Application of Surface-Enhanced Raman Spectroscopy in the Screening of Pulmonary Adenocarcinoma Nodules
This study is aimed at evaluating the feasibility of a screening method for the pulmonary adenocarcinoma nodules through surface-enhanced Raman spectroscopy (SERS). Objective. Using SERS to measure serum from pulmonary nodules and healthy subjects, intraoperative biopsy pathological diagnosis was re...
Saved in:
Published in | BioMed research international Vol. 2022; no. 1; p. 4368928 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Hindawi
2022
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study is aimed at evaluating the feasibility of a screening method for the pulmonary adenocarcinoma nodules through surface-enhanced Raman spectroscopy (SERS). Objective. Using SERS to measure serum from pulmonary nodules and healthy subjects, intraoperative biopsy pathological diagnosis was regarded as the gold standard for labeling serum samples. To explore the application value of SERS in the differential diagnosis of pulmonary adenocarcinoma nodules, benign nodules, and healthy, we build a machine learning model. Method. We collected 116 serum samples from patients. Radiographically confirmed nodules less than 3 cm in maximum diameter in all patients, including 58 cancer (pathologic diagnosis: adenocarcinoma nodules, labeled as cancer) patients, 58 pathologic diagnoses as benign nodule (labeled as benign) patients, and 63 healthy (labeled as normal) people from the clinical laboratory of Sichuan Cancer Hospital. Gold nanorods were employed as SERS substrates. Support vector machine (SVM) was used to classify the normal, benign, and cancer sample groups, and SVM model evaluated using cross-validation. Results. The average SERS spectra of serum were significantly different between the normal group and the cancer/benign group. While the average SERS spectra of the cancer group and the benign group differed slightly, for the cancer, benign, and normal groups, SVM models can predict with 93.33% accuracy. Conclusion. This exploratory study demonstrates that the SERS technique based on nanoparticles in conjunction with SVM has great potential as a clinical auxiliary diagnosis and screening for pulmonary adenocarcinoma nodules. |
---|---|
AbstractList | This study is aimed at evaluating the feasibility of a screening method for the pulmonary adenocarcinoma nodules through surface-enhanced Raman spectroscopy (SERS). Objective. Using SERS to measure serum from pulmonary nodules and healthy subjects, intraoperative biopsy pathological diagnosis was regarded as the gold standard for labeling serum samples. To explore the application value of SERS in the differential diagnosis of pulmonary adenocarcinoma nodules, benign nodules, and healthy, we build a machine learning model. Method. We collected 116 serum samples from patients. Radiographically confirmed nodules less than 3 cm in maximum diameter in all patients, including 58 cancer (pathologic diagnosis: adenocarcinoma nodules, labeled as cancer) patients, 58 pathologic diagnoses as benign nodule (labeled as benign) patients, and 63 healthy (labeled as normal) people from the clinical laboratory of Sichuan Cancer Hospital. Gold nanorods were employed as SERS substrates. Support vector machine (SVM) was used to classify the normal, benign, and cancer sample groups, and SVM model evaluated using cross-validation. Results. The average SERS spectra of serum were significantly different between the normal group and the cancer/benign group. While the average SERS spectra of the cancer group and the benign group differed slightly, for the cancer, benign, and normal groups, SVM models can predict with 93.33% accuracy. Conclusion. This exploratory study demonstrates that the SERS technique based on nanoparticles in conjunction with SVM has great potential as a clinical auxiliary diagnosis and screening for pulmonary adenocarcinoma nodules.This study is aimed at evaluating the feasibility of a screening method for the pulmonary adenocarcinoma nodules through surface-enhanced Raman spectroscopy (SERS). Objective. Using SERS to measure serum from pulmonary nodules and healthy subjects, intraoperative biopsy pathological diagnosis was regarded as the gold standard for labeling serum samples. To explore the application value of SERS in the differential diagnosis of pulmonary adenocarcinoma nodules, benign nodules, and healthy, we build a machine learning model. Method. We collected 116 serum samples from patients. Radiographically confirmed nodules less than 3 cm in maximum diameter in all patients, including 58 cancer (pathologic diagnosis: adenocarcinoma nodules, labeled as cancer) patients, 58 pathologic diagnoses as benign nodule (labeled as benign) patients, and 63 healthy (labeled as normal) people from the clinical laboratory of Sichuan Cancer Hospital. Gold nanorods were employed as SERS substrates. Support vector machine (SVM) was used to classify the normal, benign, and cancer sample groups, and SVM model evaluated using cross-validation. Results. The average SERS spectra of serum were significantly different between the normal group and the cancer/benign group. While the average SERS spectra of the cancer group and the benign group differed slightly, for the cancer, benign, and normal groups, SVM models can predict with 93.33% accuracy. Conclusion. This exploratory study demonstrates that the SERS technique based on nanoparticles in conjunction with SVM has great potential as a clinical auxiliary diagnosis and screening for pulmonary adenocarcinoma nodules. This study is aimed at evaluating the feasibility of a screening method for the pulmonary adenocarcinoma nodules through surface‐enhanced Raman spectroscopy (SERS). Objective . Using SERS to measure serum from pulmonary nodules and healthy subjects, intraoperative biopsy pathological diagnosis was regarded as the gold standard for labeling serum samples. To explore the application value of SERS in the differential diagnosis of pulmonary adenocarcinoma nodules, benign nodules, and healthy, we build a machine learning model. Method . We collected 116 serum samples from patients. Radiographically confirmed nodules less than 3 cm in maximum diameter in all patients, including 58 cancer (pathologic diagnosis: adenocarcinoma nodules, labeled as cancer) patients, 58 pathologic diagnoses as benign nodule (labeled as benign) patients, and 63 healthy (labeled as normal) people from the clinical laboratory of Sichuan Cancer Hospital. Gold nanorods were employed as SERS substrates. Support vector machine (SVM) was used to classify the normal, benign, and cancer sample groups, and SVM model evaluated using cross‐validation. Results . The average SERS spectra of serum were significantly different between the normal group and the cancer/benign group. While the average SERS spectra of the cancer group and the benign group differed slightly, for the cancer, benign, and normal groups, SVM models can predict with 93.33% accuracy. Conclusion . This exploratory study demonstrates that the SERS technique based on nanoparticles in conjunction with SVM has great potential as a clinical auxiliary diagnosis and screening for pulmonary adenocarcinoma nodules. This study is aimed at evaluating the feasibility of a screening method for the pulmonary adenocarcinoma nodules through surface-enhanced Raman spectroscopy (SERS). Objective. Using SERS to measure serum from pulmonary nodules and healthy subjects, intraoperative biopsy pathological diagnosis was regarded as the gold standard for labeling serum samples. To explore the application value of SERS in the differential diagnosis of pulmonary adenocarcinoma nodules, benign nodules, and healthy, we build a machine learning model. Method. We collected 116 serum samples from patients. Radiographically confirmed nodules less than 3 cm in maximum diameter in all patients, including 58 cancer (pathologic diagnosis: adenocarcinoma nodules, labeled as cancer) patients, 58 pathologic diagnoses as benign nodule (labeled as benign) patients, and 63 healthy (labeled as normal) people from the clinical laboratory of Sichuan Cancer Hospital. Gold nanorods were employed as SERS substrates. Support vector machine (SVM) was used to classify the normal, benign, and cancer sample groups, and SVM model evaluated using cross-validation. Results. The average SERS spectra of serum were significantly different between the normal group and the cancer/benign group. While the average SERS spectra of the cancer group and the benign group differed slightly, for the cancer, benign, and normal groups, SVM models can predict with 93.33% accuracy. Conclusion. This exploratory study demonstrates that the SERS technique based on nanoparticles in conjunction with SVM has great potential as a clinical auxiliary diagnosis and screening for pulmonary adenocarcinoma nodules. |
Audience | Academic |
Author | Yan, Huan Yin, Gang Lin, Runrui Peng, Bowen |
AuthorAffiliation | 3 Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu 610041, China 2 School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China 1 Nanjing University, School of Electronic Science and Engineering, Nanjing 210023, China |
AuthorAffiliation_xml | – name: 1 Nanjing University, School of Electronic Science and Engineering, Nanjing 210023, China – name: 3 Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu 610041, China – name: 2 School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China |
Author_xml | – sequence: 1 givenname: Bowen surname: Peng fullname: Peng, Bowen organization: Nanjing UniversitySchool of Electronic Science and EngineeringNanjing 210023Chinanju.edu.cn – sequence: 2 givenname: Huan surname: Yan fullname: Yan, Huan organization: School of MedicineUniversity of Electronic Science and Technology of ChinaChengdu 611731Chinauestc.edu.cn – sequence: 3 givenname: Runrui surname: Lin fullname: Lin, Runrui organization: School of MedicineUniversity of Electronic Science and Technology of ChinaChengdu 611731Chinauestc.edu.cn – sequence: 4 givenname: Gang orcidid: 0000-0001-9995-4629 surname: Yin fullname: Yin, Gang organization: Sichuan Cancer Hospital & InstituteRadiation Oncology Key Laboratory of Sichuan ProvinceChengdu 610041Chinasichuancancer.org |
BookMark | eNp9kUtv1DAUhS1UREvpjh8QiQ1SCXWuHxNvkEZVoZUqQAysLce-mXGV2MFJQP33OMwAohJ4Y0v-zrmP85QchRiQkOcVfV1VQlwABbjgTNYK6kfkBFjFS1nx6uj3m7FjcjaOdzSfupJUySfkmIlVDXSlTsh2PQydt2byMRSxLTZzao3F8irsTLDoik-mN6HYDGinFEcbh_vCh2LaYbGxCTH4sF10H-euj8Gk-2LtMERrkvUh9qZ4H93c4fiMPG5NN-LZ4T4lX95efb68Lm8_vLu5XN-Wlgs2lQ5ky5vGceFAcQutAgTJlMrdtpVoheGgaMNWrmlQ1sY5CigAZMPQcduwU_Jm7zvMTY_OYpiS6fSQfJ-b09F4_fdP8Du9jd-0Ai4l5dng5cEgxa8zjpPu_Wix60zAOI8aZC1o3h-ojL54gN7FOYU83kKxmtZc8D_U1nSofWhjrmsXU71eUUWp4kxkCvaUzVseE7ba-ulnKpn2na6oXgLXS-D6EHgWvXog-jXnP_DzPb7zwZnv_v_0DzqwuKo |
CitedBy_id | crossref_primary_10_3389_fbioe_2024_1385552 crossref_primary_10_3389_fonc_2023_1258436 |
Cites_doi | 10.1021/cm303661d 10.1016/j.chest.2017.01.018 10.1016/j.biopha.2020.110533 10.1016/j.saa.2021.119712 10.1007/s12029-018-0091-6 10.1039/C7AY01363A 10.1002/ijc.11500 10.1016/j.jamcollsurg.2008.01.004 10.1093/carcin/bgw205 10.1007/978-1-4615-0135-0_41 10.1039/D1AY01377G 10.1021/acs.analchem.0c04576 10.1021/ac035053o 10.1016/0014-5793(75)80385-1 10.1109/ICPR.1994.576879 10.1016/j.compbiomed.2018.10.033 10.21037/tlcr.2017.01.04 10.1016/j.aca.2021.338279 10.1016/j.pdpdt.2022.102811 10.1097/CCO.0000000000000343 10.1002/jrs.4335 10.1158/1055-9965.EPI-13-0770 10.1002/ijc.31937 10.1186/s40170-021-00262-9 10.3389/fonc.2021.707277 10.1016/j.snb.2013.07.015 10.1089/pho.2006.2066 10.1109/JPHOT.2017.2672900 10.5858/arpa.2016-0307-RA 10.1016/j.chemolab.2014.09.014 10.1016/j.thorsurg.2014.12.002 10.1002/cphc.200800740 10.1016/j.jfda.2016.12.005 10.1378/chest.12-2351 10.1007/s10103-006-0432-8 10.1016/S0140-6736(17)33326-3 10.1007/BF00994018 10.1039/B918972F 10.1186/s12885-017-3738-y 10.1016/j.chest.2016.10.010 10.1021/acsami.0c22203 10.3233/CBM-201440 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Bowen Peng et al. COPYRIGHT 2022 John Wiley & Sons, Inc. Copyright © 2022 Bowen Peng et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 Copyright © 2022 Bowen Peng et al. 2022 |
Copyright_xml | – notice: Copyright © 2022 Bowen Peng et al. – notice: COPYRIGHT 2022 John Wiley & Sons, Inc. – notice: Copyright © 2022 Bowen Peng et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 – notice: Copyright © 2022 Bowen Peng et al. 2022 |
DBID | RHU RHW RHX AAYXX CITATION 3V. 7QL 7QO 7T7 7TK 7U7 7U9 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU CWDGH DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1155/2022/4368928 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Toxicology Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Middle East & Africa Database ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Middle East & Africa Database Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Toxicology Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2314-6141 |
Editor | Li, Chen |
Editor_xml | – sequence: 1 givenname: Chen surname: Li fullname: Li, Chen |
ExternalDocumentID | PMC9246604 A709009435 10_1155_2022_4368928 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: Radiation Oncology Key Laboratory of Sichuan Province Open Fund grantid: 2020FSZLX-03 – fundername: Sichuan Natural Science Foundation grantid: 22NSFSC1429 – fundername: Department of Science and Technology of Sichuan Province grantid: 2019YFG0185 – fundername: UESTC-Sichuan Cancer Hospital 2021 Medical-Engineering Oncology Innovation Fund grantid: ZYGX2021YGCX013 |
GroupedDBID | 04C 3V. 4.4 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJEY AAWTL ABDBF ABUWG ACIWK ACPRK ADBBV ADRAZ AENEX AFKRA AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BMSDO BPHCQ BVXVI CCPQU CWDGH DIK EAD EAP EAS EBD EBS ECF ECT EIHBH EMB EMK EMOBN ESX FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE IAG IAO IEA IHR INH INR IOF ISR ITC KQ8 LK8 M1P M48 M7P ML0 ML~ OK1 P62 PIMPY PQQKQ PROAC PSQYO RHU RHW RHX RPM SV3 TUS UKHRP 0R~ 24P AAYXX ACCMX ACUHS ADOJX ALIPV CITATION EJD H13 PGMZT PHGZM PHGZT 7QL 7QO 7T7 7TK 7U7 7U9 7XB 8FD 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c453t-d26f4bbd45d294c2f92e26399207f15f5a4290b37dbbe68add02e5226b3ed4cb3 |
IEDL.DBID | M48 |
ISSN | 2314-6133 2314-6141 |
IngestDate | Thu Aug 21 17:43:48 EDT 2025 Fri Jul 11 10:21:14 EDT 2025 Fri Jul 25 11:57:59 EDT 2025 Tue Jun 17 22:02:39 EDT 2025 Thu Apr 24 23:12:13 EDT 2025 Tue Jul 01 01:56:04 EDT 2025 Sun Jun 02 18:52:21 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c453t-d26f4bbd45d294c2f92e26399207f15f5a4290b37dbbe68add02e5226b3ed4cb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Academic Editor: Chen Li |
ORCID | 0000-0001-9995-4629 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1155/2022/4368928 |
PMID | 35782079 |
PQID | 2683808454 |
PQPubID | 237798 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9246604 proquest_miscellaneous_2685035729 proquest_journals_2683808454 gale_infotracmisc_A709009435 crossref_citationtrail_10_1155_2022_4368928 crossref_primary_10_1155_2022_4368928 hindawi_primary_10_1155_2022_4368928 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-00-00 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 2022-00-00 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | BioMed research international |
PublicationYear | 2022 |
Publisher | Hindawi John Wiley & Sons, Inc |
Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
References | e_1_2_9_30_2 e_1_2_9_10_2 e_1_2_9_33_2 e_1_2_9_12_2 e_1_2_9_31_2 e_1_2_9_11_2 e_1_2_9_32_2 Prajda N. (e_1_2_9_34_2) 1976; 36 e_1_2_9_14_2 e_1_2_9_37_2 e_1_2_9_13_2 e_1_2_9_38_2 e_1_2_9_16_2 e_1_2_9_35_2 e_1_2_9_15_2 e_1_2_9_36_2 e_1_2_9_18_2 e_1_2_9_17_2 e_1_2_9_39_2 e_1_2_9_19_2 e_1_2_9_40_2 e_1_2_9_41_2 e_1_2_9_21_2 e_1_2_9_20_2 e_1_2_9_23_2 e_1_2_9_42_2 e_1_2_9_22_2 e_1_2_9_43_2 e_1_2_9_7_2 e_1_2_9_6_2 e_1_2_9_5_2 e_1_2_9_4_2 e_1_2_9_3_2 e_1_2_9_2_2 e_1_2_9_1_2 e_1_2_9_9_2 e_1_2_9_8_2 e_1_2_9_25_2 e_1_2_9_24_2 e_1_2_9_27_2 e_1_2_9_26_2 e_1_2_9_29_2 e_1_2_9_28_2 |
References_xml | – ident: e_1_2_9_16_2 doi: 10.1021/cm303661d – ident: e_1_2_9_9_2 doi: 10.1016/j.chest.2017.01.018 – ident: e_1_2_9_22_2 doi: 10.1016/j.biopha.2020.110533 – ident: e_1_2_9_30_2 doi: 10.1016/j.saa.2021.119712 – ident: e_1_2_9_10_2 doi: 10.1007/s12029-018-0091-6 – ident: e_1_2_9_21_2 doi: 10.1039/C7AY01363A – ident: e_1_2_9_27_2 doi: 10.1002/ijc.11500 – ident: e_1_2_9_36_2 doi: 10.1016/j.jamcollsurg.2008.01.004 – ident: e_1_2_9_24_2 doi: 10.1093/carcin/bgw205 – ident: e_1_2_9_29_2 doi: 10.1007/978-1-4615-0135-0_41 – ident: e_1_2_9_41_2 doi: 10.1039/D1AY01377G – ident: e_1_2_9_42_2 doi: 10.1021/acs.analchem.0c04576 – ident: e_1_2_9_25_2 doi: 10.1021/ac035053o – ident: e_1_2_9_35_2 doi: 10.1016/0014-5793(75)80385-1 – ident: e_1_2_9_19_2 doi: 10.1109/ICPR.1994.576879 – ident: e_1_2_9_4_2 doi: 10.1016/j.compbiomed.2018.10.033 – ident: e_1_2_9_7_2 doi: 10.21037/tlcr.2017.01.04 – ident: e_1_2_9_13_2 doi: 10.1016/j.aca.2021.338279 – ident: e_1_2_9_43_2 doi: 10.1016/j.pdpdt.2022.102811 – ident: e_1_2_9_6_2 doi: 10.1097/CCO.0000000000000343 – ident: e_1_2_9_28_2 doi: 10.1002/jrs.4335 – ident: e_1_2_9_38_2 doi: 10.1158/1055-9965.EPI-13-0770 – ident: e_1_2_9_1_2 doi: 10.1002/ijc.31937 – ident: e_1_2_9_37_2 doi: 10.1186/s40170-021-00262-9 – ident: e_1_2_9_39_2 doi: 10.3389/fonc.2021.707277 – ident: e_1_2_9_32_2 doi: 10.1016/j.snb.2013.07.015 – ident: e_1_2_9_15_2 doi: 10.1089/pho.2006.2066 – ident: e_1_2_9_23_2 doi: 10.1109/JPHOT.2017.2672900 – ident: e_1_2_9_8_2 doi: 10.5858/arpa.2016-0307-RA – ident: e_1_2_9_17_2 doi: 10.1016/j.chemolab.2014.09.014 – ident: e_1_2_9_5_2 doi: 10.1016/j.thorsurg.2014.12.002 – ident: e_1_2_9_26_2 doi: 10.1002/cphc.200800740 – ident: e_1_2_9_33_2 doi: 10.1016/j.jfda.2016.12.005 – ident: e_1_2_9_40_2 doi: 10.1378/chest.12-2351 – volume: 36 start-page: 4639 year: 1976 ident: e_1_2_9_34_2 article-title: Imbalance of purine metabolism in hepatomas of different growth rates as expressed in behavior of xanthine oxidase (EC 1.2.3.2) publication-title: Cancer Research – ident: e_1_2_9_14_2 doi: 10.1007/s10103-006-0432-8 – ident: e_1_2_9_2_2 doi: 10.1016/S0140-6736(17)33326-3 – ident: e_1_2_9_18_2 doi: 10.1007/BF00994018 – ident: e_1_2_9_20_2 doi: 10.1039/B918972F – ident: e_1_2_9_11_2 doi: 10.1186/s12885-017-3738-y – ident: e_1_2_9_3_2 doi: 10.1016/j.chest.2016.10.010 – ident: e_1_2_9_12_2 doi: 10.1021/acsami.0c22203 – ident: e_1_2_9_31_2 doi: 10.3233/CBM-201440 |
SSID | ssj0000816096 |
Score | 2.3378983 |
Snippet | This study is aimed at evaluating the feasibility of a screening method for the pulmonary adenocarcinoma nodules through surface-enhanced Raman spectroscopy... This study is aimed at evaluating the feasibility of a screening method for the pulmonary adenocarcinoma nodules through surface‐enhanced Raman spectroscopy... |
SourceID | pubmedcentral proquest gale crossref hindawi |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4368928 |
SubjectTerms | Adenocarcinoma Age Analysis Aqueous solutions Benign Biopsy Bronchoscopy Cancer Care and treatment Chemotherapy Colon CT imaging Diagnosis Diameters Differential diagnosis Evaluation Liver Lung cancer Lung nodules Lungs Machine learning Males Medical screening Methods Nanoparticles Nanorods Nodules Patients Radiation therapy Raman spectroscopy Risk factors Spectra Spectroscopy Spectrum analysis Substrates Support vector machines Surgery Tuberculosis Tumors |
SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Za9wwEBZNoKEvoUdKnaRFhfQpmMo6LPtxKQlLIaHkgH0zutxd2Nhhd03Iv8-MV7utG0r7aHQZzUjffJphhpATbwBDPC_ToAuXSqnxzIUs5cpLp0PBrMOngYvLfHwrv0_UJCZJWj534QPaIT3nXzFResmLHbIDCoakfDzZPqVg7QhWrsvIZRLIkBCbEPc_hg_AJ17BL6dIfh9mAxNzGCD5G-Kcvyb70VSko7Vs35AXoXlL9i6iM_wd-Tn65XymbU2vu0VtXEjPmmnv1qdX5s40FCvMrzBnZXv_SGcNBYuPXjsMtwHUwnE_ujnoolk80hFcQoBtC5i_vTP0svXdPCwPyO352c23cRrrJqROKrFKPc9raa2XCoQgHa9LHjhaIpzpOlO1MgBCzArtrQ15ATcc4wHtMCsCSMiK92S3aZvwgdDMZD7jQevcGemdttw5MNGEr11W2CxPyOlmQysXk4pjbYt51ZMLpSrc_ipuf0K-bHvfr5Np_KXfMcqmwjMGsznQeFeNNCv7OEiVkJMos3_NshFoFQ_msuJ5IQpWSCUT8nnbjAtgsFkT2q7vo5hQQDsSogeKsF0Pk3IPW5rZtE_ODXw2z5k8_L9_PCKv8HP9pnNMdleLLnwEK2dlP_U6_gRzTPSW priority: 102 providerName: Hindawi Publishing – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3Na9swFBddS8cuY11X5q0rGnSnYSrrw7JPI4yWUmgp6wq5GX25CaR2lsSM_vd7z1HS5rD2LFmS9fS-H-9HyLE3oEM8L9OgC5dKqZHnQpZy5aXToWDWYWjg8io_v5UXQzWMAbd5LKtcycReUPvWYYz8hOeFKFghlfwx_ZMiahRmVyOExiuyg63LsKRLD_U6xoKgEqxc4stlErwkIVa170qh289PsAF7iVDsT7RSlM27I_SK_443bM_NysknqujsHXkbbUg6WBJ9j2yF5j15fRmz5PvkbvCYlaZtTW-6WW1cSE-bUZ_vp7_MvWkoQs8vsJllO32g44aCKUhvHNbhgDrD7667Cfy1mT3QAUgnUHozWL-9N_Sq9d0kzD-Q27PT3z_P0wiokDqpxCL1PK-ltV4qoI50vC554GiicKbrTNXKgHZiVmhvbcgLEH2MBzTQrAhAOisOyHbTNuEjoZnJfMaD1rkz0jttuXNguwlfu6ywWZ6Q76sLrVzsNo6gF5Oq9zqUqvD6q3j9Cfm2nj1ddtn4z7xDpE2FzAerOWAFVw00K_sCSZWQ40izl1ZZEbSKHDuvHt9XQr6uh3EDrEJrQtv1cxQTCvyRhOiNh7DeD7t1b44041HftRsc3Txn8tPzm38mb_CoyyDPIdlezLrwBcyehT3q3_Y_qwj-2A priority: 102 providerName: ProQuest |
Title | Application of Surface-Enhanced Raman Spectroscopy in the Screening of Pulmonary Adenocarcinoma Nodules |
URI | https://dx.doi.org/10.1155/2022/4368928 https://www.proquest.com/docview/2683808454 https://www.proquest.com/docview/2685035729 https://pubmed.ncbi.nlm.nih.gov/PMC9246604 |
Volume | 2022 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELb2IRAXxFMElspIywkFYseOkwNCBbVUSK1WXSr1FsWP0ErdZMk2gv57ZtKkEASCiy92xtE8PN_YoxlCzm0GPsTyxHcqNr4QCm3OMZ9LK4xycaANXg1MZ9FkIT4t5fKIdN1GWwbe_DG0w35Si2rz-vvX3Tsw-LeNwUuJ8Tt_g5XUEx4fk1PwSQpNdNoC_eZMjlkUJPtOc0xAvCRYlwX_G4Gef2pP6VsrjI-_rXsotJ9D-YtTGt8jd1s0SYd78d8nR654QG5P2_fyh-TL8Of7NC1zellXeWacPypWzcs_nWdXWUGxCf0Wy1qW1zu6LiiAQnppMCMHHBt-d1FvQF2zakeHcE6B-6uAfnmV0Vlp6427eUQW49HnDxO_ba3gGyHDrW95lAutrZAgJ2F4nnDHEazwQOVM5jIDPxXoUFmtXRTDIRhwh1BNhw6EqMPH5KQoC_eEUJYxy7hTKjKZsEZpbgyguNDmhsWaRR551TE0NW3dcWx_sUmb-EPKFNmftuz3yMvD6ut9vY2_rDtD2aSoGEDNgFGYdKiCpEmVlB45b2X2LyqdQNNO9VIexWEcxEIKj7w4TOMGmI9WuLJu1sgglBCZeET1FOGwH9bt7s8U61VTvxtC3igKxNP_oP6M3MH_3d_5nJGTbVW754CCtnpAjtVSwRiPPw7I6fvR7GI-aJQexvlk-QMkRQcn |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Jb9NAFH4qrVgu7IhAgUFqT8itPZ7xcuAQdSGlTYRIK3pzPYtJRGpXSawq_BX-Cj-O9xw7bZCAUyXOHs-Mx99b_fk9gA2Tog0xPHZsGGlHiJBkznoOl0bo0Eau0pQa6PaCzon4eCpPV-BH8y8M0SobnVgpalNoypFv8yDyIzcSUtQMykM7u8T4bPL-YBdf5ibn-3vHOx2nbiHgaCH9qWN4kAmljJC4H6F5FnPLyShzN8w8mckU9bGr_NAoZYMIhd3lllwS5VvcrPJx3luwhlGFRPFZ2_my-6GzSOFQzwo3nrev8wQGYb7fUOulpKwC36b67jF1er9m9GrVf3tAQfflcMm1XSZmXrN0-w_gZ3NGc4LLt61yqrb099_KR_6nh_gQ7tceNmvPReIRrNj8Mdzp1hyCJ_C1ffXNnhUZ65fjLNXW2csHFRuCfU7P05z1L6r-QPTXzowNc4aOMutrYimhsaf7PpUjFOF0PGNt1N3oEoxx_uI8Zb3ClCM7eQonN_KYz2A1L3L7HJiXesbjNgwDnQqjQ8W1Rs_WN5n2IuUFLXjX4CHRdS12agkySqqYTMqE0JPU6GnB5mL0xbwGyR_GrRO0ElJNOJtGRaGTdujGFX1UtmCjhty_Zmmwk9T6bJJcAacFbxeXaQHi6OW2KKsx0vUlRmstCJdwvFiPapkvX8mHg6qmecxFELjixd8XfwN3O8fdo-TooHf4Eu7RtufpsHVYnY5L-wodxKl6XQsqg7ObhvUv1StxvQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qqajY8EYYCgxSu0Ju7PGMHwuEoqYhpTSqCBXdGc_DJCK1QxKrCp_Gr_AzzPUjbZCAVResPZnxOGfuy8f3AOyoxPgQRSNbB6G0GQvwzGnXplwxGejQERJLA8cDv3_K3p3xsw340XwLg7TKxiaWhlrlEmvkbeqHXuiEjLN2WtMiTrq9N9NvNipI4ZvWRk6jgsiRXl6Y9G3--rBr_utdSnsHH_f7dq0wYEvGvYWtqJ8yIRTj5naZpGlENUWfTZ0gdXnKE2OuHeEFSgjth8YWOFRjxCI8bfYiPDPvDdhEVSfWgs39T923_VWFByUtnKhSt3OZydE8r2Hec45FB9rG9u8RCsFf8Ym1Z7g5wpz8YrwW-a7zNq84wt4d-Nk8wor_8nWvWIg9-f237pL_5zO-C7fr-Jx0qgN1DzZ0dh-2jmsGwgP40rl840_ylAyLWZpIbR9ko5JLQT4k50lGhtNSXQi_-VmScUZMmE2GEjlOJlTA350UE7PDZLYkHWP5TUAxM_Pn5wkZ5KqY6PlDOL2WbT6CVpZn-jEQN3GVS3UQ-DJhSgaCSmniYk-l0g2F61vwqoFLLOtO7igoMonLjI7zGMEV1-CyYHc1elp1MPnDuG1EXoyGzcwmjZmRcSdwopJ8yi3YqRH5r1kaaMW1NZzHl7iy4OXqMi6ADL9M50U5hjseN7meBcEazFfrYSf09SvZeFR2RI8o832HPfn74i9gy8A5fn84OHoKt_Cuq1raNrQWs0I_M9HlQjyvjzGBz9eN6l9eNImN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Surface-Enhanced+Raman+Spectroscopy+in+the+Screening+of+Pulmonary+Adenocarcinoma+Nodules&rft.jtitle=BioMed+research+international&rft.au=Peng%2C+Bowen&rft.au=Yan%2C+Huan&rft.au=Lin%2C+Runrui&rft.au=Yin%2C+Gang&rft.date=2022&rft.issn=2314-6141&rft.eissn=2314-6141&rft.volume=2022&rft.spage=4368928&rft_id=info:doi/10.1155%2F2022%2F4368928&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2314-6133&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2314-6133&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2314-6133&client=summon |