Application of Surface-Enhanced Raman Spectroscopy in the Screening of Pulmonary Adenocarcinoma Nodules

This study is aimed at evaluating the feasibility of a screening method for the pulmonary adenocarcinoma nodules through surface-enhanced Raman spectroscopy (SERS). Objective. Using SERS to measure serum from pulmonary nodules and healthy subjects, intraoperative biopsy pathological diagnosis was re...

Full description

Saved in:
Bibliographic Details
Published inBioMed research international Vol. 2022; no. 1; p. 4368928
Main Authors Peng, Bowen, Yan, Huan, Lin, Runrui, Yin, Gang
Format Journal Article
LanguageEnglish
Published New York Hindawi 2022
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study is aimed at evaluating the feasibility of a screening method for the pulmonary adenocarcinoma nodules through surface-enhanced Raman spectroscopy (SERS). Objective. Using SERS to measure serum from pulmonary nodules and healthy subjects, intraoperative biopsy pathological diagnosis was regarded as the gold standard for labeling serum samples. To explore the application value of SERS in the differential diagnosis of pulmonary adenocarcinoma nodules, benign nodules, and healthy, we build a machine learning model. Method. We collected 116 serum samples from patients. Radiographically confirmed nodules less than 3 cm in maximum diameter in all patients, including 58 cancer (pathologic diagnosis: adenocarcinoma nodules, labeled as cancer) patients, 58 pathologic diagnoses as benign nodule (labeled as benign) patients, and 63 healthy (labeled as normal) people from the clinical laboratory of Sichuan Cancer Hospital. Gold nanorods were employed as SERS substrates. Support vector machine (SVM) was used to classify the normal, benign, and cancer sample groups, and SVM model evaluated using cross-validation. Results. The average SERS spectra of serum were significantly different between the normal group and the cancer/benign group. While the average SERS spectra of the cancer group and the benign group differed slightly, for the cancer, benign, and normal groups, SVM models can predict with 93.33% accuracy. Conclusion. This exploratory study demonstrates that the SERS technique based on nanoparticles in conjunction with SVM has great potential as a clinical auxiliary diagnosis and screening for pulmonary adenocarcinoma nodules.
AbstractList This study is aimed at evaluating the feasibility of a screening method for the pulmonary adenocarcinoma nodules through surface-enhanced Raman spectroscopy (SERS). Objective. Using SERS to measure serum from pulmonary nodules and healthy subjects, intraoperative biopsy pathological diagnosis was regarded as the gold standard for labeling serum samples. To explore the application value of SERS in the differential diagnosis of pulmonary adenocarcinoma nodules, benign nodules, and healthy, we build a machine learning model. Method. We collected 116 serum samples from patients. Radiographically confirmed nodules less than 3 cm in maximum diameter in all patients, including 58 cancer (pathologic diagnosis: adenocarcinoma nodules, labeled as cancer) patients, 58 pathologic diagnoses as benign nodule (labeled as benign) patients, and 63 healthy (labeled as normal) people from the clinical laboratory of Sichuan Cancer Hospital. Gold nanorods were employed as SERS substrates. Support vector machine (SVM) was used to classify the normal, benign, and cancer sample groups, and SVM model evaluated using cross-validation. Results. The average SERS spectra of serum were significantly different between the normal group and the cancer/benign group. While the average SERS spectra of the cancer group and the benign group differed slightly, for the cancer, benign, and normal groups, SVM models can predict with 93.33% accuracy. Conclusion. This exploratory study demonstrates that the SERS technique based on nanoparticles in conjunction with SVM has great potential as a clinical auxiliary diagnosis and screening for pulmonary adenocarcinoma nodules.This study is aimed at evaluating the feasibility of a screening method for the pulmonary adenocarcinoma nodules through surface-enhanced Raman spectroscopy (SERS). Objective. Using SERS to measure serum from pulmonary nodules and healthy subjects, intraoperative biopsy pathological diagnosis was regarded as the gold standard for labeling serum samples. To explore the application value of SERS in the differential diagnosis of pulmonary adenocarcinoma nodules, benign nodules, and healthy, we build a machine learning model. Method. We collected 116 serum samples from patients. Radiographically confirmed nodules less than 3 cm in maximum diameter in all patients, including 58 cancer (pathologic diagnosis: adenocarcinoma nodules, labeled as cancer) patients, 58 pathologic diagnoses as benign nodule (labeled as benign) patients, and 63 healthy (labeled as normal) people from the clinical laboratory of Sichuan Cancer Hospital. Gold nanorods were employed as SERS substrates. Support vector machine (SVM) was used to classify the normal, benign, and cancer sample groups, and SVM model evaluated using cross-validation. Results. The average SERS spectra of serum were significantly different between the normal group and the cancer/benign group. While the average SERS spectra of the cancer group and the benign group differed slightly, for the cancer, benign, and normal groups, SVM models can predict with 93.33% accuracy. Conclusion. This exploratory study demonstrates that the SERS technique based on nanoparticles in conjunction with SVM has great potential as a clinical auxiliary diagnosis and screening for pulmonary adenocarcinoma nodules.
This study is aimed at evaluating the feasibility of a screening method for the pulmonary adenocarcinoma nodules through surface‐enhanced Raman spectroscopy (SERS). Objective . Using SERS to measure serum from pulmonary nodules and healthy subjects, intraoperative biopsy pathological diagnosis was regarded as the gold standard for labeling serum samples. To explore the application value of SERS in the differential diagnosis of pulmonary adenocarcinoma nodules, benign nodules, and healthy, we build a machine learning model. Method . We collected 116 serum samples from patients. Radiographically confirmed nodules less than 3 cm in maximum diameter in all patients, including 58 cancer (pathologic diagnosis: adenocarcinoma nodules, labeled as cancer) patients, 58 pathologic diagnoses as benign nodule (labeled as benign) patients, and 63 healthy (labeled as normal) people from the clinical laboratory of Sichuan Cancer Hospital. Gold nanorods were employed as SERS substrates. Support vector machine (SVM) was used to classify the normal, benign, and cancer sample groups, and SVM model evaluated using cross‐validation. Results . The average SERS spectra of serum were significantly different between the normal group and the cancer/benign group. While the average SERS spectra of the cancer group and the benign group differed slightly, for the cancer, benign, and normal groups, SVM models can predict with 93.33% accuracy. Conclusion . This exploratory study demonstrates that the SERS technique based on nanoparticles in conjunction with SVM has great potential as a clinical auxiliary diagnosis and screening for pulmonary adenocarcinoma nodules.
This study is aimed at evaluating the feasibility of a screening method for the pulmonary adenocarcinoma nodules through surface-enhanced Raman spectroscopy (SERS). Objective. Using SERS to measure serum from pulmonary nodules and healthy subjects, intraoperative biopsy pathological diagnosis was regarded as the gold standard for labeling serum samples. To explore the application value of SERS in the differential diagnosis of pulmonary adenocarcinoma nodules, benign nodules, and healthy, we build a machine learning model. Method. We collected 116 serum samples from patients. Radiographically confirmed nodules less than 3 cm in maximum diameter in all patients, including 58 cancer (pathologic diagnosis: adenocarcinoma nodules, labeled as cancer) patients, 58 pathologic diagnoses as benign nodule (labeled as benign) patients, and 63 healthy (labeled as normal) people from the clinical laboratory of Sichuan Cancer Hospital. Gold nanorods were employed as SERS substrates. Support vector machine (SVM) was used to classify the normal, benign, and cancer sample groups, and SVM model evaluated using cross-validation. Results. The average SERS spectra of serum were significantly different between the normal group and the cancer/benign group. While the average SERS spectra of the cancer group and the benign group differed slightly, for the cancer, benign, and normal groups, SVM models can predict with 93.33% accuracy. Conclusion. This exploratory study demonstrates that the SERS technique based on nanoparticles in conjunction with SVM has great potential as a clinical auxiliary diagnosis and screening for pulmonary adenocarcinoma nodules.
Audience Academic
Author Yan, Huan
Yin, Gang
Lin, Runrui
Peng, Bowen
AuthorAffiliation 3 Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu 610041, China
2 School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
1 Nanjing University, School of Electronic Science and Engineering, Nanjing 210023, China
AuthorAffiliation_xml – name: 1 Nanjing University, School of Electronic Science and Engineering, Nanjing 210023, China
– name: 3 Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu 610041, China
– name: 2 School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
Author_xml – sequence: 1
  givenname: Bowen
  surname: Peng
  fullname: Peng, Bowen
  organization: Nanjing UniversitySchool of Electronic Science and EngineeringNanjing 210023Chinanju.edu.cn
– sequence: 2
  givenname: Huan
  surname: Yan
  fullname: Yan, Huan
  organization: School of MedicineUniversity of Electronic Science and Technology of ChinaChengdu 611731Chinauestc.edu.cn
– sequence: 3
  givenname: Runrui
  surname: Lin
  fullname: Lin, Runrui
  organization: School of MedicineUniversity of Electronic Science and Technology of ChinaChengdu 611731Chinauestc.edu.cn
– sequence: 4
  givenname: Gang
  orcidid: 0000-0001-9995-4629
  surname: Yin
  fullname: Yin, Gang
  organization: Sichuan Cancer Hospital & InstituteRadiation Oncology Key Laboratory of Sichuan ProvinceChengdu 610041Chinasichuancancer.org
BookMark eNp9kUtv1DAUhS1UREvpjh8QiQ1SCXWuHxNvkEZVoZUqQAysLce-mXGV2MFJQP33OMwAohJ4Y0v-zrmP85QchRiQkOcVfV1VQlwABbjgTNYK6kfkBFjFS1nx6uj3m7FjcjaOdzSfupJUySfkmIlVDXSlTsh2PQydt2byMRSxLTZzao3F8irsTLDoik-mN6HYDGinFEcbh_vCh2LaYbGxCTH4sF10H-euj8Gk-2LtMERrkvUh9qZ4H93c4fiMPG5NN-LZ4T4lX95efb68Lm8_vLu5XN-Wlgs2lQ5ky5vGceFAcQutAgTJlMrdtpVoheGgaMNWrmlQ1sY5CigAZMPQcduwU_Jm7zvMTY_OYpiS6fSQfJ-b09F4_fdP8Du9jd-0Ai4l5dng5cEgxa8zjpPu_Wix60zAOI8aZC1o3h-ojL54gN7FOYU83kKxmtZc8D_U1nSofWhjrmsXU71eUUWp4kxkCvaUzVseE7ba-ulnKpn2na6oXgLXS-D6EHgWvXog-jXnP_DzPb7zwZnv_v_0DzqwuKo
CitedBy_id crossref_primary_10_3389_fbioe_2024_1385552
crossref_primary_10_3389_fonc_2023_1258436
Cites_doi 10.1021/cm303661d
10.1016/j.chest.2017.01.018
10.1016/j.biopha.2020.110533
10.1016/j.saa.2021.119712
10.1007/s12029-018-0091-6
10.1039/C7AY01363A
10.1002/ijc.11500
10.1016/j.jamcollsurg.2008.01.004
10.1093/carcin/bgw205
10.1007/978-1-4615-0135-0_41
10.1039/D1AY01377G
10.1021/acs.analchem.0c04576
10.1021/ac035053o
10.1016/0014-5793(75)80385-1
10.1109/ICPR.1994.576879
10.1016/j.compbiomed.2018.10.033
10.21037/tlcr.2017.01.04
10.1016/j.aca.2021.338279
10.1016/j.pdpdt.2022.102811
10.1097/CCO.0000000000000343
10.1002/jrs.4335
10.1158/1055-9965.EPI-13-0770
10.1002/ijc.31937
10.1186/s40170-021-00262-9
10.3389/fonc.2021.707277
10.1016/j.snb.2013.07.015
10.1089/pho.2006.2066
10.1109/JPHOT.2017.2672900
10.5858/arpa.2016-0307-RA
10.1016/j.chemolab.2014.09.014
10.1016/j.thorsurg.2014.12.002
10.1002/cphc.200800740
10.1016/j.jfda.2016.12.005
10.1378/chest.12-2351
10.1007/s10103-006-0432-8
10.1016/S0140-6736(17)33326-3
10.1007/BF00994018
10.1039/B918972F
10.1186/s12885-017-3738-y
10.1016/j.chest.2016.10.010
10.1021/acsami.0c22203
10.3233/CBM-201440
ContentType Journal Article
Copyright Copyright © 2022 Bowen Peng et al.
COPYRIGHT 2022 John Wiley & Sons, Inc.
Copyright © 2022 Bowen Peng et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright © 2022 Bowen Peng et al. 2022
Copyright_xml – notice: Copyright © 2022 Bowen Peng et al.
– notice: COPYRIGHT 2022 John Wiley & Sons, Inc.
– notice: Copyright © 2022 Bowen Peng et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
– notice: Copyright © 2022 Bowen Peng et al. 2022
DBID RHU
RHW
RHX
AAYXX
CITATION
3V.
7QL
7QO
7T7
7TK
7U7
7U9
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
CWDGH
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1155/2022/4368928
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
Middle East & Africa Database
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Middle East & Africa Database
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Toxicology Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2314-6141
Editor Li, Chen
Editor_xml – sequence: 1
  givenname: Chen
  surname: Li
  fullname: Li, Chen
ExternalDocumentID PMC9246604
A709009435
10_1155_2022_4368928
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Radiation Oncology Key Laboratory of Sichuan Province Open Fund
  grantid: 2020FSZLX-03
– fundername: Sichuan Natural Science Foundation
  grantid: 22NSFSC1429
– fundername: Department of Science and Technology of Sichuan Province
  grantid: 2019YFG0185
– fundername: UESTC-Sichuan Cancer Hospital 2021 Medical-Engineering Oncology Innovation Fund
  grantid: ZYGX2021YGCX013
GroupedDBID 04C
3V.
4.4
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJEY
AAWTL
ABDBF
ABUWG
ACIWK
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BMSDO
BPHCQ
BVXVI
CCPQU
CWDGH
DIK
EAD
EAP
EAS
EBD
EBS
ECF
ECT
EIHBH
EMB
EMK
EMOBN
ESX
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
IAG
IAO
IEA
IHR
INH
INR
IOF
ISR
ITC
KQ8
LK8
M1P
M48
M7P
ML0
ML~
OK1
P62
PIMPY
PQQKQ
PROAC
PSQYO
RHU
RHW
RHX
RPM
SV3
TUS
UKHRP
0R~
24P
AAYXX
ACCMX
ACUHS
ADOJX
ALIPV
CITATION
EJD
H13
PGMZT
PHGZM
PHGZT
7QL
7QO
7T7
7TK
7U7
7U9
7XB
8FD
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c453t-d26f4bbd45d294c2f92e26399207f15f5a4290b37dbbe68add02e5226b3ed4cb3
IEDL.DBID M48
ISSN 2314-6133
2314-6141
IngestDate Thu Aug 21 17:43:48 EDT 2025
Fri Jul 11 10:21:14 EDT 2025
Fri Jul 25 11:57:59 EDT 2025
Tue Jun 17 22:02:39 EDT 2025
Thu Apr 24 23:12:13 EDT 2025
Tue Jul 01 01:56:04 EDT 2025
Sun Jun 02 18:52:21 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-d26f4bbd45d294c2f92e26399207f15f5a4290b37dbbe68add02e5226b3ed4cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Academic Editor: Chen Li
ORCID 0000-0001-9995-4629
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1155/2022/4368928
PMID 35782079
PQID 2683808454
PQPubID 237798
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9246604
proquest_miscellaneous_2685035729
proquest_journals_2683808454
gale_infotracmisc_A709009435
crossref_citationtrail_10_1155_2022_4368928
crossref_primary_10_1155_2022_4368928
hindawi_primary_10_1155_2022_4368928
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-00-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022-00-00
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle BioMed research international
PublicationYear 2022
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References e_1_2_9_30_2
e_1_2_9_10_2
e_1_2_9_33_2
e_1_2_9_12_2
e_1_2_9_31_2
e_1_2_9_11_2
e_1_2_9_32_2
Prajda N. (e_1_2_9_34_2) 1976; 36
e_1_2_9_14_2
e_1_2_9_37_2
e_1_2_9_13_2
e_1_2_9_38_2
e_1_2_9_16_2
e_1_2_9_35_2
e_1_2_9_15_2
e_1_2_9_36_2
e_1_2_9_18_2
e_1_2_9_17_2
e_1_2_9_39_2
e_1_2_9_19_2
e_1_2_9_40_2
e_1_2_9_41_2
e_1_2_9_21_2
e_1_2_9_20_2
e_1_2_9_23_2
e_1_2_9_42_2
e_1_2_9_22_2
e_1_2_9_43_2
e_1_2_9_7_2
e_1_2_9_6_2
e_1_2_9_5_2
e_1_2_9_4_2
e_1_2_9_3_2
e_1_2_9_2_2
e_1_2_9_1_2
e_1_2_9_9_2
e_1_2_9_8_2
e_1_2_9_25_2
e_1_2_9_24_2
e_1_2_9_27_2
e_1_2_9_26_2
e_1_2_9_29_2
e_1_2_9_28_2
References_xml – ident: e_1_2_9_16_2
  doi: 10.1021/cm303661d
– ident: e_1_2_9_9_2
  doi: 10.1016/j.chest.2017.01.018
– ident: e_1_2_9_22_2
  doi: 10.1016/j.biopha.2020.110533
– ident: e_1_2_9_30_2
  doi: 10.1016/j.saa.2021.119712
– ident: e_1_2_9_10_2
  doi: 10.1007/s12029-018-0091-6
– ident: e_1_2_9_21_2
  doi: 10.1039/C7AY01363A
– ident: e_1_2_9_27_2
  doi: 10.1002/ijc.11500
– ident: e_1_2_9_36_2
  doi: 10.1016/j.jamcollsurg.2008.01.004
– ident: e_1_2_9_24_2
  doi: 10.1093/carcin/bgw205
– ident: e_1_2_9_29_2
  doi: 10.1007/978-1-4615-0135-0_41
– ident: e_1_2_9_41_2
  doi: 10.1039/D1AY01377G
– ident: e_1_2_9_42_2
  doi: 10.1021/acs.analchem.0c04576
– ident: e_1_2_9_25_2
  doi: 10.1021/ac035053o
– ident: e_1_2_9_35_2
  doi: 10.1016/0014-5793(75)80385-1
– ident: e_1_2_9_19_2
  doi: 10.1109/ICPR.1994.576879
– ident: e_1_2_9_4_2
  doi: 10.1016/j.compbiomed.2018.10.033
– ident: e_1_2_9_7_2
  doi: 10.21037/tlcr.2017.01.04
– ident: e_1_2_9_13_2
  doi: 10.1016/j.aca.2021.338279
– ident: e_1_2_9_43_2
  doi: 10.1016/j.pdpdt.2022.102811
– ident: e_1_2_9_6_2
  doi: 10.1097/CCO.0000000000000343
– ident: e_1_2_9_28_2
  doi: 10.1002/jrs.4335
– ident: e_1_2_9_38_2
  doi: 10.1158/1055-9965.EPI-13-0770
– ident: e_1_2_9_1_2
  doi: 10.1002/ijc.31937
– ident: e_1_2_9_37_2
  doi: 10.1186/s40170-021-00262-9
– ident: e_1_2_9_39_2
  doi: 10.3389/fonc.2021.707277
– ident: e_1_2_9_32_2
  doi: 10.1016/j.snb.2013.07.015
– ident: e_1_2_9_15_2
  doi: 10.1089/pho.2006.2066
– ident: e_1_2_9_23_2
  doi: 10.1109/JPHOT.2017.2672900
– ident: e_1_2_9_8_2
  doi: 10.5858/arpa.2016-0307-RA
– ident: e_1_2_9_17_2
  doi: 10.1016/j.chemolab.2014.09.014
– ident: e_1_2_9_5_2
  doi: 10.1016/j.thorsurg.2014.12.002
– ident: e_1_2_9_26_2
  doi: 10.1002/cphc.200800740
– ident: e_1_2_9_33_2
  doi: 10.1016/j.jfda.2016.12.005
– ident: e_1_2_9_40_2
  doi: 10.1378/chest.12-2351
– volume: 36
  start-page: 4639
  year: 1976
  ident: e_1_2_9_34_2
  article-title: Imbalance of purine metabolism in hepatomas of different growth rates as expressed in behavior of xanthine oxidase (EC 1.2.3.2)
  publication-title: Cancer Research
– ident: e_1_2_9_14_2
  doi: 10.1007/s10103-006-0432-8
– ident: e_1_2_9_2_2
  doi: 10.1016/S0140-6736(17)33326-3
– ident: e_1_2_9_18_2
  doi: 10.1007/BF00994018
– ident: e_1_2_9_20_2
  doi: 10.1039/B918972F
– ident: e_1_2_9_11_2
  doi: 10.1186/s12885-017-3738-y
– ident: e_1_2_9_3_2
  doi: 10.1016/j.chest.2016.10.010
– ident: e_1_2_9_12_2
  doi: 10.1021/acsami.0c22203
– ident: e_1_2_9_31_2
  doi: 10.3233/CBM-201440
SSID ssj0000816096
Score 2.3378983
Snippet This study is aimed at evaluating the feasibility of a screening method for the pulmonary adenocarcinoma nodules through surface-enhanced Raman spectroscopy...
This study is aimed at evaluating the feasibility of a screening method for the pulmonary adenocarcinoma nodules through surface‐enhanced Raman spectroscopy...
SourceID pubmedcentral
proquest
gale
crossref
hindawi
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4368928
SubjectTerms Adenocarcinoma
Age
Analysis
Aqueous solutions
Benign
Biopsy
Bronchoscopy
Cancer
Care and treatment
Chemotherapy
Colon
CT imaging
Diagnosis
Diameters
Differential diagnosis
Evaluation
Liver
Lung cancer
Lung nodules
Lungs
Machine learning
Males
Medical screening
Methods
Nanoparticles
Nanorods
Nodules
Patients
Radiation therapy
Raman spectroscopy
Risk factors
Spectra
Spectroscopy
Spectrum analysis
Substrates
Support vector machines
Surgery
Tuberculosis
Tumors
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Za9wwEBZNoKEvoUdKnaRFhfQpmMo6LPtxKQlLIaHkgH0zutxd2Nhhd03Iv8-MV7utG0r7aHQZzUjffJphhpATbwBDPC_ToAuXSqnxzIUs5cpLp0PBrMOngYvLfHwrv0_UJCZJWj534QPaIT3nXzFResmLHbIDCoakfDzZPqVg7QhWrsvIZRLIkBCbEPc_hg_AJ17BL6dIfh9mAxNzGCD5G-Kcvyb70VSko7Vs35AXoXlL9i6iM_wd-Tn65XymbU2vu0VtXEjPmmnv1qdX5s40FCvMrzBnZXv_SGcNBYuPXjsMtwHUwnE_ujnoolk80hFcQoBtC5i_vTP0svXdPCwPyO352c23cRrrJqROKrFKPc9raa2XCoQgHa9LHjhaIpzpOlO1MgBCzArtrQ15ATcc4wHtMCsCSMiK92S3aZvwgdDMZD7jQevcGemdttw5MNGEr11W2CxPyOlmQysXk4pjbYt51ZMLpSrc_ipuf0K-bHvfr5Np_KXfMcqmwjMGsznQeFeNNCv7OEiVkJMos3_NshFoFQ_msuJ5IQpWSCUT8nnbjAtgsFkT2q7vo5hQQDsSogeKsF0Pk3IPW5rZtE_ODXw2z5k8_L9_PCKv8HP9pnNMdleLLnwEK2dlP_U6_gRzTPSW
  priority: 102
  providerName: Hindawi Publishing
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3Na9swFBddS8cuY11X5q0rGnSnYSrrw7JPI4yWUmgp6wq5GX25CaR2lsSM_vd7z1HS5rD2LFmS9fS-H-9HyLE3oEM8L9OgC5dKqZHnQpZy5aXToWDWYWjg8io_v5UXQzWMAbd5LKtcycReUPvWYYz8hOeFKFghlfwx_ZMiahRmVyOExiuyg63LsKRLD_U6xoKgEqxc4stlErwkIVa170qh289PsAF7iVDsT7RSlM27I_SK_443bM_NysknqujsHXkbbUg6WBJ9j2yF5j15fRmz5PvkbvCYlaZtTW-6WW1cSE-bUZ_vp7_MvWkoQs8vsJllO32g44aCKUhvHNbhgDrD7667Cfy1mT3QAUgnUHozWL-9N_Sq9d0kzD-Q27PT3z_P0wiokDqpxCL1PK-ltV4qoI50vC554GiicKbrTNXKgHZiVmhvbcgLEH2MBzTQrAhAOisOyHbTNuEjoZnJfMaD1rkz0jttuXNguwlfu6ywWZ6Q76sLrVzsNo6gF5Oq9zqUqvD6q3j9Cfm2nj1ddtn4z7xDpE2FzAerOWAFVw00K_sCSZWQ40izl1ZZEbSKHDuvHt9XQr6uh3EDrEJrQtv1cxQTCvyRhOiNh7DeD7t1b44041HftRsc3Txn8tPzm38mb_CoyyDPIdlezLrwBcyehT3q3_Y_qwj-2A
  priority: 102
  providerName: ProQuest
Title Application of Surface-Enhanced Raman Spectroscopy in the Screening of Pulmonary Adenocarcinoma Nodules
URI https://dx.doi.org/10.1155/2022/4368928
https://www.proquest.com/docview/2683808454
https://www.proquest.com/docview/2685035729
https://pubmed.ncbi.nlm.nih.gov/PMC9246604
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELb2IRAXxFMElspIywkFYseOkwNCBbVUSK1WXSr1FsWP0ErdZMk2gv57ZtKkEASCiy92xtE8PN_YoxlCzm0GPsTyxHcqNr4QCm3OMZ9LK4xycaANXg1MZ9FkIT4t5fKIdN1GWwbe_DG0w35Si2rz-vvX3Tsw-LeNwUuJ8Tt_g5XUEx4fk1PwSQpNdNoC_eZMjlkUJPtOc0xAvCRYlwX_G4Gef2pP6VsrjI-_rXsotJ9D-YtTGt8jd1s0SYd78d8nR654QG5P2_fyh-TL8Of7NC1zellXeWacPypWzcs_nWdXWUGxCf0Wy1qW1zu6LiiAQnppMCMHHBt-d1FvQF2zakeHcE6B-6uAfnmV0Vlp6427eUQW49HnDxO_ba3gGyHDrW95lAutrZAgJ2F4nnDHEazwQOVM5jIDPxXoUFmtXRTDIRhwh1BNhw6EqMPH5KQoC_eEUJYxy7hTKjKZsEZpbgyguNDmhsWaRR551TE0NW3dcWx_sUmb-EPKFNmftuz3yMvD6ut9vY2_rDtD2aSoGEDNgFGYdKiCpEmVlB45b2X2LyqdQNNO9VIexWEcxEIKj7w4TOMGmI9WuLJu1sgglBCZeET1FOGwH9bt7s8U61VTvxtC3igKxNP_oP6M3MH_3d_5nJGTbVW754CCtnpAjtVSwRiPPw7I6fvR7GI-aJQexvlk-QMkRQcn
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Jb9NAFH4qrVgu7IhAgUFqT8itPZ7xcuAQdSGlTYRIK3pzPYtJRGpXSawq_BX-Cj-O9xw7bZCAUyXOHs-Mx99b_fk9gA2Tog0xPHZsGGlHiJBkznoOl0bo0Eau0pQa6PaCzon4eCpPV-BH8y8M0SobnVgpalNoypFv8yDyIzcSUtQMykM7u8T4bPL-YBdf5ibn-3vHOx2nbiHgaCH9qWN4kAmljJC4H6F5FnPLyShzN8w8mckU9bGr_NAoZYMIhd3lllwS5VvcrPJx3luwhlGFRPFZ2_my-6GzSOFQzwo3nrev8wQGYb7fUOulpKwC36b67jF1er9m9GrVf3tAQfflcMm1XSZmXrN0-w_gZ3NGc4LLt61yqrb099_KR_6nh_gQ7tceNmvPReIRrNj8Mdzp1hyCJ_C1ffXNnhUZ65fjLNXW2csHFRuCfU7P05z1L6r-QPTXzowNc4aOMutrYimhsaf7PpUjFOF0PGNt1N3oEoxx_uI8Zb3ClCM7eQonN_KYz2A1L3L7HJiXesbjNgwDnQqjQ8W1Rs_WN5n2IuUFLXjX4CHRdS12agkySqqYTMqE0JPU6GnB5mL0xbwGyR_GrRO0ElJNOJtGRaGTdujGFX1UtmCjhty_Zmmwk9T6bJJcAacFbxeXaQHi6OW2KKsx0vUlRmstCJdwvFiPapkvX8mHg6qmecxFELjixd8XfwN3O8fdo-TooHf4Eu7RtufpsHVYnY5L-wodxKl6XQsqg7ObhvUv1StxvQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qqajY8EYYCgxSu0Ju7PGMHwuEoqYhpTSqCBXdGc_DJCK1QxKrCp_Gr_AzzPUjbZCAVResPZnxOGfuy8f3AOyoxPgQRSNbB6G0GQvwzGnXplwxGejQERJLA8cDv3_K3p3xsw340XwLg7TKxiaWhlrlEmvkbeqHXuiEjLN2WtMiTrq9N9NvNipI4ZvWRk6jgsiRXl6Y9G3--rBr_utdSnsHH_f7dq0wYEvGvYWtqJ8yIRTj5naZpGlENUWfTZ0gdXnKE2OuHeEFSgjth8YWOFRjxCI8bfYiPDPvDdhEVSfWgs39T923_VWFByUtnKhSt3OZydE8r2Hec45FB9rG9u8RCsFf8Ym1Z7g5wpz8YrwW-a7zNq84wt4d-Nk8wor_8nWvWIg9-f237pL_5zO-C7fr-Jx0qgN1DzZ0dh-2jmsGwgP40rl840_ylAyLWZpIbR9ko5JLQT4k50lGhtNSXQi_-VmScUZMmE2GEjlOJlTA350UE7PDZLYkHWP5TUAxM_Pn5wkZ5KqY6PlDOL2WbT6CVpZn-jEQN3GVS3UQ-DJhSgaCSmniYk-l0g2F61vwqoFLLOtO7igoMonLjI7zGMEV1-CyYHc1elp1MPnDuG1EXoyGzcwmjZmRcSdwopJ8yi3YqRH5r1kaaMW1NZzHl7iy4OXqMi6ADL9M50U5hjseN7meBcEazFfrYSf09SvZeFR2RI8o832HPfn74i9gy8A5fn84OHoKt_Cuq1raNrQWs0I_M9HlQjyvjzGBz9eN6l9eNImN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Surface-Enhanced+Raman+Spectroscopy+in+the+Screening+of+Pulmonary+Adenocarcinoma+Nodules&rft.jtitle=BioMed+research+international&rft.au=Peng%2C+Bowen&rft.au=Yan%2C+Huan&rft.au=Lin%2C+Runrui&rft.au=Yin%2C+Gang&rft.date=2022&rft.issn=2314-6141&rft.eissn=2314-6141&rft.volume=2022&rft.spage=4368928&rft_id=info:doi/10.1155%2F2022%2F4368928&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2314-6133&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2314-6133&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2314-6133&client=summon