Adipose Tissue Derivatives in Peripheral Nerve Regeneration after Transection: A Systematic Review
Introduction: Peripheral nerve injury (PNI) is increasingly prevalent and challenging to treat despite advances in microsurgical techniques. In this context, adipose tissue derivatives, such as adipose-derived stem cells, nanofat, and stromal vascular fraction have been gaining attention as potentia...
Saved in:
Published in | Bioengineering (Basel) Vol. 11; no. 7; p. 697 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
10.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Introduction: Peripheral nerve injury (PNI) is increasingly prevalent and challenging to treat despite advances in microsurgical techniques. In this context, adipose tissue derivatives, such as adipose-derived stem cells, nanofat, and stromal vascular fraction have been gaining attention as potential allies in peripheral nerve regeneration. Objectives: This study aims to explore the use of adipose tissue derivatives in nerve regeneration following peripheral nerve transection in murine models. Thus, we assess and synthesize the key techniques and methods used for evaluating the obtained nerve regeneration to guide future experimental research and clinical interventions. Methodology: A systematic review was conducted in February 2024, adhering to the Cochrane and PRISMA 2020 guidelines, using the PubMed, SciELO, and LILACS databases. The focus was on experimental studies involving adipose tissue derivatives in nerve regeneration in animal models post-transection. Only experimental trials reporting nerve regeneration outcomes were included; studies lacking a comparator group or evaluation methods were excluded. Results: Out of 273 studies initially identified from MEDLINE, 19 were selected for detailed analysis. The average study included 32.5 subjects, with about 10.2 subjects per intervention subgroup. The predominant model was the sciatic nerve injury with a 10 mm gap. The most common intervention involved unprocessed adipose-derived stem cells, utilized in 14 articles. Conclusions: This review underscores the significant potential of current methodologies in peripheral nerve regeneration, particularly highlighting the use of murine models and thorough evaluation techniques. |
---|---|
AbstractList | Peripheral nerve injury (PNI) is increasingly prevalent and challenging to treat despite advances in microsurgical techniques. In this context, adipose tissue derivatives, such as adipose-derived stem cells, nanofat, and stromal vascular fraction have been gaining attention as potential allies in peripheral nerve regeneration.INTRODUCTIONPeripheral nerve injury (PNI) is increasingly prevalent and challenging to treat despite advances in microsurgical techniques. In this context, adipose tissue derivatives, such as adipose-derived stem cells, nanofat, and stromal vascular fraction have been gaining attention as potential allies in peripheral nerve regeneration.This study aims to explore the use of adipose tissue derivatives in nerve regeneration following peripheral nerve transection in murine models. Thus, we assess and synthesize the key techniques and methods used for evaluating the obtained nerve regeneration to guide future experimental research and clinical interventions.OBJECTIVESThis study aims to explore the use of adipose tissue derivatives in nerve regeneration following peripheral nerve transection in murine models. Thus, we assess and synthesize the key techniques and methods used for evaluating the obtained nerve regeneration to guide future experimental research and clinical interventions.A systematic review was conducted in February 2024, adhering to the Cochrane and PRISMA 2020 guidelines, using the PubMed, SciELO, and LILACS databases. The focus was on experimental studies involving adipose tissue derivatives in nerve regeneration in animal models post-transection. Only experimental trials reporting nerve regeneration outcomes were included; studies lacking a comparator group or evaluation methods were excluded.METHODOLOGYA systematic review was conducted in February 2024, adhering to the Cochrane and PRISMA 2020 guidelines, using the PubMed, SciELO, and LILACS databases. The focus was on experimental studies involving adipose tissue derivatives in nerve regeneration in animal models post-transection. Only experimental trials reporting nerve regeneration outcomes were included; studies lacking a comparator group or evaluation methods were excluded.Out of 273 studies initially identified from MEDLINE, 19 were selected for detailed analysis. The average study included 32.5 subjects, with about 10.2 subjects per intervention subgroup. The predominant model was the sciatic nerve injury with a 10 mm gap. The most common intervention involved unprocessed adipose-derived stem cells, utilized in 14 articles.RESULTSOut of 273 studies initially identified from MEDLINE, 19 were selected for detailed analysis. The average study included 32.5 subjects, with about 10.2 subjects per intervention subgroup. The predominant model was the sciatic nerve injury with a 10 mm gap. The most common intervention involved unprocessed adipose-derived stem cells, utilized in 14 articles.This review underscores the significant potential of current methodologies in peripheral nerve regeneration, particularly highlighting the use of murine models and thorough evaluation techniques.CONCLUSIONSThis review underscores the significant potential of current methodologies in peripheral nerve regeneration, particularly highlighting the use of murine models and thorough evaluation techniques. Introduction: Peripheral nerve injury (PNI) is increasingly prevalent and challenging to treat despite advances in microsurgical techniques. In this context, adipose tissue derivatives, such as adipose-derived stem cells, nanofat, and stromal vascular fraction have been gaining attention as potential allies in peripheral nerve regeneration. Objectives: This study aims to explore the use of adipose tissue derivatives in nerve regeneration following peripheral nerve transection in murine models. Thus, we assess and synthesize the key techniques and methods used for evaluating the obtained nerve regeneration to guide future experimental research and clinical interventions. Methodology: A systematic review was conducted in February 2024, adhering to the Cochrane and PRISMA 2020 guidelines, using the PubMed, SciELO, and LILACS databases. The focus was on experimental studies involving adipose tissue derivatives in nerve regeneration in animal models post-transection. Only experimental trials reporting nerve regeneration outcomes were included; studies lacking a comparator group or evaluation methods were excluded. Results: Out of 273 studies initially identified from MEDLINE, 19 were selected for detailed analysis. The average study included 32.5 subjects, with about 10.2 subjects per intervention subgroup. The predominant model was the sciatic nerve injury with a 10 mm gap. The most common intervention involved unprocessed adipose-derived stem cells, utilized in 14 articles. Conclusions: This review underscores the significant potential of current methodologies in peripheral nerve regeneration, particularly highlighting the use of murine models and thorough evaluation techniques. Peripheral nerve injury (PNI) is increasingly prevalent and challenging to treat despite advances in microsurgical techniques. In this context, adipose tissue derivatives, such as adipose-derived stem cells, nanofat, and stromal vascular fraction have been gaining attention as potential allies in peripheral nerve regeneration. This study aims to explore the use of adipose tissue derivatives in nerve regeneration following peripheral nerve transection in murine models. Thus, we assess and synthesize the key techniques and methods used for evaluating the obtained nerve regeneration to guide future experimental research and clinical interventions. A systematic review was conducted in February 2024, adhering to the Cochrane and PRISMA 2020 guidelines, using the PubMed, SciELO, and LILACS databases. The focus was on experimental studies involving adipose tissue derivatives in nerve regeneration in animal models post-transection. Only experimental trials reporting nerve regeneration outcomes were included; studies lacking a comparator group or evaluation methods were excluded. Out of 273 studies initially identified from MEDLINE, 19 were selected for detailed analysis. The average study included 32.5 subjects, with about 10.2 subjects per intervention subgroup. The predominant model was the sciatic nerve injury with a 10 mm gap. The most common intervention involved unprocessed adipose-derived stem cells, utilized in 14 articles. This review underscores the significant potential of current methodologies in peripheral nerve regeneration, particularly highlighting the use of murine models and thorough evaluation techniques. |
Author | Ferreira, Lydia Masako Mussalem, Matheus Galvão Valadares Bertolini Araújo, Rafael Silva de Carrijo, Gabriel Sant’Ana Bani, João Victor de Figueiredo |
Author_xml | – sequence: 1 givenname: Rafael Silva de surname: Araújo fullname: Araújo, Rafael Silva de – sequence: 2 givenname: Matheus Galvão Valadares Bertolini orcidid: 0000-0003-1123-9570 surname: Mussalem fullname: Mussalem, Matheus Galvão Valadares Bertolini – sequence: 3 givenname: Gabriel Sant’Ana surname: Carrijo fullname: Carrijo, Gabriel Sant’Ana – sequence: 4 givenname: João Victor de Figueiredo orcidid: 0000-0002-3774-7293 surname: Bani fullname: Bani, João Victor de Figueiredo – sequence: 5 givenname: Lydia Masako surname: Ferreira fullname: Ferreira, Lydia Masako |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39061779$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkd1rFDEUxYNUbK39F0rAF1-25nMyI74stdVCsaLr85CPmzXLbLImMyv975vt1iJF6FNyD797OJfzGh3EFAGhU0rOOO_IexMSxGWIADnEJaVEkaZTL9AR46SZSS7FwT__Q3RSyooQQjmTrBGv0GE1aahS3REycxc2qQBehFImwJ-q5VaPYQsFh4i_1XHzC7Ie8FfIW8DfYQmxzmNIEWs_QsaLrGMBu1M-4Dn-cVtGWFfAVngb4M8b9NLrocDJw3uMfl5eLM6_zK5vPl-dz69nVkg-zoCAZNJI3XXSeGNcax2lzgvDJOUKSOcaK4xiWjVVa7WyoiXWM2Ytka3jx-hq7-uSXvWbHNY63_ZJh_5eSHnZ61xjDdBb4x3TzAghWuE00Z1nynjfKeJrip3Xu73XJqffE5SxX4diYRh0hDSVnpNWUtqSpqno2yfoKk051kt3lFCCCkkqdfpATWYN7jHe3yYq0OwBm1MpGfwjQkm_a73_f-t18eOTRRvG-37GrMPw3PodPYq5DA |
CitedBy_id | crossref_primary_10_3390_ijms25158390 crossref_primary_10_3390_cells14060458 crossref_primary_10_3390_ijms252312791 crossref_primary_10_7759_cureus_69085 |
Cites_doi | 10.1007/s10529-009-0123-1 10.1016/j.bjps.2009.11.024 10.1016/j.biopha.2019.108765 10.1007/s40137-017-0169-2 10.1097/TA.0000000000000186 10.1016/0014-4886(82)90234-5 10.1002/jbm.b.33890 10.3109/08941939.2015.1093046 10.3389/fncel.2019.00033 10.3389/fnins.2019.01191 10.1097/01.prs.0000475762.86580.36 10.1055/s-2007-992344 10.1002/jnr.23002 10.1002/glia.23293 10.1016/j.bbr.2005.05.003 10.1055/s-0029-1215529 10.1002/micr.30018 10.1016/j.neulet.2013.05.022 10.1038/srep39828 10.1590/S0004-282X2006000500010 10.1002/mus.27706 10.1016/S0140-6736(04)16508-2 10.1136/jnnp.62.4.310 10.1002/micr.1920100315 10.1097/01.prs.0000182570.62814.e3 10.1016/j.biomaterials.2010.09.046 10.4103/0973-029X.99081 10.1091/mbc.e02-02-0105 10.1097/PRS.0000000000006186 10.1155/2020/9861459 10.1002/jcp.28873 10.1016/j.xpro.2022.101304 10.1523/JNEUROSCI.2840-11.2011 10.1016/S0006-8993(00)02207-1 10.1016/j.bjps.2010.08.013 10.1089/scd.2014.0424 10.1016/j.biotechadv.2018.03.011 10.3390/ijms20215471 10.1016/j.neuroscience.2011.02.052 10.17219/acem/37125 10.26633/RPSP.2022.112 10.3727/096368913X676934 10.1006/exnr.1999.7315 10.3390/biomedicines11123334 10.2174/157488812802481463 10.1038/d41586-023-02159-7 10.1002/jemt.20577 10.1002/cpim.40 10.1111/wrr.12665 10.1007/s11934-015-0569-8 10.1016/j.jchemneu.2017.10.003 10.1038/nrn1746 10.1097/00006534-198901000-00024 10.1097/PRS.0000000000010115 10.1007/s10072-014-2005-0 10.3171/FOC.2009.26.2.E2 10.1590/1806-9282.20220982 10.1016/j.jneumeth.2015.11.020 10.1016/j.neuroscience.2011.09.064 10.1016/j.bjps.2011.11.035 10.2490/jjrm1963.41.Supplement_S71 10.3727/096368912X658953 10.1016/j.brainres.2020.147026 10.3892/etm.2013.1110 10.3346/jkms.2014.29.4.462 10.1089/neu.1995.12.1 10.1002/micr.1920160809 10.3171/JNS-07/12/1168 |
ContentType | Journal Article |
Copyright | 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION NPM 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ L6V LK8 M7P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 DOA |
DOI | 10.3390/bioengineering11070697 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection ProQuest Biological Science Collection Biological Science Database Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2306-5354 |
ExternalDocumentID | oai_doaj_org_article_cbfd2a2b44484da0a9f27bff970fe52d 39061779 10_3390_bioengineering11070697 |
Genre | Journal Article Review |
GeographicLocations | Switzerland China |
GeographicLocations_xml | – name: Switzerland – name: China |
GroupedDBID | 53G 5VS 8FE 8FG 8FH AAFWJ AAYXX ABDBF ABJCF ACUHS ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO IHR INH ITC KQ8 L6V LK8 M7P M7S MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC PTHSS RPM NPM ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 PUEGO |
ID | FETCH-LOGICAL-c453t-e0e525b5a995bfbbd8cd11df4b25137e09d6c4b72a764b28a7c480cf22cc058d3 |
IEDL.DBID | DOA |
ISSN | 2306-5354 |
IngestDate | Wed Aug 27 00:40:37 EDT 2025 Thu Jul 10 17:38:24 EDT 2025 Fri Jul 25 11:56:33 EDT 2025 Thu Jan 02 22:29:12 EST 2025 Tue Jul 01 04:35:38 EDT 2025 Thu Apr 24 22:51:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | adipose stem cells nerve regeneration nerve repair microsurgery functional analysis adipose tissue derivatives |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c453t-e0e525b5a995bfbbd8cd11df4b25137e09d6c4b72a764b28a7c480cf22cc058d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-3774-7293 0000-0003-1123-9570 |
OpenAccessLink | https://doaj.org/article/cbfd2a2b44484da0a9f27bff970fe52d |
PMID | 39061779 |
PQID | 3084741450 |
PQPubID | 2055440 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cbfd2a2b44484da0a9f27bff970fe52d proquest_miscellaneous_3085118066 proquest_journals_3084741450 pubmed_primary_39061779 crossref_primary_10_3390_bioengineering11070697 crossref_citationtrail_10_3390_bioengineering11070697 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-Jul-10 |
PublicationDateYYYYMMDD | 2024-07-10 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-Jul-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Bioengineering (Basel) |
PublicationTitleAlternate | Bioengineering (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Schilling (ref_31) 2023; 151 Pestana (ref_30) 2020; 1747 Tremp (ref_24) 2015; 24 Wang (ref_41) 2023; 36 Ceballos (ref_76) 2000; 161 ref_11 Rui (ref_67) 2013; 6 Kappos (ref_21) 2015; 24 Bacakova (ref_36) 2018; 36 Bain (ref_51) 1989; 83 Pollari (ref_52) 2018; 136 Dai (ref_19) 2013; 22 Freed (ref_43) 1982; 77 Zuk (ref_34) 2002; 13 Scipio (ref_59) 2008; 71 Martins (ref_42) 2006; 64 Ghnenis (ref_57) 2018; 137 McKinnon (ref_71) 2018; 120 Mohammadi (ref_22) 2015; 29 Kokai (ref_37) 2005; 116 Shen (ref_45) 1995; 16 Reid (ref_14) 2011; 199 ref_61 Ge (ref_68) 2016; 6 Pettersson (ref_75) 2010; 63 Reichenberger (ref_23) 2015; 36 Bervar (ref_50) 2002; 44 Hayashi (ref_72) 2007; 23 Summa (ref_15) 2011; 181 Walsh (ref_7) 2009; 26 Dhong (ref_18) 2012; 7 Chen (ref_29) 2019; 234 ref_66 Martyn (ref_2) 1997; 62 Wang (ref_53) 2015; 36 Matsumoto (ref_55) 2000; 868 ref_64 Nadeau (ref_70) 2011; 31 Leberfinger (ref_8) 2017; 5 Guo (ref_48) 2017; 106 Erba (ref_10) 2010; 63 Gokce (ref_39) 2016; 17 Moattari (ref_47) 2018; 88 Li (ref_38) 2018; 17 Kastamoni (ref_32) 2023; 69 Liu (ref_16) 2011; 28 Sowa (ref_26) 2016; 137 (ref_77) 2007; 107 ref_35 Basso (ref_49) 1995; 12 ref_74 Sulong (ref_69) 2014; 23 Raisi (ref_20) 2014; 76 Sridharan (ref_58) 2012; 16 Robinson (ref_3) 2022; 66 Wang (ref_65) 2022; 3 England (ref_1) 2004; 363 Wang (ref_63) 2013; 548 Woolston (ref_33) 2023; 620 Tomita (ref_17) 2012; 90 Ao (ref_54) 2011; 32 Jessen (ref_60) 2005; 6 Nichols (ref_9) 2005; 163 Kim (ref_40) 2014; 29 Shenaq (ref_46) 1989; 10 Catapano (ref_73) 2016; 259 Orbay (ref_44) 2012; 65 He (ref_25) 2016; 24 Wang (ref_56) 2010; 32 Scholz (ref_4) 2009; 25 Page (ref_13) 2022; 46 Silistreli (ref_27) 2016; 22 Verpaele (ref_12) 2019; 144 ref_5 Shimizu (ref_28) 2018; 26 Harboe (ref_62) 2018; 66 Robinson (ref_6) 2004; 41 |
References_xml | – volume: 32 start-page: 59 year: 2010 ident: ref_56 article-title: Preparation of Cross-Linked Carboxymethyl Chitosan for Repairing Sciatic Nerve Injury in Rats publication-title: Biotechnol. Lett. doi: 10.1007/s10529-009-0123-1 – volume: 63 start-page: 1893 year: 2010 ident: ref_75 article-title: Biodegradable fibrin conduit promotes long-term regeneration after peripheral nerve injury in adult rats publication-title: J. Plast. Reconstr. Aesthetic Surg. doi: 10.1016/j.bjps.2009.11.024 – ident: ref_35 doi: 10.1016/j.biopha.2019.108765 – ident: ref_5 – volume: 5 start-page: 5 year: 2017 ident: ref_8 article-title: Adipose-Derived Stem Cells in Peripheral Nerve Regeneration publication-title: Curr. Surg. Rep. doi: 10.1007/s40137-017-0169-2 – volume: 76 start-page: 991 year: 2014 ident: ref_20 article-title: The mesenchymal stem cell–derived microvesicles enhance sciatic nerve regeneration in rat publication-title: J. Trauma Acute Care Surg. doi: 10.1097/TA.0000000000000186 – volume: 77 start-page: 634 year: 1982 ident: ref_43 article-title: An index of the functional condition of rat sciatic nerve based on measurements made from walking tracks publication-title: Exp. Neurol. doi: 10.1016/0014-4886(82)90234-5 – volume: 106 start-page: 787 year: 2017 ident: ref_48 article-title: Chitosan conduits filled with simvastatin/Pluronic F-127 hydrogel promote peripheral nerve regeneration in rats publication-title: J. Biomed. Mater. Res. Part B Appl. Biomater. doi: 10.1002/jbm.b.33890 – volume: 24 start-page: 542 year: 2016 ident: ref_25 article-title: Transplantation of miRNA-34a Overexpressing Adipose-Derived Stem Cell Enhances Rat Nerve Regeneration publication-title: Wound Repair Regen. Off. Publ. Wound Heal. Soc. Eur. Tissue Repair Soc. – volume: 29 start-page: 149 year: 2015 ident: ref_22 article-title: Nonexpanded Adipose Stromal Vascular Fraction Local Therapy on Peripheral Nerve Regeneration Using Allografts publication-title: J. Investig. Surg. doi: 10.3109/08941939.2015.1093046 – ident: ref_61 doi: 10.3389/fncel.2019.00033 – ident: ref_64 doi: 10.3389/fnins.2019.01191 – volume: 137 start-page: 318e year: 2016 ident: ref_26 article-title: Adipose-Derived Stem Cells Promote Peripheral Nerve Regeneration In Vivo without Differentiation into Schwann-like Lineage publication-title: Plast. Reconstr. Surg. doi: 10.1097/01.prs.0000475762.86580.36 – volume: 23 start-page: 381 year: 2007 ident: ref_72 article-title: Retrograde Labeling in Peripheral Nerve Research: It Is Not All Black and White publication-title: J. Reconstr. Microsurg. doi: 10.1055/s-2007-992344 – volume: 90 start-page: 1392 year: 2012 ident: ref_17 article-title: Differentiated adipose-derived stem cells promote myelination and enhance functional recovery in a rat model of chronic denervation publication-title: J. Neurosci. Res. doi: 10.1002/jnr.23002 – volume: 66 start-page: 934 year: 2018 ident: ref_62 article-title: Ephrin-A1-EphA4 signaling negatively regulates myelination in the central nervous system publication-title: Glia doi: 10.1002/glia.23293 – volume: 163 start-page: 143 year: 2005 ident: ref_9 article-title: Choosing the correct functional assay: A comprehensive assessment of functional tests in the rat publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2005.05.003 – volume: 25 start-page: 339 year: 2009 ident: ref_4 article-title: Peripheral Nerve Injuries: An International Survey of Current Treatments and Future Perspectives publication-title: J. Reconstr. Microsurg. doi: 10.1055/s-0029-1215529 – volume: 36 start-page: 491 year: 2015 ident: ref_23 article-title: ADSCs in a fibrin matrix enhance nerve regeneration after epineural suturing in a rat model publication-title: Microsurgery doi: 10.1002/micr.30018 – volume: 548 start-page: 201 year: 2013 ident: ref_63 article-title: Inhibition of EphA4 expression promotes Schwann cell migration and peripheral nerve regeneration publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2013.05.022 – volume: 6 start-page: 39828 year: 2016 ident: ref_68 article-title: Experimental Immunological Demyelination Enhances Regeneration in Autograft-Repaired Long Peripheral Nerve Gaps publication-title: Sci. Rep. doi: 10.1038/srep39828 – volume: 64 start-page: 750 year: 2006 ident: ref_42 article-title: Correlation between parameters of electrophysiological, histomorphometric and sciatic functional index evaluations after rat sciatic nerve repair publication-title: Arq. De Neuro-Psiquiatr. doi: 10.1590/S0004-282X2006000500010 – volume: 137 start-page: e58031 year: 2018 ident: ref_57 article-title: Toluidine Blue Staining of Resin-Embedded Sections for Evaluation of Peripheral Nerve Morphology publication-title: J. Vis. Exp. – volume: 66 start-page: 661 year: 2022 ident: ref_3 article-title: Traumatic injury to peripheral nerves publication-title: Muscle Nerve doi: 10.1002/mus.27706 – volume: 363 start-page: 2151 year: 2004 ident: ref_1 article-title: Peripheral neuropathy publication-title: Lancet doi: 10.1016/S0140-6736(04)16508-2 – volume: 62 start-page: 310 year: 1997 ident: ref_2 article-title: Epidemiology of peripheral neuropathy publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.62.4.310 – volume: 10 start-page: 214 year: 1989 ident: ref_46 article-title: Reliability of sciatic function index in assessing nerve regeneration across a 1 cm gap publication-title: Microsurgery doi: 10.1002/micr.1920100315 – volume: 116 start-page: 1453 year: 2005 ident: ref_37 article-title: The Potential of Adipose-Derived Adult Stem Cells as a Source of Neuronal Progenitor Cells publication-title: Plast. Reconstr. Surg. doi: 10.1097/01.prs.0000182570.62814.e3 – volume: 32 start-page: 787 year: 2011 ident: ref_54 article-title: The regeneration of transected sciatic nerves of adult rats using chitosan nerve conduits seeded with bone marrow stromal cell-derived Schwann cells publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.09.046 – volume: 16 start-page: 251 year: 2012 ident: ref_58 article-title: Toluidine Blue: A Review of Its Chemistry and Clinical Utility publication-title: J. Oral Maxillofac. Pathol. doi: 10.4103/0973-029X.99081 – volume: 13 start-page: 4279 year: 2002 ident: ref_34 article-title: Human Adipose Tissue Is a Source of Multipotent Stem Cells publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e02-02-0105 – volume: 144 start-page: 1089 year: 2019 ident: ref_12 article-title: Discussion: Nanofat Cell Aggregates: A Nearly Constitutive Stromal Cell Inoculum for Regenerative Site-Specific Therapies publication-title: Plast. Reconstr. Surg./PSEF CD J. doi: 10.1097/PRS.0000000000006186 – ident: ref_74 doi: 10.1155/2020/9861459 – volume: 234 start-page: 23097 year: 2019 ident: ref_29 article-title: Exosomes from human adipose-derived stem cells promote sciatic nerve regeneration via optimizing Schwann cell function publication-title: J. Cell. Physiol. doi: 10.1002/jcp.28873 – volume: 3 start-page: 101304 year: 2022 ident: ref_65 article-title: Transmission electron microscopic analysis of myelination in the murine central nervous system publication-title: STAR Protoc. doi: 10.1016/j.xpro.2022.101304 – volume: 31 start-page: 12533 year: 2011 ident: ref_70 article-title: Functional recovery after peripheral nerve injury is dependent on the pro-inflammatory cytokines IL-1β and TNF: Implications for neuropathic pain publication-title: J. Neurosci. Off. J. Soc. Neurosci. doi: 10.1523/JNEUROSCI.2840-11.2011 – volume: 868 start-page: 315 year: 2000 ident: ref_55 article-title: Peripheral nerve regeneration across an 80-mm gap bridged by a polyglycolic acid (PGA)–collagen tube filled with laminin-coated collagen fibers: A histological and electrophysiological evaluation of regenerated nerves publication-title: Brain Res. doi: 10.1016/S0006-8993(00)02207-1 – volume: 63 start-page: e811 year: 2010 ident: ref_10 article-title: Regeneration potential and survival of transplanted undifferentiated adipose tissue-derived stem cells in peripheral nerve conduits publication-title: J. Plast. Reconstr. Aesthetic Surg. doi: 10.1016/j.bjps.2010.08.013 – volume: 17 start-page: 2529 year: 2018 ident: ref_38 article-title: Therapeutic effect of adipose-derived stem cell transplantation on optic nerve injury in rats publication-title: Mol. Med. Rep. – volume: 24 start-page: 2127 year: 2015 ident: ref_21 article-title: Peripheral Nerve Repair: Multimodal Comparison of the Long-Term Regenerative Potential of Adipose Tissue-Derived Cells in a Biodegradable Conduit publication-title: Stem Cells Dev. doi: 10.1089/scd.2014.0424 – volume: 36 start-page: 1111 year: 2018 ident: ref_36 article-title: Stem cells: Their source, potency and use in regenerative therapies with focus on adipose-derived stem cells—A review publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2018.03.011 – ident: ref_11 doi: 10.3390/ijms20215471 – volume: 181 start-page: 278 year: 2011 ident: ref_15 article-title: Long-term in vivo regeneration of peripheral nerves through bioengineered nerve grafts publication-title: Neuroscience doi: 10.1016/j.neuroscience.2011.02.052 – volume: 136 start-page: e57741 year: 2018 ident: ref_52 article-title: In Vivo Electrophysiological Measurement of Compound Muscle Action Potential from the Forelimbs in Mouse Models of Motor Neuron Degeneration publication-title: J. Vis. Exp. – volume: 23 start-page: 353 year: 2014 ident: ref_69 article-title: Collagen-coated Polylactic-Glycolic Acid (PLGA) Seeded with Neural-Differentiated Human Mesenchymal Stem Cells as a Potential Nerve Conduit publication-title: Adv. Clin. Exp. Med. Off. Organ Wroc. Med. Univ. doi: 10.17219/acem/37125 – volume: 46 start-page: 1 year: 2022 ident: ref_13 article-title: A Declaração PRISMA 2020: Diretriz Atualizada para Relatar Revisões Sistemáticas publication-title: Rev. Panam. De Salud Pública doi: 10.26633/RPSP.2022.112 – volume: 24 start-page: 203 year: 2015 ident: ref_24 article-title: The Regeneration Potential after Human and Autologous Stem Cell Transplantation in a Rat Sciatic Nerve Injury Model Can Be Monitored by MRI publication-title: Cell Transplant. doi: 10.3727/096368913X676934 – volume: 161 start-page: 571 year: 2000 ident: ref_76 article-title: Nerve Guides Seeded with Autologous Schwann Cells Improve Nerve Regeneration publication-title: Exp. Neurol. doi: 10.1006/exnr.1999.7315 – ident: ref_66 doi: 10.3390/biomedicines11123334 – volume: 7 start-page: 347 year: 2012 ident: ref_18 article-title: Transplantation of Adipose Derived Stem Cells for Peripheral Nerve Regeneration in Sciatic Nerve Defects of the Rat publication-title: Curr. Stem Cell Res. Ther. doi: 10.2174/157488812802481463 – volume: 620 start-page: S2 year: 2023 ident: ref_33 article-title: What China’s Leading Position in Natural Sciences Means for Global Research publication-title: Nature doi: 10.1038/d41586-023-02159-7 – volume: 71 start-page: 497 year: 2008 ident: ref_59 article-title: A simple protocol for paraffin-embedded myelin sheath staining with osmium tetroxide for light microscope observation publication-title: Microsc. Res. Tech. doi: 10.1002/jemt.20577 – volume: 120 start-page: 5.1.1 year: 2018 ident: ref_71 article-title: Flow Cytometry: An Overview publication-title: Curr. Protoc. Immunol. doi: 10.1002/cpim.40 – volume: 26 start-page: 446 year: 2018 ident: ref_28 article-title: Adipose-derived stem cells and the stromal vascular fraction in polyglycolic acid-collagen nerve conduits promote rat facial nerve regeneration publication-title: Wound Repair Regen. doi: 10.1111/wrr.12665 – volume: 36 start-page: 160 year: 2023 ident: ref_41 article-title: Comparison of the Nerve Regeneration Capacity and Characteristics between Sciatic Nerve Crush and Transection Injury Models in Rats publication-title: Biomed. Environ. Sci. – volume: 17 start-page: 14 year: 2016 ident: ref_39 article-title: Adipose Tissue-Derived Stem Cells for the Treatment of Erectile Dysfunction publication-title: Curr. Urol. Rep. doi: 10.1007/s11934-015-0569-8 – volume: 88 start-page: 46 year: 2018 ident: ref_47 article-title: Chitosan-film associated with mesenchymal stem cells enhanced regeneration of peripheral nerves: A rat sciatic nerve model publication-title: J. Chem. Neuroanat. doi: 10.1016/j.jchemneu.2017.10.003 – volume: 6 start-page: 671 year: 2005 ident: ref_60 article-title: The Origin and Development of Glial Cells in Peripheral Nerves publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1746 – volume: 83 start-page: 129 year: 1989 ident: ref_51 article-title: Functional Evaluation of Complete Sciatic, Peroneal, and Posterior Tibial Nerve Lesions in the Rat publication-title: Plast. Reconstr. Surg. doi: 10.1097/00006534-198901000-00024 – volume: 151 start-page: 947e year: 2023 ident: ref_31 article-title: Intramuscular Nanofat Injection Promotes Inflammation-Induced Gastrocnemius Regeneration in a Syngeneic Rat Sciatic Nerve Injury Model publication-title: Plast. Reconstr. Surg. doi: 10.1097/PRS.0000000000010115 – volume: 36 start-page: 449 year: 2015 ident: ref_53 article-title: Periodical assessment of electrophysiological recovery following sciatic nerve crush via surface stimulation in rats publication-title: Neurological Sciences doi: 10.1007/s10072-014-2005-0 – volume: 26 start-page: E2 year: 2009 ident: ref_7 article-title: Practical considerations concerning the use of stem cells for peripheral nerve repair publication-title: Neurosurg. Focus doi: 10.3171/FOC.2009.26.2.E2 – volume: 69 start-page: 272 year: 2023 ident: ref_32 article-title: The effects of fat graft and platelet-rich fibrin combination after epineurectomy in rats publication-title: Rev. Da Assoc. Médica Bras. doi: 10.1590/1806-9282.20220982 – volume: 259 start-page: 122 year: 2016 ident: ref_73 article-title: Retrograde labeling of regenerating motor and sensory neurons using silicone caps publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2015.11.020 – volume: 199 start-page: 515 year: 2011 ident: ref_14 article-title: Nerve repair with adipose-derived stem cells protects dorsal root ganglia neurons from apoptosis publication-title: Neuroscience doi: 10.1016/j.neuroscience.2011.09.064 – volume: 65 start-page: 657 year: 2012 ident: ref_44 article-title: Differentiated and Undifferentiated Adipose-Derived Stem Cells Improve Function in Rats with Peripheral Nerve Gaps publication-title: J. Plast. Reconstr. Aesthetic Surg. doi: 10.1016/j.bjps.2011.11.035 – volume: 41 start-page: S71 year: 2004 ident: ref_6 article-title: Electrodiagnosis and Rehabilitation of Peripheral Nerve Injuries publication-title: Jpn. J. Rehabil. Med. doi: 10.2490/jjrm1963.41.Supplement_S71 – volume: 22 start-page: 2029 year: 2013 ident: ref_19 article-title: Sciatic Nerve Regeneration by Cocultured Schwann Cells and Stem Cells on Microporous Nerve Conduits publication-title: Cell Transplant. doi: 10.3727/096368912X658953 – volume: 28 start-page: 565 year: 2011 ident: ref_16 article-title: Transplantation of adipose-derived stem cells for peripheral nerve repair publication-title: Int. J. Mol. Med. – volume: 22 start-page: 7 year: 2016 ident: ref_27 article-title: Repairing peripheral nerve defects by vein grafts filled with adipose tissue derived stromal vascular fraction: An experimental study in rats publication-title: Turk. J. Trauma Emerg. Surg. – volume: 1747 start-page: 147026 year: 2020 ident: ref_30 article-title: Grafts of human adipose-derived stem cells into a biodegradable poly (acid lactic) conduit enhances sciatic nerve regeneration publication-title: Brain Res. doi: 10.1016/j.brainres.2020.147026 – volume: 6 start-page: 22 year: 2013 ident: ref_67 article-title: An implantable electrical stimulator used for peripheral nerve rehabilitation in rats publication-title: Exp. Ther. Med. doi: 10.3892/etm.2013.1110 – volume: 29 start-page: 462 year: 2014 ident: ref_40 article-title: Clinical Application of Adipose Stem Cells in Plastic Surgery publication-title: J. Korean Med. Sci. doi: 10.3346/jkms.2014.29.4.462 – volume: 44 start-page: 86 year: 2002 ident: ref_50 article-title: An Alternative Video Footprint Analysis to Assess Functional Loss Following Injury to the Rat Sciatic Nerve publication-title: Acta Chir. Plast. – volume: 12 start-page: 1 year: 1995 ident: ref_49 article-title: A Sensitive and Reliable Locomotor Rating Scale for Open Field Testing in Rats publication-title: J. Neurotrauma doi: 10.1089/neu.1995.12.1 – volume: 16 start-page: 552 year: 1995 ident: ref_45 article-title: Application of sciatic functional index in nerve functional assessment publication-title: Microsurgery doi: 10.1002/micr.1920160809 – volume: 107 start-page: 1168 year: 2007 ident: ref_77 article-title: The role of evaluation methods in the assessment of peripheral nerve regeneration through synthetic conduits: A systematic review publication-title: J. Neurosurg. doi: 10.3171/JNS-07/12/1168 |
SSID | ssj0001325264 |
Score | 2.2826133 |
SecondaryResourceType | review_article |
Snippet | Introduction: Peripheral nerve injury (PNI) is increasingly prevalent and challenging to treat despite advances in microsurgical techniques. In this context,... Peripheral nerve injury (PNI) is increasingly prevalent and challenging to treat despite advances in microsurgical techniques. In this context, adipose tissue... |
SourceID | doaj proquest pubmed crossref |
SourceType | Open Website Aggregation Database Index Database Enrichment Source |
StartPage | 697 |
SubjectTerms | adipose stem cells Adipose tissue adipose tissue derivatives Animal models Animals Body fat Clinical trials Denervation Experimental research functional analysis Injuries Injury analysis Intervention Microsurgery nerve regeneration nerve repair Peripheral nerves Regeneration Reviews Scholarly publishing Sciatic nerve Stem cells Subgroups Systematic review Tissue engineering |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1La9wwEB7azaU9lPQZp0lRoVezsi1ZVi5l8yIUuoQ0gdyMnmEh2Nvspr-_I1nrzaGPo2XJiBlp9M2M_A3AF0sV50Yw9E1kSDNym8vG-RwNo668YLKOZTq_z-uLG_btlt-mgNsqXavc2MRoqG1vQox8WlG0o6xgnH5d_sxD1aiQXU0lNJ7DDprgppnAzvHZ_PJqG2WpSo5H_vBrcIX-_VQverdl-gveD60D49OTUymS9_8dccaT53wXXiXISGaDjl_DM9e9gZdPiATfgp7ZxbJfOXId5UhOsf1XpPRekUVHLvEx0gfck3m44Uiu3F2kmw5aIbFMOImHVryX1R2RGfkxMjyTIX3wDm7Oz65PLvJUPSE3jFfr3FHHS665kpJrr3UoU1QU1jONkKYSjkpbG6ZFqUSNbY0ShjXU-LI0hvLGVu9h0vWd2wOiC2ME-soIXjirUalOqxqRUiMLw433GfCN9FqTqMVDhYv7Fl2MIPX2z1LPYDqOWw7kGv8dcRyUM_YO5NixoX-4a9Nea432tlSlZuh6Mquokr4U2nspqEeZ2AwONqpt045dtdv1lcHn8TXutZBAUZ3rH2Of4JAhSsvgw7AkxpngnBEMCrn_749_hBclwqIQHS7oAUzWD4_uEGHNWn9Ka_c3amf6wg priority: 102 providerName: ProQuest |
Title | Adipose Tissue Derivatives in Peripheral Nerve Regeneration after Transection: A Systematic Review |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39061779 https://www.proquest.com/docview/3084741450 https://www.proquest.com/docview/3085118066 https://doaj.org/article/cbfd2a2b44484da0a9f27bff970fe52d |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB619NIeEC20pNCVK_UarePYcdzbLrAgpK4QD4lb5Ge1Esoidunv79gJYQ9UXHqK4tjSaGbs-cZ2vgH44agWwkqOuYmKx4zC5ar2IceF0ZRBclWlMp2_5tXZDT-_Fbcbpb7inbCOHrhT3Nia4JhmhmMewZ2mWgUmTQhK0uAFc3H1xZi3kUyl3ZWSCQz13S_BJeb1Y7NY-meGv5j10CoyPW1Eo0Ta_2-kmSLObAe2e6hIJp2IH-GNbz_Bhw0CwV0wE7e4X648uU76I8fY_idRea_IoiUX-JpoA-7IPN5sJJf-d6KZjtYgqTw4ScEq3cdqf5IJuRqYnUl3bLAHN7OT66OzvK-akFsuynXuKapFGKGVEiYYE8sTFYUL3CCUKaWnylWWG8m0rLCt1tLymtrAmLVU1K78DFvtsvX7QExhrcQcGUGL4BUa0xtdIUKqVWGFDSED8aS9xvaU4rGyxV2DqUXUevOy1jMYD-PuO1KNV0dMo3GG3pEUOzWgqzS9qzSvuUoGh0-mbfqZumpKivGZF1zQDL4Pn3GOxYMT3frlY-oTEzFEZxl86VxikARlRhAo1df_IeEBvGcImuLecUEPYWv98Oi_IehZmxG8rWenI3g3mR5PZ_icnswvLkfJ6_8C9awHfQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAkaCY7SOY8cxEkILZdnSdoVgK_UWYseuVqqSpbsF8af4jYydx_bA49RjHNuyxuOZb_z4BuBFRUshjOQYmyh_zCiqWOXWxWgYdeokV1lI03k4y6ZH_OOxON6CX_1bGH-tsreJwVBXjfF75KOUoh3lCRf0zfJb7LNG-dPVPoVGqxb79ucPDNlWr_d2cX5fMjZ5P383jbusArHhIl3HllrBhBalUkI7rX36niSpHNfo6lNpqaoyw7VkpcywLC-l4Tk1jjFjqMirFPu9Ald5ip7cv0yffNjs6aRMIMBoHyLjfzrSi8ZueAV9rEUzzy91wQeGVAF_x7fBz01uwc0OoJJxq1G3YcvWd-DGBdrCu6DH1WLZrCyZh1kju1j-PRCIr8iiJp_wM5AVnJKZv09JPtuTQG7tdYCEpOQkuMhwC6x-Rcbky8AnTdrDintwdClSvQ_bdVPbh0B0YozEyByhkuAZqpDVZYa4LFeJEca5CEQvvcJ0ROY-n8ZpgQGNl3rxZ6lHMBraLVsqj_-2eOsnZ6jtqbhDQXN2UnQruzDaVaxkmmOgy6uSlsoxqZ1TkjqUSRXBTj-1RWcfVsVGmyN4PvzGle2Pa8raNuehjg__EBNG8KBViWEkOGaEnlI9-nfnz-DadH54UBzszfYfw3WGgMzvSyd0B7bXZ-f2CQKqtX4atJjA18teNr8B1qo3Iw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgmMMBI8BjVcew4RkKoo6s2BlU1NmlvIXbsqdKUlLUD8a_x13F20nQPfDztMY5tWefz-Xc--3cArytaCmEkR99E-TCjqGKVWxejYdSpk1xlIU3n52m2f8I_norTLfi1fgvjr1WubWIw1FVj_Bn5MKVoR3nCBR267lrEbDx5v_gW-wxSPtK6TqfRqsih_fkD3bflu4MxzvUbxiZ7xx_24y7DQGy4SFexpVYwoUWplNBOa5_KJ0kqxzVu-6m0VFWZ4VqyUmZYlpfS8Jwax5gxVORViv3egG3pvaIBbO_uTWdHmxOelAmEG-2z5DRVdKjnjd2wDHrPi2aeberKjhgSB_wd7YZdb3IX7nRwlYxa_boHW7a-D7evkBg-AD2q5otmaclxmEMyxvLvgU58SeY1meFnoC44J1N_u5Ic2bNAde01goQU5SRsmOFOWP2WjMiXnl2atKGLh3ByLXJ9BIO6qe0TIDoxRqKfjsBJ8AwVyuoyQ5SWq8QI41wEYi29wnS05j67xnmB7o2XevFnqUcw7NstWmKP_7bY9ZPT1_bE3KGguTgrunVeGO0qVjLN0e3lVUlL5ZjUzilJHcqkimBnPbVFZy2WxUa3I3jV_8Z17oM3ZW2by1DHO4OIECN43KpEPxIcMwJRqZ7-u_OXcBOXTPHpYHr4DG4xRGf-kDqhOzBYXVza54iuVvpFp8YEvl73yvkNKBc8tQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adipose+Tissue+Derivatives+in+Peripheral+Nerve+Regeneration+after+Transection%3A+A+Systematic+Review&rft.jtitle=Bioengineering+%28Basel%29&rft.au=Ara%C3%BAjo%2C+Rafael+Silva+de&rft.au=Mussalem%2C+Matheus+Galv%C3%A3o+Valadares+Bertolini&rft.au=Carrijo%2C+Gabriel+Sant%27Ana&rft.au=Bani%2C+Jo%C3%A3o+Victor+de+Figueiredo&rft.date=2024-07-10&rft.issn=2306-5354&rft.eissn=2306-5354&rft.volume=11&rft.issue=7&rft_id=info:doi/10.3390%2Fbioengineering11070697&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5354&client=summon |