins from the yeast Golgi complex publication-title: J. Cell Biol. doi: 10.1083/jcb.108.4.1271 – volume: 17 start-page: 1006 year: 2006 ident: 2023072804180973200_bib7 article-title: Depletion of phosphatidylcholine in yeast induces shortening and increased saturation of the lipid acyl chains: evidence for regulation of intrinsic membrane curvature in a eukaryote publication-title: Mol. Biol. Cell. doi: 10.1091/mbc.e05-04-0344 – volume: 199 start-page: 1003 year: 2012 ident: 2023072804180973200_bib34 article-title: PtdIns4P synthesis by PI4KIIIα at the plasma membrane and its impact on plasma membrane identity publication-title: J. Cell Biol. doi: 10.1083/jcb.201206095 – volume: 144 start-page: 389 year: 2011 ident: 2023072804180973200_bib50 article-title: Osh proteins regulate phosphoinositide metabolism at ER-plasma membrane contact sites publication-title: Cell. doi: 10.1016/j.cell.2010.12.034 – volume: 109 start-page: 2939 year: 1989 ident: 2023072804180973200_bib11 article-title: Mutations in the SAC1 gene suppress defects in yeast Golgi and yeast actin function publication-title: J. Cell Biol. doi: 10.1083/jcb.109.6.2939 – volume: 268 start-page: 24580 year: 1993 ident: 2023072804180973200_bib10 article-title: Cloning of a gene (PSD1) encoding phosphatidylserine decarboxylase from Saccharomyces cerevisiae by complementation of an Escherichia coli mutant publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)74506-2 – volume: 171 start-page: 967 year: 2005 ident: 2023072804180973200_bib52 article-title: Yeast phosphatidylinositol 4-kinase, Pik1, has essential roles at the Golgi and in the nucleus publication-title: J. Cell Biol. doi: 10.1083/jcb.200504104 – volume: 12 start-page: 7 year: 2015 ident: 2023072804180973200_bib14 article-title: Lam6 Regulates the Extent of Contacts between Organelles publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.06.022 – start-page: 261 volume-title: Dev. Cell. year: 2018 ident: 2023072804180973200_bib17 article-title: Lipid Homeostasis Is Maintained by Dual Targeting of the Mitochondrial PE Biosynthesis Enzyme to the ER – volume: 31 start-page: 145 year: 2014 ident: 2023072804180973200_bib53 article-title: Involvement of Sac1 phosphoinositide phosphatase in the metabolism of phosphatidylserine in the yeast Saccharomyces cerevisiae publication-title: Yeast. doi: 10.1002/yea.3004 – volume: 183 start-page: 1061 year: 2008 ident: 2023072804180973200_bib2 article-title: Assembly of the PtdIns 4-kinase Stt4 complex at the plasma membrane requires Ypp1 and Efr3 publication-title: J. Cell Biol. doi: 10.1083/jcb.200804003 – volume: 217 start-page: 3625 year: 2018 ident: 2023072804180973200_bib27 article-title: VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites publication-title: J. Cell Biol. doi: 10.1083/jcb.201807019 – volume: 275 start-page: 34293 year: 2000 ident: 2023072804180973200_bib35 article-title: Functional characterization of a mammalian Sac1 and mutants exhibiting substrate-specific defects in phosphoinositide phosphatase activity publication-title: J. Biol. Chem. doi: 10.1074/jbc.M003923200 – volume: 25 start-page: 712 year: 2014 ident: 2023072804180973200_bib40 article-title: A phosphatidylinositol transfer protein integrates phosphoinositide signaling with lipid droplet metabolism to regulate a developmental program of nutrient stress-induced membrane biogenesis publication-title: Mol. Biol. Cell. doi: 10.1091/mbc.e13-11-0634 – volume: 289 start-page: 5809 year: 2014 ident: 2023072804180973200_bib41 article-title: An assembly of proteins and lipid domains regulates transport of phosphatidylserine to phosphatidylserine decarboxylase 2 in Saccharomyces cerevisiae publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.518217 – volume: 42 start-page: 2117 year: 2019 ident: 2023072804180973200_bib30 article-title: High-Coverage Targeted Lipidomics Reveals Novel Serum Lipid Predictors and Lipid Pathway Dysregulation Antecedent to Type 2 Diabetes Onset in Normoglycemic Chinese Adults publication-title: Diabetes Care. doi: 10.2337/dc19-0100 – volume: 10 start-page: 2235 year: 1999 ident: 2023072804180973200_bib42 article-title: Pleiotropic alterations in lipid metabolism in yeast sac1 mutants: relationship to “bypass Sec14p” and inositol auxotrophy publication-title: Mol. Biol. Cell. doi: 10.1091/mbc.10.7.2235 – volume: 275 start-page: 14446 year: 2000 ident: 2023072804180973200_bib64 article-title: A new gene involved in the transport-dependent metabolism of phosphatidylserine, PSTB2/PDR17, shares sequence similarity with the gene encoding the phosphatidylinositol/phosphatidylcholine transfer protein, SEC14 publication-title: J. Biol. Chem. doi: 10.1074/jbc.275.19.14446 – volume: 4 year: 2015 ident: 2023072804180973200_bib18 article-title: A new family of StART domain proteins at membrane contact sites has a role in ER-PM sterol transport publication-title: eLife. doi: 10.7554/eLife.07253 – volume: 217 start-page: 127 year: 2018 ident: 2023072804180973200_bib54 article-title: Regulation of lipid droplets by metabolically controlled Ldo isoforms publication-title: J. Cell Biol. doi: 10.1083/jcb.201704115 – volume: 26 start-page: 157 year: 2010 ident: 2023072804180973200_bib39 article-title: The diverse functions of oxysterol-binding proteins publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.042308.113334 – volume: 294 start-page: 19081 year: 2019 ident: 2023072804180973200_bib56 article-title: Functional diversification of the chemical landscapes of yeast Sec14-like phosphatidylinositol transfer protein lipid-binding cavities publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA119.011153 – volume: 209 start-page: 539 year: 2015 ident: 2023072804180973200_bib33 article-title: Ltc1 is an ER-localized sterol transporter and a component of ER-mitochondria and ER-vacuole contacts publication-title: J. Cell Biol. doi: 10.1083/jcb.201502033 – volume: 349 start-page: 428 year: 2015 ident: 2023072804180973200_bib9 article-title: PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts publication-title: Science. doi: 10.1126/science.aab1370 – volume: 26 start-page: 7193 year: 1987 ident: 2023072804180973200_bib48 article-title: Determination of the acyl chain specificity of the bovine liver phosphatidylcholine transfer protein. Application of pyrene-labeled phosphatidylcholine species publication-title: Biochemistry. doi: 10.1021/bi00396a048 – volume: 13 start-page: 542 year: 2002 ident: 2023072804180973200_bib49 article-title: The yeast synaptojanin-like proteins control the cellular distribution of phosphatidylinositol (4,5)-bisphosphate publication-title: Mol. Biol. Cell. doi: 10.1091/mbc.01-10-0476 |
SSID | ssj0004743 |
Score | 2.4129763 |
Snippet | The yeast phosphatidylserine (PtdSer) decarboxylase Psd2 is proposed to engage in a membrane contact site (MCS) for PtdSer decarboxylation to... Yeast Psd2-catalyzed decarboxylation of phosphatidylserine to phosphatidylethanolamine is activated in a noncanonical mechanism by the Sec14-like... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | 1-Phosphatidylinositol 4-Kinase - genetics Biological Transport - genetics Cell Metabolism Lipid Metabolism - genetics Membrane Proteins - genetics Metabolism Phosphatidylethanolamines - genetics Phosphatidylethanolamines - metabolism Phosphatidylserines - genetics Phosphatidylserines - metabolism Phospholipid Transfer Proteins - genetics Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics |
Title | Noncanonical regulation of phosphatidylserine metabolism by a Sec14-like protein and a lipid kinase |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32303746 https://www.proquest.com/docview/2391977958 https://pubmed.ncbi.nlm.nih.gov/PMC7199851 |
Volume | 219 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELZWRaC-IO4ul4yEeFlS4pybR1QBFahVQVupPEVxYiuhIYmyicTyM_jFzMTOsV2QoC_RruMc8nz5PDP2zBDy0jFlzJZgnViMm4YDDGjwQDAjAGOCC0e6to-Bwien3vG58_HCvZjNfk12LbUNP4x__jGu5DpShTaQK0bJ_odkh5tCA_wG-cIRJAzHf5LxaVnAyJQqtLFWVeW1Alil5bpK4W-yydddiB8WiwaJ51gVA3TOCF3tzDHy7BJjpUqseqkyty7yrMqSxWVW9Cs330ZITRRY9PkvdBKn0S-vuONr9CMbCKVVTtYzkaXtMAt8qOFlVP4CPly-qrOuRHLXvE7bplynU7-E1S2pm6Nf8gvQuZC4-FDvBD1OCRl3iLgq9vlQaA52TPRMmlOS7ok1G9fBd8gftEkk_5jjjj0w-pkKO58AofreIcEGu8v2nSspuLtJ_ezkyMewQ4zKv2GB6YHc-enzJAO9r3di6hfXeVvh2W-2nrxPbvWP2VZ5duyYq9txJ_rN6g65reVK3yqU3SUzUdwjN1Wp0s19Ek-xRkes0VLSXazREWuUb2hER6xRjTUKWIMTHdaowtoDcv7-3ero2NAFOozYce3GENwC-vb40o2sABMnxlxGPucwbfAY7GI78f3EiwVLZGSDHbGMuMu4BA0clG4Oiu1DsgcvLg4IlUwwDMIGfR3mFMeO_IQHiZ0w6ZlSetacvO7HMIx19nosopKH3S6KpR3C6IfD6M_Jq6F7pdK2_K3ji14gIRArfjlRIcp2HVp2wMA4Clzo80gJaLhVL9k58bdEN3TApO3bZ4os7ZK3a3Q9vvaVT8j--Lk9JXtN3YpnoBg3_HmH1N9RAbza |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noncanonical+regulation+of+phosphatidylserine+metabolism+by+a+Sec14-like+protein+and+a+lipid+kinase&rft.jtitle=The+Journal+of+cell+biology&rft.au=Wang%2C+Yaxi&rft.au=Yuan%2C+Peihua&rft.au=Grabon%2C+Aby&rft.au=Tripathi%2C+Ashutosh&rft.date=2020-05-04&rft.pub=Rockefeller+University+Press&rft.issn=0021-9525&rft.eissn=1540-8140&rft.volume=219&rft.issue=5&rft_id=info:doi/10.1083%2Fjcb.201907128&rft_id=info%3Apmid%2F32303746&rft.externalDocID=PMC7199851 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9525&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9525&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9525&client=summon |