Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors
Carbon nanotubes and metal oxide semiconductors have emerged as important materials for p-type and n-type thin-film transistors, respectively; however, realizing sophisticated macroelectronics operating in complementary mode has been challenging due to the difficulty in making n-type carbon nanotube...
Saved in:
Published in | Nature communications Vol. 5; no. 1; p. 4097 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
13.06.2014
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Carbon nanotubes and metal oxide semiconductors have emerged as important materials for p-type and n-type thin-film transistors, respectively; however, realizing sophisticated macroelectronics operating in complementary mode has been challenging due to the difficulty in making n-type carbon nanotube transistors and p-type metal oxide transistors. Here we report a hybrid integration of p-type carbon nanotube and n-type indium–gallium–zinc-oxide thin-film transistors to achieve large-scale (>1,000 transistors for 501-stage ring oscillators) complementary macroelectronic circuits on both rigid and flexible substrates. This approach of hybrid integration allows us to combine the strength of p-type carbon nanotube and n-type indium–gallium–zinc-oxide thin-film transistors, and offers high device yield and low device variation. Based on this approach, we report the successful demonstration of various logic gates (inverter, NAND and NOR gates), ring oscillators (from 51 stages to 501 stages) and dynamic logic circuits (dynamic inverter, NAND and NOR gates).
Carbon nanotubes and metal-oxide semiconductors are widely used in thin-film transistors, but integrating the two technologies is challenging. Here, the authors report a hybrid integration of p-type carbon nanotubes and n-type IGZO transistors, resulting in a large-area complementary circuit. |
---|---|
AbstractList | Carbon nanotubes and metal oxide semiconductors have emerged as important materials for p-type and n-type thin-film transistors, respectively; however, realizing sophisticated macroelectronics operating in complementary mode has been challenging due to the difficulty in making n-type carbon nanotube transistors and p-type metal oxide transistors. Here we report a hybrid integration of p-type carbon nanotube and n-type indium-gallium-zinc-oxide thin-film transistors to achieve large-scale (>1,000 transistors for 501-stage ring oscillators) complementary macroelectronic circuits on both rigid and flexible substrates. This approach of hybrid integration allows us to combine the strength of p-type carbon nanotube and n-type indium-gallium-zinc-oxide thin-film transistors, and offers high device yield and low device variation. Based on this approach, we report the successful demonstration of various logic gates (inverter, NAND and NOR gates), ring oscillators (from 51 stages to 501 stages) and dynamic logic circuits (dynamic inverter, NAND and NOR gates). Carbon nanotubes and metal oxide semiconductors have emerged as important materials for p-type and n-type thin-film transistors, respectively; however, realizing sophisticated macroelectronics operating in complementary mode has been challenging due to the difficulty in making n-type carbon nanotube transistors and p-type metal oxide transistors. Here we report a hybrid integration of p-type carbon nanotube and n-type indium–gallium–zinc-oxide thin-film transistors to achieve large-scale (>1,000 transistors for 501-stage ring oscillators) complementary macroelectronic circuits on both rigid and flexible substrates. This approach of hybrid integration allows us to combine the strength of p-type carbon nanotube and n-type indium–gallium–zinc-oxide thin-film transistors, and offers high device yield and low device variation. Based on this approach, we report the successful demonstration of various logic gates (inverter, NAND and NOR gates), ring oscillators (from 51 stages to 501 stages) and dynamic logic circuits (dynamic inverter, NAND and NOR gates). Carbon nanotubes and metal-oxide semiconductors are widely used in thin-film transistors, but integrating the two technologies is challenging. Here, the authors report a hybrid integration of p-type carbon nanotubes and n-type IGZO transistors, resulting in a large-area complementary circuit. Carbon nanotubes and metal oxide semiconductors have emerged as important materials for p-type and n-type thin-film transistors, respectively; however, realizing sophisticated macroelectronics operating in complementary mode has been challenging due to the difficulty in making n-type carbon nanotube transistors and p-type metal oxide transistors. Here we report a hybrid integration of p-type carbon nanotube and n-type indium-gallium-zinc-oxide thin-film transistors to achieve large-scale (>1,000 transistors for 501-stage ring oscillators) complementary macroelectronic circuits on both rigid and flexible substrates. This approach of hybrid integration allows us to combine the strength of p-type carbon nanotube and n-type indium-gallium-zinc-oxide thin-film transistors, and offers high device yield and low device variation. Based on this approach, we report the successful demonstration of various logic gates (inverter, NAND and NOR gates), ring oscillators (from 51 stages to 501 stages) and dynamic logic circuits (dynamic inverter, NAND and NOR gates).Carbon nanotubes and metal oxide semiconductors have emerged as important materials for p-type and n-type thin-film transistors, respectively; however, realizing sophisticated macroelectronics operating in complementary mode has been challenging due to the difficulty in making n-type carbon nanotube transistors and p-type metal oxide transistors. Here we report a hybrid integration of p-type carbon nanotube and n-type indium-gallium-zinc-oxide thin-film transistors to achieve large-scale (>1,000 transistors for 501-stage ring oscillators) complementary macroelectronic circuits on both rigid and flexible substrates. This approach of hybrid integration allows us to combine the strength of p-type carbon nanotube and n-type indium-gallium-zinc-oxide thin-film transistors, and offers high device yield and low device variation. Based on this approach, we report the successful demonstration of various logic gates (inverter, NAND and NOR gates), ring oscillators (from 51 stages to 501 stages) and dynamic logic circuits (dynamic inverter, NAND and NOR gates). |
ArticleNumber | 4097 |
Author | Cao, Yu Zhang, Jialu Chen, Haitian Zhou, Chongwu |
Author_xml | – sequence: 1 givenname: Haitian surname: Chen fullname: Chen, Haitian organization: Ming Hsieh Department of Electrical Engineering, University of Southern California – sequence: 2 givenname: Yu surname: Cao fullname: Cao, Yu organization: Ming Hsieh Department of Electrical Engineering, University of Southern California – sequence: 3 givenname: Jialu surname: Zhang fullname: Zhang, Jialu organization: Ming Hsieh Department of Electrical Engineering, University of Southern California – sequence: 4 givenname: Chongwu surname: Zhou fullname: Zhou, Chongwu email: chongwuz@usc.edu organization: Ming Hsieh Department of Electrical Engineering, University of Southern California |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24923382$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU1P3DAQhq2KqtAtF34AssSlapXWX4mdY4VairQSl3LhEjnOZDFK7MXjIPHv67IUEK0vM4dnXo-eeU_2QgxAyBFnXziT5mtwcZ6xZq1-Qw4EU7ziWsi9F_0-OUS8YeXJlhul3pF9oVohpREH5G5t0wYqdHYCWqK2E8wQsk33dLYuRZjA5RSDd0gX9GFDr-_75AfqQ4ZNstnHQONInU196YINMS89ILVhoOdnVxc0X_tQjX6aaU42oMccE34gb0c7IRw-1hW5_PH91-nPan1xdn76bV05VctcQauVZYM1rW5V26jBGFFzM2jrmJWguBi1aQTnWotRyVZrDmw0QvLegLCNXJGPu9xtircLYO5mjw6myQaIC3a8lnUjZFN-W5GTV-hNXFIo2z1QQtVG60IdP1JLP8PQbZOfi6zur9ECfNoBRR5igvEJ4az7c7Hu-WIFZq9g5_OD0-LKT_8f-bwbwZIbNpBerPkv_Rt-iKjd |
CitedBy_id | crossref_primary_10_1021_acsami_6b02730 crossref_primary_10_1039_C6NR00602G crossref_primary_10_35848_1347_4065_acae2d crossref_primary_10_1007_s12274_021_3459_z crossref_primary_10_1007_s12274_017_1632_1 crossref_primary_10_1021_acs_accounts_7b00062 crossref_primary_10_1002_adfm_201806002 crossref_primary_10_1007_s12274_015_0915_7 crossref_primary_10_1016_j_jallcom_2018_05_188 crossref_primary_10_1063_5_0215815 crossref_primary_10_1002_aelm_202400036 crossref_primary_10_1021_acsnano_8b06748 crossref_primary_10_1063_1_5143217 crossref_primary_10_1002_admi_201700355 crossref_primary_10_1021_acsami_2c13310 crossref_primary_10_1063_1_4953034 crossref_primary_10_1063_1_5139085 crossref_primary_10_1002_admi_201900883 crossref_primary_10_1063_1_5060627 crossref_primary_10_1021_acs_nanolett_6b01393 crossref_primary_10_1109_LED_2017_2748596 crossref_primary_10_1038_nnano_2015_197 crossref_primary_10_1109_JEDS_2018_2850219 crossref_primary_10_1109_JEDS_2020_2971277 crossref_primary_10_1126_sciadv_adr8636 crossref_primary_10_1002_adma_201502116 crossref_primary_10_1016_j_carbon_2018_03_058 crossref_primary_10_1021_acsnano_5b02847 crossref_primary_10_3390_mi11030264 crossref_primary_10_1021_acsnano_7b09145 crossref_primary_10_1088_2515_7639_ad097e crossref_primary_10_1109_TED_2018_2887270 crossref_primary_10_1002_advs_202204746 crossref_primary_10_1039_D4TC01715C crossref_primary_10_1016_j_mssp_2020_105053 crossref_primary_10_1021_jacs_8b01252 crossref_primary_10_1016_j_cap_2015_03_009 crossref_primary_10_1073_pnas_1701478114 crossref_primary_10_1002_adfm_201502367 crossref_primary_10_1039_D0TC02379E crossref_primary_10_1021_acsaelm_0c00957 crossref_primary_10_1364_PRJ_395749 crossref_primary_10_1016_j_mee_2016_07_013 crossref_primary_10_1021_nl503574h crossref_primary_10_1109_LED_2018_2871053 crossref_primary_10_1039_C4NR05471G crossref_primary_10_1002_aelm_201800514 crossref_primary_10_1021_acsami_8b04892 crossref_primary_10_1039_C6NR05577J crossref_primary_10_1038_s41928_018_0162_5 crossref_primary_10_1109_TED_2020_3012421 crossref_primary_10_1002_aelm_202200643 crossref_primary_10_1073_pnas_2216672120 crossref_primary_10_1038_s41699_021_00266_5 crossref_primary_10_1002_advs_202200054 crossref_primary_10_1002_smll_202102323 crossref_primary_10_1002_adfm_202106387 crossref_primary_10_1039_C8NR01358F crossref_primary_10_1021_acsnano_8b09488 crossref_primary_10_1038_nmat4671 crossref_primary_10_1002_aelm_202101250 crossref_primary_10_1038_s41467_019_10145_9 crossref_primary_10_1002_smll_201600452 crossref_primary_10_1007_s11432_019_9918_4 crossref_primary_10_1109_OJCAS_2021_3123206 crossref_primary_10_1002_adfm_201802610 crossref_primary_10_1021_accountsmr_0c00020 crossref_primary_10_1007_s40820_022_00942_1 crossref_primary_10_1021_acsami_7b14115 crossref_primary_10_1021_acsnano_7b01076 crossref_primary_10_7567_JJAP_55_06GG05 crossref_primary_10_1038_srep39627 crossref_primary_10_1088_2058_8585_ad1ccf crossref_primary_10_3390_nano15010022 crossref_primary_10_1002_adfm_201902273 crossref_primary_10_3390_polym12071548 crossref_primary_10_1126_sciadv_abp8075 crossref_primary_10_1080_15980316_2021_1977401 crossref_primary_10_1002_aelm_202300181 crossref_primary_10_1016_j_carbon_2015_07_072 crossref_primary_10_1002_admt_201900935 crossref_primary_10_1038_ncomms11160 crossref_primary_10_1063_5_0029185 crossref_primary_10_3390_ma11091672 crossref_primary_10_1088_1674_4926_41_4_041601 crossref_primary_10_1039_C9TC01164A crossref_primary_10_1039_D0RA01756F crossref_primary_10_1109_LED_2016_2529183 crossref_primary_10_1039_C5NR04851F crossref_primary_10_3390_ma14092299 crossref_primary_10_1016_j_carbon_2017_05_040 crossref_primary_10_1016_j_sse_2017_10_022 crossref_primary_10_1002_jsid_1163 crossref_primary_10_1021_jacs_5b12797 crossref_primary_10_1039_C8NA00184G crossref_primary_10_1038_s41598_018_37530_6 crossref_primary_10_1002_adfm_202305379 crossref_primary_10_1088_1674_1056_26_4_047307 crossref_primary_10_1002_aelm_201600105 crossref_primary_10_1109_JEDS_2019_2920631 crossref_primary_10_1002_aelm_201600229 crossref_primary_10_1002_adma_201800750 crossref_primary_10_1002_adfm_202406044 crossref_primary_10_1109_TED_2021_3052443 crossref_primary_10_1002_aelm_201800539 crossref_primary_10_1007_s10854_021_07662_z crossref_primary_10_1021_nn506806b crossref_primary_10_1021_acsaelm_1c00689 crossref_primary_10_1088_1361_6641_ad5465 crossref_primary_10_1109_LED_2025_3528045 crossref_primary_10_3390_s19020224 crossref_primary_10_1063_1_4921078 crossref_primary_10_1038_s41467_022_34621_x crossref_primary_10_1007_s12274_019_2434_4 crossref_primary_10_1038_s43246_023_00331_0 crossref_primary_10_1021_acsami_5b02964 crossref_primary_10_1002_aisy_201900063 crossref_primary_10_1038_s41528_022_00190_8 crossref_primary_10_1063_1_4953074 crossref_primary_10_1021_acs_nanolett_6b02046 crossref_primary_10_1002_adma_201806480 crossref_primary_10_1038_srep09446 crossref_primary_10_1109_TED_2023_3266417 crossref_primary_10_1002_lpor_202400689 crossref_primary_10_1002_adma_201603895 crossref_primary_10_1002_smll_202304051 crossref_primary_10_1016_j_carbon_2020_03_032 crossref_primary_10_1021_acsami_8b22458 crossref_primary_10_1109_TED_2019_2941264 crossref_primary_10_1007_s41061_017_0160_5 crossref_primary_10_1021_acsnano_8b02061 crossref_primary_10_1002_adma_201607055 crossref_primary_10_1016_j_bioelechem_2024_108794 crossref_primary_10_1016_j_apsusc_2016_04_083 crossref_primary_10_1186_s11671_015_1013_1 crossref_primary_10_1007_s12274_015_0725_y crossref_primary_10_1007_s12274_021_3697_0 crossref_primary_10_1021_acs_nanolett_4c02969 crossref_primary_10_3390_cryst9110603 crossref_primary_10_3390_mi12010012 crossref_primary_10_1002_aelm_201900845 crossref_primary_10_1007_s12274_017_1476_8 crossref_primary_10_1109_ACCESS_2019_2960562 crossref_primary_10_1021_acsami_8b18329 crossref_primary_10_1002_aelm_202000674 crossref_primary_10_1038_s41565_019_0585_9 crossref_primary_10_1039_C8TC02280A crossref_primary_10_1088_2399_1984_ab5f20 crossref_primary_10_1016_j_orgel_2020_106034 crossref_primary_10_1002_advs_201801445 crossref_primary_10_1002_aelm_201500299 crossref_primary_10_1088_2058_8585_aba79a crossref_primary_10_1073_pnas_2111790118 crossref_primary_10_1002_adfm_201902105 crossref_primary_10_1002_aelm_201400006 crossref_primary_10_1039_D0RA08591J crossref_primary_10_1088_1361_6528_abb04a crossref_primary_10_1016_j_cej_2022_137861 crossref_primary_10_1038_srep13199 crossref_primary_10_1016_j_mee_2025_112327 crossref_primary_10_1109_LED_2016_2571321 crossref_primary_10_1109_TED_2023_3288502 crossref_primary_10_1021_acsnano_6b02395 crossref_primary_10_1002_adfm_202002613 crossref_primary_10_1109_TCSII_2016_2578951 crossref_primary_10_1021_acsami_7b01666 crossref_primary_10_1021_acsaelm_2c01603 crossref_primary_10_1039_C5NR07329D crossref_primary_10_1002_admt_201600058 crossref_primary_10_1021_acsnano_6b04951 crossref_primary_10_1063_1_5017195 crossref_primary_10_1016_j_orgel_2023_106914 crossref_primary_10_1021_acsami_5b03069 crossref_primary_10_1021_acsnano_7b00861 crossref_primary_10_1002_eng2_13006 crossref_primary_10_1016_j_cclet_2020_03_043 crossref_primary_10_1002_advs_202001778 crossref_primary_10_1002_aelm_201900034 crossref_primary_10_35848_1347_4065_ac44cf crossref_primary_10_1038_srep15099 crossref_primary_10_3390_electronics11060960 crossref_primary_10_1021_acsaelm_5c00433 crossref_primary_10_1021_nl5037484 crossref_primary_10_1002_smll_201600922 crossref_primary_10_1039_C6NR00015K crossref_primary_10_1002_adma_201802057 crossref_primary_10_1088_0022_3727_49_3_035102 |
Cites_doi | 10.1002/adma.201304346 10.1021/ja042353u 10.1021/nn403935v 10.1109/LED.2012.2214757 10.1063/1.1417516 10.1002/smll.201201237 10.1038/nnano.2007.77 10.1021/nn100966s 10.1073/pnas.0709734105 10.1021/nl404654j 10.1002/adfm.200600539 10.1889/1.3069591 10.1002/adma.201103228 10.1149/1.3049819 10.1038/nature12502 10.1063/1.1467702 10.1063/1.126107 10.1126/science.1122797 10.1038/ncomms1682 10.1021/nl3038773 10.1038/nature07110 10.1088/1468-6996/11/4/044305 10.1016/j.tsf.2011.07.018 10.1116/1.2127954 10.1021/ja400881n 10.1038/nmat1426 10.1021/nn1021378 10.1038/nnano.2006.52 10.1021/nn3026172 10.1038/nmat3711 10.1002/adma.201004444 10.1021/nl050254o 10.1088/0268-1242/26/3/034008 10.1002/adma.200501740 10.1002/adma.201201795 10.1021/nn302768h 10.1016/j.tsf.2009.01.151 10.1109/TED.2011.2142313 10.1021/nl803066v 10.1109/TDMR.2010.2069561 10.1021/nn1027856 10.1021/nl202695v 10.1039/C2CS35325C 10.1038/nnano.2011.1 10.1021/nl403001r 10.1021/nl2043375 10.1021/nl203117h 10.1021/nn1006094 10.1109/JPROC.2005.851237 10.1063/1.3478213 10.1021/ar010152e 10.1007/s12274-011-0152-7 10.1109/JSSC.2011.2170635 10.1063/1.4731776 10.1109/TCAD.2012.2187527 10.1109/TED.2009.2039541 10.1021/nn2004298 10.1038/nature02498 10.1021/nl048435y 10.1021/nl902522f 10.1063/1.1564291 10.1109/LED.2011.2118732 10.1038/ncomms3302 10.1016/j.cossms.2013.07.002 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2014 Copyright Nature Publishing Group Jun 2014 |
Copyright_xml | – notice: Springer Nature Limited 2014 – notice: Copyright Nature Publishing Group Jun 2014 |
DBID | AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 |
DOI | 10.1038/ncomms5097 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
ExternalDocumentID | 3332970821 24923382 10_1038_ncomms5097 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 4.4 53G 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABAWZ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BAPOH BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EJD EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI RC3 SOI 7X8 |
ID | FETCH-LOGICAL-c453t-e974a0da89794964d882518d7ac0a3e412f786211772f439771e0f8231b8e2a63 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Thu Jul 10 23:02:33 EDT 2025 Wed Aug 13 04:10:08 EDT 2025 Mon Jul 21 05:57:08 EDT 2025 Tue Jul 01 04:28:17 EDT 2025 Thu Apr 24 22:57:17 EDT 2025 Fri Feb 21 02:39:49 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c453t-e974a0da89794964d882518d7ac0a3e412f786211772f439771e0f8231b8e2a63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/1535245877?pq-origsite=%requestingapplication% |
PMID | 24923382 |
PQID | 1535245877 |
PQPubID | 546298 |
ParticipantIDs | proquest_miscellaneous_1535623645 proquest_journals_1535245877 pubmed_primary_24923382 crossref_primary_10_1038_ncomms5097 crossref_citationtrail_10_1038_ncomms5097 springer_journals_10_1038_ncomms5097 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20140613 |
PublicationDateYYYYMMDD | 2014-06-13 |
PublicationDate_xml | – month: 6 year: 2014 text: 20140613 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2014 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Ding (CR63) 2012; 100 Wang, Takei, Takahashi, Javey (CR2) 2013; 42 Kamiya, Nomura, Hideo (CR13) 2010; 11 Shulaker (CR64) 2013; 501 Minhun (CR28) 2010; 57 Ding (CR44) 2012; 3 Jeong (CR51) 2008; 39 Hu, Hecht, Grüner (CR34) 2004; 4 Miyata (CR38) 2011; 4 Takahashi (CR30) 2013; 13 Wang (CR60) 2012; 12 Nielsen, Turbiez, McCulloch (CR6) 2013; 25 Takahashi, Takei, Gillies, Fearing, Javey (CR29) 2011; 11 Jie (CR59) 2012; 31 Fortunato, Barquinha, Martins (CR4) 2012; 24 Park, Maeng, Kim, Park (CR11) 2012; 520 Zhang, Wang, Fu, Che, Zhou (CR46) 2011; 5 Yabuta (CR15) 2010; 97 Ha (CR67) 2013; 13 Zhang (CR17) 2011; 11 Sirringhaus (CR5) 2014; 26 CR47 Gao, Zou, Li, Zhang, Zhang (CR22) 2013; 9 Wang (CR33) 2009; 9 Cao, Xia, Shim, Rogers (CR57) 2006; 16 Jinsoo (CR27) 2012; 33 Zhou, Kong, Dai (CR42) 2000; 76 Avouris (CR40) 2002; 35 Suriyasena Liyanage, Xu, Pitner, Bao, Wong (CR49) 2014; 14 Kang (CR58) 2007; 2 Cao (CR39) 2006; 18 Snow, Novak, Campbell, Park (CR24) 2003; 82 Zou (CR16) 2011; 58 Liu, Lee, Zhou, Han (CR43) 2001; 79 Kocabas (CR61) 2008; 105 CR12 Yu, Chae, Lee, Duong, Lee (CR32) 2011; 23 CR55 Forrest (CR9) 2004; 428 Wang (CR31) 2013; 12 Hong, Wager (CR54) 2005; 23 Kim (CR66) 2009; 517 Mei, Diao, Appleton, Fang, Bao (CR3) 2013; 135 Cao (CR19) 2008; 454 Myny (CR7) 2012; 47 Wang, Zhang, Zhou (CR20) 2010; 4 Ha (CR25) 2010; 4 Stingelin-Stutzmann (CR8) 2005; 4 Arnold, Green, Hulvat, Stupp, Hersam (CR52) 2006; 1 Jinsoo (CR26) 2011; 32 Shahrjerdi (CR48) 2013; 7 Conley (CR53) 2010; 10 Barquinha, Pereira, Gonçalves, Martins, Fortunato (CR50) 2009; 156 Chen (CR56) 2006; 311 Yu (CR62) 2009; 9 Zhang, Wang, Zhou (CR18) 2012; 6 CR23 Wang, Ryu, Badmaev, Zhang, Zhou (CR45) 2011; 5 Jae Kyeong (CR14) 2011; 26 CR65 Reuss (CR1) 2005; 93 Derycke, Martel, Appenzeller, Avouris (CR41) 2002; 80 Sangwan (CR35) 2012; 6 Kim, Kim, Park, Ju, Mohammadi (CR36) 2010; 4 Sun (CR21) 2011; 6 Artukovic, Kaempgen, Hecht, Roth, Grüner (CR37) 2005; 5 Payne, Parkin, Anthony, Kuo, Jackson (CR10) 2005; 127 H Yabuta (BFncomms5097_CR15) 2010; 97 T Takahashi (BFncomms5097_CR30) 2013; 13 VK Sangwan (BFncomms5097_CR35) 2012; 6 GH Kim (BFncomms5097_CR66) 2009; 517 K Myny (BFncomms5097_CR7) 2012; 47 MM Payne (BFncomms5097_CR10) 2005; 127 M Ha (BFncomms5097_CR25) 2010; 4 SR Forrest (BFncomms5097_CR9) 2004; 428 H Sirringhaus (BFncomms5097_CR5) 2014; 26 C Zhou (BFncomms5097_CR42) 2000; 76 JS Park (BFncomms5097_CR11) 2012; 520 Z Jie (BFncomms5097_CR59) 2012; 31 Z Chen (BFncomms5097_CR56) 2006; 311 CB Nielsen (BFncomms5097_CR6) 2013; 25 V Derycke (BFncomms5097_CR41) 2002; 80 C Kocabas (BFncomms5097_CR61) 2008; 105 J Zhang (BFncomms5097_CR17) 2011; 11 P Avouris (BFncomms5097_CR40) 2002; 35 C Wang (BFncomms5097_CR33) 2009; 9 D Shahrjerdi (BFncomms5097_CR48) 2013; 7 L Suriyasena Liyanage (BFncomms5097_CR49) 2014; 14 M Ha (BFncomms5097_CR67) 2013; 13 BFncomms5097_CR12 Y Miyata (BFncomms5097_CR38) 2011; 4 BFncomms5097_CR55 MM Shulaker (BFncomms5097_CR64) 2013; 501 C Wang (BFncomms5097_CR20) 2010; 4 P Barquinha (BFncomms5097_CR50) 2009; 156 C Wang (BFncomms5097_CR31) 2013; 12 JK Jeong (BFncomms5097_CR51) 2008; 39 SJ Kang (BFncomms5097_CR58) 2007; 2 C Wang (BFncomms5097_CR60) 2012; 12 J Zhang (BFncomms5097_CR46) 2011; 5 T Kamiya (BFncomms5097_CR13) 2010; 11 D-M Sun (BFncomms5097_CR21) 2011; 6 N Stingelin-Stutzmann (BFncomms5097_CR8) 2005; 4 BFncomms5097_CR47 L Ding (BFncomms5097_CR44) 2012; 3 Q Cao (BFncomms5097_CR57) 2006; 16 C Wang (BFncomms5097_CR2) 2013; 42 WJ Yu (BFncomms5097_CR62) 2009; 9 L Hu (BFncomms5097_CR34) 2004; 4 JF Conley (BFncomms5097_CR53) 2010; 10 J Minhun (BFncomms5097_CR28) 2010; 57 D Hong (BFncomms5097_CR54) 2005; 23 J Mei (BFncomms5097_CR3) 2013; 135 Q Cao (BFncomms5097_CR39) 2006; 18 ES Snow (BFncomms5097_CR24) 2003; 82 T Takahashi (BFncomms5097_CR29) 2011; 11 S Kim (BFncomms5097_CR36) 2010; 4 N Jinsoo (BFncomms5097_CR26) 2011; 32 X Liu (BFncomms5097_CR43) 2001; 79 E Artukovic (BFncomms5097_CR37) 2005; 5 RH Reuss (BFncomms5097_CR1) 2005; 93 N Jinsoo (BFncomms5097_CR27) 2012; 33 L Ding (BFncomms5097_CR63) 2012; 100 E Fortunato (BFncomms5097_CR4) 2012; 24 Q Cao (BFncomms5097_CR19) 2008; 454 P Gao (BFncomms5097_CR22) 2013; 9 J Jae Kyeong (BFncomms5097_CR14) 2011; 26 C Wang (BFncomms5097_CR45) 2011; 5 WJ Yu (BFncomms5097_CR32) 2011; 23 J Zhang (BFncomms5097_CR18) 2012; 6 BFncomms5097_CR65 MS Arnold (BFncomms5097_CR52) 2006; 1 X Zou (BFncomms5097_CR16) 2011; 58 BFncomms5097_CR23 |
References_xml | – volume: 26 start-page: 1319 year: 2014 end-page: 1335 ident: CR5 article-title: 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon publication-title: Adv. Mater. doi: 10.1002/adma.201304346 – volume: 127 start-page: 4986 year: 2005 end-page: 4987 ident: CR10 article-title: Organic field-effect transistors from solution-deposited functionalized acenes with mobilities as high as 1cm /v·s publication-title: J. Am. Chem. Soc. doi: 10.1021/ja042353u – volume: 7 start-page: 8303 year: 2013 end-page: 8308 ident: CR48 article-title: High-performance air-stable n-type carbon nanotube transistors with erbium contacts publication-title: ACS Nano doi: 10.1021/nn403935v – volume: 33 start-page: 1574 year: 2012 end-page: 1576 ident: CR27 article-title: Fully gravure-printed flexible full adder using swnt-based tfts publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2012.2214757 – volume: 79 start-page: 3329 year: 2001 end-page: 3331 ident: CR43 article-title: Carbon nanotube field-effect inverters publication-title: Appl. Phys. Lett. doi: 10.1063/1.1417516 – ident: CR12 – volume: 9 start-page: 813 year: 2013 end-page: 819 ident: CR22 article-title: Complementary logic gate arrays based on carbon nanotube network transistors publication-title: Small doi: 10.1002/smll.201201237 – volume: 2 start-page: 230 year: 2007 end-page: 236 ident: CR58 article-title: High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes publication-title: Nat. Nano doi: 10.1038/nnano.2007.77 – volume: 4 start-page: 4388 year: 2010 end-page: 4395 ident: CR25 article-title: Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks publication-title: ACS Nano doi: 10.1021/nn100966s – volume: 105 start-page: 1405 year: 2008 end-page: 1409 ident: CR61 article-title: Radio frequency analog electronics based on carbon nanotube transistors publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0709734105 – volume: 14 start-page: 1884 year: 2014 end-page: 1890 ident: CR49 article-title: VLSI-compatible carbon nanotube doping technique with low work-function metal oxides publication-title: Nano Lett. doi: 10.1021/nl404654j – volume: 16 start-page: 2355 year: 2006 end-page: 2362 ident: CR57 article-title: Bilayer organic–inorganic gate dielectrics for high-performance, low-voltage, single-walled carbon nanotube thin-film transistors, complementary logic gates, and p–n diodes on plastic substrates publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200600539 – volume: 39 start-page: 1 year: 2008 end-page: 4 ident: CR51 article-title: 3.1: distinguished paper: 12. 1-inch WXGA AMOLED display driven by indium-gallium-zinc oxide TFTs array publication-title: SID Symp. Dig. Tech. Pap. doi: 10.1889/1.3069591 – volume: 24 start-page: 2945 year: 2012 end-page: 2986 ident: CR4 article-title: Oxide semiconductor thin-film transistors: a review of recent advances publication-title: Adv. Mater. doi: 10.1002/adma.201103228 – volume: 156 start-page: H161 year: 2009 end-page: H168 ident: CR50 article-title: Toward high-performance amorphous GIZO TFTs publication-title: J. Electrochem. Soc. doi: 10.1149/1.3049819 – volume: 501 start-page: 526 year: 2013 end-page: 530 ident: CR64 article-title: Carbon nanotube computer publication-title: Nature doi: 10.1038/nature12502 – volume: 80 start-page: 2773 year: 2002 end-page: 2775 ident: CR41 article-title: Controlling doping and carrier injection in carbon nanotube transistors publication-title: Appl. Phys. Lett. doi: 10.1063/1.1467702 – volume: 76 start-page: 1597 year: 2000 end-page: 1599 ident: CR42 article-title: Electrical measurements of individual semiconducting single-walled carbon nanotubes of various diameters publication-title: Appl. Phys. Lett. doi: 10.1063/1.126107 – volume: 311 start-page: 1735 year: 2006 end-page: 1735 ident: CR56 article-title: An integrated logic circuit assembled on a single carbon nanotube publication-title: Science doi: 10.1126/science.1122797 – volume: 3 start-page: 677 year: 2012 ident: CR44 article-title: CMOS-based carbon nanotube pass-transistor logic integrated circuits publication-title: Nat. Commun. doi: 10.1038/ncomms1682 – volume: 13 start-page: 954 year: 2013 end-page: 960 ident: CR67 article-title: Aerosol jet printed, low voltage, electrolyte gated carbon nanotube ring oscillators with sub-5μs stage delays publication-title: Nano Lett. doi: 10.1021/nl3038773 – volume: 454 start-page: 495 year: 2008 end-page: 500 ident: CR19 article-title: Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates publication-title: Nature doi: 10.1038/nature07110 – volume: 11 start-page: 044305 year: 2010 ident: CR13 article-title: Present status of amorphous In–Ga–Zn–O thin-film transistors publication-title: Sci. Technol. Adv. Mater. doi: 10.1088/1468-6996/11/4/044305 – volume: 520 start-page: 1679 year: 2012 end-page: 1693 ident: CR11 article-title: Review of recent developments in amorphous oxide semiconductor thin-film transistor devices publication-title: Thin Solid Films doi: 10.1016/j.tsf.2011.07.018 – volume: 23 start-page: L25 year: 2005 end-page: L27 ident: CR54 article-title: Passivation of zinc–tin–oxide thin-film transistors publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.2127954 – volume: 135 start-page: 6724 year: 2013 end-page: 6746 ident: CR3 article-title: Integrated materials design of organic semiconductors for field-effect transistors publication-title: J. Am. Chem. Soc. doi: 10.1021/ja400881n – volume: 4 start-page: 601 year: 2005 end-page: 606 ident: CR8 article-title: Organic thin-film electronics from vitreous solution-processed rubrene hypereutectics publication-title: Nat. Mater. doi: 10.1038/nmat1426 – volume: 4 start-page: 7123 year: 2010 end-page: 7132 ident: CR20 article-title: Macroelectronic integrated circuits using high-performance separated carbon nanotube thin-film transistors publication-title: ACS Nano doi: 10.1021/nn1021378 – volume: 1 start-page: 60 year: 2006 end-page: 65 ident: CR52 article-title: Sorting carbon nanotubes by electronic structure using density differentiation publication-title: Nat. Nano doi: 10.1038/nnano.2006.52 – volume: 6 start-page: 7412 year: 2012 end-page: 7419 ident: CR18 article-title: Rigid/flexible transparent electronics based on separated carbon nanotube thin-film transistors and their application in display electronics publication-title: ACS Nano doi: 10.1021/nn3026172 – volume: 12 start-page: 899 year: 2013 end-page: 904 ident: CR31 article-title: User-interactive electronic skin for instantaneous pressure visualization publication-title: Nat. Mater. doi: 10.1038/nmat3711 – volume: 23 start-page: 1889 year: 2011 end-page: 1893 ident: CR32 article-title: Ultra-Transparent, flexible single-walled carbon nanotube non-volatile memory device with an oxygen-decorated graphene electrode publication-title: Adv. Mater. doi: 10.1002/adma.201004444 – volume: 5 start-page: 757 year: 2005 end-page: 760 ident: CR37 article-title: Transparent and flexible carbon nanotube transistors publication-title: Nano Lett. doi: 10.1021/nl050254o – volume: 26 start-page: 034008 year: 2011 ident: CR14 article-title: The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/26/3/034008 – volume: 18 start-page: 304 year: 2006 end-page: 309 ident: CR39 article-title: Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics publication-title: Adv. Mater. doi: 10.1002/adma.200501740 – volume: 25 start-page: 1859 year: 2013 end-page: 1880 ident: CR6 article-title: Recent advances in the development of semiconducting dpp-containing polymers for transistor applications publication-title: Adv. Mater. doi: 10.1002/adma.201201795 – volume: 6 start-page: 7480 year: 2012 end-page: 7488 ident: CR35 article-title: Fundamental Performance limits of carbon nanotube thin-film transistors achieved using hybrid molecular dielectrics publication-title: ACS Nano doi: 10.1021/nn302768h – volume: 517 start-page: 4007 year: 2009 end-page: 4010 ident: CR66 article-title: Inkjet-printed InGaZnO thin film transistor publication-title: Thin Solid Films doi: 10.1016/j.tsf.2009.01.151 – volume: 58 start-page: 2003 year: 2011 end-page: 2007 ident: CR16 article-title: Improved subthreshold swing and gate-bias stressing stability of p-type Cu2O thin-film transistors using a HfO2 high-k gate dielectric grown on a SiO2/Si Substrate by pulsed laser ablation publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2011.2142313 – volume: 9 start-page: 1401 year: 2009 end-page: 1405 ident: CR62 article-title: Adaptive logic circuits with doping-free ambipolar carbon nanotube transistors publication-title: Nano Lett. doi: 10.1021/nl803066v – ident: CR47 – volume: 10 start-page: 460 year: 2010 end-page: 475 ident: CR53 article-title: Instabilities in amorphous oxide semiconductor thin-film transistors publication-title: IEEE Trans. Device Mater. Rel. doi: 10.1109/TDMR.2010.2069561 – volume: 5 start-page: 1147 year: 2011 end-page: 1153 ident: CR45 article-title: Metal contact engineering and registration-free fabrication of complementary metal-oxide semiconductor integrated circuits using aligned carbon nanotubes publication-title: ACS Nano doi: 10.1021/nn1027856 – volume: 11 start-page: 4852 year: 2011 end-page: 4858 ident: CR17 article-title: Separated carbon nanotube macroelectronics for active matrix organic light-emitting diode displays publication-title: Nano Lett. doi: 10.1021/nl202695v – volume: 42 start-page: 2592 year: 2013 end-page: 2609 ident: CR2 article-title: Carbon nanotube electronics—moving forward publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35325C – volume: 6 start-page: 156 year: 2011 end-page: 161 ident: CR21 article-title: Flexible high-performance carbon nanotube integrated circuits publication-title: Nat. Nano doi: 10.1038/nnano.2011.1 – volume: 13 start-page: 5425 year: 2013 end-page: 5430 ident: CR30 article-title: Carbon nanotube active-matrix backplanes for mechanically flexible visible light and X-ray imagers publication-title: Nano Lett. doi: 10.1021/nl403001r – volume: 12 start-page: 1527 year: 2012 end-page: 1533 ident: CR60 article-title: Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications publication-title: Nano Lett. doi: 10.1021/nl2043375 – volume: 11 start-page: 5408 year: 2011 end-page: 5413 ident: CR29 article-title: Carbon nanotube active-matrix backplanes for conformal electronics and sensors publication-title: Nano Lett. doi: 10.1021/nl203117h – volume: 4 start-page: 2994 year: 2010 end-page: 2998 ident: CR36 article-title: Fully transparent pixel circuits driven by random network carbon nanotube transistor circuitry publication-title: ACS Nano doi: 10.1021/nn1006094 – ident: CR23 – volume: 93 start-page: 1239 year: 2005 end-page: 1256 ident: CR1 article-title: Macroelectronics: perspectives on technology and applications publication-title: Proc. IEEE doi: 10.1109/JPROC.2005.851237 – ident: CR65 – volume: 97 start-page: 072111 year: 2010 end-page: 072113 ident: CR15 article-title: Sputtering formation of p-type SnO thin-film transistors on glass toward oxide complimentary circuits publication-title: Appl. Phys. Lett. doi: 10.1063/1.3478213 – volume: 35 start-page: 1026 year: 2002 end-page: 1034 ident: CR40 article-title: Molecular electronics with carbon nanotubes publication-title: Acc. Chem. Res. doi: 10.1021/ar010152e – volume: 4 start-page: 963 year: 2011 end-page: 970 ident: CR38 article-title: Length-sorted semiconducting carbon nanotubes for high-mobility thin film transistors publication-title: Nano Res. doi: 10.1007/s12274-011-0152-7 – volume: 47 start-page: 284 year: 2012 end-page: 291 ident: CR7 article-title: An 8-Bit, 40-Instructions-Per-Second Organic Microprocessor on Plastic Foil publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2011.2170635 – volume: 100 start-page: 263116 year: 2012 end-page: 263116-5 ident: CR63 article-title: Carbon nanotube based ultra-low voltage integrated circuits: Scaling down to 0.4V publication-title: Appl. Phys. Lett. doi: 10.1063/1.4731776 – volume: 31 start-page: 453 year: 2012 end-page: 471 ident: CR59 article-title: Carbon nanotube robust digital VLSI publication-title: IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. doi: 10.1109/TCAD.2012.2187527 – volume: 57 start-page: 571 year: 2010 end-page: 580 ident: CR28 article-title: All-printed and roll-to-roll-printable 13.56-mhz-operated 1-bit rf tag on plastic foils publication-title: IEEE Trans. Electron Device doi: 10.1109/TED.2009.2039541 – volume: 5 start-page: 3284 year: 2011 end-page: 3292 ident: CR46 article-title: Air-stable conversion of separated carbon nanotube thin-film transistors from p-type to n-type using atomic layer deposition of high-κ oxide and its application in cmos logic circuits publication-title: ACS Nano doi: 10.1021/nn2004298 – ident: CR55 – volume: 428 start-page: 911 year: 2004 end-page: 918 ident: CR9 article-title: The path to ubiquitous and low-cost organic electronic appliances on plastic publication-title: Nature doi: 10.1038/nature02498 – volume: 4 start-page: 2513 year: 2004 end-page: 2517 ident: CR34 article-title: Percolation in Transparent and conducting carbon nanotube networks publication-title: Nano Lett. doi: 10.1021/nl048435y – volume: 9 start-page: 4285 year: 2009 end-page: 4291 ident: CR33 article-title: Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications publication-title: Nano Lett. doi: 10.1021/nl902522f – volume: 82 start-page: 2145 year: 2003 end-page: 2147 ident: CR24 article-title: Random networks of carbon nanotubes as an electronic material publication-title: Appl. Phys. Lett. doi: 10.1063/1.1564291 – volume: 32 start-page: 638 year: 2011 end-page: 640 ident: CR26 article-title: Fully gravure-printed d flip-flop on plastic foils using single-walled carbon-nanotube-based TFTs publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2011.2118732 – volume: 33 start-page: 1574 year: 2012 ident: BFncomms5097_CR27 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2012.2214757 – volume: 156 start-page: H161 year: 2009 ident: BFncomms5097_CR50 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3049819 – volume: 517 start-page: 4007 year: 2009 ident: BFncomms5097_CR66 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2009.01.151 – volume: 13 start-page: 954 year: 2013 ident: BFncomms5097_CR67 publication-title: Nano Lett. doi: 10.1021/nl3038773 – volume: 23 start-page: 1889 year: 2011 ident: BFncomms5097_CR32 publication-title: Adv. Mater. doi: 10.1002/adma.201004444 – volume: 9 start-page: 4285 year: 2009 ident: BFncomms5097_CR33 publication-title: Nano Lett. doi: 10.1021/nl902522f – volume: 57 start-page: 571 year: 2010 ident: BFncomms5097_CR28 publication-title: IEEE Trans. Electron Device doi: 10.1109/TED.2009.2039541 – volume: 4 start-page: 2994 year: 2010 ident: BFncomms5097_CR36 publication-title: ACS Nano doi: 10.1021/nn1006094 – volume: 4 start-page: 963 year: 2011 ident: BFncomms5097_CR38 publication-title: Nano Res. doi: 10.1007/s12274-011-0152-7 – volume: 47 start-page: 284 year: 2012 ident: BFncomms5097_CR7 publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2011.2170635 – volume: 5 start-page: 3284 year: 2011 ident: BFncomms5097_CR46 publication-title: ACS Nano doi: 10.1021/nn2004298 – volume: 9 start-page: 813 year: 2013 ident: BFncomms5097_CR22 publication-title: Small doi: 10.1002/smll.201201237 – volume: 4 start-page: 4388 year: 2010 ident: BFncomms5097_CR25 publication-title: ACS Nano doi: 10.1021/nn100966s – volume: 2 start-page: 230 year: 2007 ident: BFncomms5097_CR58 publication-title: Nat. Nano doi: 10.1038/nnano.2007.77 – volume: 16 start-page: 2355 year: 2006 ident: BFncomms5097_CR57 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200600539 – volume: 428 start-page: 911 year: 2004 ident: BFncomms5097_CR9 publication-title: Nature doi: 10.1038/nature02498 – volume: 9 start-page: 1401 year: 2009 ident: BFncomms5097_CR62 publication-title: Nano Lett. doi: 10.1021/nl803066v – volume: 5 start-page: 757 year: 2005 ident: BFncomms5097_CR37 publication-title: Nano Lett. doi: 10.1021/nl050254o – volume: 58 start-page: 2003 year: 2011 ident: BFncomms5097_CR16 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2011.2142313 – volume: 12 start-page: 1527 year: 2012 ident: BFncomms5097_CR60 publication-title: Nano Lett. doi: 10.1021/nl2043375 – volume: 26 start-page: 034008 year: 2011 ident: BFncomms5097_CR14 publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/26/3/034008 – volume: 6 start-page: 156 year: 2011 ident: BFncomms5097_CR21 publication-title: Nat. Nano doi: 10.1038/nnano.2011.1 – volume: 135 start-page: 6724 year: 2013 ident: BFncomms5097_CR3 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja400881n – volume: 4 start-page: 7123 year: 2010 ident: BFncomms5097_CR20 publication-title: ACS Nano doi: 10.1021/nn1021378 – volume: 26 start-page: 1319 year: 2014 ident: BFncomms5097_CR5 publication-title: Adv. Mater. doi: 10.1002/adma.201304346 – volume: 32 start-page: 638 year: 2011 ident: BFncomms5097_CR26 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2011.2118732 – volume: 454 start-page: 495 year: 2008 ident: BFncomms5097_CR19 publication-title: Nature doi: 10.1038/nature07110 – volume: 18 start-page: 304 year: 2006 ident: BFncomms5097_CR39 publication-title: Adv. Mater. doi: 10.1002/adma.200501740 – ident: BFncomms5097_CR47 – volume: 31 start-page: 453 year: 2012 ident: BFncomms5097_CR59 publication-title: IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. doi: 10.1109/TCAD.2012.2187527 – volume: 311 start-page: 1735 year: 2006 ident: BFncomms5097_CR56 publication-title: Science doi: 10.1126/science.1122797 – ident: BFncomms5097_CR23 doi: 10.1038/ncomms3302 – volume: 4 start-page: 2513 year: 2004 ident: BFncomms5097_CR34 publication-title: Nano Lett. doi: 10.1021/nl048435y – volume: 5 start-page: 1147 year: 2011 ident: BFncomms5097_CR45 publication-title: ACS Nano doi: 10.1021/nn1027856 – volume: 127 start-page: 4986 year: 2005 ident: BFncomms5097_CR10 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja042353u – volume: 11 start-page: 044305 year: 2010 ident: BFncomms5097_CR13 publication-title: Sci. Technol. Adv. Mater. doi: 10.1088/1468-6996/11/4/044305 – volume: 105 start-page: 1405 year: 2008 ident: BFncomms5097_CR61 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0709734105 – volume: 6 start-page: 7412 year: 2012 ident: BFncomms5097_CR18 publication-title: ACS Nano doi: 10.1021/nn3026172 – volume: 1 start-page: 60 year: 2006 ident: BFncomms5097_CR52 publication-title: Nat. Nano doi: 10.1038/nnano.2006.52 – volume: 25 start-page: 1859 year: 2013 ident: BFncomms5097_CR6 publication-title: Adv. Mater. doi: 10.1002/adma.201201795 – volume: 3 start-page: 677 year: 2012 ident: BFncomms5097_CR44 publication-title: Nat. Commun. doi: 10.1038/ncomms1682 – volume: 79 start-page: 3329 year: 2001 ident: BFncomms5097_CR43 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1417516 – volume: 6 start-page: 7480 year: 2012 ident: BFncomms5097_CR35 publication-title: ACS Nano doi: 10.1021/nn302768h – volume: 76 start-page: 1597 year: 2000 ident: BFncomms5097_CR42 publication-title: Appl. Phys. Lett. doi: 10.1063/1.126107 – volume: 80 start-page: 2773 year: 2002 ident: BFncomms5097_CR41 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1467702 – volume: 42 start-page: 2592 year: 2013 ident: BFncomms5097_CR2 publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35325C – volume: 39 start-page: 1 year: 2008 ident: BFncomms5097_CR51 publication-title: SID Symp. Dig. Tech. Pap. doi: 10.1889/1.3069591 – ident: BFncomms5097_CR65 – volume: 11 start-page: 5408 year: 2011 ident: BFncomms5097_CR29 publication-title: Nano Lett. doi: 10.1021/nl203117h – volume: 520 start-page: 1679 year: 2012 ident: BFncomms5097_CR11 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2011.07.018 – ident: BFncomms5097_CR55 – volume: 7 start-page: 8303 year: 2013 ident: BFncomms5097_CR48 publication-title: ACS Nano doi: 10.1021/nn403935v – volume: 35 start-page: 1026 year: 2002 ident: BFncomms5097_CR40 publication-title: Acc. Chem. Res. doi: 10.1021/ar010152e – volume: 14 start-page: 1884 year: 2014 ident: BFncomms5097_CR49 publication-title: Nano Lett. doi: 10.1021/nl404654j – volume: 13 start-page: 5425 year: 2013 ident: BFncomms5097_CR30 publication-title: Nano Lett. doi: 10.1021/nl403001r – volume: 4 start-page: 601 year: 2005 ident: BFncomms5097_CR8 publication-title: Nat. Mater. doi: 10.1038/nmat1426 – volume: 24 start-page: 2945 year: 2012 ident: BFncomms5097_CR4 publication-title: Adv. Mater. doi: 10.1002/adma.201103228 – ident: BFncomms5097_CR12 doi: 10.1016/j.cossms.2013.07.002 – volume: 97 start-page: 072111 year: 2010 ident: BFncomms5097_CR15 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3478213 – volume: 11 start-page: 4852 year: 2011 ident: BFncomms5097_CR17 publication-title: Nano Lett. doi: 10.1021/nl202695v – volume: 100 start-page: 263116 year: 2012 ident: BFncomms5097_CR63 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4731776 – volume: 10 start-page: 460 year: 2010 ident: BFncomms5097_CR53 publication-title: IEEE Trans. Device Mater. Rel. doi: 10.1109/TDMR.2010.2069561 – volume: 23 start-page: L25 year: 2005 ident: BFncomms5097_CR54 publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.2127954 – volume: 82 start-page: 2145 year: 2003 ident: BFncomms5097_CR24 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1564291 – volume: 12 start-page: 899 year: 2013 ident: BFncomms5097_CR31 publication-title: Nat. Mater. doi: 10.1038/nmat3711 – volume: 93 start-page: 1239 year: 2005 ident: BFncomms5097_CR1 publication-title: Proc. IEEE doi: 10.1109/JPROC.2005.851237 – volume: 501 start-page: 526 year: 2013 ident: BFncomms5097_CR64 publication-title: Nature doi: 10.1038/nature12502 |
SSID | ssj0000391844 |
Score | 2.5425735 |
Snippet | Carbon nanotubes and metal oxide semiconductors have emerged as important materials for p-type and n-type thin-film transistors, respectively; however,... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4097 |
SubjectTerms | 142/126 639/301/119/995 639/766/1130 639/925/357/73 Carbon Gallium Gates Humanities and Social Sciences Indium multidisciplinary Nanotechnology Science Science (multidisciplinary) Thin films |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS8QwFH64IHgRd-tGRC8ewkzbtMmcRMQVl4sDg5eSNqkz4KQ67Qjz783rMiOMeCv0kYS8LF_yvXwP4EwmoZ96qUtdlviUBUpTfCBJYx4rL7aQQ6TI6D49h3dd9tALevWFW16HVTZrYrlQqyzBO_KWizokLBCcX3x-UcwahexqnUJjEZZRugxHNe_x6R0Lqp8LxhpVUl-0jC1ymAelxtPvfWgOXM4Ro-V-c7MOazVQJJeVZzdgQZtNWKlSR0624PsRQ7hpbrtYkzIuvAoDH03IUNoqZ-ltcoKx7e-kP8HHWaTRh7D-IFlKEjmK7ZeRJivGsc6JNIrc3769kKI_MDQdfAxJgftZKSeSb0P35vr16o7WORRowgK_oNqeF2RbSdGxE68TMiXQFUJxmbSlr5nrpdweapC69VIEJ9zV7RS5wVhoT4b-DiyZzOg9IArfklhDxS0E4ZLHvB1KW0gnUQgcuAPnTY9GSS0wjnkuPqKS6PZFNOt9B06ntp-VrMafVoeNY6J6auXRbCA4cDL9bScFMh3S6Gxc2YQojR84sFs5dFoNSiTac7nnwFnj4V-Fz7Vh__82HMCqhVAMg8dc_xCWitFYH1mYUsTH5Vj8AdLB6cc priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4-ELyIb6urRPTiIbhts032uIirLj4OKoiXkjapu-Cmsu0K---d6UtlPXhryTQJk6TzJTP5hpBTFQd-4iUuc3nsM97RhuEFSRaJSHsRQA6ZoEf37j64fuaDl85LRZOTVWGVJaVl8Zuuo8POLbyNM7BuYpEsI0U7zOnlXm_wOGhOVJDrXHJec5D68sdHv63OHJScc4MW1qW_TtYqWEh7ZUc2yIKxm2SlTBQ52yKftxiwzTJQqKFFFHgZ9D2Z0bGCJr-T2WQUI9nf6HCGV7FozQYB2qdpQmM1ieDJKpvm08hkVFlNb65eH2g-HFmWjN7HNEfrVZCHZNvkuX_5dHHNqowJLAaN5MzA7kC1tZJdWGbdgGuJipdaqLitfMNdLxGwhUFHrZcgFBGuaSfoCYyk8VTg75Alm1qzR6jGmyMgqAUADqFEJNqBgkq6sUaYIBxyVms0jCs6ccxq8R4Wbm1fht_ad8hJI_tRkmj8KdWqByasFlIWukg_wztSQPFxUwxLAP0aypp0WsoESITfcchuOaBNM0iICLtwzyGn9Qj_qHyuD_v_EzsgqwCcOIaMuX6LLOWTqTkEcJJHR9Ws_AKgSudi priority: 102 providerName: Springer Nature |
Title | Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors |
URI | https://link.springer.com/article/10.1038/ncomms5097 https://www.ncbi.nlm.nih.gov/pubmed/24923382 https://www.proquest.com/docview/1535245877 https://www.proquest.com/docview/1535623645 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB71ISQuCCiPQIm2opceFmJ77d0cUBWipiXqAwGRIi7W2rumlZJNGzuo-ffM-JFSpYdebMs73rVmvJ5vNC-AfZ1GQeZnHvdEGnARGsspQZInMjF-gpBDZeTRPTuPTkZiOA7HG9D076wZmD9o2lE_qdF88un2ZnmIG_5LlTKuPjuUzTRHzSc3YRs1kqROBmc1zC__yEEXDRnRVCe998h9fbQGMtccpKXeGTyHZzVgZL1Kwi9gw7qX8KRqIbncgb-nFMrNc2S1ZWV8eBUOPl-yqcYl79rc5Ixi3P-wyyUlabGmTgTKhc0ylup5gldOu1mxSGzOtDPs2_HvC1ZcXjmeXU2mrCC9VpYVyV_BaHD0q3_C614KPBVhUHCLdoPuGK26uAG7kTCKRKKM1GlHB1Z4fibRuCEXrp8RSJGe7WTkI0yU9XUUvIYtN3P2LTBDOSVIaCRCEallIjuRxkm6qSEAIVtw0HA0TutC49TvYhKXDu9AxXfcb8HHFe11VV7jQardRjBx84XEHhWmEaGSOLy3GsbNQR4P7exsUdFEVCI_bMGbSqCrZahUItrnfgv2Gwn_N_naO7x7HNl7eIqQSlAwmRfswlYxX9gPCFuKpA2bcizxqAbHbdju9YY_h3j-enT-_Qfe7Uf9dvnV_gMtufV1 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NIQQviN9kDDBiPPBgrYmd2H1ACAFdy7rxskkTL5kTO2zS6mxNCuo_xd_IXdK0k4p421skW7bjO-e--O6-A9gxeSKKqAh5KHPBZWwdpwRJnqnMRhlCDl2QR_fgMBkey28n8ckG_OlyYSissvsmNh9qW-Z0R74bEg-JjLVSHy-vOFWNIu9qV0KjVYt9N_-Nv2zVh9EXlO-7KBp8Pfo85IuqAjyXsai5QwRtetboPqpiP5FW0-K0VSbvGeFkGBUKYT45M6OCzLUKXa8gb1mmXWQSgePegttSYBNlpg_2lnc6xLaupexYUIXe9fgKkypuOKWu2701MLvmiG3s2-AB3F8AU_ap1aSHsOH8I7jTlqqcP4ZfYwoZ5xWK1LEmDr0NO5_O2cTglKtyOhWjWPqf7GxOyWCs46NA-bOyYLmZZvjkjS_rWeYqZrxlo70f31l9du55cX4xYTXZz4a-pHoCxzeyu09h05fePQdmKXcFO1qFkEcZlaleYnCQfm4JqKgA3nc7muYLQnOqq3GRNo51odPV7gfwdtn3sqXx-Gev7U4w6eIoV-lK8QJ4s2zGQ0ieFeNdOWv7JETFHwfwrBXochqiZBRCRwHsdBK-NvjaGrb-v4bXcHd4dDBOx6PD_RdwD-GbpMC1UGzDZj2duZcIkersVaOXDE5v-iD8BUOFJBI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTiBeEN8EBhgxHniw2sRO7D4gBGxlZaNMiEnTXoITO2zSmowmBfVf46_jLh_tpCLe9hYpJ9vxnX2_-M6_A9g2aSSyIPO5L1PBZWgdpwuSPFGJDRKEHDqjiO7nSbR3JD8dh8cb8Ke7C0Npld2eWG_UtkjpjLzvEw-JDLVS_axNizjcGb29-MmpghRFWrtyGo2J7LvFb_x9K9-Md1DXr4JgtPvtwx5vKwzwVIai4g7RtBlYo4dolsNIWk0D1VaZdGCEk36QKYT8FNgMMnLdyneDjCJniXaBiQS2ew02Ff0V9WDz_e7k8OvyhIe417WUHSeq0P0cP2hahjXD1GUvuAZt18Kytbcb3YZbLUxl7xq7ugMbLr8L15vClYt78OuAEsh5iQp2rM5Kb5LQZws2NdjlqrhOySiz_gc7XdDVMNaxU6A1sCJjqZkl-JSbvKjmiSuZyS0bfzz5wqrTs5xnZ-dTVpE3rclMyvtwdCXz-wB6eZG7R8As3WRBQasQACmjEjWIDDYyTC3BFuXB625G47SlN6cqG-dxHWYXOl7Nvgcvl7IXDanHP6W2OsXE7cIu45UZevBi-RqXJMVZTO6KeSMTETF_6MHDRqHLboigUQgdeLDdafhS42tjePz_MTyHG7gI4oPxZP8J3EQsJymLzRdb0Ktmc_cU8VKVPGsNk8H3q14LfwGZdCmk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-scale+complementary+macroelectronics+using+hybrid+integration+of+carbon+nanotubes+and+IGZO+thin-film+transistors&rft.jtitle=Nature+communications&rft.au=Chen%2C+Haitian&rft.au=Cao%2C+Yu&rft.au=Zhang%2C+Jialu&rft.au=Zhou%2C+Chongwu&rft.date=2014-06-13&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1038%2Fncomms5097&rft.externalDocID=10_1038_ncomms5097 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |