Water quality modelling of the Mekong River basin: Climate change and socioeconomics drive flow and nutrient flux changes to the Mekong Delta

The Mekong delta is recognised as one of the world's most vulnerable mega-deltas, being subject to a range of environmental pressures including sea level rise, increasing population, and changes in flows and nutrients from its upland catchment. With changing climate and socioeconomics there is...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 673; pp. 218 - 229
Main Authors Whitehead, P.G., Jin, L., Bussi, G., Voepel, H.E., Darby, S.E., Vasilopoulos, G., Manley, R., Rodda, H., Hutton, C., Hackney, C., Tri, Van Pham Dang, Hung, N.N.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 10.07.2019
Subjects
Online AccessGet full text
ISSN0048-9697
1879-1026
1879-1026
DOI10.1016/j.scitotenv.2019.03.315

Cover

Loading…
Abstract The Mekong delta is recognised as one of the world's most vulnerable mega-deltas, being subject to a range of environmental pressures including sea level rise, increasing population, and changes in flows and nutrients from its upland catchment. With changing climate and socioeconomics there is a need to assess how the Mekong catchment will be affected in terms of the delivery of water and nutrients into the delta system. Here we apply the Integrated Catchment model (INCA) to the whole Mekong River Basin to simulate flow and water quality, including nitrate, ammonia, total phosphorus and soluble reactive phosphorus. The impacts of climate change on all these variables have been assessed across 24 river reaches ranging from the Himalayas down to the delta in Vietnam. We used the UK Met Office PRECIS regionally coupled climate model to downscale precipitation and temperature to the Mekong catchment. This was accomplished using the Global Circulation Model GFDL-CM to provide the boundary conditions under two carbon control strategies, namely representative concentration pathways (RCP) 4.5 and a RCP 8.5 scenario. The RCP 4.5 scenario represents the carbon strategy required to meet the Paris Accord, which aims to limit peak global temperatures to below a 2 °C rise whilst seeking to pursue options that limit temperature rise to 1.5 °C. The RCP 8.5 scenario is associated with a larger 3–4 °C rise. In addition, we also constructed a range of socio-economic scenarios to investigate the potential impacts of changing population, atmospheric pollution, economic growth and land use change up to the 2050s. Results of INCA simulations indicate increases in mean flows of up to 24%, with flood flows in the monsoon period increasing by up to 27%, but with increasing periods of drought up to 2050. A shift in the timing of the monsoon is also simulated, with a 4 week advance in the onset of monsoon flows on average. Decreases in nitrogen and phosphorus concentrations occur primarily due to flow dilution, but fluxes of these nutrients also increase by 5%, which reflects the changing flow, land use change and population changes. Water quality along the Mekong River System (Phosphorus mg/l Left and Nitrate-N mg/l right) [Display omitted] •Climate will alter Mekong flows and seasonal patterns•Flooding will increase in the lower Mekong•Droughts will increase as Dam development increases•Socioeconomic effects will enhance nutrient fluxes into the delta•Eutrophication and increased delta flooding will occur
AbstractList The Mekong delta is recognised as one of the world's most vulnerable mega-deltas, being subject to a range of environmental pressures including sea level rise, increasing population, and changes in flows and nutrients from its upland catchment. With changing climate and socioeconomics there is a need to assess how the Mekong catchment will be affected in terms of the delivery of water and nutrients into the delta system. Here we apply the Integrated Catchment model (INCA) to the whole Mekong River Basin to simulate flow and water quality, including nitrate, ammonia, total phosphorus and soluble reactive phosphorus. The impacts of climate change on all these variables have been assessed across 24 river reaches ranging from the Himalayas down to the delta in Vietnam. We used the UK Met Office PRECIS regionally coupled climate model to downscale precipitation and temperature to the Mekong catchment. This was accomplished using the Global Circulation Model GFDL-CM to provide the boundary conditions under two carbon control strategies, namely representative concentration pathways (RCP) 4.5 and a RCP 8.5 scenario. The RCP 4.5 scenario represents the carbon strategy required to meet the Paris Accord, which aims to limit peak global temperatures to below a 2 °C rise whilst seeking to pursue options that limit temperature rise to 1.5 °C. The RCP 8.5 scenario is associated with a larger 3–4 °C rise. In addition, we also constructed a range of socio-economic scenarios to investigate the potential impacts of changing population, atmospheric pollution, economic growth and land use change up to the 2050s. Results of INCA simulations indicate increases in mean flows of up to 24%, with flood flows in the monsoon period increasing by up to 27%, but with increasing periods of drought up to 2050. A shift in the timing of the monsoon is also simulated, with a 4 week advance in the onset of monsoon flows on average. Decreases in nitrogen and phosphorus concentrations occur primarily due to flow dilution, but fluxes of these nutrients also increase by 5%, which reflects the changing flow, land use change and population changes.
The Mekong delta is recognised as one of the world's most vulnerable mega-deltas, being subject to a range of environmental pressures including sea level rise, increasing population, and changes in flows and nutrients from its upland catchment. With changing climate and socioeconomics there is a need to assess how the Mekong catchment will be affected in terms of the delivery of water and nutrients into the delta system. Here we apply the Integrated Catchment model (INCA) to the whole Mekong River Basin to simulate flow and water quality, including nitrate, ammonia, total phosphorus and soluble reactive phosphorus. The impacts of climate change on all these variables have been assessed across 24 river reaches ranging from the Himalayas down to the delta in Vietnam. We used the UK Met Office PRECIS regionally coupled climate model to downscale precipitation and temperature to the Mekong catchment. This was accomplished using the Global Circulation Model GFDL-CM to provide the boundary conditions under two carbon control strategies, namely representative concentration pathways (RCP) 4.5 and a RCP 8.5 scenario. The RCP 4.5 scenario represents the carbon strategy required to meet the Paris Accord, which aims to limit peak global temperatures to below a 2 °C rise whilst seeking to pursue options that limit temperature rise to 1.5 °C. The RCP 8.5 scenario is associated with a larger 3–4 °C rise. In addition, we also constructed a range of socio-economic scenarios to investigate the potential impacts of changing population, atmospheric pollution, economic growth and land use change up to the 2050s. Results of INCA simulations indicate increases in mean flows of up to 24%, with flood flows in the monsoon period increasing by up to 27%, but with increasing periods of drought up to 2050. A shift in the timing of the monsoon is also simulated, with a 4 week advance in the onset of monsoon flows on average. Decreases in nitrogen and phosphorus concentrations occur primarily due to flow dilution, but fluxes of these nutrients also increase by 5%, which reflects the changing flow, land use change and population changes. Water quality along the Mekong River System (Phosphorus mg/l Left and Nitrate-N mg/l right) [Display omitted] •Climate will alter Mekong flows and seasonal patterns•Flooding will increase in the lower Mekong•Droughts will increase as Dam development increases•Socioeconomic effects will enhance nutrient fluxes into the delta•Eutrophication and increased delta flooding will occur
The Mekong delta is recognised as one of the world's most vulnerable mega-deltas, being subject to a range of environmental pressures including sea level rise, increasing population, and changes in flows and nutrients from its upland catchment. With changing climate and socioeconomics there is a need to assess how the Mekong catchment will be affected in terms of the delivery of water and nutrients into the delta system. Here we apply the Integrated Catchment model (INCA) to the whole Mekong River Basin to simulate flow and water quality, including nitrate, ammonia, total phosphorus and soluble reactive phosphorus. The impacts of climate change on all these variables have been assessed across 24 river reaches ranging from the Himalayas down to the delta in Vietnam. We used the UK Met Office PRECIS regionally coupled climate model to downscale precipitation and temperature to the Mekong catchment. This was accomplished using the Global Circulation Model GFDL-CM to provide the boundary conditions under two carbon control strategies, namely representative concentration pathways (RCP) 4.5 and a RCP 8.5 scenario. The RCP 4.5 scenario represents the carbon strategy required to meet the Paris Accord, which aims to limit peak global temperatures to below a 2 °C rise whilst seeking to pursue options that limit temperature rise to 1.5 °C. The RCP 8.5 scenario is associated with a larger 3-4 °C rise. In addition, we also constructed a range of socio-economic scenarios to investigate the potential impacts of changing population, atmospheric pollution, economic growth and land use change up to the 2050s. Results of INCA simulations indicate increases in mean flows of up to 24%, with flood flows in the monsoon period increasing by up to 27%, but with increasing periods of drought up to 2050. A shift in the timing of the monsoon is also simulated, with a 4 week advance in the onset of monsoon flows on average. Decreases in nitrogen and phosphorus concentrations occur primarily due to flow dilution, but fluxes of these nutrients also increase by 5%, which reflects the changing flow, land use change and population changes.The Mekong delta is recognised as one of the world's most vulnerable mega-deltas, being subject to a range of environmental pressures including sea level rise, increasing population, and changes in flows and nutrients from its upland catchment. With changing climate and socioeconomics there is a need to assess how the Mekong catchment will be affected in terms of the delivery of water and nutrients into the delta system. Here we apply the Integrated Catchment model (INCA) to the whole Mekong River Basin to simulate flow and water quality, including nitrate, ammonia, total phosphorus and soluble reactive phosphorus. The impacts of climate change on all these variables have been assessed across 24 river reaches ranging from the Himalayas down to the delta in Vietnam. We used the UK Met Office PRECIS regionally coupled climate model to downscale precipitation and temperature to the Mekong catchment. This was accomplished using the Global Circulation Model GFDL-CM to provide the boundary conditions under two carbon control strategies, namely representative concentration pathways (RCP) 4.5 and a RCP 8.5 scenario. The RCP 4.5 scenario represents the carbon strategy required to meet the Paris Accord, which aims to limit peak global temperatures to below a 2 °C rise whilst seeking to pursue options that limit temperature rise to 1.5 °C. The RCP 8.5 scenario is associated with a larger 3-4 °C rise. In addition, we also constructed a range of socio-economic scenarios to investigate the potential impacts of changing population, atmospheric pollution, economic growth and land use change up to the 2050s. Results of INCA simulations indicate increases in mean flows of up to 24%, with flood flows in the monsoon period increasing by up to 27%, but with increasing periods of drought up to 2050. A shift in the timing of the monsoon is also simulated, with a 4 week advance in the onset of monsoon flows on average. Decreases in nitrogen and phosphorus concentrations occur primarily due to flow dilution, but fluxes of these nutrients also increase by 5%, which reflects the changing flow, land use change and population changes.
Author Vasilopoulos, G.
Rodda, H.
Whitehead, P.G.
Darby, S.E.
Hung, N.N.
Bussi, G.
Manley, R.
Jin, L.
Voepel, H.E.
Tri, Van Pham Dang
Hutton, C.
Hackney, C.
Author_xml – sequence: 1
  givenname: P.G.
  surname: Whitehead
  fullname: Whitehead, P.G.
  email: paul.whitehead@ouce.ox.ac.uk
  organization: School of Geography and Environmental Science, University of Southampton, Southampton SO17 1BJ, UK
– sequence: 2
  givenname: L.
  surname: Jin
  fullname: Jin, L.
  organization: Geology Department, State University of New York College at Cortland, Cortland, NY 13045, USA
– sequence: 3
  givenname: G.
  surname: Bussi
  fullname: Bussi, G.
  organization: School of Geography and the Environment, University of Oxford, Oxford OX1 3QY, UK
– sequence: 4
  givenname: H.E.
  surname: Voepel
  fullname: Voepel, H.E.
  organization: School of Geography and Environmental Science, University of Southampton, Southampton SO17 1BJ, UK
– sequence: 5
  givenname: S.E.
  surname: Darby
  fullname: Darby, S.E.
  organization: School of Geography and Environmental Science, University of Southampton, Southampton SO17 1BJ, UK
– sequence: 6
  givenname: G.
  surname: Vasilopoulos
  fullname: Vasilopoulos, G.
  organization: School of Geography and Environmental Science, University of Southampton, Southampton SO17 1BJ, UK
– sequence: 7
  givenname: R.
  surname: Manley
  fullname: Manley, R.
  organization: Water Resource Associates, Wallingford, PO Box 838, Oxon OX10 9XA, UK
– sequence: 8
  givenname: H.
  surname: Rodda
  fullname: Rodda, H.
  organization: Water Resource Associates, Wallingford, PO Box 838, Oxon OX10 9XA, UK
– sequence: 9
  givenname: C.
  surname: Hutton
  fullname: Hutton, C.
  organization: School of Geography and Environmental Science, University of Southampton, Southampton SO17 1BJ, UK
– sequence: 10
  givenname: C.
  surname: Hackney
  fullname: Hackney, C.
  organization: Energy and Environment Institute, University of Hull, Cottingham Road, Hull HU6 7RX, UK
– sequence: 11
  givenname: Van Pham Dang
  surname: Tri
  fullname: Tri, Van Pham Dang
  organization: Department of Water Resources, College of Environment and Natural Resources, Research Institute for Climate Change, Can Tho University, Viet Nam
– sequence: 12
  givenname: N.N.
  surname: Hung
  fullname: Hung, N.N.
  organization: Southern Institute of Water Resources Research (SIWRR), Research Centre for Rural Infrastructure Engineering Development, 658th Vo Van Kiet avenue Dist.5 HCMC, Viet Nam
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30991313$$D View this record in MEDLINE/PubMed
BookMark eNqNkd9uFCEUh4mpsdvqKyiX3swICzMMJl40W_8lNSZG4yVh4NCyzkILzGofwneWdbfGeFO5IcD3nRPO7wQdhRgAoWeUtJTQ_sW6zcaXWCBs2yWhsiWsZbR7gBZ0ELKhZNkfoQUhfGhkL8UxOsl5TeoSA32EjhmRkjLKFujnV10g4ZtZT77c4k20ME0-XOLocLkC_AG-xXr65LeVGnX24SVeTX5TLWyudLgErIPFORofwcQQN95kbFPlsZvi99-vYS7JQyj1Zv5x0DIu8e8O5zAV_Rg9dHrK8OSwn6Ivb15_Xr1rLj6-fb86u2gM71hpLAWuDWfGCd0NnAppNQXnGIyWcukGMYzc8oFK0lPdMW7cyOwIvYDBWa7ZKXq-r3ud4s0MuaiNz6b-XAeIc1bLJRNd19Ou_w-UEtkTKlhFnx7QedyAVdepzindqrtpV-DVHjAp5pzAqRqiLj6GkrSfFCVql65aqz_pql26ijBV062--Me_a3G_ebY3oU516yHtOAgGrE9girLR31vjFwexxyI
CitedBy_id crossref_primary_10_1016_j_catena_2020_104853
crossref_primary_10_1016_j_watres_2024_122663
crossref_primary_10_3390_w14244031
crossref_primary_10_1007_s10530_020_02430_2
crossref_primary_10_1016_j_ecss_2019_106415
crossref_primary_10_1016_j_ejrh_2022_101132
crossref_primary_10_1016_j_scitotenv_2020_140656
crossref_primary_10_3390_w16202944
crossref_primary_10_1016_j_scitotenv_2020_137132
crossref_primary_10_1002_rra_3544
crossref_primary_10_1016_j_scitotenv_2023_161483
crossref_primary_10_1007_s10750_023_05270_y
crossref_primary_10_2166_wcc_2019_175
crossref_primary_10_3390_su151813616
crossref_primary_10_24857_rgsa_v18n2_096
crossref_primary_10_1371_journal_pone_0262589
crossref_primary_10_1038_s41597_023_02193_0
crossref_primary_10_1016_j_jclepro_2022_132694
crossref_primary_10_1007_s11270_021_05394_8
crossref_primary_10_1017_sus_2021_2
crossref_primary_10_1016_j_ecolind_2021_108220
crossref_primary_10_1016_j_jhydrol_2021_127344
crossref_primary_10_1080_10256016_2019_1673746
crossref_primary_10_3390_w16243635
crossref_primary_10_1016_j_cosust_2021_04_004
crossref_primary_10_3390_su15119110
crossref_primary_10_1016_j_scitotenv_2022_158248
crossref_primary_10_1016_j_envres_2023_115617
crossref_primary_10_1016_j_scitotenv_2021_150320
crossref_primary_10_1109_ACCESS_2023_3301153
crossref_primary_10_22144_ctu_jvn_2022_038
crossref_primary_10_1007_s42452_024_06013_x
crossref_primary_10_1111_geoj_12479
crossref_primary_10_1016_j_scitotenv_2020_142468
crossref_primary_10_1016_j_spc_2022_04_018
crossref_primary_10_3390_w15173027
crossref_primary_10_1111_area_12954
crossref_primary_10_1016_j_envpol_2020_116332
crossref_primary_10_3390_cli8030041
crossref_primary_10_1016_j_seares_2025_102573
crossref_primary_10_3390_w12113294
crossref_primary_10_1016_j_ecolind_2023_110685
crossref_primary_10_1016_j_scitotenv_2021_151345
crossref_primary_10_1016_j_jenvman_2023_119069
crossref_primary_10_1016_j_eng_2021_06_026
crossref_primary_10_1016_j_scitotenv_2020_143617
crossref_primary_10_3390_su13031254
crossref_primary_10_1016_j_envdev_2023_100869
crossref_primary_10_1016_j_jhydrol_2023_130338
crossref_primary_10_1038_s43247_021_00208_5
crossref_primary_10_3390_su152316316
crossref_primary_10_1016_j_scitotenv_2020_137863
crossref_primary_10_1029_2020EF001939
Cites_doi 10.1016/j.scitotenv.2018.03.368
10.1098/rsta.2012.0413
10.1002/hyp.1328
10.1016/j.scitotenv.2018.08.376
10.1007/s00477-008-0273-z
10.1016/S0048-9697(98)00037-0
10.1623/hysj.54.1.101
10.1039/C4EM00616J
10.1016/j.quaint.2014.02.006
10.5194/hess-6-559-2002
10.1016/S0048-9697(99)00050-9
10.5194/hess-18-855-2014
10.1002/2013WR014651
10.1016/j.scitotenv.2018.04.362
10.1039/C5EM90022K
10.5194/hess-6-583-2002
10.1007/s11368-017-1684-6
10.1038/nclimate2469
10.1016/0043-1354(80)90040-8
10.1016/j.earscirev.2015.03.007
10.1016/j.scitotenv.2018.04.349
10.1098/rsta.2016.0448
10.1016/j.scitotenv.2018.03.022
10.1007/BF01186220
10.1016/j.csr.2012.02.010
10.1016/j.ecss.2016.08.017
10.1016/0022-1694(70)90255-6
10.1016/j.jglr.2012.11.003
10.1016/j.jhydrol.2015.05.033
10.1098/rstb.1990.0182
10.1016/S0048-9697(98)00038-2
10.1038/nature09440
10.1016/j.scitotenv.2018.04.350
10.1007/s003820050010
10.1038/nature19809
10.1016/j.scitotenv.2015.07.005
10.1016/j.scitotenv.2006.02.034
10.1016/j.atmosenv.2016.07.018
10.1039/C4EM00619D
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019. Published by Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019. Published by Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2019.03.315
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
EndPage 229
ExternalDocumentID 30991313
10_1016_j_scitotenv_2019_03_315
S0048969719313130
Genre Journal Article
GeographicLocations Himalayan region
United Kingdom
Vietnam
Mekong River
GeographicLocations_xml – name: United Kingdom
– name: Himalayan region
– name: Vietnam
– name: Mekong River
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SEW
SSH
WUQ
XPP
ZXP
ZY4
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c453t-d1e4ac43cf7a584179da1eff3ebd149f878b4d4819061a534cfb3dbe67e8fd4a3
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Fri Jul 11 08:12:06 EDT 2025
Thu Jul 10 23:12:51 EDT 2025
Thu Apr 03 07:03:51 EDT 2025
Tue Jul 01 03:34:55 EDT 2025
Thu Apr 24 22:54:11 EDT 2025
Fri Feb 23 02:30:41 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Climate change
Socioeconomic change
Land use change
Nutrients
Modelling
Mekong River
Vietnam Delta
Language English
License Copyright © 2019. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-d1e4ac43cf7a584179da1eff3ebd149f878b4d4819061a534cfb3dbe67e8fd4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://hull-repository.worktribe.com/output/1562889
PMID 30991313
PQID 2210960173
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2237556156
proquest_miscellaneous_2210960173
pubmed_primary_30991313
crossref_citationtrail_10_1016_j_scitotenv_2019_03_315
crossref_primary_10_1016_j_scitotenv_2019_03_315
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2019_03_315
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-10
PublicationDateYYYYMMDD 2019-07-10
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-10
  day: 10
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Buendia, Bussi, Tuset, Vericat, Sabater, Palau, Batalla (bb0015) 2016; 540
UNDP (bb5010) 2018
Spear, Hornberger (bb0230) 1980; 1980
Jones, Noguer, Hassell, Hudson, Wilson, Jenkins, Mitchell (bb0160) 2004
Nicholls, Brown, Goodwin, Wahl, Lowe, Solan, Godbold, Haigh, Lincke, Hinkel, Wolff, Merkens (bb0210) 2018; 376
IPCC (bb0125) 2014
Duan, Yu, Zhang, Wang, Pan, Larssen, Tang, Mulder (bb0065) 2016; 146
(bb0030) 2009
Darby, Hackney, Leyland, Kummu, Lauri, Parsons, Best, Nicholas, Aalto (bb0055) 2016; 539
Whitehead, Wilson, Butterfield, Seed (bb0270) 1998; 210–211
Dunn (bb0075) 2017
FAO (bb0090) 2013
Hettelingh, Sverdrup, Zhao (bb0110) 1995; 85
Futter, Erlandsson, Butterfield, Whitehead, Oni, Wade (bb0095) 2014; 18
Collins, Whitehead, Butterfield (bb0045) 1999; 228
Carling (bb0035) 2009
Whitehead (bb0260) 1990; 329
Whitehead, Crossman, Balana, Futter, Comber, Jin, Skuras, Wade, Bowes, Read (bb5000) 2013; 371
Edenhofer, Pichs-Madruga, Sokona, Farahani, Kadner, Seyboth, Adler, Baum, Brunner, Eickemeier, Kriemann (bb0080) 2014
Whitehead, Barbour, Futter, Sarkar, Rodda, Caesar, Butterfield, Jin, Sinha, Nicholls, Salehin (bb0275) 2015; 17
Xue, He, Liu, Warner (bb0300) 2012; 37
Crossman, Futter, Oni, Whitehead, Jin, Butterfield, Baulch, Dillon (bb0050) 2013; 39
Nash, Sutcliffe (bb0195) 1970; 10
Pathak D., Whitehead P G, Futter M N and Sinha R, (2018). Water quality assessment and catchment-scale nutrient flux modeling in the Ramganga River basin in North India: an application of INCA model. Sci. Total Environ., Volumes 631–632, 201–215.
Whitehead, Bussi, Hossain, Dolk, Das, Comber, Peters, Charles, Hope, Hossain (bb0290) 2018; 631–632
Lu, Li, Kummu, Padawangi, Wang (bb0180) 2014; 336
Lee, Dang (bb0175) 2018; 16
Vörösmarty, McIntyre, Gessner, Dudgeon, Prusevich, Green, Glidden, Bunn, Sullivan, Liermann, Davies (bb0240) 2010; 467
Dean, Freer, Beven, Wade, Butterfield (bb0060) 2009; 23
Kondolf, Rubin, Minear (bb0170) 2014; 50
Gordon, Cooper, Senior, Banks, Gregory, Johns, Mitchell, Wood (bb0100) 2000; 16
Jin, Whitehead, Appeaning Addo, Amisigo, Macadam, Janes, Crossman, Nicholls, McCartney, Rodda (bb0155) 2018; 637-638
Whitehead, Sarkar, Jin, Futter, Caesar, Barbour, Butterfield, Sinha, Nicholls, Hutton, Leckie (bb0280) 2015; 17
Nicholls, Hutton, Lázár, Allan, Adger, Adams, Wolf, Rahman, Salehin (bb0205) 2016; 183
Janes, McGrath, Macadam, Jones (bb0140) 2019; 650
Whitehead, Wilson, Butterfield (bb0265) 1998; 210–211
Herrero, Buendía, Bussi, Sabater, Vericat, Palau, Batalla (bb0105) 2017; 17
Mekong River Commission, (2010). IWRM-based Basin Development Strategy for the Lower Mekong Basin. Fourth Draft. Mekong River Commission. MRC. 2010b. The Mekong Ricer Commission. (Available at
Jin, Whitehead, Sarkar, Sinha, Futter, Butterfield, Caesar, Crossman (bb0145) 2015; 17
Wade, Durand, Beaujouan, Wessel, Raat, Whitehead, Butterfield, Rankinen, Lepisto (bb0245) 2002; 6
Accessed on 16/12/2010). United Nations Environment Programme. (Afte).
Fan, He, Wang (bb0085) 2015; 146
Dung, Merz, Bardossy (bb0070) 2015; 527
Smajgl, Toan, Nhan, Ward, Trung, Quang Trí, Phạm Thanh (bb0225) 2015; 5
Whitehead, Jin, Macadam, Janes, Sarkar, Rodda, Sinha, Nicholls (bb0295) 2018; 636
Nicholls, Whitehead, Wolf, Rahman, Salehin (bb0200) 2015; 17
Wade, Whitehead, Butterfield (bb0250) 2002
Jin, Whitehead, Rodda, Macadam, Sarkar (bb0150) 2018; 637–638
Young (bb0305) 2003; 17
Kebede, Nicholls, Allan, Arto, Cazcarro, Fernandes, Hill, Hutton, Kay, Lázár, Macadam, Palmer, Suckall, Tompkins, Vincent, Whitehead (bb0165) 2018; 635
Rankinen, Karvonen, Butterfield (bb0220) 2006; 365
Adon, Galy-Lacaux, Serça, Guedant, Vonghamsao, Rode, Meyerfeld, Guerin (bb0005) 2015
Chapra (bb0040) 2018
Thuc, Thang, Huong, Khiem, Hien, Phong (bb0235) 2016
Whitehead, Wilby, Battarbee, Kernan, Wade (bb5005) 2009; 54
Wade, Butterfield, Lawrence, Bärlund, Ekholm, Lepistö, Yli-Halla, Rankinen, Granlund, Durand, Kaste (bb0255) 2009
Whitehead (10.1016/j.scitotenv.2019.03.315_bb0275) 2015; 17
Nicholls (10.1016/j.scitotenv.2019.03.315_bb0205) 2016; 183
Futter (10.1016/j.scitotenv.2019.03.315_bb0095) 2014; 18
Kebede (10.1016/j.scitotenv.2019.03.315_bb0165) 2018; 635
Gordon (10.1016/j.scitotenv.2019.03.315_bb0100) 2000; 16
Whitehead (10.1016/j.scitotenv.2019.03.315_bb0270) 1998; 210–211
Wade (10.1016/j.scitotenv.2019.03.315_bb0255) 2009
Young (10.1016/j.scitotenv.2019.03.315_bb0305) 2003; 17
IPCC (10.1016/j.scitotenv.2019.03.315_bb0125) 2014
Nicholls (10.1016/j.scitotenv.2019.03.315_bb0200) 2015; 17
Nash (10.1016/j.scitotenv.2019.03.315_bb0195) 1970; 10
Edenhofer (10.1016/j.scitotenv.2019.03.315_bb0080) 2014
FAO (10.1016/j.scitotenv.2019.03.315_bb0090) 2013
Dunn (10.1016/j.scitotenv.2019.03.315_bb0075) 2017
Jones (10.1016/j.scitotenv.2019.03.315_bb0160) 2004
Thuc (10.1016/j.scitotenv.2019.03.315_bb0235) 2016
Janes (10.1016/j.scitotenv.2019.03.315_bb0140) 2019; 650
Whitehead (10.1016/j.scitotenv.2019.03.315_bb5005) 2009; 54
Carling (10.1016/j.scitotenv.2019.03.315_bb0035) 2009
Whitehead (10.1016/j.scitotenv.2019.03.315_bb0280) 2015; 17
10.1016/j.scitotenv.2019.03.315_bb0190
UNDP (10.1016/j.scitotenv.2019.03.315_bb5010)
Whitehead (10.1016/j.scitotenv.2019.03.315_bb5000) 2013; 371
Whitehead (10.1016/j.scitotenv.2019.03.315_bb0290) 2018; 631–632
Wade (10.1016/j.scitotenv.2019.03.315_bb0245) 2002; 6
Lee (10.1016/j.scitotenv.2019.03.315_bb0175) 2018; 16
Darby (10.1016/j.scitotenv.2019.03.315_bb0055) 2016; 539
Jin (10.1016/j.scitotenv.2019.03.315_bb0150) 2018; 637–638
Xue (10.1016/j.scitotenv.2019.03.315_bb0300) 2012; 37
Chapra (10.1016/j.scitotenv.2019.03.315_bb0040) 2018
Herrero (10.1016/j.scitotenv.2019.03.315_bb0105) 2017; 17
Rankinen (10.1016/j.scitotenv.2019.03.315_bb0220) 2006; 365
Fan (10.1016/j.scitotenv.2019.03.315_bb0085) 2015; 146
Kondolf (10.1016/j.scitotenv.2019.03.315_bb0170) 2014; 50
Vörösmarty (10.1016/j.scitotenv.2019.03.315_bb0240) 2010; 467
Spear (10.1016/j.scitotenv.2019.03.315_bb0230) 1980; 1980
Jin (10.1016/j.scitotenv.2019.03.315_bb0155) 2018; 637-638
Duan (10.1016/j.scitotenv.2019.03.315_bb0065) 2016; 146
Smajgl (10.1016/j.scitotenv.2019.03.315_bb0225) 2015; 5
Whitehead (10.1016/j.scitotenv.2019.03.315_bb0265) 1998; 210–211
Hettelingh (10.1016/j.scitotenv.2019.03.315_bb0110) 1995; 85
Wade (10.1016/j.scitotenv.2019.03.315_bb0250) 2002
(10.1016/j.scitotenv.2019.03.315_bb0030) 2009
Nicholls (10.1016/j.scitotenv.2019.03.315_bb0210) 2018; 376
Crossman (10.1016/j.scitotenv.2019.03.315_bb0050) 2013; 39
Jin (10.1016/j.scitotenv.2019.03.315_bb0145) 2015; 17
Whitehead (10.1016/j.scitotenv.2019.03.315_bb0295) 2018; 636
Whitehead (10.1016/j.scitotenv.2019.03.315_bb0260) 1990; 329
Buendia (10.1016/j.scitotenv.2019.03.315_bb0015) 2016; 540
Adon (10.1016/j.scitotenv.2019.03.315_bb0005) 2015
Collins (10.1016/j.scitotenv.2019.03.315_bb0045) 1999; 228
Dean (10.1016/j.scitotenv.2019.03.315_bb0060) 2009; 23
Dung (10.1016/j.scitotenv.2019.03.315_bb0070) 2015; 527
10.1016/j.scitotenv.2019.03.315_bb0215
Lu (10.1016/j.scitotenv.2019.03.315_bb0180) 2014; 336
References_xml – volume: 146
  start-page: 77
  year: 2015
  end-page: 91
  ident: bb0085
  article-title: Environmental consequences of damming the mainstream lancang-mekong river: a review
  publication-title: Earth Sci. Rev.
– volume: 17
  start-page: 1082
  year: 2015
  end-page: 1097
  ident: bb0280
  article-title: Dynamic modeling of the Ganga river system: impacts of future climate and socio-economic change on flows and nitrogen fluxes in India and Bangladesh
  publication-title: Environ. Sci. Process. Impacts
– volume: 650
  start-page: 1499
  year: 2019
  end-page: 1520
  ident: bb0140
  article-title: High-resolution climate projections for South Asia to inform climate impacts and adaptation studies in the Ganges-Brahmaputra-Meghna and Mahanadi deltas
  publication-title: Sci. Total Environ.
– volume: 329
  start-page: 403
  year: 1990
  end-page: 410
  ident: bb0260
  article-title: Modelling nitrate from agriculture into public water supplies
  publication-title: Philos. Trans. R. Soc. London. Ser. B Biol. Sci.
– volume: 228
  start-page: 259
  year: 1999
  end-page: 274
  ident: bb0045
  article-title: Nitrogen leaching from catchments in the Middle Hills of Nepal; an application of the INCA model
  publication-title: Sci. Total Environ.
– volume: 16
  start-page: 147
  year: 2000
  end-page: 168
  ident: bb0100
  article-title: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments
  publication-title: Clim. Dyn.
– volume: 210–211
  start-page: 547
  year: 1998
  end-page: 558
  ident: bb0265
  article-title: A semi-distributed integrated nitrogen model for multiple source assessment in catchments (INCA): part I — model structure and process equations
  publication-title: Sci. Total Environ.
– year: 2014
  ident: bb0080
  article-title: Summary for Policymakers Climate Change 2014, Mitigation of Climate Change. IPCC 2014, Climate Change 2014: Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
– start-page: 13
  year: 2009
  end-page: 28
  ident: bb0035
  article-title: The geology of the lower Mekong river
  publication-title: The Mekong: Biophysical Environment of an International River
– volume: 17
  start-page: 1016
  year: 2015
  end-page: 1017
  ident: bb0200
  article-title: The Ganges–Brahmaputra–Meghna delta system: biophysical models to support analysis of ecosystem services and poverty alleviation
  publication-title: Environ. Sci. Process. Impacts
– volume: 467
  start-page: 555
  year: 2010
  end-page: 561
  ident: bb0240
  article-title: Global threats to human water security and river biodiversity
  publication-title: Nature
– volume: 1980
  start-page: 43
  year: 1980
  end-page: 49
  ident: bb0230
  article-title: Eutrophication in the Peel Inlet II. Identification of critical uncertainties via generalised sensitivity analysis
  publication-title: Water Res.
– volume: 39
  start-page: 19
  year: 2013
  end-page: 32
  ident: bb0050
  article-title: Impacts of climate change on hydrology and water quality: future proofing management strategies in the Lake Simcoe watershed, Canada
  publication-title: J. Great Lakes Res.
– year: 2002
  ident: bb0250
  article-title: The integrated catchments model of phosphorus dynamics (INCA-P), a new approach for multiple source assessment in heterogeneous river systems: model structure and equations
  publication-title: Hydrol. Earth Syst. Sci.
– year: 2017
  ident: bb0075
  article-title: Multidecadal Fluvial Sediment Fluxes to Major Deltas Under Environmental Change Scenarios: Projections and Their Implications
– volume: 210–211
  start-page: 559
  year: 1998
  end-page: 583
  ident: bb0270
  article-title: A semi-distributed integrated flow and nitrogen model for multiple source assessment in catchments (INCA): part II — application to large river basins in south Wales and eastern England
  publication-title: Sci. Total Environ.
– volume: 17
  year: 2017
  ident: bb0105
  article-title: Modeling the sedimentary response of a large Pyrenean basin to global change
  publication-title: J. Soils Sediments
– volume: 85
  start-page: 2565
  year: 1995
  end-page: 2570
  ident: bb0110
  article-title: Deriving critical loads for Asia
  publication-title: Water Air Soil Pollut.
– volume: 336
  start-page: 145
  year: 2014
  end-page: 157
  ident: bb0180
  article-title: Observed changes in the water flow at Chiang Saen in the lower Mekong: impacts of Chinese dams?
  publication-title: Quat. Int.
– volume: 18
  start-page: 855
  year: 2014
  end-page: 873
  ident: bb0095
  article-title: PERSiST: a flexible rainfall-runoff modelling toolkit for use with the INCA family of models
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 183
  start-page: 370
  year: 2016
  end-page: 381
  ident: bb0205
  article-title: Integrated assessment of social and environmental sustainability dynamics in the Ganges-Brahmaputra-Meghna delta, Bangladesh
  publication-title: Estuar. Coast. Shelf Sci.
– volume: 37
  start-page: 66
  year: 2012
  end-page: 78
  ident: bb0300
  article-title: Modeling transport and deposition of the Mekong River sediment
  publication-title: Cont. Shelf Res.
– volume: 365
  start-page: 123
  year: 2006
  end-page: 139
  ident: bb0220
  article-title: An application of the GLUE methodology for estimating the parameters of the INCA N model
  publication-title: Sci. Total Environ.
– volume: 527
  start-page: 704
  year: 2015
  end-page: 717
  ident: bb0070
  article-title: H. ApelHandling uncertainty in bivariate quantile estimation–an application to flood hazard analysis in the Mekong Delta
  publication-title: J. Hydrol.
– volume: 17
  start-page: 1057
  year: 2015
  end-page: 1069
  ident: bb0275
  article-title: Impacts of climate change and socio-economic scenarios on flow and water quality of the Ganges, Brahmaputra and Meghna (GBM) river systems: low flow and flood statistics
  publication-title: Environ. Sci. Process. Impacts
– volume: 50
  start-page: 5158
  year: 2014
  end-page: 5169
  ident: bb0170
  article-title: Dams on the Mekong: cumulative sediment starvation
  publication-title: Water Resour. Res.
– year: 2004
  ident: bb0160
  article-title: Generating High Resolution Climate Change Scenarios Using PRECIS
– year: 2016
  ident: bb0235
  article-title: Climate change and sea level rise scenarios for Vietnam, technical summary for policymakers
  publication-title: Report to Ministry of Natural Resources & Environment, Vietnam Institute of Meteorology, Hydrology and Climate Change Hanoi, Vietnam
– year: 2018
  ident: bb5010
– volume: 17
  start-page: 1098
  year: 2015
  end-page: 1110
  ident: bb0145
  article-title: Assessing the impacts of climate change and socio-economic changes on flow and phosphorus flux in the Ganga river system
  publication-title: Environ. Sci.: Processes Impacts
– volume: 146
  start-page: 55
  year: 2016
  end-page: 69
  ident: bb0065
  article-title: Acid deposition in Asia: emissions, deposition, and ecosystem effects
  publication-title: Atmos. Environ.
– volume: 376
  start-page: 20160448
  year: 2018
  ident: bb0210
  article-title: Stabilization of global temperature at 1.5°C and 2.0°C: implications for coastal areas
  publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
– volume: 635
  start-page: 659
  year: 2018
  end-page: 672
  ident: bb0165
  article-title: Applying the global RCP–SSP–SPA scenario framework at sub-national scale: a multi-scale and participatory scenario approach
  publication-title: Sci. Total Environ.
– volume: 6
  start-page: 559
  year: 2002
  end-page: 582
  ident: bb0245
  article-title: A nitrogen model for European catchments: INCA, new model structure and equations
  publication-title: Hydrol. Earth Syst. Sci.
– start-page: 156
  year: 2013
  ident: bb0090
  article-title: The State of Food and Agriculture, World Agriculture Report, Food and Agriculture Organisation, Rome
– year: 2009
  ident: bb0255
  article-title: The Integrated Catchment Model of Phosphorus (INCA-P), a New Structure to Simulate Particulate and Soluble Phosphorus Transport in European Catchments, Deliverable 185 to the EU Euro-Limpacs Project
– volume: 371
  start-page: 1
  year: 2013
  end-page: 17
  ident: bb5000
  article-title: Research article: A cost-effectiveness analysis of water security and water quality: impacts of climate and land-use change on the River Thames system
  publication-title: Phil. Trans. R. Soc. A
– volume: 17
  start-page: 2195
  year: 2003
  end-page: 2217
  ident: bb0305
  article-title: Top-down and data-based mechanistic modelling of rainfall-flow dynamics at the catchment scale
  publication-title: Hydrol. Process.
– volume: 637-638
  start-page: 1069
  year: 2018
  end-page: 1080
  ident: bb0155
  article-title: Modeling future flows of the Volta River system: impacts of climate change and socio-economic changes
  publication-title: Sci. Total Environ.
– reference: Pathak D., Whitehead P G, Futter M N and Sinha R, (2018). Water quality assessment and catchment-scale nutrient flux modeling in the Ramganga River basin in North India: an application of INCA model. Sci. Total Environ., Volumes 631–632, 201–215.
– reference: Mekong River Commission, (2010). IWRM-based Basin Development Strategy for the Lower Mekong Basin. Fourth Draft. Mekong River Commission. MRC. 2010b. The Mekong Ricer Commission. (Available at:
– volume: 10
  start-page: 282
  year: 1970
  end-page: 290
  ident: bb0195
  article-title: River flow forecasting through conceptual models - part 1 - a discussion of principles
  publication-title: J. Hydrol.
– volume: 637–638
  start-page: 907
  year: 2018
  end-page: 917
  ident: bb0150
  article-title: Simulating climate change and socio-economic change impacts on flows and water quality in the Mahanadi River system, India
  publication-title: Sci. Total Environ.
– start-page: 432
  year: 2009
  ident: bb0030
  publication-title: The Mekong: Biophysical Environment of an International River
– volume: 540
  start-page: 144
  year: 2016
  end-page: 157
  ident: bb0015
  article-title: Effects of afforestation on runoff and sediment load in an upland Mediterranean catchment
  publication-title: Sci. Total Environ.
– start-page: 333
  year: 2018
  end-page: 349
  ident: bb0040
  article-title: Water quality
  publication-title: Handbook of Environmental Engineering
– volume: 54
  start-page: 101
  year: 2009
  end-page: 124
  ident: bb5005
  article-title: A review of the potential impacts of climate change on surface water quality
  publication-title: Hydrol. Sci.
– volume: 16
  start-page: 1
  year: 2018
  end-page: 10
  ident: bb0175
  publication-title: Paddy Water Environ.
– volume: 23
  start-page: 991
  year: 2009
  end-page: 1010
  ident: bb0060
  article-title: Uncertainty assessment of a process-based integrated catchment model of phosphorus
  publication-title: Stoch. Env. Res. Risk A.
– volume: 631–632
  year: 2018
  ident: bb0290
  article-title: Restoring water quality in the polluted Turag-Tongi-Balu river system, Dhaka: modelling nutrient and total coliform intervention strategies
  publication-title: Sci. Total Environ.
– reference: . Accessed on 16/12/2010). United Nations Environment Programme. (Afte).
– volume: 5
  start-page: 167
  year: 2015
  end-page: 174
  ident: bb0225
  article-title: Responding to rising sea levels in the Mekong Delta
  publication-title: Nat. Clim. Chang.
– volume: 539
  start-page: 276
  year: 2016
  end-page: 279
  ident: bb0055
  article-title: Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity
  publication-title: Nature
– volume: 636
  start-page: 1362
  year: 2018
  end-page: 1372
  ident: bb0295
  article-title: Modelling impacts of climate change and socio-economic change on the Ganga, Brahmaputra, Meghna, Hooghly and Mahanadi river systems in India and Bangladesh
  publication-title: Sci. Total Environ.
– year: 2015
  ident: bb0005
  article-title: Atmospheric Nitrogen Deposition in a Subtropical Hydroelectric Reservoir (Nam Theun II Case Study, Lao PDR) First Assessment of Nitrogen Deposition Budget Following the Impoundment of a Subtropical Hydroelectric Reservoir (Nam Theun II, Lao PDR)
– year: 2014
  ident: bb0125
  article-title: Summary for policymakers
  publication-title: Climate Change 2014, Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
– volume: 635
  start-page: 659
  year: 2018
  ident: 10.1016/j.scitotenv.2019.03.315_bb0165
  article-title: Applying the global RCP–SSP–SPA scenario framework at sub-national scale: a multi-scale and participatory scenario approach
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.03.368
– volume: 371
  start-page: 1
  issue: 2002
  year: 2013
  ident: 10.1016/j.scitotenv.2019.03.315_bb5000
  article-title: Research article: A cost-effectiveness analysis of water security and water quality: impacts of climate and land-use change on the River Thames system
  publication-title: Phil. Trans. R. Soc. A
  doi: 10.1098/rsta.2012.0413
– volume: 17
  start-page: 2195
  year: 2003
  ident: 10.1016/j.scitotenv.2019.03.315_bb0305
  article-title: Top-down and data-based mechanistic modelling of rainfall-flow dynamics at the catchment scale
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.1328
– volume: 650
  start-page: 1499
  year: 2019
  ident: 10.1016/j.scitotenv.2019.03.315_bb0140
  article-title: High-resolution climate projections for South Asia to inform climate impacts and adaptation studies in the Ganges-Brahmaputra-Meghna and Mahanadi deltas
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.08.376
– volume: 23
  start-page: 991
  year: 2009
  ident: 10.1016/j.scitotenv.2019.03.315_bb0060
  article-title: Uncertainty assessment of a process-based integrated catchment model of phosphorus
  publication-title: Stoch. Env. Res. Risk A.
  doi: 10.1007/s00477-008-0273-z
– volume: 210–211
  start-page: 547
  year: 1998
  ident: 10.1016/j.scitotenv.2019.03.315_bb0265
  article-title: A semi-distributed integrated nitrogen model for multiple source assessment in catchments (INCA): part I — model structure and process equations
  publication-title: Sci. Total Environ.
  doi: 10.1016/S0048-9697(98)00037-0
– volume: 54
  start-page: 101
  issue: 1
  year: 2009
  ident: 10.1016/j.scitotenv.2019.03.315_bb5005
  article-title: A review of the potential impacts of climate change on surface water quality
  publication-title: Hydrol. Sci.
  doi: 10.1623/hysj.54.1.101
– year: 2016
  ident: 10.1016/j.scitotenv.2019.03.315_bb0235
  article-title: Climate change and sea level rise scenarios for Vietnam, technical summary for policymakers
– start-page: 432
  year: 2009
  ident: 10.1016/j.scitotenv.2019.03.315_bb0030
– volume: 17
  start-page: 1082
  year: 2015
  ident: 10.1016/j.scitotenv.2019.03.315_bb0280
  article-title: Dynamic modeling of the Ganga river system: impacts of future climate and socio-economic change on flows and nitrogen fluxes in India and Bangladesh
  publication-title: Environ. Sci. Process. Impacts
  doi: 10.1039/C4EM00616J
– volume: 336
  start-page: 145
  year: 2014
  ident: 10.1016/j.scitotenv.2019.03.315_bb0180
  article-title: Observed changes in the water flow at Chiang Saen in the lower Mekong: impacts of Chinese dams?
  publication-title: Quat. Int.
  doi: 10.1016/j.quaint.2014.02.006
– volume: 6
  start-page: 559
  year: 2002
  ident: 10.1016/j.scitotenv.2019.03.315_bb0245
  article-title: A nitrogen model for European catchments: INCA, new model structure and equations
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-6-559-2002
– volume: 631–632
  year: 2018
  ident: 10.1016/j.scitotenv.2019.03.315_bb0290
  article-title: Restoring water quality in the polluted Turag-Tongi-Balu river system, Dhaka: modelling nutrient and total coliform intervention strategies
  publication-title: Sci. Total Environ.
– volume: 228
  start-page: 259
  year: 1999
  ident: 10.1016/j.scitotenv.2019.03.315_bb0045
  article-title: Nitrogen leaching from catchments in the Middle Hills of Nepal; an application of the INCA model
  publication-title: Sci. Total Environ.
  doi: 10.1016/S0048-9697(99)00050-9
– volume: 18
  start-page: 855
  year: 2014
  ident: 10.1016/j.scitotenv.2019.03.315_bb0095
  article-title: PERSiST: a flexible rainfall-runoff modelling toolkit for use with the INCA family of models
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-18-855-2014
– volume: 50
  start-page: 5158
  year: 2014
  ident: 10.1016/j.scitotenv.2019.03.315_bb0170
  article-title: Dams on the Mekong: cumulative sediment starvation
  publication-title: Water Resour. Res.
  doi: 10.1002/2013WR014651
– ident: 10.1016/j.scitotenv.2019.03.315_bb5010
– volume: 636
  start-page: 1362
  year: 2018
  ident: 10.1016/j.scitotenv.2019.03.315_bb0295
  article-title: Modelling impacts of climate change and socio-economic change on the Ganga, Brahmaputra, Meghna, Hooghly and Mahanadi river systems in India and Bangladesh
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.04.362
– year: 2004
  ident: 10.1016/j.scitotenv.2019.03.315_bb0160
– volume: 17
  start-page: 1016
  year: 2015
  ident: 10.1016/j.scitotenv.2019.03.315_bb0200
  article-title: The Ganges–Brahmaputra–Meghna delta system: biophysical models to support analysis of ecosystem services and poverty alleviation
  publication-title: Environ. Sci. Process. Impacts
  doi: 10.1039/C5EM90022K
– start-page: 333
  year: 2018
  ident: 10.1016/j.scitotenv.2019.03.315_bb0040
  article-title: Water quality
– year: 2002
  ident: 10.1016/j.scitotenv.2019.03.315_bb0250
  article-title: The integrated catchments model of phosphorus dynamics (INCA-P), a new approach for multiple source assessment in heterogeneous river systems: model structure and equations
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-6-583-2002
– start-page: 13
  year: 2009
  ident: 10.1016/j.scitotenv.2019.03.315_bb0035
  article-title: The geology of the lower Mekong river
– volume: 17
  year: 2017
  ident: 10.1016/j.scitotenv.2019.03.315_bb0105
  article-title: Modeling the sedimentary response of a large Pyrenean basin to global change
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-017-1684-6
– volume: 17
  start-page: 1098
  year: 2015
  ident: 10.1016/j.scitotenv.2019.03.315_bb0145
  article-title: Assessing the impacts of climate change and socio-economic changes on flow and phosphorus flux in the Ganga river system
  publication-title: Environ. Sci.: Processes Impacts
– ident: 10.1016/j.scitotenv.2019.03.315_bb0190
– volume: 5
  start-page: 167
  year: 2015
  ident: 10.1016/j.scitotenv.2019.03.315_bb0225
  article-title: Responding to rising sea levels in the Mekong Delta
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate2469
– volume: 1980
  start-page: 43
  issue: 14
  year: 1980
  ident: 10.1016/j.scitotenv.2019.03.315_bb0230
  article-title: Eutrophication in the Peel Inlet II. Identification of critical uncertainties via generalised sensitivity analysis
  publication-title: Water Res.
  doi: 10.1016/0043-1354(80)90040-8
– volume: 146
  start-page: 77
  issue: 2
  year: 2015
  ident: 10.1016/j.scitotenv.2019.03.315_bb0085
  article-title: Environmental consequences of damming the mainstream lancang-mekong river: a review
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2015.03.007
– volume: 637–638
  start-page: 907
  year: 2018
  ident: 10.1016/j.scitotenv.2019.03.315_bb0150
  article-title: Simulating climate change and socio-economic change impacts on flows and water quality in the Mahanadi River system, India
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.04.349
– volume: 376
  start-page: 20160448
  year: 2018
  ident: 10.1016/j.scitotenv.2019.03.315_bb0210
  article-title: Stabilization of global temperature at 1.5°C and 2.0°C: implications for coastal areas
  publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2016.0448
– ident: 10.1016/j.scitotenv.2019.03.315_bb0215
  doi: 10.1016/j.scitotenv.2018.03.022
– volume: 85
  start-page: 2565
  issue: 4
  year: 1995
  ident: 10.1016/j.scitotenv.2019.03.315_bb0110
  article-title: Deriving critical loads for Asia
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/BF01186220
– volume: 37
  start-page: 66
  issue: 0
  year: 2012
  ident: 10.1016/j.scitotenv.2019.03.315_bb0300
  article-title: Modeling transport and deposition of the Mekong River sediment
  publication-title: Cont. Shelf Res.
  doi: 10.1016/j.csr.2012.02.010
– volume: 16
  start-page: 1
  issue: 63
  year: 2018
  ident: 10.1016/j.scitotenv.2019.03.315_bb0175
  publication-title: Paddy Water Environ.
– start-page: 156
  year: 2013
  ident: 10.1016/j.scitotenv.2019.03.315_bb0090
– volume: 183
  start-page: 370
  year: 2016
  ident: 10.1016/j.scitotenv.2019.03.315_bb0205
  article-title: Integrated assessment of social and environmental sustainability dynamics in the Ganges-Brahmaputra-Meghna delta, Bangladesh
  publication-title: Estuar. Coast. Shelf Sci.
  doi: 10.1016/j.ecss.2016.08.017
– volume: 10
  start-page: 282
  year: 1970
  ident: 10.1016/j.scitotenv.2019.03.315_bb0195
  article-title: River flow forecasting through conceptual models - part 1 - a discussion of principles
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(70)90255-6
– volume: 39
  start-page: 19
  year: 2013
  ident: 10.1016/j.scitotenv.2019.03.315_bb0050
  article-title: Impacts of climate change on hydrology and water quality: future proofing management strategies in the Lake Simcoe watershed, Canada
  publication-title: J. Great Lakes Res.
  doi: 10.1016/j.jglr.2012.11.003
– volume: 527
  start-page: 704
  year: 2015
  ident: 10.1016/j.scitotenv.2019.03.315_bb0070
  article-title: H. ApelHandling uncertainty in bivariate quantile estimation–an application to flood hazard analysis in the Mekong Delta
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.05.033
– volume: 329
  start-page: 403
  year: 1990
  ident: 10.1016/j.scitotenv.2019.03.315_bb0260
  article-title: Modelling nitrate from agriculture into public water supplies
  publication-title: Philos. Trans. R. Soc. London. Ser. B Biol. Sci.
  doi: 10.1098/rstb.1990.0182
– volume: 210–211
  start-page: 559
  year: 1998
  ident: 10.1016/j.scitotenv.2019.03.315_bb0270
  article-title: A semi-distributed integrated flow and nitrogen model for multiple source assessment in catchments (INCA): part II — application to large river basins in south Wales and eastern England
  publication-title: Sci. Total Environ.
  doi: 10.1016/S0048-9697(98)00038-2
– volume: 467
  start-page: 555
  year: 2010
  ident: 10.1016/j.scitotenv.2019.03.315_bb0240
  article-title: Global threats to human water security and river biodiversity
  publication-title: Nature
  doi: 10.1038/nature09440
– volume: 637-638
  start-page: 1069
  year: 2018
  ident: 10.1016/j.scitotenv.2019.03.315_bb0155
  article-title: Modeling future flows of the Volta River system: impacts of climate change and socio-economic changes
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.04.350
– year: 2015
  ident: 10.1016/j.scitotenv.2019.03.315_bb0005
– volume: 16
  start-page: 147
  year: 2000
  ident: 10.1016/j.scitotenv.2019.03.315_bb0100
  article-title: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments
  publication-title: Clim. Dyn.
  doi: 10.1007/s003820050010
– year: 2017
  ident: 10.1016/j.scitotenv.2019.03.315_bb0075
– volume: 539
  start-page: 276
  issue: 7628
  year: 2016
  ident: 10.1016/j.scitotenv.2019.03.315_bb0055
  article-title: Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity
  publication-title: Nature
  doi: 10.1038/nature19809
– volume: 540
  start-page: 144
  year: 2016
  ident: 10.1016/j.scitotenv.2019.03.315_bb0015
  article-title: Effects of afforestation on runoff and sediment load in an upland Mediterranean catchment
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.07.005
– year: 2014
  ident: 10.1016/j.scitotenv.2019.03.315_bb0080
– volume: 365
  start-page: 123
  issue: 1
  year: 2006
  ident: 10.1016/j.scitotenv.2019.03.315_bb0220
  article-title: An application of the GLUE methodology for estimating the parameters of the INCA N model
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2006.02.034
– volume: 146
  start-page: 55
  year: 2016
  ident: 10.1016/j.scitotenv.2019.03.315_bb0065
  article-title: Acid deposition in Asia: emissions, deposition, and ecosystem effects
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2016.07.018
– year: 2014
  ident: 10.1016/j.scitotenv.2019.03.315_bb0125
  article-title: Summary for policymakers
– year: 2009
  ident: 10.1016/j.scitotenv.2019.03.315_bb0255
– volume: 17
  start-page: 1057
  year: 2015
  ident: 10.1016/j.scitotenv.2019.03.315_bb0275
  article-title: Impacts of climate change and socio-economic scenarios on flow and water quality of the Ganges, Brahmaputra and Meghna (GBM) river systems: low flow and flood statistics
  publication-title: Environ. Sci. Process. Impacts
  doi: 10.1039/C4EM00619D
SSID ssj0000781
Score 2.521558
Snippet The Mekong delta is recognised as one of the world's most vulnerable mega-deltas, being subject to a range of environmental pressures including sea level rise,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 218
SubjectTerms air pollution
ammonia
carbon
Climate change
climate models
drought
economic development
highlands
Himalayan region
hydrologic models
Land use change
Mekong River
Modelling
monsoon season
nitrates
nitrogen
Nutrients
population growth
reactive phosphorus
river deltas
rivers
sea level
Socioeconomic change
socioeconomics
temperature
total phosphorus
United Kingdom
Vietnam
Vietnam Delta
water quality
watersheds
Title Water quality modelling of the Mekong River basin: Climate change and socioeconomics drive flow and nutrient flux changes to the Mekong Delta
URI https://dx.doi.org/10.1016/j.scitotenv.2019.03.315
https://www.ncbi.nlm.nih.gov/pubmed/30991313
https://www.proquest.com/docview/2210960173
https://www.proquest.com/docview/2237556156
Volume 673
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hEFKlqqLb0i60yEi9piTYeXFDW9CWFRxQEdwsJ7arRasE7WZ5XPgH_GdmYmcpUlsOKIcojp1YmbHnszPfDMA3YYsitigBHao8ENzuBnlLBM4t2ss8VkYQwfn4JBmeiaOL-GIJBh0Xhtwq_dzv5vR2tvYlO_5r7lyNx8TxFVme5ClCkAgPWrdT9DrU6e_3T24eFMzG_WXGgY21n_l44XObGrHpNfl4tdFOOeXH_buF-hcCbS3R4Rq88xCS7btevoclU_Vg1SWVvOvB-sETdw2r-cE768Fbt0XHHPPoAzycI86cMkervGNtThwip7PaMoSF7NggePzNTslzg6G1G1d7bDAZI8Q1zPGFmao0I_HWxvObZ0xPsT6zk_qmvVtRtH_sCZbMb32zGWvqP9_ww0wa9RHODg9-DYaBz84QlCLmTaAjI1QpeGlThSgGBatVZKzlptC47LJZmhVCC0IcSaRiLkpbcF2YJDWZ1ULxdViu6sp8BpbrMM_KErElt0JFVgmDODHNTKx4mBnVh6STiCx96HLKoDGRnY_apVyIUpIoZcglirIP4aLhlYve8XKTvU7k8pkiSrQxLzfe7pRE4jClfy-qMvV8JndxaY2LxSjl_6vDU8pWGid9-OQ0bNFrjkietHzjNd3bhDd0RVvTUfgFlpvp3HxFTNUUW-2g2YKV_Z-j4QmdR6fno0e8zSao
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-hIrRJ0zTKYN2nkXiNSLDzxRvqQGXQPiDQeLOc2EZFVYLadBt_xP7n3cVOGdI2Hqa8Ob7Eytm-3zn3uwPYE7YoYosa0KHKA8HtQZC3RODcor3MY2UEEZzHk2R0Jb5cx9drMOy4MBRW6fd-t6e3u7Vv2fdfc_9uOiWOr8jyJE8RgkR4od--TtmpRA_Wj07PRpOHDTnNXOE8gWsbBR6FeeGjmxrh6TcK82oTnnIqkftnI_U3ENoao5NX8NKjSHbkBroJa6bqw4arK3nfh-3jB_oadvPrd9GHF-6Ujjny0Rb8_IpQc84cs_KetWVxiJ_OassQGbKxQfx4wy4oeIOhwZtWh2w4myLKNcxRhpmqNCMN18ZTnBdMz7E_s7P6e3u3ooT_OBJsWf7wYgvW1L-_4bOZNeo1XJ0cXw5HgS_QEJQi5k2gIyNUKXhpU4VABnWrVWSs5abQ6HnZLM0KoQWBjiRSMRelLbguTJKazGqh-Db0qroyb4DlOsyzskR4ya1QkVXCIFRMMxMrHmZGDSDpNCJLn72cimjMZBemditXqpSkShlyiaocQLgSvHMJPJ4WOexULh_NRYlm5mnh3W6SSFyp9PtFVaZeLuQBetfoL0Yp_1cfnlLB0jgZwI6bYatRcwTzNNHf_s_wPsGz0eX4XJ6fTs7ewXO6QyfVUfgees18aT4gxGqKj34J_QJ4_ye2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water+quality+modelling+of+the+Mekong+River+basin%3A+Climate+change+and+socioeconomics+drive+flow+and+nutrient+flux+changes+to+the+Mekong+Delta&rft.jtitle=The+Science+of+the+total+environment&rft.au=Whitehead%2C+P.G.&rft.au=Jin%2C+L.&rft.au=Bussi%2C+G.&rft.au=Voepel%2C+H.E.&rft.date=2019-07-10&rft.issn=0048-9697&rft.volume=673&rft.spage=218&rft.epage=229&rft_id=info:doi/10.1016%2Fj.scitotenv.2019.03.315&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_scitotenv_2019_03_315
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon