Designing Reinforcement Learning Algorithms for Digital Interventions: Pre-Implementation Guidelines
Online reinforcement learning (RL) algorithms are increasingly used to personalize digital interventions in the fields of mobile health and online education. Common challenges in designing and testing an RL algorithm in these settings include ensuring the RL algorithm can learn and run stably under...
Saved in:
Published in | Algorithms Vol. 15; no. 8; p. 255 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Online reinforcement learning (RL) algorithms are increasingly used to personalize digital interventions in the fields of mobile health and online education. Common challenges in designing and testing an RL algorithm in these settings include ensuring the RL algorithm can learn and run stably under real-time constraints, and accounting for the complexity of the environment, e.g., a lack of accurate mechanistic models for the user dynamics. To guide how one can tackle these challenges, we extend the PCS (predictability, computability, stability) framework, a data science framework that incorporates best practices from machine learning and statistics in supervised learning to the design of RL algorithms for the digital interventions setting. Furthermore, we provide guidelines on how to design simulation environments, a crucial tool for evaluating RL candidate algorithms using the PCS framework. We show how we used the PCS framework to design an RL algorithm for Oralytics, a mobile health study aiming to improve users' tooth-brushing behaviors through the personalized delivery of intervention messages. Oralytics will go into the field in late 2022. |
---|---|
AbstractList | Online reinforcement learning (RL) algorithms are increasingly used to personalize digital interventions in the fields of mobile health and online education. Common challenges in designing and testing an RL algorithm in these settings include ensuring the RL algorithm can learn and run stably under real-time constraints, and accounting for the complexity of the environment, e.g., a lack of accurate mechanistic models for the user dynamics. To guide how one can tackle these challenges, we extend the PCS (predictability, computability, stability) framework, a data science framework that incorporates best practices from machine learning and statistics in supervised learning to the design of RL algorithms for the digital interventions setting. Furthermore, we provide guidelines on how to design simulation environments, a crucial tool for evaluating RL candidate algorithms using the PCS framework. We show how we used the PCS framework to design an RL algorithm for Oralytics, a mobile health study aiming to improve users' tooth-brushing behaviors through the personalized delivery of intervention messages. Oralytics will go into the field in late 2022. |
Audience | Academic |
Author | Trella, Anna L Zhang, Kelly W Nahum-Shani, Inbal Doshi-Velez, Finale Murphy, Susan A Shetty, Vivek |
Author_xml | – sequence: 1 givenname: Anna L surname: Trella fullname: Trella, Anna L organization: School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02420, USA – sequence: 2 givenname: Kelly W surname: Zhang fullname: Zhang, Kelly W organization: School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02420, USA – sequence: 3 givenname: Inbal surname: Nahum-Shani fullname: Nahum-Shani, Inbal organization: Institute for Social Research, University of Michigan, Ann Arbor, MI 48109, USA – sequence: 4 givenname: Vivek surname: Shetty fullname: Shetty, Vivek organization: Schools of Dentistry & Engineering, University of California, Los Angeles, CA 90095, USA – sequence: 5 givenname: Finale surname: Doshi-Velez fullname: Doshi-Velez, Finale organization: School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02420, USA – sequence: 6 givenname: Susan A surname: Murphy fullname: Murphy, Susan A organization: School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02420, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36713810$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkVGPEyEUhYlZ4-5WH_wDZhJf3IeuUAYYfGt217VJE43R58kF7ow0M1BhxsR_L23XxhgeIIfvngv3XJOLEAMS8prRW841fQ9M0IauhHhGrpjWelk3ml_8c74k1znvKJVCS_aCXHKpGG8YvSLuHrPvgw999RV96GKyOGKYqi1COsrroY_JTz_GXJXb6t73foKh2oQJ069C-hjyh-pLwuVm3A_HYjiI1ePsHQ4-YH5JnncwZHz1tC_I948P3-4-LbefHzd36-3S1oJPS8cbLq2sKYBUuuFKGO6Ek5YKBQY6RKoZZwaYY_UKFDorGWNotOFGK8oXZHPydRF27T75EdLvNoJvj0JMfQtp8nbA1nS6W0FHDThTM2lMmR_o0haUNMW2eL07ee1T_DljntrRZ4vDAAHjnNuVUow2UpXpLsjb_9BdnFMoPy0UlVTWjRSFuj1RPZT-h1FPCWxZDkdvS6CdL_pa1YLVnKq6FNycCmyKOSfszj9itD3k3p5zL-ybpyfMZkR3Jv8Gzf8AOUKpYQ |
CitedBy_id | crossref_primary_10_1080_17437199_2023_2233592 crossref_primary_10_2196_50872 crossref_primary_10_2105_AJPH_2022_307150 crossref_primary_10_1093_abm_kaad041 crossref_primary_10_2196_38342 crossref_primary_10_1038_s41746_024_01028_5 crossref_primary_10_3389_frai_2023_1229805 crossref_primary_10_1016_j_cct_2024_107464 |
Cites_doi | 10.1145/2800835.2800943 10.1145/3381007 10.1073/pnas.1901326117 10.3390/ai2040037 10.2196/jmir.2583 10.1007/978-3-030-67667-4_32 10.1146/annurev-soc-071913-043455 10.1007/s10916-021-01773-0 10.1093/ije/dyp334 10.1007/978-3-319-51394-2_25 10.2196/17347 10.1145/3386392.3399291 10.1093/ije/dyy275 10.1093/jamia/ocab001 10.1080/01621459.2017.1305274 10.2196/jmir.7994 10.1007/978-3-030-00928-1_67 10.1109/ICDMW51313.2020.00035 10.1007/978-3-030-03098-8 10.1007/s10994-021-05983-y 10.1002/sam.11486 10.1007/s10994-021-05995-8 10.1109/TAC.2005.844079 10.1073/pnas.2014602118 10.3233/DS-200028 10.1207/s15327744joce1603&4_2 10.1111/insr.12427 10.1007/s10865-018-9964-1 10.1186/s40488-021-00121-4 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | NPM AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PIMPY PQEST PQQKQ PQUKI PRINS PTHSS Q9U 7X8 DOA |
DOI | 10.3390/a15080255 |
DatabaseName | PubMed CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1999-4893 |
ExternalDocumentID | oai_doaj_org_article_bf9f2af0badb416bb802a9679a76bc61 A745143074 10_3390_a15080255 36713810 |
Genre | Journal Article |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: U01 CA229437 – fundername: NIDA NIH HHS grantid: R01 DA039901 – fundername: NIMH NIH HHS grantid: R01 MH123804 – fundername: NIDCR NIH HHS grantid: UH3 DE028723 – fundername: NIBIB NIH HHS grantid: P41 EB028242 – fundername: NIDCR NIH HHS grantid: UG3 DE028723 – fundername: NIDA NIH HHS grantid: P50 DA054039 |
GroupedDBID | 23M 2WC 3V. 5VS 8FE 8FG AADQD AAFWJ ABDBF ABJCF ABUWG ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ C1A CCPQU DWQXO E3Z ESX GNUQQ GROUPED_DOAJ HCIFZ IAO IPNFZ ITC J9A K6V K7- KQ8 L6V M0N M7S MODMG M~E NPM OK1 P2P PIMPY PQQKQ PROAC PTHSS RIG TR2 TUS AAYXX AFPKN CITATION 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D P62 PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c453t-d3836c640aa6798375b3d5d6c057abafee09131ba1d142a7edc6111eb9b3b9703 |
IEDL.DBID | DOA |
ISSN | 1999-4893 |
IngestDate | Tue Oct 22 15:15:30 EDT 2024 Sat Oct 26 05:01:57 EDT 2024 Thu Oct 10 18:17:39 EDT 2024 Fri Feb 02 04:19:28 EST 2024 Wed Aug 07 14:02:21 EDT 2024 Sat Nov 02 12:29:23 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | algorithm evaluation mobile health reinforcement learning (RL) algorithm design online learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c453t-d3836c640aa6798375b3d5d6c057abafee09131ba1d142a7edc6111eb9b3b9703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3167-3318 0000-0002-2032-4286 0000-0003-4779-9115 0000-0001-6138-9089 0000-0003-0850-4978 0000-0003-2886-3898 |
OpenAccessLink | https://doaj.org/article/bf9f2af0badb416bb802a9679a76bc61 |
PMID | 36713810 |
PQID | 2706064865 |
PQPubID | 2032439 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bf9f2af0badb416bb802a9679a76bc61 proquest_miscellaneous_2771086789 proquest_journals_2706064865 gale_infotracacademiconefile_A745143074 crossref_primary_10_3390_a15080255 pubmed_primary_36713810 |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Algorithms |
PublicationTitleAlternate | Algorithms |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Forman (ref_3) 2019; 42 Fan (ref_14) 2006; 16 Wang (ref_11) 2005; 50 ref_13 Jung (ref_19) 2021; Volume 149 Dennison (ref_21) 2013; 15 ref_32 Elwert (ref_46) 2014; 40 ref_31 ref_30 Feng (ref_43) 2021; 8 Tomkins (ref_40) 2021; 110 Margot (ref_35) 2021; 2 ref_39 ref_16 ref_38 Liao (ref_1) 2020; 4 ref_15 ref_37 Langford (ref_12) 2007; 20 Shetty (ref_36) 2020; 8 Cole (ref_44) 2010; 39 Figueroa (ref_23) 2021; 28 ref_25 ref_24 Yu (ref_8) 2020; 117 ref_22 Boruvka (ref_17) 2018; 113 ref_20 Ward (ref_34) 2021; 14 ref_42 Wang (ref_28) 2021; 45 Grua (ref_10) 2020; 3 ref_29 Dwivedi (ref_33) 2020; 88 Schomaker (ref_45) 2019; 48 ref_27 Cai (ref_5) 2021; 110 Hadad (ref_18) 2021; 118 ref_26 ref_9 Feraru (ref_2) 2017; 19 Deshmukh (ref_41) 2017; 30 ref_4 ref_7 ref_6 |
References_xml | – ident: ref_7 – ident: ref_20 doi: 10.1145/2800835.2800943 – ident: ref_9 – volume: 4 start-page: 1 year: 2020 ident: ref_1 article-title: Personalized HeartSteps: A Reinforcement Learning Algorithm for Optimizing Physical Activity publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. doi: 10.1145/3381007 contributor: fullname: Liao – volume: 117 start-page: 3920 year: 2020 ident: ref_8 article-title: Veridical data science publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1901326117 contributor: fullname: Yu – ident: ref_32 – volume: 2 start-page: 621 year: 2021 ident: ref_35 article-title: A new method to compare the interpretability of rule-based algorithms publication-title: AI doi: 10.3390/ai2040037 contributor: fullname: Margot – volume: 15 start-page: e86 year: 2013 ident: ref_21 article-title: Opportunities and Challenges for Smartphone Applications in Supporting Health Behavior Change: Qualitative Study publication-title: J. Med. Internet Res. doi: 10.2196/jmir.2583 contributor: fullname: Dennison – ident: ref_24 doi: 10.1007/978-3-030-67667-4_32 – volume: 40 start-page: 31 year: 2014 ident: ref_46 article-title: Endogenous selection bias: The problem of conditioning on a collider variable publication-title: Annu. Rev. Sociol. doi: 10.1146/annurev-soc-071913-043455 contributor: fullname: Elwert – volume: 45 start-page: 1 year: 2021 ident: ref_28 article-title: Optimizing Adaptive Notifications in Mobile Health Interventions Systems: Reinforcement Learning from a Data-driven Behavioral Simulator publication-title: J. Med. Syst. doi: 10.1007/s10916-021-01773-0 contributor: fullname: Wang – volume: 39 start-page: 417 year: 2010 ident: ref_44 article-title: Illustrating bias due to conditioning on a collider publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dyp334 contributor: fullname: Cole – ident: ref_13 doi: 10.1007/978-3-319-51394-2_25 – ident: ref_16 – volume: 8 start-page: e17347 year: 2020 ident: ref_36 article-title: A Scalable System for Passively Monitoring Oral Health Behaviors Using Electronic Toothbrushes in the Home Setting: Development and Feasibility Study publication-title: JMIR Mhealth Uhealth doi: 10.2196/17347 contributor: fullname: Shetty – ident: ref_30 doi: 10.1145/3386392.3399291 – ident: ref_37 – ident: ref_42 – volume: 30 start-page: 4848 year: 2017 ident: ref_41 article-title: Multi-task learning for contextual bandits publication-title: Adv. Neural Inf. Process. Syst. contributor: fullname: Deshmukh – volume: 48 start-page: 640 year: 2019 ident: ref_45 article-title: Educational Note: Paradoxical collider effect in the analysis of non-communicable disease epidemiological data: A reproducible illustration and web application publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dyy275 contributor: fullname: Schomaker – ident: ref_6 – ident: ref_25 – ident: ref_4 – volume: 28 start-page: 1225 year: 2021 ident: ref_23 article-title: Adaptive learning algorithms to optimize mobile applications for behavioral health: Guidelines for design decisions publication-title: J. Am. Med. Inform. Assoc. doi: 10.1093/jamia/ocab001 contributor: fullname: Figueroa – volume: 113 start-page: 1112 year: 2018 ident: ref_17 article-title: Assessing time-varying causal effect moderation in mobile health publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2017.1305274 contributor: fullname: Boruvka – ident: ref_29 – volume: 19 start-page: e338 year: 2017 ident: ref_2 article-title: Encouraging physical activity in patients with diabetes: Intervention using a reinforcement learning system publication-title: J. Med. Internet Res. doi: 10.2196/jmir.7994 contributor: fullname: Feraru – ident: ref_27 – ident: ref_39 doi: 10.1007/978-3-030-00928-1_67 – volume: Volume 149 start-page: 209 year: 2021 ident: ref_19 article-title: Power Constrained Bandits publication-title: Proceedings of the 6th Machine Learning for Healthcare Conference, PMLR contributor: fullname: Jung – ident: ref_26 doi: 10.1109/ICDMW51313.2020.00035 – ident: ref_31 doi: 10.1007/978-3-030-03098-8 – volume: 110 start-page: 2389 year: 2021 ident: ref_5 article-title: Bandit algorithms to personalize educational chatbots publication-title: Mach. Learn. doi: 10.1007/s10994-021-05983-y contributor: fullname: Cai – volume: 14 start-page: 5 year: 2021 ident: ref_34 article-title: Next waves in veridical network embedding publication-title: Stat. Anal. Data Min. ASA Data Sci. J. doi: 10.1002/sam.11486 contributor: fullname: Ward – volume: 110 start-page: 2685 year: 2021 ident: ref_40 article-title: IntelligentPooling: Practical Thompson sampling for mHealth publication-title: Mach. Learn. doi: 10.1007/s10994-021-05995-8 contributor: fullname: Tomkins – volume: 50 start-page: 338 year: 2005 ident: ref_11 article-title: Bandit problems with side observations publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2005.844079 contributor: fullname: Wang – ident: ref_15 – volume: 118 start-page: e2014602118 year: 2021 ident: ref_18 article-title: Confidence intervals for policy evaluation in adaptive experiments publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2014602118 contributor: fullname: Hadad – ident: ref_38 – volume: 3 start-page: 107 year: 2020 ident: ref_10 article-title: Reinforcement learning for personalization: A systematic literature review publication-title: Data Sci. doi: 10.3233/DS-200028 contributor: fullname: Grua – volume: 16 start-page: 179 year: 2006 ident: ref_14 article-title: What is personalization? Perspectives on the design and implementation of personalization in information systems publication-title: J. Organ. Comput. Electron. Commer. doi: 10.1207/s15327744joce1603&4_2 contributor: fullname: Fan – ident: ref_22 – volume: 88 start-page: S135 year: 2020 ident: ref_33 article-title: Stable Discovery of Interpretable Subgroups via Calibration in Causal Studies publication-title: Int. Stat. Rev. doi: 10.1111/insr.12427 contributor: fullname: Dwivedi – volume: 42 start-page: 276 year: 2019 ident: ref_3 article-title: Can the artificial intelligence technique of reinforcement learning use continuously-monitored digital data to optimize treatment for weight loss? publication-title: J. Behav. Med. doi: 10.1007/s10865-018-9964-1 contributor: fullname: Forman – volume: 20 start-page: 96 year: 2007 ident: ref_12 article-title: The epoch-greedy algorithm for contextual multi-armed bandits publication-title: Adv. Neural Inf. Process. Syst. contributor: fullname: Langford – volume: 8 start-page: 1 year: 2021 ident: ref_43 article-title: A comparison of zero-inflated and hurdle models for modeling zero-inflated count data publication-title: J. Stat. Distrib. Appl. doi: 10.1186/s40488-021-00121-4 contributor: fullname: Feng |
SSID | ssj0065961 |
Score | 2.4134033 |
Snippet | Online reinforcement learning (RL) algorithms are increasingly used to personalize digital interventions in the fields of mobile health and online education.... |
SourceID | doaj proquest gale crossref pubmed |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 255 |
SubjectTerms | algorithm design algorithm evaluation Algorithms Analysis Best practice CAI Case studies Computer assisted instruction Data mining Design Guidelines Intervention Machine learning mobile health Online education online learning reinforcement learning (RL) Telemedicine |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZguXDh_QgsyCAkTtE2iR8xF1RYugsHhBAr7c3y-FGQ2HRp0__PjOuUl8Q1dhJ7xvOyx98w9iJ50wbaXmr65Gthgql7jwwJAY0RQKLrmpRt8VGdnokP5_K8bLhtSlrlpBOzog4rT3vkRy3BvCjRK_n68kdNVaPodLWU0LjKrjWt1hR89YuTSRMraVSzQxPqMLQ_coR9Tj70HzYoQ_X_q5D_cjOzuVncYjeKn8jnO8beZlficIfdnGow8CKSd1k4zikYaID455hRUH3e8OMFOHXJ59-XOI_x68WGYys__rakOiH8_W_JjptX_NM61hkp-KJcRhr4yZYgsCgt_h47W7z78va0LpUTai9kN9YB407llZg5R6csnZbQBRmUR-_MgUsxEhxoA64JjWidjsErVHoRDHRgUAncZwfDaogPGTdKJOlkJ0FgLOZF7zEmTK0HJ50WYCr2fKKlvdwBZFgMLIjgdk_wir0hKu87EKZ1frBaL20REQvJpNalGbiA_1IA-KozOH6nFeD4KvaSeGSJluPaeVcuEOA4CcPKzrUg7w99ooodTmy0RSQ39tcCqtizfTMKE52QuCGuttRHU-Up3eO0HuzYvx9zpzCe75vZo_9__DG73tINiZwjeMgOxvU2PkG_ZYSneXH-BACW7eg priority: 102 providerName: ProQuest |
Title | Designing Reinforcement Learning Algorithms for Digital Interventions: Pre-Implementation Guidelines |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36713810 https://www.proquest.com/docview/2706064865 https://www.proquest.com/docview/2771086789 https://doaj.org/article/bf9f2af0badb416bb802a9679a76bc61 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxQxDLagXLgALa8tZRUQEqdR55FkJty2tNvCoaoqKvUW5bkg0Vm0j_9fO5NdFTj00uskB8cex58T5zPAp-hU7el4qeqiK7jyqugcGsR7DEbWRnquSdUW5_Lsin-_Ftd3Wn1RTdhADzwo7tBGFWsTS2u8RfBgbVfWRslWmVZalxOfUm2SqWEPlkLJauARajCpPzTEek7o-a_ok0j6_9-K_wGYKdBMX8CzjBDZZJBsFx6Ffg-eb7ovsOyML8Efp-ILDD3sMiT-U5eO-limTJ2xye_ZHHP_nzdLhqPs-NeMOoSwb3fKHJdf2MUiFIkj-CY_Q-rZ6ZrIr6gg_hVcTU9-fD0rcs-EwnHRrAqPGad0kpfG0P1K0wrbeOGlQ1xmrIkhEBFoZU3lK16bNnjUYVUFq2xjFbr_a9jp5314C0xJHoURjUC989LxzmE2GGtnjTAtt2oEHze61H8GagyNKQUpXG8VPoIj0vJ2ArFZpw9oY51trO-z8Qg-k4006XK1MM7kpwMoJ7FX6UnLCfchGhrBwcaMOjvjUtfEECR5J1GaD9thdCO6GzF9mK9pTks9p9oOl_VmMP9W5kZiJt9V5f5DrOUdPK3pBUWqITyAndViHd4jrlnZMTzupqdjeHJ0cn5xOU4_9C3ZYfoP |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33386,33756,33757,43612,43817,74369,74636 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7RcoALb0qggEFInKJuEtuJuaCFst1CqVDVSr1ZfmVBotmym_3_zHidpYDUa-wk9ow9D3vmG4A3rVOlp-OlomldzpVXeeOQId6jMrK2pXRNirY4ltMz_vlcnKcDt2UKqxxkYhTUfu7ojHyvJJgXyRsp3l_-yqlqFN2uphIaW3CTV6irKVN8cjBIYimULNZoQhW69nuGsM_Jhv5LB0Wo_v8F8j9mZlQ3k3twJ9mJbLxm7H24EboHcHeowcDSlnwIfj-GYKACYichoqC6eODHEnDqjI1_znAe_feLJcNWtv9jRnVC2OGVYMflO_ZtEfKIFHyRkpE6drAiCCwKi38EZ5NPpx-neaqckDsuqj736HdKJ_nIGLplqWphKy-8dGidGWvaEAgOtLCm8AUvTR28kyj0glW2sgqFwGPY7uZdeAJMSd4KIyphOfpijjcOfcK2dNYIU3OrMng90FJfrgEyNDoWRHC9IXgGH4jKmw6EaR0fzBcznbaItq1qS9OOrPH4L2ktvmoUjt_U0uL4MnhLPNJEy35hnEkJBDhOwrDS45qT9Yc2UQa7Axt12pJL_WcBZfBq04ybiW5ITBfmK-pTU-WpusFp7azZvxlzJdGfb4rR0-s__hJuTU-_Humjw-Mvz-B2SdkSMV5wF7b7xSo8Rxumty_iQv0NNJTwyg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_BkBAvfDMCAwxC4ilqk9hOzAsqlG4DNE2ISXuz_FmQWDra9P_nznXLl8Rr7CT2nX0f9t3vAF5Gp2pPx0tVF13JlVdl55Ah3qMysjZSuiZFW5zIozP-4Vyc5_inVQ6r3MrEJKj9wtEZ-agmmBfJOylGMYdFnE5nby5_lFRBim5aczmNq3ANtaKkFd7NDrdSWQolqw2yUINu_sgQDjrZ03_oowTb_69w_svkTKpndhtuZpuRTTZMvgNXQn8Xbm3rMbC8Pe-Bn6ZwDFRG7HNIiKguHf6xDKI6Z5Pvc5zH8PVixbCVTb_NqWYIO_4t8HH1mp0uQ5lQgy9yYlLPDtcEh0Uh8vfhbPb-y7ujMldRKB0XzVB69EGlk3xsDN24NK2wjRdeOrTUjDUxBIIGraypfMVr0wbvJArAYJVtrEKB8AD2-kUfHgJTkkdhRCMsR7_M8c6hfxhrZ40wLbeqgBdbWurLDViGRieDCK53BC_gLVF514HwrdODxXKu83bRNqpYmzi2xuO_pLX4qlE4ftNKi-Mr4BXxSBMth6VxJicT4DgJz0pPWk6WINpHBRxs2ajz9lzpX4upgOe7ZtxYdFti-rBYU5-WqlC1HU5rf8P-3Zgbib59V40f_f_jz-A6rlH96fjk42O4UVPiRAodPIC9YbkOT9CcGezTtE5_Anik9Qg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designing+Reinforcement+Learning+Algorithms+for+Digital+Interventions%3A+Pre-Implementation+Guidelines&rft.jtitle=Algorithms&rft.au=Anna+L.+Trella&rft.au=Kelly+W.+Zhang&rft.au=Inbal+Nahum-Shani&rft.au=Vivek+Shetty&rft.date=2022-08-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=15&rft.issue=8&rft.spage=255&rft_id=info:doi/10.3390%2Fa15080255&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bf9f2af0badb416bb802a9679a76bc61 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon |