Designing Reinforcement Learning Algorithms for Digital Interventions: Pre-Implementation Guidelines

Online reinforcement learning (RL) algorithms are increasingly used to personalize digital interventions in the fields of mobile health and online education. Common challenges in designing and testing an RL algorithm in these settings include ensuring the RL algorithm can learn and run stably under...

Full description

Saved in:
Bibliographic Details
Published inAlgorithms Vol. 15; no. 8; p. 255
Main Authors Trella, Anna L, Zhang, Kelly W, Nahum-Shani, Inbal, Shetty, Vivek, Doshi-Velez, Finale, Murphy, Susan A
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Online reinforcement learning (RL) algorithms are increasingly used to personalize digital interventions in the fields of mobile health and online education. Common challenges in designing and testing an RL algorithm in these settings include ensuring the RL algorithm can learn and run stably under real-time constraints, and accounting for the complexity of the environment, e.g., a lack of accurate mechanistic models for the user dynamics. To guide how one can tackle these challenges, we extend the PCS (predictability, computability, stability) framework, a data science framework that incorporates best practices from machine learning and statistics in supervised learning to the design of RL algorithms for the digital interventions setting. Furthermore, we provide guidelines on how to design simulation environments, a crucial tool for evaluating RL candidate algorithms using the PCS framework. We show how we used the PCS framework to design an RL algorithm for Oralytics, a mobile health study aiming to improve users' tooth-brushing behaviors through the personalized delivery of intervention messages. Oralytics will go into the field in late 2022.
AbstractList Online reinforcement learning (RL) algorithms are increasingly used to personalize digital interventions in the fields of mobile health and online education. Common challenges in designing and testing an RL algorithm in these settings include ensuring the RL algorithm can learn and run stably under real-time constraints, and accounting for the complexity of the environment, e.g., a lack of accurate mechanistic models for the user dynamics. To guide how one can tackle these challenges, we extend the PCS (predictability, computability, stability) framework, a data science framework that incorporates best practices from machine learning and statistics in supervised learning to the design of RL algorithms for the digital interventions setting. Furthermore, we provide guidelines on how to design simulation environments, a crucial tool for evaluating RL candidate algorithms using the PCS framework. We show how we used the PCS framework to design an RL algorithm for Oralytics, a mobile health study aiming to improve users' tooth-brushing behaviors through the personalized delivery of intervention messages. Oralytics will go into the field in late 2022.
Audience Academic
Author Trella, Anna L
Zhang, Kelly W
Nahum-Shani, Inbal
Doshi-Velez, Finale
Murphy, Susan A
Shetty, Vivek
Author_xml – sequence: 1
  givenname: Anna L
  surname: Trella
  fullname: Trella, Anna L
  organization: School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02420, USA
– sequence: 2
  givenname: Kelly W
  surname: Zhang
  fullname: Zhang, Kelly W
  organization: School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02420, USA
– sequence: 3
  givenname: Inbal
  surname: Nahum-Shani
  fullname: Nahum-Shani, Inbal
  organization: Institute for Social Research, University of Michigan, Ann Arbor, MI 48109, USA
– sequence: 4
  givenname: Vivek
  surname: Shetty
  fullname: Shetty, Vivek
  organization: Schools of Dentistry & Engineering, University of California, Los Angeles, CA 90095, USA
– sequence: 5
  givenname: Finale
  surname: Doshi-Velez
  fullname: Doshi-Velez, Finale
  organization: School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02420, USA
– sequence: 6
  givenname: Susan A
  surname: Murphy
  fullname: Murphy, Susan A
  organization: School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02420, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36713810$$D View this record in MEDLINE/PubMed
BookMark eNpdkVGPEyEUhYlZ4-5WH_wDZhJf3IeuUAYYfGt217VJE43R58kF7ow0M1BhxsR_L23XxhgeIIfvngv3XJOLEAMS8prRW841fQ9M0IauhHhGrpjWelk3ml_8c74k1znvKJVCS_aCXHKpGG8YvSLuHrPvgw999RV96GKyOGKYqi1COsrroY_JTz_GXJXb6t73foKh2oQJ069C-hjyh-pLwuVm3A_HYjiI1ePsHQ4-YH5JnncwZHz1tC_I948P3-4-LbefHzd36-3S1oJPS8cbLq2sKYBUuuFKGO6Ek5YKBQY6RKoZZwaYY_UKFDorGWNotOFGK8oXZHPydRF27T75EdLvNoJvj0JMfQtp8nbA1nS6W0FHDThTM2lMmR_o0haUNMW2eL07ee1T_DljntrRZ4vDAAHjnNuVUow2UpXpLsjb_9BdnFMoPy0UlVTWjRSFuj1RPZT-h1FPCWxZDkdvS6CdL_pa1YLVnKq6FNycCmyKOSfszj9itD3k3p5zL-ybpyfMZkR3Jv8Gzf8AOUKpYQ
CitedBy_id crossref_primary_10_1080_17437199_2023_2233592
crossref_primary_10_2196_50872
crossref_primary_10_2105_AJPH_2022_307150
crossref_primary_10_1093_abm_kaad041
crossref_primary_10_2196_38342
crossref_primary_10_1038_s41746_024_01028_5
crossref_primary_10_3389_frai_2023_1229805
crossref_primary_10_1016_j_cct_2024_107464
Cites_doi 10.1145/2800835.2800943
10.1145/3381007
10.1073/pnas.1901326117
10.3390/ai2040037
10.2196/jmir.2583
10.1007/978-3-030-67667-4_32
10.1146/annurev-soc-071913-043455
10.1007/s10916-021-01773-0
10.1093/ije/dyp334
10.1007/978-3-319-51394-2_25
10.2196/17347
10.1145/3386392.3399291
10.1093/ije/dyy275
10.1093/jamia/ocab001
10.1080/01621459.2017.1305274
10.2196/jmir.7994
10.1007/978-3-030-00928-1_67
10.1109/ICDMW51313.2020.00035
10.1007/978-3-030-03098-8
10.1007/s10994-021-05983-y
10.1002/sam.11486
10.1007/s10994-021-05995-8
10.1109/TAC.2005.844079
10.1073/pnas.2014602118
10.3233/DS-200028
10.1207/s15327744joce1603&4_2
10.1111/insr.12427
10.1007/s10865-018-9964-1
10.1186/s40488-021-00121-4
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID NPM
AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
DOA
DOI 10.3390/a15080255
DatabaseName PubMed
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1999-4893
ExternalDocumentID oai_doaj_org_article_bf9f2af0badb416bb802a9679a76bc61
A745143074
10_3390_a15080255
36713810
Genre Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: U01 CA229437
– fundername: NIDA NIH HHS
  grantid: R01 DA039901
– fundername: NIMH NIH HHS
  grantid: R01 MH123804
– fundername: NIDCR NIH HHS
  grantid: UH3 DE028723
– fundername: NIBIB NIH HHS
  grantid: P41 EB028242
– fundername: NIDCR NIH HHS
  grantid: UG3 DE028723
– fundername: NIDA NIH HHS
  grantid: P50 DA054039
GroupedDBID 23M
2WC
3V.
5VS
8FE
8FG
AADQD
AAFWJ
ABDBF
ABJCF
ABUWG
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
C1A
CCPQU
DWQXO
E3Z
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
IPNFZ
ITC
J9A
K6V
K7-
KQ8
L6V
M0N
M7S
MODMG
M~E
NPM
OK1
P2P
PIMPY
PQQKQ
PROAC
PTHSS
RIG
TR2
TUS
AAYXX
AFPKN
CITATION
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
P62
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c453t-d3836c640aa6798375b3d5d6c057abafee09131ba1d142a7edc6111eb9b3b9703
IEDL.DBID DOA
ISSN 1999-4893
IngestDate Tue Oct 22 15:15:30 EDT 2024
Sat Oct 26 05:01:57 EDT 2024
Thu Oct 10 18:17:39 EDT 2024
Fri Feb 02 04:19:28 EST 2024
Wed Aug 07 14:02:21 EDT 2024
Sat Nov 02 12:29:23 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords algorithm evaluation
mobile health
reinforcement learning (RL)
algorithm design
online learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-d3836c640aa6798375b3d5d6c057abafee09131ba1d142a7edc6111eb9b3b9703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3167-3318
0000-0002-2032-4286
0000-0003-4779-9115
0000-0001-6138-9089
0000-0003-0850-4978
0000-0003-2886-3898
OpenAccessLink https://doaj.org/article/bf9f2af0badb416bb802a9679a76bc61
PMID 36713810
PQID 2706064865
PQPubID 2032439
ParticipantIDs doaj_primary_oai_doaj_org_article_bf9f2af0badb416bb802a9679a76bc61
proquest_miscellaneous_2771086789
proquest_journals_2706064865
gale_infotracacademiconefile_A745143074
crossref_primary_10_3390_a15080255
pubmed_primary_36713810
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Algorithms
PublicationTitleAlternate Algorithms
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Forman (ref_3) 2019; 42
Fan (ref_14) 2006; 16
Wang (ref_11) 2005; 50
ref_13
Jung (ref_19) 2021; Volume 149
Dennison (ref_21) 2013; 15
ref_32
Elwert (ref_46) 2014; 40
ref_31
ref_30
Feng (ref_43) 2021; 8
Tomkins (ref_40) 2021; 110
Margot (ref_35) 2021; 2
ref_39
ref_16
ref_38
Liao (ref_1) 2020; 4
ref_15
ref_37
Langford (ref_12) 2007; 20
Shetty (ref_36) 2020; 8
Cole (ref_44) 2010; 39
Figueroa (ref_23) 2021; 28
ref_25
ref_24
Yu (ref_8) 2020; 117
ref_22
Boruvka (ref_17) 2018; 113
ref_20
Ward (ref_34) 2021; 14
ref_42
Wang (ref_28) 2021; 45
Grua (ref_10) 2020; 3
ref_29
Dwivedi (ref_33) 2020; 88
Schomaker (ref_45) 2019; 48
ref_27
Cai (ref_5) 2021; 110
Hadad (ref_18) 2021; 118
ref_26
ref_9
Feraru (ref_2) 2017; 19
Deshmukh (ref_41) 2017; 30
ref_4
ref_7
ref_6
References_xml – ident: ref_7
– ident: ref_20
  doi: 10.1145/2800835.2800943
– ident: ref_9
– volume: 4
  start-page: 1
  year: 2020
  ident: ref_1
  article-title: Personalized HeartSteps: A Reinforcement Learning Algorithm for Optimizing Physical Activity
  publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.
  doi: 10.1145/3381007
  contributor:
    fullname: Liao
– volume: 117
  start-page: 3920
  year: 2020
  ident: ref_8
  article-title: Veridical data science
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1901326117
  contributor:
    fullname: Yu
– ident: ref_32
– volume: 2
  start-page: 621
  year: 2021
  ident: ref_35
  article-title: A new method to compare the interpretability of rule-based algorithms
  publication-title: AI
  doi: 10.3390/ai2040037
  contributor:
    fullname: Margot
– volume: 15
  start-page: e86
  year: 2013
  ident: ref_21
  article-title: Opportunities and Challenges for Smartphone Applications in Supporting Health Behavior Change: Qualitative Study
  publication-title: J. Med. Internet Res.
  doi: 10.2196/jmir.2583
  contributor:
    fullname: Dennison
– ident: ref_24
  doi: 10.1007/978-3-030-67667-4_32
– volume: 40
  start-page: 31
  year: 2014
  ident: ref_46
  article-title: Endogenous selection bias: The problem of conditioning on a collider variable
  publication-title: Annu. Rev. Sociol.
  doi: 10.1146/annurev-soc-071913-043455
  contributor:
    fullname: Elwert
– volume: 45
  start-page: 1
  year: 2021
  ident: ref_28
  article-title: Optimizing Adaptive Notifications in Mobile Health Interventions Systems: Reinforcement Learning from a Data-driven Behavioral Simulator
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-021-01773-0
  contributor:
    fullname: Wang
– volume: 39
  start-page: 417
  year: 2010
  ident: ref_44
  article-title: Illustrating bias due to conditioning on a collider
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyp334
  contributor:
    fullname: Cole
– ident: ref_13
  doi: 10.1007/978-3-319-51394-2_25
– ident: ref_16
– volume: 8
  start-page: e17347
  year: 2020
  ident: ref_36
  article-title: A Scalable System for Passively Monitoring Oral Health Behaviors Using Electronic Toothbrushes in the Home Setting: Development and Feasibility Study
  publication-title: JMIR Mhealth Uhealth
  doi: 10.2196/17347
  contributor:
    fullname: Shetty
– ident: ref_30
  doi: 10.1145/3386392.3399291
– ident: ref_37
– ident: ref_42
– volume: 30
  start-page: 4848
  year: 2017
  ident: ref_41
  article-title: Multi-task learning for contextual bandits
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Deshmukh
– volume: 48
  start-page: 640
  year: 2019
  ident: ref_45
  article-title: Educational Note: Paradoxical collider effect in the analysis of non-communicable disease epidemiological data: A reproducible illustration and web application
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyy275
  contributor:
    fullname: Schomaker
– ident: ref_6
– ident: ref_25
– ident: ref_4
– volume: 28
  start-page: 1225
  year: 2021
  ident: ref_23
  article-title: Adaptive learning algorithms to optimize mobile applications for behavioral health: Guidelines for design decisions
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocab001
  contributor:
    fullname: Figueroa
– volume: 113
  start-page: 1112
  year: 2018
  ident: ref_17
  article-title: Assessing time-varying causal effect moderation in mobile health
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2017.1305274
  contributor:
    fullname: Boruvka
– ident: ref_29
– volume: 19
  start-page: e338
  year: 2017
  ident: ref_2
  article-title: Encouraging physical activity in patients with diabetes: Intervention using a reinforcement learning system
  publication-title: J. Med. Internet Res.
  doi: 10.2196/jmir.7994
  contributor:
    fullname: Feraru
– ident: ref_27
– ident: ref_39
  doi: 10.1007/978-3-030-00928-1_67
– volume: Volume 149
  start-page: 209
  year: 2021
  ident: ref_19
  article-title: Power Constrained Bandits
  publication-title: Proceedings of the 6th Machine Learning for Healthcare Conference, PMLR
  contributor:
    fullname: Jung
– ident: ref_26
  doi: 10.1109/ICDMW51313.2020.00035
– ident: ref_31
  doi: 10.1007/978-3-030-03098-8
– volume: 110
  start-page: 2389
  year: 2021
  ident: ref_5
  article-title: Bandit algorithms to personalize educational chatbots
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-021-05983-y
  contributor:
    fullname: Cai
– volume: 14
  start-page: 5
  year: 2021
  ident: ref_34
  article-title: Next waves in veridical network embedding
  publication-title: Stat. Anal. Data Min. ASA Data Sci. J.
  doi: 10.1002/sam.11486
  contributor:
    fullname: Ward
– volume: 110
  start-page: 2685
  year: 2021
  ident: ref_40
  article-title: IntelligentPooling: Practical Thompson sampling for mHealth
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-021-05995-8
  contributor:
    fullname: Tomkins
– volume: 50
  start-page: 338
  year: 2005
  ident: ref_11
  article-title: Bandit problems with side observations
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2005.844079
  contributor:
    fullname: Wang
– ident: ref_15
– volume: 118
  start-page: e2014602118
  year: 2021
  ident: ref_18
  article-title: Confidence intervals for policy evaluation in adaptive experiments
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2014602118
  contributor:
    fullname: Hadad
– ident: ref_38
– volume: 3
  start-page: 107
  year: 2020
  ident: ref_10
  article-title: Reinforcement learning for personalization: A systematic literature review
  publication-title: Data Sci.
  doi: 10.3233/DS-200028
  contributor:
    fullname: Grua
– volume: 16
  start-page: 179
  year: 2006
  ident: ref_14
  article-title: What is personalization? Perspectives on the design and implementation of personalization in information systems
  publication-title: J. Organ. Comput. Electron. Commer.
  doi: 10.1207/s15327744joce1603&4_2
  contributor:
    fullname: Fan
– ident: ref_22
– volume: 88
  start-page: S135
  year: 2020
  ident: ref_33
  article-title: Stable Discovery of Interpretable Subgroups via Calibration in Causal Studies
  publication-title: Int. Stat. Rev.
  doi: 10.1111/insr.12427
  contributor:
    fullname: Dwivedi
– volume: 42
  start-page: 276
  year: 2019
  ident: ref_3
  article-title: Can the artificial intelligence technique of reinforcement learning use continuously-monitored digital data to optimize treatment for weight loss?
  publication-title: J. Behav. Med.
  doi: 10.1007/s10865-018-9964-1
  contributor:
    fullname: Forman
– volume: 20
  start-page: 96
  year: 2007
  ident: ref_12
  article-title: The epoch-greedy algorithm for contextual multi-armed bandits
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Langford
– volume: 8
  start-page: 1
  year: 2021
  ident: ref_43
  article-title: A comparison of zero-inflated and hurdle models for modeling zero-inflated count data
  publication-title: J. Stat. Distrib. Appl.
  doi: 10.1186/s40488-021-00121-4
  contributor:
    fullname: Feng
SSID ssj0065961
Score 2.4134033
Snippet Online reinforcement learning (RL) algorithms are increasingly used to personalize digital interventions in the fields of mobile health and online education....
SourceID doaj
proquest
gale
crossref
pubmed
SourceType Open Website
Aggregation Database
Index Database
StartPage 255
SubjectTerms algorithm design
algorithm evaluation
Algorithms
Analysis
Best practice
CAI
Case studies
Computer assisted instruction
Data mining
Design
Guidelines
Intervention
Machine learning
mobile health
Online education
online learning
reinforcement learning (RL)
Telemedicine
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZguXDh_QgsyCAkTtE2iR8xF1RYugsHhBAr7c3y-FGQ2HRp0__PjOuUl8Q1dhJ7xvOyx98w9iJ50wbaXmr65Gthgql7jwwJAY0RQKLrmpRt8VGdnokP5_K8bLhtSlrlpBOzog4rT3vkRy3BvCjRK_n68kdNVaPodLWU0LjKrjWt1hR89YuTSRMraVSzQxPqMLQ_coR9Tj70HzYoQ_X_q5D_cjOzuVncYjeKn8jnO8beZlficIfdnGow8CKSd1k4zikYaID455hRUH3e8OMFOHXJ59-XOI_x68WGYys__rakOiH8_W_JjptX_NM61hkp-KJcRhr4yZYgsCgt_h47W7z78va0LpUTai9kN9YB407llZg5R6csnZbQBRmUR-_MgUsxEhxoA64JjWidjsErVHoRDHRgUAncZwfDaogPGTdKJOlkJ0FgLOZF7zEmTK0HJ50WYCr2fKKlvdwBZFgMLIjgdk_wir0hKu87EKZ1frBaL20REQvJpNalGbiA_1IA-KozOH6nFeD4KvaSeGSJluPaeVcuEOA4CcPKzrUg7w99ooodTmy0RSQ39tcCqtizfTMKE52QuCGuttRHU-Up3eO0HuzYvx9zpzCe75vZo_9__DG73tINiZwjeMgOxvU2PkG_ZYSneXH-BACW7eg
  priority: 102
  providerName: ProQuest
Title Designing Reinforcement Learning Algorithms for Digital Interventions: Pre-Implementation Guidelines
URI https://www.ncbi.nlm.nih.gov/pubmed/36713810
https://www.proquest.com/docview/2706064865
https://www.proquest.com/docview/2771086789
https://doaj.org/article/bf9f2af0badb416bb802a9679a76bc61
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxQxDLagXLgALa8tZRUQEqdR55FkJty2tNvCoaoqKvUW5bkg0Vm0j_9fO5NdFTj00uskB8cex58T5zPAp-hU7el4qeqiK7jyqugcGsR7DEbWRnquSdUW5_Lsin-_Ftd3Wn1RTdhADzwo7tBGFWsTS2u8RfBgbVfWRslWmVZalxOfUm2SqWEPlkLJauARajCpPzTEek7o-a_ok0j6_9-K_wGYKdBMX8CzjBDZZJBsFx6Ffg-eb7ovsOyML8Efp-ILDD3sMiT-U5eO-limTJ2xye_ZHHP_nzdLhqPs-NeMOoSwb3fKHJdf2MUiFIkj-CY_Q-rZ6ZrIr6gg_hVcTU9-fD0rcs-EwnHRrAqPGad0kpfG0P1K0wrbeOGlQ1xmrIkhEBFoZU3lK16bNnjUYVUFq2xjFbr_a9jp5314C0xJHoURjUC989LxzmE2GGtnjTAtt2oEHze61H8GagyNKQUpXG8VPoIj0vJ2ArFZpw9oY51trO-z8Qg-k4006XK1MM7kpwMoJ7FX6UnLCfchGhrBwcaMOjvjUtfEECR5J1GaD9thdCO6GzF9mK9pTks9p9oOl_VmMP9W5kZiJt9V5f5DrOUdPK3pBUWqITyAndViHd4jrlnZMTzupqdjeHJ0cn5xOU4_9C3ZYfoP
link.rule.ids 315,783,787,867,2109,12777,21400,27936,27937,33385,33386,33756,33757,43612,43817,74369,74636
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7RcoALb0qggEFInKJuEtuJuaCFst1CqVDVSr1ZfmVBotmym_3_zHidpYDUa-wk9ow9D3vmG4A3rVOlp-OlomldzpVXeeOQId6jMrK2pXRNirY4ltMz_vlcnKcDt2UKqxxkYhTUfu7ojHyvJJgXyRsp3l_-yqlqFN2uphIaW3CTV6irKVN8cjBIYimULNZoQhW69nuGsM_Jhv5LB0Wo_v8F8j9mZlQ3k3twJ9mJbLxm7H24EboHcHeowcDSlnwIfj-GYKACYichoqC6eODHEnDqjI1_znAe_feLJcNWtv9jRnVC2OGVYMflO_ZtEfKIFHyRkpE6drAiCCwKi38EZ5NPpx-neaqckDsuqj736HdKJ_nIGLplqWphKy-8dGidGWvaEAgOtLCm8AUvTR28kyj0glW2sgqFwGPY7uZdeAJMSd4KIyphOfpijjcOfcK2dNYIU3OrMng90FJfrgEyNDoWRHC9IXgGH4jKmw6EaR0fzBcznbaItq1qS9OOrPH4L2ktvmoUjt_U0uL4MnhLPNJEy35hnEkJBDhOwrDS45qT9Yc2UQa7Axt12pJL_WcBZfBq04ybiW5ITBfmK-pTU-WpusFp7azZvxlzJdGfb4rR0-s__hJuTU-_Humjw-Mvz-B2SdkSMV5wF7b7xSo8Rxumty_iQv0NNJTwyg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_BkBAvfDMCAwxC4ilqk9hOzAsqlG4DNE2ISXuz_FmQWDra9P_nznXLl8Rr7CT2nX0f9t3vAF5Gp2pPx0tVF13JlVdl55Ah3qMysjZSuiZFW5zIozP-4Vyc5_inVQ6r3MrEJKj9wtEZ-agmmBfJOylGMYdFnE5nby5_lFRBim5aczmNq3ANtaKkFd7NDrdSWQolqw2yUINu_sgQDjrZ03_oowTb_69w_svkTKpndhtuZpuRTTZMvgNXQn8Xbm3rMbC8Pe-Bn6ZwDFRG7HNIiKguHf6xDKI6Z5Pvc5zH8PVixbCVTb_NqWYIO_4t8HH1mp0uQ5lQgy9yYlLPDtcEh0Uh8vfhbPb-y7ujMldRKB0XzVB69EGlk3xsDN24NK2wjRdeOrTUjDUxBIIGraypfMVr0wbvJArAYJVtrEKB8AD2-kUfHgJTkkdhRCMsR7_M8c6hfxhrZ40wLbeqgBdbWurLDViGRieDCK53BC_gLVF514HwrdODxXKu83bRNqpYmzi2xuO_pLX4qlE4ftNKi-Mr4BXxSBMth6VxJicT4DgJz0pPWk6WINpHBRxs2ajz9lzpX4upgOe7ZtxYdFti-rBYU5-WqlC1HU5rf8P-3Zgbib59V40f_f_jz-A6rlH96fjk42O4UVPiRAodPIC9YbkOT9CcGezTtE5_Anik9Qg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designing+Reinforcement+Learning+Algorithms+for+Digital+Interventions%3A+Pre-Implementation+Guidelines&rft.jtitle=Algorithms&rft.au=Anna+L.+Trella&rft.au=Kelly+W.+Zhang&rft.au=Inbal+Nahum-Shani&rft.au=Vivek+Shetty&rft.date=2022-08-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=15&rft.issue=8&rft.spage=255&rft_id=info:doi/10.3390%2Fa15080255&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bf9f2af0badb416bb802a9679a76bc61
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon