Water quality modelling of the Mekong River basin: Climate change and socioeconomics drive flow and nutrient flux changes to the Mekong Delta
The Mekong delta is recognised as one of the world's most vulnerable mega-deltas, being subject to a range of environmental pressures including sea level rise, increasing population, and changes in flows and nutrients from its upland catchment. With changing climate and socioeconomics there is...
Saved in:
Published in | The Science of the total environment Vol. 673; pp. 218 - 229 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
10.07.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0048-9697 1879-1026 1879-1026 |
DOI | 10.1016/j.scitotenv.2019.03.315 |
Cover
Loading…
Abstract | The Mekong delta is recognised as one of the world's most vulnerable mega-deltas, being subject to a range of environmental pressures including sea level rise, increasing population, and changes in flows and nutrients from its upland catchment. With changing climate and socioeconomics there is a need to assess how the Mekong catchment will be affected in terms of the delivery of water and nutrients into the delta system. Here we apply the Integrated Catchment model (INCA) to the whole Mekong River Basin to simulate flow and water quality, including nitrate, ammonia, total phosphorus and soluble reactive phosphorus. The impacts of climate change on all these variables have been assessed across 24 river reaches ranging from the Himalayas down to the delta in Vietnam. We used the UK Met Office PRECIS regionally coupled climate model to downscale precipitation and temperature to the Mekong catchment. This was accomplished using the Global Circulation Model GFDL-CM to provide the boundary conditions under two carbon control strategies, namely representative concentration pathways (RCP) 4.5 and a RCP 8.5 scenario. The RCP 4.5 scenario represents the carbon strategy required to meet the Paris Accord, which aims to limit peak global temperatures to below a 2 °C rise whilst seeking to pursue options that limit temperature rise to 1.5 °C. The RCP 8.5 scenario is associated with a larger 3–4 °C rise. In addition, we also constructed a range of socio-economic scenarios to investigate the potential impacts of changing population, atmospheric pollution, economic growth and land use change up to the 2050s. Results of INCA simulations indicate increases in mean flows of up to 24%, with flood flows in the monsoon period increasing by up to 27%, but with increasing periods of drought up to 2050. A shift in the timing of the monsoon is also simulated, with a 4 week advance in the onset of monsoon flows on average. Decreases in nitrogen and phosphorus concentrations occur primarily due to flow dilution, but fluxes of these nutrients also increase by 5%, which reflects the changing flow, land use change and population changes.
Water quality along the Mekong River System
(Phosphorus mg/l Left and Nitrate-N mg/l right) [Display omitted]
•Climate will alter Mekong flows and seasonal patterns•Flooding will increase in the lower Mekong•Droughts will increase as Dam development increases•Socioeconomic effects will enhance nutrient fluxes into the delta•Eutrophication and increased delta flooding will occur |
---|---|
AbstractList | The Mekong delta is recognised as one of the world's most vulnerable mega-deltas, being subject to a range of environmental pressures including sea level rise, increasing population, and changes in flows and nutrients from its upland catchment. With changing climate and socioeconomics there is a need to assess how the Mekong catchment will be affected in terms of the delivery of water and nutrients into the delta system. Here we apply the Integrated Catchment model (INCA) to the whole Mekong River Basin to simulate flow and water quality, including nitrate, ammonia, total phosphorus and soluble reactive phosphorus. The impacts of climate change on all these variables have been assessed across 24 river reaches ranging from the Himalayas down to the delta in Vietnam. We used the UK Met Office PRECIS regionally coupled climate model to downscale precipitation and temperature to the Mekong catchment. This was accomplished using the Global Circulation Model GFDL-CM to provide the boundary conditions under two carbon control strategies, namely representative concentration pathways (RCP) 4.5 and a RCP 8.5 scenario. The RCP 4.5 scenario represents the carbon strategy required to meet the Paris Accord, which aims to limit peak global temperatures to below a 2 °C rise whilst seeking to pursue options that limit temperature rise to 1.5 °C. The RCP 8.5 scenario is associated with a larger 3–4 °C rise. In addition, we also constructed a range of socio-economic scenarios to investigate the potential impacts of changing population, atmospheric pollution, economic growth and land use change up to the 2050s. Results of INCA simulations indicate increases in mean flows of up to 24%, with flood flows in the monsoon period increasing by up to 27%, but with increasing periods of drought up to 2050. A shift in the timing of the monsoon is also simulated, with a 4 week advance in the onset of monsoon flows on average. Decreases in nitrogen and phosphorus concentrations occur primarily due to flow dilution, but fluxes of these nutrients also increase by 5%, which reflects the changing flow, land use change and population changes. The Mekong delta is recognised as one of the world's most vulnerable mega-deltas, being subject to a range of environmental pressures including sea level rise, increasing population, and changes in flows and nutrients from its upland catchment. With changing climate and socioeconomics there is a need to assess how the Mekong catchment will be affected in terms of the delivery of water and nutrients into the delta system. Here we apply the Integrated Catchment model (INCA) to the whole Mekong River Basin to simulate flow and water quality, including nitrate, ammonia, total phosphorus and soluble reactive phosphorus. The impacts of climate change on all these variables have been assessed across 24 river reaches ranging from the Himalayas down to the delta in Vietnam. We used the UK Met Office PRECIS regionally coupled climate model to downscale precipitation and temperature to the Mekong catchment. This was accomplished using the Global Circulation Model GFDL-CM to provide the boundary conditions under two carbon control strategies, namely representative concentration pathways (RCP) 4.5 and a RCP 8.5 scenario. The RCP 4.5 scenario represents the carbon strategy required to meet the Paris Accord, which aims to limit peak global temperatures to below a 2 °C rise whilst seeking to pursue options that limit temperature rise to 1.5 °C. The RCP 8.5 scenario is associated with a larger 3–4 °C rise. In addition, we also constructed a range of socio-economic scenarios to investigate the potential impacts of changing population, atmospheric pollution, economic growth and land use change up to the 2050s. Results of INCA simulations indicate increases in mean flows of up to 24%, with flood flows in the monsoon period increasing by up to 27%, but with increasing periods of drought up to 2050. A shift in the timing of the monsoon is also simulated, with a 4 week advance in the onset of monsoon flows on average. Decreases in nitrogen and phosphorus concentrations occur primarily due to flow dilution, but fluxes of these nutrients also increase by 5%, which reflects the changing flow, land use change and population changes. Water quality along the Mekong River System (Phosphorus mg/l Left and Nitrate-N mg/l right) [Display omitted] •Climate will alter Mekong flows and seasonal patterns•Flooding will increase in the lower Mekong•Droughts will increase as Dam development increases•Socioeconomic effects will enhance nutrient fluxes into the delta•Eutrophication and increased delta flooding will occur The Mekong delta is recognised as one of the world's most vulnerable mega-deltas, being subject to a range of environmental pressures including sea level rise, increasing population, and changes in flows and nutrients from its upland catchment. With changing climate and socioeconomics there is a need to assess how the Mekong catchment will be affected in terms of the delivery of water and nutrients into the delta system. Here we apply the Integrated Catchment model (INCA) to the whole Mekong River Basin to simulate flow and water quality, including nitrate, ammonia, total phosphorus and soluble reactive phosphorus. The impacts of climate change on all these variables have been assessed across 24 river reaches ranging from the Himalayas down to the delta in Vietnam. We used the UK Met Office PRECIS regionally coupled climate model to downscale precipitation and temperature to the Mekong catchment. This was accomplished using the Global Circulation Model GFDL-CM to provide the boundary conditions under two carbon control strategies, namely representative concentration pathways (RCP) 4.5 and a RCP 8.5 scenario. The RCP 4.5 scenario represents the carbon strategy required to meet the Paris Accord, which aims to limit peak global temperatures to below a 2 °C rise whilst seeking to pursue options that limit temperature rise to 1.5 °C. The RCP 8.5 scenario is associated with a larger 3-4 °C rise. In addition, we also constructed a range of socio-economic scenarios to investigate the potential impacts of changing population, atmospheric pollution, economic growth and land use change up to the 2050s. Results of INCA simulations indicate increases in mean flows of up to 24%, with flood flows in the monsoon period increasing by up to 27%, but with increasing periods of drought up to 2050. A shift in the timing of the monsoon is also simulated, with a 4 week advance in the onset of monsoon flows on average. Decreases in nitrogen and phosphorus concentrations occur primarily due to flow dilution, but fluxes of these nutrients also increase by 5%, which reflects the changing flow, land use change and population changes.The Mekong delta is recognised as one of the world's most vulnerable mega-deltas, being subject to a range of environmental pressures including sea level rise, increasing population, and changes in flows and nutrients from its upland catchment. With changing climate and socioeconomics there is a need to assess how the Mekong catchment will be affected in terms of the delivery of water and nutrients into the delta system. Here we apply the Integrated Catchment model (INCA) to the whole Mekong River Basin to simulate flow and water quality, including nitrate, ammonia, total phosphorus and soluble reactive phosphorus. The impacts of climate change on all these variables have been assessed across 24 river reaches ranging from the Himalayas down to the delta in Vietnam. We used the UK Met Office PRECIS regionally coupled climate model to downscale precipitation and temperature to the Mekong catchment. This was accomplished using the Global Circulation Model GFDL-CM to provide the boundary conditions under two carbon control strategies, namely representative concentration pathways (RCP) 4.5 and a RCP 8.5 scenario. The RCP 4.5 scenario represents the carbon strategy required to meet the Paris Accord, which aims to limit peak global temperatures to below a 2 °C rise whilst seeking to pursue options that limit temperature rise to 1.5 °C. The RCP 8.5 scenario is associated with a larger 3-4 °C rise. In addition, we also constructed a range of socio-economic scenarios to investigate the potential impacts of changing population, atmospheric pollution, economic growth and land use change up to the 2050s. Results of INCA simulations indicate increases in mean flows of up to 24%, with flood flows in the monsoon period increasing by up to 27%, but with increasing periods of drought up to 2050. A shift in the timing of the monsoon is also simulated, with a 4 week advance in the onset of monsoon flows on average. Decreases in nitrogen and phosphorus concentrations occur primarily due to flow dilution, but fluxes of these nutrients also increase by 5%, which reflects the changing flow, land use change and population changes. |
Author | Vasilopoulos, G. Rodda, H. Whitehead, P.G. Darby, S.E. Hung, N.N. Bussi, G. Manley, R. Jin, L. Voepel, H.E. Tri, Van Pham Dang Hutton, C. Hackney, C. |
Author_xml | – sequence: 1 givenname: P.G. surname: Whitehead fullname: Whitehead, P.G. email: paul.whitehead@ouce.ox.ac.uk organization: School of Geography and Environmental Science, University of Southampton, Southampton SO17 1BJ, UK – sequence: 2 givenname: L. surname: Jin fullname: Jin, L. organization: Geology Department, State University of New York College at Cortland, Cortland, NY 13045, USA – sequence: 3 givenname: G. surname: Bussi fullname: Bussi, G. organization: School of Geography and the Environment, University of Oxford, Oxford OX1 3QY, UK – sequence: 4 givenname: H.E. surname: Voepel fullname: Voepel, H.E. organization: School of Geography and Environmental Science, University of Southampton, Southampton SO17 1BJ, UK – sequence: 5 givenname: S.E. surname: Darby fullname: Darby, S.E. organization: School of Geography and Environmental Science, University of Southampton, Southampton SO17 1BJ, UK – sequence: 6 givenname: G. surname: Vasilopoulos fullname: Vasilopoulos, G. organization: School of Geography and Environmental Science, University of Southampton, Southampton SO17 1BJ, UK – sequence: 7 givenname: R. surname: Manley fullname: Manley, R. organization: Water Resource Associates, Wallingford, PO Box 838, Oxon OX10 9XA, UK – sequence: 8 givenname: H. surname: Rodda fullname: Rodda, H. organization: Water Resource Associates, Wallingford, PO Box 838, Oxon OX10 9XA, UK – sequence: 9 givenname: C. surname: Hutton fullname: Hutton, C. organization: School of Geography and Environmental Science, University of Southampton, Southampton SO17 1BJ, UK – sequence: 10 givenname: C. surname: Hackney fullname: Hackney, C. organization: Energy and Environment Institute, University of Hull, Cottingham Road, Hull HU6 7RX, UK – sequence: 11 givenname: Van Pham Dang surname: Tri fullname: Tri, Van Pham Dang organization: Department of Water Resources, College of Environment and Natural Resources, Research Institute for Climate Change, Can Tho University, Viet Nam – sequence: 12 givenname: N.N. surname: Hung fullname: Hung, N.N. organization: Southern Institute of Water Resources Research (SIWRR), Research Centre for Rural Infrastructure Engineering Development, 658th Vo Van Kiet avenue Dist.5 HCMC, Viet Nam |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30991313$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkd9uFCEUh4mpsdvqKyiX3swICzMMJl40W_8lNSZG4yVh4NCyzkILzGofwneWdbfGeFO5IcD3nRPO7wQdhRgAoWeUtJTQ_sW6zcaXWCBs2yWhsiWsZbR7gBZ0ELKhZNkfoQUhfGhkL8UxOsl5TeoSA32EjhmRkjLKFujnV10g4ZtZT77c4k20ME0-XOLocLkC_AG-xXr65LeVGnX24SVeTX5TLWyudLgErIPFORofwcQQN95kbFPlsZvi99-vYS7JQyj1Zv5x0DIu8e8O5zAV_Rg9dHrK8OSwn6Ivb15_Xr1rLj6-fb86u2gM71hpLAWuDWfGCd0NnAppNQXnGIyWcukGMYzc8oFK0lPdMW7cyOwIvYDBWa7ZKXq-r3ud4s0MuaiNz6b-XAeIc1bLJRNd19Ou_w-UEtkTKlhFnx7QedyAVdepzindqrtpV-DVHjAp5pzAqRqiLj6GkrSfFCVql65aqz_pql26ijBV062--Me_a3G_ebY3oU516yHtOAgGrE9girLR31vjFwexxyI |
CitedBy_id | crossref_primary_10_1016_j_catena_2020_104853 crossref_primary_10_1016_j_watres_2024_122663 crossref_primary_10_3390_w14244031 crossref_primary_10_1007_s10530_020_02430_2 crossref_primary_10_1016_j_ecss_2019_106415 crossref_primary_10_1016_j_ejrh_2022_101132 crossref_primary_10_1016_j_scitotenv_2020_140656 crossref_primary_10_3390_w16202944 crossref_primary_10_1016_j_scitotenv_2020_137132 crossref_primary_10_1002_rra_3544 crossref_primary_10_1016_j_scitotenv_2023_161483 crossref_primary_10_1007_s10750_023_05270_y crossref_primary_10_2166_wcc_2019_175 crossref_primary_10_3390_su151813616 crossref_primary_10_24857_rgsa_v18n2_096 crossref_primary_10_1371_journal_pone_0262589 crossref_primary_10_1038_s41597_023_02193_0 crossref_primary_10_1016_j_jclepro_2022_132694 crossref_primary_10_1007_s11270_021_05394_8 crossref_primary_10_1017_sus_2021_2 crossref_primary_10_1016_j_ecolind_2021_108220 crossref_primary_10_1016_j_jhydrol_2021_127344 crossref_primary_10_1080_10256016_2019_1673746 crossref_primary_10_3390_w16243635 crossref_primary_10_1016_j_cosust_2021_04_004 crossref_primary_10_3390_su15119110 crossref_primary_10_1016_j_scitotenv_2022_158248 crossref_primary_10_1016_j_envres_2023_115617 crossref_primary_10_1016_j_scitotenv_2021_150320 crossref_primary_10_1109_ACCESS_2023_3301153 crossref_primary_10_22144_ctu_jvn_2022_038 crossref_primary_10_1007_s42452_024_06013_x crossref_primary_10_1111_geoj_12479 crossref_primary_10_1016_j_scitotenv_2020_142468 crossref_primary_10_1016_j_spc_2022_04_018 crossref_primary_10_3390_w15173027 crossref_primary_10_1111_area_12954 crossref_primary_10_1016_j_envpol_2020_116332 crossref_primary_10_3390_cli8030041 crossref_primary_10_1016_j_seares_2025_102573 crossref_primary_10_3390_w12113294 crossref_primary_10_1016_j_ecolind_2023_110685 crossref_primary_10_1016_j_scitotenv_2021_151345 crossref_primary_10_1016_j_jenvman_2023_119069 crossref_primary_10_1016_j_eng_2021_06_026 crossref_primary_10_1016_j_scitotenv_2020_143617 crossref_primary_10_3390_su13031254 crossref_primary_10_1016_j_envdev_2023_100869 crossref_primary_10_1016_j_jhydrol_2023_130338 crossref_primary_10_1038_s43247_021_00208_5 crossref_primary_10_3390_su152316316 crossref_primary_10_1016_j_scitotenv_2020_137863 crossref_primary_10_1029_2020EF001939 |
Cites_doi | 10.1016/j.scitotenv.2018.03.368 10.1098/rsta.2012.0413 10.1002/hyp.1328 10.1016/j.scitotenv.2018.08.376 10.1007/s00477-008-0273-z 10.1016/S0048-9697(98)00037-0 10.1623/hysj.54.1.101 10.1039/C4EM00616J 10.1016/j.quaint.2014.02.006 10.5194/hess-6-559-2002 10.1016/S0048-9697(99)00050-9 10.5194/hess-18-855-2014 10.1002/2013WR014651 10.1016/j.scitotenv.2018.04.362 10.1039/C5EM90022K 10.5194/hess-6-583-2002 10.1007/s11368-017-1684-6 10.1038/nclimate2469 10.1016/0043-1354(80)90040-8 10.1016/j.earscirev.2015.03.007 10.1016/j.scitotenv.2018.04.349 10.1098/rsta.2016.0448 10.1016/j.scitotenv.2018.03.022 10.1007/BF01186220 10.1016/j.csr.2012.02.010 10.1016/j.ecss.2016.08.017 10.1016/0022-1694(70)90255-6 10.1016/j.jglr.2012.11.003 10.1016/j.jhydrol.2015.05.033 10.1098/rstb.1990.0182 10.1016/S0048-9697(98)00038-2 10.1038/nature09440 10.1016/j.scitotenv.2018.04.350 10.1007/s003820050010 10.1038/nature19809 10.1016/j.scitotenv.2015.07.005 10.1016/j.scitotenv.2006.02.034 10.1016/j.atmosenv.2016.07.018 10.1039/C4EM00619D |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright © 2019. Published by Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019. Published by Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2019.03.315 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
EndPage | 229 |
ExternalDocumentID | 30991313 10_1016_j_scitotenv_2019_03_315 S0048969719313130 |
Genre | Journal Article |
GeographicLocations | Himalayan region United Kingdom Vietnam Mekong River |
GeographicLocations_xml | – name: United Kingdom – name: Himalayan region – name: Vietnam – name: Mekong River |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN SEW SSH WUQ XPP ZXP ZY4 NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c453t-d1e4ac43cf7a584179da1eff3ebd149f878b4d4819061a534cfb3dbe67e8fd4a3 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Fri Jul 11 08:12:06 EDT 2025 Thu Jul 10 23:12:51 EDT 2025 Thu Apr 03 07:03:51 EDT 2025 Tue Jul 01 03:34:55 EDT 2025 Thu Apr 24 22:54:11 EDT 2025 Fri Feb 23 02:30:41 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Climate change Socioeconomic change Land use change Nutrients Modelling Mekong River Vietnam Delta |
Language | English |
License | Copyright © 2019. Published by Elsevier B.V. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c453t-d1e4ac43cf7a584179da1eff3ebd149f878b4d4819061a534cfb3dbe67e8fd4a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://hull-repository.worktribe.com/output/1562889 |
PMID | 30991313 |
PQID | 2210960173 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2237556156 proquest_miscellaneous_2210960173 pubmed_primary_30991313 crossref_citationtrail_10_1016_j_scitotenv_2019_03_315 crossref_primary_10_1016_j_scitotenv_2019_03_315 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2019_03_315 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-10 |
PublicationDateYYYYMMDD | 2019-07-10 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | The Science of the total environment |
PublicationTitleAlternate | Sci Total Environ |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Buendia, Bussi, Tuset, Vericat, Sabater, Palau, Batalla (bb0015) 2016; 540 UNDP (bb5010) 2018 Spear, Hornberger (bb0230) 1980; 1980 Jones, Noguer, Hassell, Hudson, Wilson, Jenkins, Mitchell (bb0160) 2004 Nicholls, Brown, Goodwin, Wahl, Lowe, Solan, Godbold, Haigh, Lincke, Hinkel, Wolff, Merkens (bb0210) 2018; 376 IPCC (bb0125) 2014 Duan, Yu, Zhang, Wang, Pan, Larssen, Tang, Mulder (bb0065) 2016; 146 (bb0030) 2009 Darby, Hackney, Leyland, Kummu, Lauri, Parsons, Best, Nicholas, Aalto (bb0055) 2016; 539 Whitehead, Wilson, Butterfield, Seed (bb0270) 1998; 210–211 Dunn (bb0075) 2017 FAO (bb0090) 2013 Hettelingh, Sverdrup, Zhao (bb0110) 1995; 85 Futter, Erlandsson, Butterfield, Whitehead, Oni, Wade (bb0095) 2014; 18 Collins, Whitehead, Butterfield (bb0045) 1999; 228 Carling (bb0035) 2009 Whitehead (bb0260) 1990; 329 Whitehead, Crossman, Balana, Futter, Comber, Jin, Skuras, Wade, Bowes, Read (bb5000) 2013; 371 Edenhofer, Pichs-Madruga, Sokona, Farahani, Kadner, Seyboth, Adler, Baum, Brunner, Eickemeier, Kriemann (bb0080) 2014 Whitehead, Barbour, Futter, Sarkar, Rodda, Caesar, Butterfield, Jin, Sinha, Nicholls, Salehin (bb0275) 2015; 17 Xue, He, Liu, Warner (bb0300) 2012; 37 Crossman, Futter, Oni, Whitehead, Jin, Butterfield, Baulch, Dillon (bb0050) 2013; 39 Nash, Sutcliffe (bb0195) 1970; 10 Pathak D., Whitehead P G, Futter M N and Sinha R, (2018). Water quality assessment and catchment-scale nutrient flux modeling in the Ramganga River basin in North India: an application of INCA model. Sci. Total Environ., Volumes 631–632, 201–215. Whitehead, Bussi, Hossain, Dolk, Das, Comber, Peters, Charles, Hope, Hossain (bb0290) 2018; 631–632 Lu, Li, Kummu, Padawangi, Wang (bb0180) 2014; 336 Lee, Dang (bb0175) 2018; 16 Vörösmarty, McIntyre, Gessner, Dudgeon, Prusevich, Green, Glidden, Bunn, Sullivan, Liermann, Davies (bb0240) 2010; 467 Dean, Freer, Beven, Wade, Butterfield (bb0060) 2009; 23 Kondolf, Rubin, Minear (bb0170) 2014; 50 Gordon, Cooper, Senior, Banks, Gregory, Johns, Mitchell, Wood (bb0100) 2000; 16 Jin, Whitehead, Appeaning Addo, Amisigo, Macadam, Janes, Crossman, Nicholls, McCartney, Rodda (bb0155) 2018; 637-638 Whitehead, Sarkar, Jin, Futter, Caesar, Barbour, Butterfield, Sinha, Nicholls, Hutton, Leckie (bb0280) 2015; 17 Nicholls, Hutton, Lázár, Allan, Adger, Adams, Wolf, Rahman, Salehin (bb0205) 2016; 183 Janes, McGrath, Macadam, Jones (bb0140) 2019; 650 Whitehead, Wilson, Butterfield (bb0265) 1998; 210–211 Herrero, Buendía, Bussi, Sabater, Vericat, Palau, Batalla (bb0105) 2017; 17 Mekong River Commission, (2010). IWRM-based Basin Development Strategy for the Lower Mekong Basin. Fourth Draft. Mekong River Commission. MRC. 2010b. The Mekong Ricer Commission. (Available at Jin, Whitehead, Sarkar, Sinha, Futter, Butterfield, Caesar, Crossman (bb0145) 2015; 17 Wade, Durand, Beaujouan, Wessel, Raat, Whitehead, Butterfield, Rankinen, Lepisto (bb0245) 2002; 6 Accessed on 16/12/2010). United Nations Environment Programme. (Afte). Fan, He, Wang (bb0085) 2015; 146 Dung, Merz, Bardossy (bb0070) 2015; 527 Smajgl, Toan, Nhan, Ward, Trung, Quang Trí, Phạm Thanh (bb0225) 2015; 5 Whitehead, Jin, Macadam, Janes, Sarkar, Rodda, Sinha, Nicholls (bb0295) 2018; 636 Nicholls, Whitehead, Wolf, Rahman, Salehin (bb0200) 2015; 17 Wade, Whitehead, Butterfield (bb0250) 2002 Jin, Whitehead, Rodda, Macadam, Sarkar (bb0150) 2018; 637–638 Young (bb0305) 2003; 17 Kebede, Nicholls, Allan, Arto, Cazcarro, Fernandes, Hill, Hutton, Kay, Lázár, Macadam, Palmer, Suckall, Tompkins, Vincent, Whitehead (bb0165) 2018; 635 Rankinen, Karvonen, Butterfield (bb0220) 2006; 365 Adon, Galy-Lacaux, Serça, Guedant, Vonghamsao, Rode, Meyerfeld, Guerin (bb0005) 2015 Chapra (bb0040) 2018 Thuc, Thang, Huong, Khiem, Hien, Phong (bb0235) 2016 Whitehead, Wilby, Battarbee, Kernan, Wade (bb5005) 2009; 54 Wade, Butterfield, Lawrence, Bärlund, Ekholm, Lepistö, Yli-Halla, Rankinen, Granlund, Durand, Kaste (bb0255) 2009 Whitehead (10.1016/j.scitotenv.2019.03.315_bb0275) 2015; 17 Nicholls (10.1016/j.scitotenv.2019.03.315_bb0205) 2016; 183 Futter (10.1016/j.scitotenv.2019.03.315_bb0095) 2014; 18 Kebede (10.1016/j.scitotenv.2019.03.315_bb0165) 2018; 635 Gordon (10.1016/j.scitotenv.2019.03.315_bb0100) 2000; 16 Whitehead (10.1016/j.scitotenv.2019.03.315_bb0270) 1998; 210–211 Wade (10.1016/j.scitotenv.2019.03.315_bb0255) 2009 Young (10.1016/j.scitotenv.2019.03.315_bb0305) 2003; 17 IPCC (10.1016/j.scitotenv.2019.03.315_bb0125) 2014 Nicholls (10.1016/j.scitotenv.2019.03.315_bb0200) 2015; 17 Nash (10.1016/j.scitotenv.2019.03.315_bb0195) 1970; 10 Edenhofer (10.1016/j.scitotenv.2019.03.315_bb0080) 2014 FAO (10.1016/j.scitotenv.2019.03.315_bb0090) 2013 Dunn (10.1016/j.scitotenv.2019.03.315_bb0075) 2017 Jones (10.1016/j.scitotenv.2019.03.315_bb0160) 2004 Thuc (10.1016/j.scitotenv.2019.03.315_bb0235) 2016 Janes (10.1016/j.scitotenv.2019.03.315_bb0140) 2019; 650 Whitehead (10.1016/j.scitotenv.2019.03.315_bb5005) 2009; 54 Carling (10.1016/j.scitotenv.2019.03.315_bb0035) 2009 Whitehead (10.1016/j.scitotenv.2019.03.315_bb0280) 2015; 17 10.1016/j.scitotenv.2019.03.315_bb0190 UNDP (10.1016/j.scitotenv.2019.03.315_bb5010) Whitehead (10.1016/j.scitotenv.2019.03.315_bb5000) 2013; 371 Whitehead (10.1016/j.scitotenv.2019.03.315_bb0290) 2018; 631–632 Wade (10.1016/j.scitotenv.2019.03.315_bb0245) 2002; 6 Lee (10.1016/j.scitotenv.2019.03.315_bb0175) 2018; 16 Darby (10.1016/j.scitotenv.2019.03.315_bb0055) 2016; 539 Jin (10.1016/j.scitotenv.2019.03.315_bb0150) 2018; 637–638 Xue (10.1016/j.scitotenv.2019.03.315_bb0300) 2012; 37 Chapra (10.1016/j.scitotenv.2019.03.315_bb0040) 2018 Herrero (10.1016/j.scitotenv.2019.03.315_bb0105) 2017; 17 Rankinen (10.1016/j.scitotenv.2019.03.315_bb0220) 2006; 365 Fan (10.1016/j.scitotenv.2019.03.315_bb0085) 2015; 146 Kondolf (10.1016/j.scitotenv.2019.03.315_bb0170) 2014; 50 Vörösmarty (10.1016/j.scitotenv.2019.03.315_bb0240) 2010; 467 Spear (10.1016/j.scitotenv.2019.03.315_bb0230) 1980; 1980 Jin (10.1016/j.scitotenv.2019.03.315_bb0155) 2018; 637-638 Duan (10.1016/j.scitotenv.2019.03.315_bb0065) 2016; 146 Smajgl (10.1016/j.scitotenv.2019.03.315_bb0225) 2015; 5 Whitehead (10.1016/j.scitotenv.2019.03.315_bb0265) 1998; 210–211 Hettelingh (10.1016/j.scitotenv.2019.03.315_bb0110) 1995; 85 Wade (10.1016/j.scitotenv.2019.03.315_bb0250) 2002 (10.1016/j.scitotenv.2019.03.315_bb0030) 2009 Nicholls (10.1016/j.scitotenv.2019.03.315_bb0210) 2018; 376 Crossman (10.1016/j.scitotenv.2019.03.315_bb0050) 2013; 39 Jin (10.1016/j.scitotenv.2019.03.315_bb0145) 2015; 17 Whitehead (10.1016/j.scitotenv.2019.03.315_bb0295) 2018; 636 Whitehead (10.1016/j.scitotenv.2019.03.315_bb0260) 1990; 329 Buendia (10.1016/j.scitotenv.2019.03.315_bb0015) 2016; 540 Adon (10.1016/j.scitotenv.2019.03.315_bb0005) 2015 Collins (10.1016/j.scitotenv.2019.03.315_bb0045) 1999; 228 Dean (10.1016/j.scitotenv.2019.03.315_bb0060) 2009; 23 Dung (10.1016/j.scitotenv.2019.03.315_bb0070) 2015; 527 10.1016/j.scitotenv.2019.03.315_bb0215 Lu (10.1016/j.scitotenv.2019.03.315_bb0180) 2014; 336 |
References_xml | – volume: 146 start-page: 77 year: 2015 end-page: 91 ident: bb0085 article-title: Environmental consequences of damming the mainstream lancang-mekong river: a review publication-title: Earth Sci. Rev. – volume: 17 start-page: 1082 year: 2015 end-page: 1097 ident: bb0280 article-title: Dynamic modeling of the Ganga river system: impacts of future climate and socio-economic change on flows and nitrogen fluxes in India and Bangladesh publication-title: Environ. Sci. Process. Impacts – volume: 650 start-page: 1499 year: 2019 end-page: 1520 ident: bb0140 article-title: High-resolution climate projections for South Asia to inform climate impacts and adaptation studies in the Ganges-Brahmaputra-Meghna and Mahanadi deltas publication-title: Sci. Total Environ. – volume: 329 start-page: 403 year: 1990 end-page: 410 ident: bb0260 article-title: Modelling nitrate from agriculture into public water supplies publication-title: Philos. Trans. R. Soc. London. Ser. B Biol. Sci. – volume: 228 start-page: 259 year: 1999 end-page: 274 ident: bb0045 article-title: Nitrogen leaching from catchments in the Middle Hills of Nepal; an application of the INCA model publication-title: Sci. Total Environ. – volume: 16 start-page: 147 year: 2000 end-page: 168 ident: bb0100 article-title: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments publication-title: Clim. Dyn. – volume: 210–211 start-page: 547 year: 1998 end-page: 558 ident: bb0265 article-title: A semi-distributed integrated nitrogen model for multiple source assessment in catchments (INCA): part I — model structure and process equations publication-title: Sci. Total Environ. – year: 2014 ident: bb0080 article-title: Summary for Policymakers Climate Change 2014, Mitigation of Climate Change. IPCC 2014, Climate Change 2014: Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change – start-page: 13 year: 2009 end-page: 28 ident: bb0035 article-title: The geology of the lower Mekong river publication-title: The Mekong: Biophysical Environment of an International River – volume: 17 start-page: 1016 year: 2015 end-page: 1017 ident: bb0200 article-title: The Ganges–Brahmaputra–Meghna delta system: biophysical models to support analysis of ecosystem services and poverty alleviation publication-title: Environ. Sci. Process. Impacts – volume: 467 start-page: 555 year: 2010 end-page: 561 ident: bb0240 article-title: Global threats to human water security and river biodiversity publication-title: Nature – volume: 1980 start-page: 43 year: 1980 end-page: 49 ident: bb0230 article-title: Eutrophication in the Peel Inlet II. Identification of critical uncertainties via generalised sensitivity analysis publication-title: Water Res. – volume: 39 start-page: 19 year: 2013 end-page: 32 ident: bb0050 article-title: Impacts of climate change on hydrology and water quality: future proofing management strategies in the Lake Simcoe watershed, Canada publication-title: J. Great Lakes Res. – year: 2002 ident: bb0250 article-title: The integrated catchments model of phosphorus dynamics (INCA-P), a new approach for multiple source assessment in heterogeneous river systems: model structure and equations publication-title: Hydrol. Earth Syst. Sci. – year: 2017 ident: bb0075 article-title: Multidecadal Fluvial Sediment Fluxes to Major Deltas Under Environmental Change Scenarios: Projections and Their Implications – volume: 210–211 start-page: 559 year: 1998 end-page: 583 ident: bb0270 article-title: A semi-distributed integrated flow and nitrogen model for multiple source assessment in catchments (INCA): part II — application to large river basins in south Wales and eastern England publication-title: Sci. Total Environ. – volume: 17 year: 2017 ident: bb0105 article-title: Modeling the sedimentary response of a large Pyrenean basin to global change publication-title: J. Soils Sediments – volume: 85 start-page: 2565 year: 1995 end-page: 2570 ident: bb0110 article-title: Deriving critical loads for Asia publication-title: Water Air Soil Pollut. – volume: 336 start-page: 145 year: 2014 end-page: 157 ident: bb0180 article-title: Observed changes in the water flow at Chiang Saen in the lower Mekong: impacts of Chinese dams? publication-title: Quat. Int. – volume: 18 start-page: 855 year: 2014 end-page: 873 ident: bb0095 article-title: PERSiST: a flexible rainfall-runoff modelling toolkit for use with the INCA family of models publication-title: Hydrol. Earth Syst. Sci. – volume: 183 start-page: 370 year: 2016 end-page: 381 ident: bb0205 article-title: Integrated assessment of social and environmental sustainability dynamics in the Ganges-Brahmaputra-Meghna delta, Bangladesh publication-title: Estuar. Coast. Shelf Sci. – volume: 37 start-page: 66 year: 2012 end-page: 78 ident: bb0300 article-title: Modeling transport and deposition of the Mekong River sediment publication-title: Cont. Shelf Res. – volume: 365 start-page: 123 year: 2006 end-page: 139 ident: bb0220 article-title: An application of the GLUE methodology for estimating the parameters of the INCA N model publication-title: Sci. Total Environ. – volume: 527 start-page: 704 year: 2015 end-page: 717 ident: bb0070 article-title: H. ApelHandling uncertainty in bivariate quantile estimation–an application to flood hazard analysis in the Mekong Delta publication-title: J. Hydrol. – volume: 17 start-page: 1057 year: 2015 end-page: 1069 ident: bb0275 article-title: Impacts of climate change and socio-economic scenarios on flow and water quality of the Ganges, Brahmaputra and Meghna (GBM) river systems: low flow and flood statistics publication-title: Environ. Sci. Process. Impacts – volume: 50 start-page: 5158 year: 2014 end-page: 5169 ident: bb0170 article-title: Dams on the Mekong: cumulative sediment starvation publication-title: Water Resour. Res. – year: 2004 ident: bb0160 article-title: Generating High Resolution Climate Change Scenarios Using PRECIS – year: 2016 ident: bb0235 article-title: Climate change and sea level rise scenarios for Vietnam, technical summary for policymakers publication-title: Report to Ministry of Natural Resources & Environment, Vietnam Institute of Meteorology, Hydrology and Climate Change Hanoi, Vietnam – year: 2018 ident: bb5010 – volume: 17 start-page: 1098 year: 2015 end-page: 1110 ident: bb0145 article-title: Assessing the impacts of climate change and socio-economic changes on flow and phosphorus flux in the Ganga river system publication-title: Environ. Sci.: Processes Impacts – volume: 146 start-page: 55 year: 2016 end-page: 69 ident: bb0065 article-title: Acid deposition in Asia: emissions, deposition, and ecosystem effects publication-title: Atmos. Environ. – volume: 376 start-page: 20160448 year: 2018 ident: bb0210 article-title: Stabilization of global temperature at 1.5°C and 2.0°C: implications for coastal areas publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. – volume: 635 start-page: 659 year: 2018 end-page: 672 ident: bb0165 article-title: Applying the global RCP–SSP–SPA scenario framework at sub-national scale: a multi-scale and participatory scenario approach publication-title: Sci. Total Environ. – volume: 6 start-page: 559 year: 2002 end-page: 582 ident: bb0245 article-title: A nitrogen model for European catchments: INCA, new model structure and equations publication-title: Hydrol. Earth Syst. Sci. – start-page: 156 year: 2013 ident: bb0090 article-title: The State of Food and Agriculture, World Agriculture Report, Food and Agriculture Organisation, Rome – year: 2009 ident: bb0255 article-title: The Integrated Catchment Model of Phosphorus (INCA-P), a New Structure to Simulate Particulate and Soluble Phosphorus Transport in European Catchments, Deliverable 185 to the EU Euro-Limpacs Project – volume: 371 start-page: 1 year: 2013 end-page: 17 ident: bb5000 article-title: Research article: A cost-effectiveness analysis of water security and water quality: impacts of climate and land-use change on the River Thames system publication-title: Phil. Trans. R. Soc. A – volume: 17 start-page: 2195 year: 2003 end-page: 2217 ident: bb0305 article-title: Top-down and data-based mechanistic modelling of rainfall-flow dynamics at the catchment scale publication-title: Hydrol. Process. – volume: 637-638 start-page: 1069 year: 2018 end-page: 1080 ident: bb0155 article-title: Modeling future flows of the Volta River system: impacts of climate change and socio-economic changes publication-title: Sci. Total Environ. – reference: Pathak D., Whitehead P G, Futter M N and Sinha R, (2018). Water quality assessment and catchment-scale nutrient flux modeling in the Ramganga River basin in North India: an application of INCA model. Sci. Total Environ., Volumes 631–632, 201–215. – reference: Mekong River Commission, (2010). IWRM-based Basin Development Strategy for the Lower Mekong Basin. Fourth Draft. Mekong River Commission. MRC. 2010b. The Mekong Ricer Commission. (Available at: – volume: 10 start-page: 282 year: 1970 end-page: 290 ident: bb0195 article-title: River flow forecasting through conceptual models - part 1 - a discussion of principles publication-title: J. Hydrol. – volume: 637–638 start-page: 907 year: 2018 end-page: 917 ident: bb0150 article-title: Simulating climate change and socio-economic change impacts on flows and water quality in the Mahanadi River system, India publication-title: Sci. Total Environ. – start-page: 432 year: 2009 ident: bb0030 publication-title: The Mekong: Biophysical Environment of an International River – volume: 540 start-page: 144 year: 2016 end-page: 157 ident: bb0015 article-title: Effects of afforestation on runoff and sediment load in an upland Mediterranean catchment publication-title: Sci. Total Environ. – start-page: 333 year: 2018 end-page: 349 ident: bb0040 article-title: Water quality publication-title: Handbook of Environmental Engineering – volume: 54 start-page: 101 year: 2009 end-page: 124 ident: bb5005 article-title: A review of the potential impacts of climate change on surface water quality publication-title: Hydrol. Sci. – volume: 16 start-page: 1 year: 2018 end-page: 10 ident: bb0175 publication-title: Paddy Water Environ. – volume: 23 start-page: 991 year: 2009 end-page: 1010 ident: bb0060 article-title: Uncertainty assessment of a process-based integrated catchment model of phosphorus publication-title: Stoch. Env. Res. Risk A. – volume: 631–632 year: 2018 ident: bb0290 article-title: Restoring water quality in the polluted Turag-Tongi-Balu river system, Dhaka: modelling nutrient and total coliform intervention strategies publication-title: Sci. Total Environ. – reference: . Accessed on 16/12/2010). United Nations Environment Programme. (Afte). – volume: 5 start-page: 167 year: 2015 end-page: 174 ident: bb0225 article-title: Responding to rising sea levels in the Mekong Delta publication-title: Nat. Clim. Chang. – volume: 539 start-page: 276 year: 2016 end-page: 279 ident: bb0055 article-title: Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity publication-title: Nature – volume: 636 start-page: 1362 year: 2018 end-page: 1372 ident: bb0295 article-title: Modelling impacts of climate change and socio-economic change on the Ganga, Brahmaputra, Meghna, Hooghly and Mahanadi river systems in India and Bangladesh publication-title: Sci. Total Environ. – year: 2015 ident: bb0005 article-title: Atmospheric Nitrogen Deposition in a Subtropical Hydroelectric Reservoir (Nam Theun II Case Study, Lao PDR) First Assessment of Nitrogen Deposition Budget Following the Impoundment of a Subtropical Hydroelectric Reservoir (Nam Theun II, Lao PDR) – year: 2014 ident: bb0125 article-title: Summary for policymakers publication-title: Climate Change 2014, Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change – volume: 635 start-page: 659 year: 2018 ident: 10.1016/j.scitotenv.2019.03.315_bb0165 article-title: Applying the global RCP–SSP–SPA scenario framework at sub-national scale: a multi-scale and participatory scenario approach publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.03.368 – volume: 371 start-page: 1 issue: 2002 year: 2013 ident: 10.1016/j.scitotenv.2019.03.315_bb5000 article-title: Research article: A cost-effectiveness analysis of water security and water quality: impacts of climate and land-use change on the River Thames system publication-title: Phil. Trans. R. Soc. A doi: 10.1098/rsta.2012.0413 – volume: 17 start-page: 2195 year: 2003 ident: 10.1016/j.scitotenv.2019.03.315_bb0305 article-title: Top-down and data-based mechanistic modelling of rainfall-flow dynamics at the catchment scale publication-title: Hydrol. Process. doi: 10.1002/hyp.1328 – volume: 650 start-page: 1499 year: 2019 ident: 10.1016/j.scitotenv.2019.03.315_bb0140 article-title: High-resolution climate projections for South Asia to inform climate impacts and adaptation studies in the Ganges-Brahmaputra-Meghna and Mahanadi deltas publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.08.376 – volume: 23 start-page: 991 year: 2009 ident: 10.1016/j.scitotenv.2019.03.315_bb0060 article-title: Uncertainty assessment of a process-based integrated catchment model of phosphorus publication-title: Stoch. Env. Res. Risk A. doi: 10.1007/s00477-008-0273-z – volume: 210–211 start-page: 547 year: 1998 ident: 10.1016/j.scitotenv.2019.03.315_bb0265 article-title: A semi-distributed integrated nitrogen model for multiple source assessment in catchments (INCA): part I — model structure and process equations publication-title: Sci. Total Environ. doi: 10.1016/S0048-9697(98)00037-0 – volume: 54 start-page: 101 issue: 1 year: 2009 ident: 10.1016/j.scitotenv.2019.03.315_bb5005 article-title: A review of the potential impacts of climate change on surface water quality publication-title: Hydrol. Sci. doi: 10.1623/hysj.54.1.101 – year: 2016 ident: 10.1016/j.scitotenv.2019.03.315_bb0235 article-title: Climate change and sea level rise scenarios for Vietnam, technical summary for policymakers – start-page: 432 year: 2009 ident: 10.1016/j.scitotenv.2019.03.315_bb0030 – volume: 17 start-page: 1082 year: 2015 ident: 10.1016/j.scitotenv.2019.03.315_bb0280 article-title: Dynamic modeling of the Ganga river system: impacts of future climate and socio-economic change on flows and nitrogen fluxes in India and Bangladesh publication-title: Environ. Sci. Process. Impacts doi: 10.1039/C4EM00616J – volume: 336 start-page: 145 year: 2014 ident: 10.1016/j.scitotenv.2019.03.315_bb0180 article-title: Observed changes in the water flow at Chiang Saen in the lower Mekong: impacts of Chinese dams? publication-title: Quat. Int. doi: 10.1016/j.quaint.2014.02.006 – volume: 6 start-page: 559 year: 2002 ident: 10.1016/j.scitotenv.2019.03.315_bb0245 article-title: A nitrogen model for European catchments: INCA, new model structure and equations publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-6-559-2002 – volume: 631–632 year: 2018 ident: 10.1016/j.scitotenv.2019.03.315_bb0290 article-title: Restoring water quality in the polluted Turag-Tongi-Balu river system, Dhaka: modelling nutrient and total coliform intervention strategies publication-title: Sci. Total Environ. – volume: 228 start-page: 259 year: 1999 ident: 10.1016/j.scitotenv.2019.03.315_bb0045 article-title: Nitrogen leaching from catchments in the Middle Hills of Nepal; an application of the INCA model publication-title: Sci. Total Environ. doi: 10.1016/S0048-9697(99)00050-9 – volume: 18 start-page: 855 year: 2014 ident: 10.1016/j.scitotenv.2019.03.315_bb0095 article-title: PERSiST: a flexible rainfall-runoff modelling toolkit for use with the INCA family of models publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-18-855-2014 – volume: 50 start-page: 5158 year: 2014 ident: 10.1016/j.scitotenv.2019.03.315_bb0170 article-title: Dams on the Mekong: cumulative sediment starvation publication-title: Water Resour. Res. doi: 10.1002/2013WR014651 – ident: 10.1016/j.scitotenv.2019.03.315_bb5010 – volume: 636 start-page: 1362 year: 2018 ident: 10.1016/j.scitotenv.2019.03.315_bb0295 article-title: Modelling impacts of climate change and socio-economic change on the Ganga, Brahmaputra, Meghna, Hooghly and Mahanadi river systems in India and Bangladesh publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.04.362 – year: 2004 ident: 10.1016/j.scitotenv.2019.03.315_bb0160 – volume: 17 start-page: 1016 year: 2015 ident: 10.1016/j.scitotenv.2019.03.315_bb0200 article-title: The Ganges–Brahmaputra–Meghna delta system: biophysical models to support analysis of ecosystem services and poverty alleviation publication-title: Environ. Sci. Process. Impacts doi: 10.1039/C5EM90022K – start-page: 333 year: 2018 ident: 10.1016/j.scitotenv.2019.03.315_bb0040 article-title: Water quality – year: 2002 ident: 10.1016/j.scitotenv.2019.03.315_bb0250 article-title: The integrated catchments model of phosphorus dynamics (INCA-P), a new approach for multiple source assessment in heterogeneous river systems: model structure and equations publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-6-583-2002 – start-page: 13 year: 2009 ident: 10.1016/j.scitotenv.2019.03.315_bb0035 article-title: The geology of the lower Mekong river – volume: 17 year: 2017 ident: 10.1016/j.scitotenv.2019.03.315_bb0105 article-title: Modeling the sedimentary response of a large Pyrenean basin to global change publication-title: J. Soils Sediments doi: 10.1007/s11368-017-1684-6 – volume: 17 start-page: 1098 year: 2015 ident: 10.1016/j.scitotenv.2019.03.315_bb0145 article-title: Assessing the impacts of climate change and socio-economic changes on flow and phosphorus flux in the Ganga river system publication-title: Environ. Sci.: Processes Impacts – ident: 10.1016/j.scitotenv.2019.03.315_bb0190 – volume: 5 start-page: 167 year: 2015 ident: 10.1016/j.scitotenv.2019.03.315_bb0225 article-title: Responding to rising sea levels in the Mekong Delta publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate2469 – volume: 1980 start-page: 43 issue: 14 year: 1980 ident: 10.1016/j.scitotenv.2019.03.315_bb0230 article-title: Eutrophication in the Peel Inlet II. Identification of critical uncertainties via generalised sensitivity analysis publication-title: Water Res. doi: 10.1016/0043-1354(80)90040-8 – volume: 146 start-page: 77 issue: 2 year: 2015 ident: 10.1016/j.scitotenv.2019.03.315_bb0085 article-title: Environmental consequences of damming the mainstream lancang-mekong river: a review publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2015.03.007 – volume: 637–638 start-page: 907 year: 2018 ident: 10.1016/j.scitotenv.2019.03.315_bb0150 article-title: Simulating climate change and socio-economic change impacts on flows and water quality in the Mahanadi River system, India publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.04.349 – volume: 376 start-page: 20160448 year: 2018 ident: 10.1016/j.scitotenv.2019.03.315_bb0210 article-title: Stabilization of global temperature at 1.5°C and 2.0°C: implications for coastal areas publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. doi: 10.1098/rsta.2016.0448 – ident: 10.1016/j.scitotenv.2019.03.315_bb0215 doi: 10.1016/j.scitotenv.2018.03.022 – volume: 85 start-page: 2565 issue: 4 year: 1995 ident: 10.1016/j.scitotenv.2019.03.315_bb0110 article-title: Deriving critical loads for Asia publication-title: Water Air Soil Pollut. doi: 10.1007/BF01186220 – volume: 37 start-page: 66 issue: 0 year: 2012 ident: 10.1016/j.scitotenv.2019.03.315_bb0300 article-title: Modeling transport and deposition of the Mekong River sediment publication-title: Cont. Shelf Res. doi: 10.1016/j.csr.2012.02.010 – volume: 16 start-page: 1 issue: 63 year: 2018 ident: 10.1016/j.scitotenv.2019.03.315_bb0175 publication-title: Paddy Water Environ. – start-page: 156 year: 2013 ident: 10.1016/j.scitotenv.2019.03.315_bb0090 – volume: 183 start-page: 370 year: 2016 ident: 10.1016/j.scitotenv.2019.03.315_bb0205 article-title: Integrated assessment of social and environmental sustainability dynamics in the Ganges-Brahmaputra-Meghna delta, Bangladesh publication-title: Estuar. Coast. Shelf Sci. doi: 10.1016/j.ecss.2016.08.017 – volume: 10 start-page: 282 year: 1970 ident: 10.1016/j.scitotenv.2019.03.315_bb0195 article-title: River flow forecasting through conceptual models - part 1 - a discussion of principles publication-title: J. Hydrol. doi: 10.1016/0022-1694(70)90255-6 – volume: 39 start-page: 19 year: 2013 ident: 10.1016/j.scitotenv.2019.03.315_bb0050 article-title: Impacts of climate change on hydrology and water quality: future proofing management strategies in the Lake Simcoe watershed, Canada publication-title: J. Great Lakes Res. doi: 10.1016/j.jglr.2012.11.003 – volume: 527 start-page: 704 year: 2015 ident: 10.1016/j.scitotenv.2019.03.315_bb0070 article-title: H. ApelHandling uncertainty in bivariate quantile estimation–an application to flood hazard analysis in the Mekong Delta publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.05.033 – volume: 329 start-page: 403 year: 1990 ident: 10.1016/j.scitotenv.2019.03.315_bb0260 article-title: Modelling nitrate from agriculture into public water supplies publication-title: Philos. Trans. R. Soc. London. Ser. B Biol. Sci. doi: 10.1098/rstb.1990.0182 – volume: 210–211 start-page: 559 year: 1998 ident: 10.1016/j.scitotenv.2019.03.315_bb0270 article-title: A semi-distributed integrated flow and nitrogen model for multiple source assessment in catchments (INCA): part II — application to large river basins in south Wales and eastern England publication-title: Sci. Total Environ. doi: 10.1016/S0048-9697(98)00038-2 – volume: 467 start-page: 555 year: 2010 ident: 10.1016/j.scitotenv.2019.03.315_bb0240 article-title: Global threats to human water security and river biodiversity publication-title: Nature doi: 10.1038/nature09440 – volume: 637-638 start-page: 1069 year: 2018 ident: 10.1016/j.scitotenv.2019.03.315_bb0155 article-title: Modeling future flows of the Volta River system: impacts of climate change and socio-economic changes publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.04.350 – year: 2015 ident: 10.1016/j.scitotenv.2019.03.315_bb0005 – volume: 16 start-page: 147 year: 2000 ident: 10.1016/j.scitotenv.2019.03.315_bb0100 article-title: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments publication-title: Clim. Dyn. doi: 10.1007/s003820050010 – year: 2017 ident: 10.1016/j.scitotenv.2019.03.315_bb0075 – volume: 539 start-page: 276 issue: 7628 year: 2016 ident: 10.1016/j.scitotenv.2019.03.315_bb0055 article-title: Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity publication-title: Nature doi: 10.1038/nature19809 – volume: 540 start-page: 144 year: 2016 ident: 10.1016/j.scitotenv.2019.03.315_bb0015 article-title: Effects of afforestation on runoff and sediment load in an upland Mediterranean catchment publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.07.005 – year: 2014 ident: 10.1016/j.scitotenv.2019.03.315_bb0080 – volume: 365 start-page: 123 issue: 1 year: 2006 ident: 10.1016/j.scitotenv.2019.03.315_bb0220 article-title: An application of the GLUE methodology for estimating the parameters of the INCA N model publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2006.02.034 – volume: 146 start-page: 55 year: 2016 ident: 10.1016/j.scitotenv.2019.03.315_bb0065 article-title: Acid deposition in Asia: emissions, deposition, and ecosystem effects publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2016.07.018 – year: 2014 ident: 10.1016/j.scitotenv.2019.03.315_bb0125 article-title: Summary for policymakers – year: 2009 ident: 10.1016/j.scitotenv.2019.03.315_bb0255 – volume: 17 start-page: 1057 year: 2015 ident: 10.1016/j.scitotenv.2019.03.315_bb0275 article-title: Impacts of climate change and socio-economic scenarios on flow and water quality of the Ganges, Brahmaputra and Meghna (GBM) river systems: low flow and flood statistics publication-title: Environ. Sci. Process. Impacts doi: 10.1039/C4EM00619D |
SSID | ssj0000781 |
Score | 2.521558 |
Snippet | The Mekong delta is recognised as one of the world's most vulnerable mega-deltas, being subject to a range of environmental pressures including sea level rise,... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 218 |
SubjectTerms | air pollution ammonia carbon Climate change climate models drought economic development highlands Himalayan region hydrologic models Land use change Mekong River Modelling monsoon season nitrates nitrogen Nutrients population growth reactive phosphorus river deltas rivers sea level Socioeconomic change socioeconomics temperature total phosphorus United Kingdom Vietnam Vietnam Delta water quality watersheds |
Title | Water quality modelling of the Mekong River basin: Climate change and socioeconomics drive flow and nutrient flux changes to the Mekong Delta |
URI | https://dx.doi.org/10.1016/j.scitotenv.2019.03.315 https://www.ncbi.nlm.nih.gov/pubmed/30991313 https://www.proquest.com/docview/2210960173 https://www.proquest.com/docview/2237556156 |
Volume | 673 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hEFKlqqLb0i60yEi9piTYeXFDW9CWFRxQEdwsJ7arRasE7WZ5XPgH_GdmYmcpUlsOKIcojp1YmbHnszPfDMA3YYsitigBHao8ENzuBnlLBM4t2ss8VkYQwfn4JBmeiaOL-GIJBh0Xhtwq_dzv5vR2tvYlO_5r7lyNx8TxFVme5ClCkAgPWrdT9DrU6e_3T24eFMzG_WXGgY21n_l44XObGrHpNfl4tdFOOeXH_buF-hcCbS3R4Rq88xCS7btevoclU_Vg1SWVvOvB-sETdw2r-cE768Fbt0XHHPPoAzycI86cMkervGNtThwip7PaMoSF7NggePzNTslzg6G1G1d7bDAZI8Q1zPGFmao0I_HWxvObZ0xPsT6zk_qmvVtRtH_sCZbMb32zGWvqP9_ww0wa9RHODg9-DYaBz84QlCLmTaAjI1QpeGlThSgGBatVZKzlptC47LJZmhVCC0IcSaRiLkpbcF2YJDWZ1ULxdViu6sp8BpbrMM_KErElt0JFVgmDODHNTKx4mBnVh6STiCx96HLKoDGRnY_apVyIUpIoZcglirIP4aLhlYve8XKTvU7k8pkiSrQxLzfe7pRE4jClfy-qMvV8JndxaY2LxSjl_6vDU8pWGid9-OQ0bNFrjkietHzjNd3bhDd0RVvTUfgFlpvp3HxFTNUUW-2g2YKV_Z-j4QmdR6fno0e8zSao |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-hIrRJ0zTKYN2nkXiNSLDzxRvqQGXQPiDQeLOc2EZFVYLadBt_xP7n3cVOGdI2Hqa8Ob7Eytm-3zn3uwPYE7YoYosa0KHKA8HtQZC3RODcor3MY2UEEZzHk2R0Jb5cx9drMOy4MBRW6fd-t6e3u7Vv2fdfc_9uOiWOr8jyJE8RgkR4od--TtmpRA_Wj07PRpOHDTnNXOE8gWsbBR6FeeGjmxrh6TcK82oTnnIqkftnI_U3ENoao5NX8NKjSHbkBroJa6bqw4arK3nfh-3jB_oadvPrd9GHF-6Ujjny0Rb8_IpQc84cs_KetWVxiJ_OassQGbKxQfx4wy4oeIOhwZtWh2w4myLKNcxRhpmqNCMN18ZTnBdMz7E_s7P6e3u3ooT_OBJsWf7wYgvW1L-_4bOZNeo1XJ0cXw5HgS_QEJQi5k2gIyNUKXhpU4VABnWrVWSs5abQ6HnZLM0KoQWBjiRSMRelLbguTJKazGqh-Db0qroyb4DlOsyzskR4ya1QkVXCIFRMMxMrHmZGDSDpNCJLn72cimjMZBemditXqpSkShlyiaocQLgSvHMJPJ4WOexULh_NRYlm5mnh3W6SSFyp9PtFVaZeLuQBetfoL0Yp_1cfnlLB0jgZwI6bYatRcwTzNNHf_s_wPsGz0eX4XJ6fTs7ewXO6QyfVUfgees18aT4gxGqKj34J_QJ4_ye2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water+quality+modelling+of+the+Mekong+River+basin%3A+Climate+change+and+socioeconomics+drive+flow+and+nutrient+flux+changes+to+the+Mekong+Delta&rft.jtitle=The+Science+of+the+total+environment&rft.au=Whitehead%2C+P.G.&rft.au=Jin%2C+L.&rft.au=Bussi%2C+G.&rft.au=Voepel%2C+H.E.&rft.date=2019-07-10&rft.issn=0048-9697&rft.volume=673&rft.spage=218&rft.epage=229&rft_id=info:doi/10.1016%2Fj.scitotenv.2019.03.315&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_scitotenv_2019_03_315 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |