Comparison of models for analyzing two-group, cross-sectional data with a Gaussian outcome subject to a detection limit

A potential difficulty in the analysis of biomarker data occurs when data are subject to a detection limit. This detection limit is often defined as the point at which the true values cannot be measured reliably. Multiple, regression-type models designed to analyze such data exist. Studies have comp...

Full description

Saved in:
Bibliographic Details
Published inStatistical methods in medical research Vol. 25; no. 6; p. 2733
Main Authors Wiegand, Ryan E, Rose, Charles E, Karon, John M
Format Journal Article
LanguageEnglish
Published England 01.12.2016
Subjects
Online AccessGet more information

Cover

Loading…
Abstract A potential difficulty in the analysis of biomarker data occurs when data are subject to a detection limit. This detection limit is often defined as the point at which the true values cannot be measured reliably. Multiple, regression-type models designed to analyze such data exist. Studies have compared the bias among such models, but few have compared their statistical power. This simulation study provides a comparison of approaches for analyzing two-group, cross-sectional data with a Gaussian-distributed outcome by exploring statistical power and effect size confidence interval coverage of four models able to be implemented in standard software. We found using a Tobit model fit by maximum likelihood provides the best power and coverage. An example using human immunodeficiency virus type 1 ribonucleic acid data is used to illustrate the inferential differences in these models.
AbstractList A potential difficulty in the analysis of biomarker data occurs when data are subject to a detection limit. This detection limit is often defined as the point at which the true values cannot be measured reliably. Multiple, regression-type models designed to analyze such data exist. Studies have compared the bias among such models, but few have compared their statistical power. This simulation study provides a comparison of approaches for analyzing two-group, cross-sectional data with a Gaussian-distributed outcome by exploring statistical power and effect size confidence interval coverage of four models able to be implemented in standard software. We found using a Tobit model fit by maximum likelihood provides the best power and coverage. An example using human immunodeficiency virus type 1 ribonucleic acid data is used to illustrate the inferential differences in these models.
Author Wiegand, Ryan E
Rose, Charles E
Karon, John M
Author_xml – sequence: 1
  givenname: Ryan E
  surname: Wiegand
  fullname: Wiegand, Ryan E
  email: rwiegand@cdc.gov
  organization: Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, USA rwiegand@cdc.gov
– sequence: 2
  givenname: Charles E
  surname: Rose
  fullname: Rose, Charles E
  organization: Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, USA
– sequence: 3
  givenname: John M
  surname: Karon
  fullname: Karon, John M
  organization: Apex Systems, Inc., Richmond, Virginia, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24803511$$D View this record in MEDLINE/PubMed
BookMark eNo1kE1Lw0AYhBdR7IfePcn7A4zuZ7Y5StEqFLz0Xt7sR92SZEN2Q6m_3kD1NIdnZmBmQa672DlCHhh9ZkzrF1qVnK8oZ1IJVq7kFZkzqXVBhZAzskjpSCnVVFa3ZMbligrF2Jyc1rHtcQgpdhA9tNG6JoGPA2CHzfkndAfIp1gchjj2T2CGmFKRnMkhThwsZoRTyN-AsMExpYBTz5hNbB2ksT5OTshxotblSwqa0IZ8R248Nsnd_-mS7N7fduuPYvu1-Vy_bgszzciFMdpyzqXSAlXljRGupBpR29oqZ0ovJHrOqPLcOK2U8EoglmXlBWfC8SV5vNT2Y906u--H0OJw3v8fwH8BL9pfgA
CitedBy_id crossref_primary_10_1002_cpe_7014
crossref_primary_10_1002_sim_9343
crossref_primary_10_1002_pst_2125
crossref_primary_10_1097_JOM_0000000000001320
crossref_primary_10_1002_sim_6412
crossref_primary_10_1186_s12874_018_0609_4
crossref_primary_10_1080_02664763_2023_2235093
crossref_primary_10_1093_cid_cix228
crossref_primary_10_1080_10543406_2014_920858
ContentType Journal Article
Copyright The Author(s) 2014.
Copyright_xml – notice: The Author(s) 2014.
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1177/0962280214531684
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Statistics
Mathematics
EISSN 1477-0334
ExternalDocumentID 24803511
Genre Journal Article
Comparative Study
GrantInformation_xml – fundername: Intramural CDC HHS
  grantid: CC999999
GroupedDBID ---
-TM
.2G
.2J
.2N
0-V
01A
0R~
123
1~K
29Q
31S
31U
31X
31Y
31Z
36B
4.4
53G
54M
5RE
5VS
6PF
7X7
88E
88I
8C1
8FE
8FG
8FI
8FJ
8R4
8R5
AABMB
AABOD
AACKU
AACMV
AACTG
AADUE
AAEJI
AAEWN
AAGGD
AAGLT
AAJIQ
AAJOX
AAJPV
AANSI
AAPEO
AAPII
AAQDB
AAQXH
AAQXI
AARDL
AARIX
AATAA
AATBZ
AAWTL
AAYTG
ABAWP
ABCCA
ABCJG
ABDLQ
ABDWY
ABEIX
ABFWQ
ABHKI
ABHQH
ABIDT
ABJCF
ABJIS
ABKRH
ABLUO
ABPGX
ABPNF
ABQKF
ABQXT
ABRHV
ABTDE
ABUJY
ABUWG
ABVFX
ABVVC
ABYTW
ACARO
ACDSZ
ACDXX
ACFEJ
ACFMA
ACGBL
ACGFS
ACGOD
ACGZU
ACIWK
ACJER
ACLHI
ACLZU
ACOFE
ACOXC
ACROE
ACRPL
ACSIQ
ACUAV
ACUIR
ACXKE
ACXMB
ADBBV
ADDLC
ADEBD
ADEIA
ADNMO
ADNON
ADRRZ
ADSTG
ADTBJ
ADUKL
ADVBO
ADYCS
AECGH
AECVZ
AEDTQ
AENEX
AEPTA
AEQLS
AERKM
AESZF
AEUHG
AEWDL
AEWHI
AEXNY
AFEET
AFKBI
AFKRA
AFKRG
AFMOU
AFQAA
AFUIA
AFWMB
AGKLV
AGNHF
AGQPQ
AGWFA
AGWNL
AHDMH
AHHFK
AHMBA
AJEFB
AJGYC
AJMMQ
AJUZI
AJVBE
AJXAJ
ALIPV
ALKWR
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AMCVQ
AMVHM
ANDLU
ARALO
ARTOV
ASOEW
ASPBG
AUTPY
AUVAJ
AVWKF
AYAKG
AZFZN
AZQEC
B8O
B8R
B8Z
B93
B94
BBRGL
BDDNI
BENPR
BGLVJ
BKIIM
BPACV
BPHCQ
BSEHC
BVXVI
BYIEH
C45
CAG
CBRKF
CCPQU
CFDXU
CGR
COF
CORYS
CQQTX
CS3
CUY
CVF
DC-
DD-
DD0
DE-
DF0
DO-
DOPDO
DU5
DV7
DWQXO
D~Y
EBS
ECM
EIF
EJD
EMOBN
F5P
FEDTE
FHBDP
FYUFA
GNUQQ
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
HCIFZ
HEHIP
HF~
HMCUK
HVGLF
HZ~
J8X
K.F
K.J
L6V
M1P
M2P
M2S
M7S
N9A
NPM
O9-
OVD
P.B
P2P
PHGZM
PHGZT
PJZUB
POGQB
PPXIY
PQGLB
PQQKQ
PROAC
PRQQA
PSQYO
PTHSS
Q1R
Q2X
Q7K
Q7L
Q7X
Q82
Q83
RIG
ROL
S01
SASJQ
SAUOL
SCNPE
SDB
SFB
SFC
SFK
SFN
SFT
SGA
SGP
SGR
SGV
SGX
SGZ
SHG
SNB
SPJ
SPV
SQCSI
STM
TEORI
TN5
UKHRP
YHZ
ZONMY
ZPPRI
ZRKOI
ID FETCH-LOGICAL-c453t-cc7d2224573a59fcc3e607aa7dbd5ec6f34af2105f2ce7553f53aa669f3213e2
IngestDate Mon Jul 21 06:05:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords statistical power
limit of detection
regression
Language English
License The Author(s) 2014.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c453t-cc7d2224573a59fcc3e607aa7dbd5ec6f34af2105f2ce7553f53aa669f3213e2
PMID 24803511
ParticipantIDs pubmed_primary_24803511
PublicationCentury 2000
PublicationDate 2016-12-01
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Statistical methods in medical research
PublicationTitleAlternate Stat Methods Med Res
PublicationYear 2016
SSID ssj0007049
Score 2.174307
Snippet A potential difficulty in the analysis of biomarker data occurs when data are subject to a detection limit. This detection limit is often defined as the point...
SourceID pubmed
SourceType Index Database
StartPage 2733
SubjectTerms Anti-HIV Agents - therapeutic use
Bias
Cross-Sectional Studies - methods
HIV Infections - drug therapy
HIV Infections - virology
HIV-1 - drug effects
HIV-1 - genetics
HIV-1 - isolation & purification
Humans
Likelihood Functions
Limit of Detection
Multivariate Analysis
Normal Distribution
Probability
Raltegravir Potassium - therapeutic use
RNA, Viral - analysis
RNA, Viral - genetics
Software
Viral Load - drug effects
Title Comparison of models for analyzing two-group, cross-sectional data with a Gaussian outcome subject to a detection limit
URI https://www.ncbi.nlm.nih.gov/pubmed/24803511
Volume 25
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxELVSKqFyQDR8FUrlA7dgSNZeOzmiqlC1CgcURG-VP1GlNluxG1XtH-nfZcZ2NksAAb2sop1ssvG8eGfs92YIee2UF074IcO2A9jCjDMzkpKNhQ-2MMVYR4X39JM8_CKOTsqTXu-2w1paNOatvfmtruQuXoVz4FdUyf6HZ9sPhRPwGvwLR_AwHP_Jx_vdJoKpqU2daZH6_PomKqGuKhaVGziW8ZHI6si-wigU6aFZ3Tb4qBd1FFRWiwbu1Q_qhcE1GgxO9cD5Jl01OEdFVDekxXA1VnuOOhTsRx0pthd5ByhXE2pXnb-e-W-ZTPn5Gr6uVUIsezxmAsDKcKy_J2pAZPlMu-sUI9nhfPg0twql2JDntcs8-SbVcwbZTzOpSgUyfp3i4yYzZF5YyAfrrGPrLdF9Kzjp8iK6vBDjuFP6d-ta0e2laYNsQPqB_VRxESg_4BVkVasd73frt4L1pfPla7lKjFlmj8jDnGzQ9wk526Tn533yYNpW6q375P40kyv6ZKv1ZP2YXK2wRatAE7YoYIu22KIttt7QNWRRRBZFZFFNl8iiGVk0I4s2FVhbZNGIrCdk9uFgtn_IcpMOZuH3Nsxa5SDGFKXiupwEa7mXQ6W1csaV3srAhQ4FRPGhsF6VJQ8l11rKSeDFiPviKbk3r-b-OaGm1FIXmk8cpPDCWzNyZqi8EhDDB2f9DnmWBvP0MhViOV0O84s_Wl6SrRUWd8lmgH--fwVhZGP2olN_AD2pdWM
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+models+for+analyzing+two-group%2C+cross-sectional+data+with+a+Gaussian+outcome+subject+to+a+detection+limit&rft.jtitle=Statistical+methods+in+medical+research&rft.au=Wiegand%2C+Ryan+E&rft.au=Rose%2C+Charles+E&rft.au=Karon%2C+John+M&rft.date=2016-12-01&rft.eissn=1477-0334&rft.volume=25&rft.issue=6&rft.spage=2733&rft_id=info:doi/10.1177%2F0962280214531684&rft_id=info%3Apmid%2F24803511&rft_id=info%3Apmid%2F24803511&rft.externalDocID=24803511