Comparison of models for analyzing two-group, cross-sectional data with a Gaussian outcome subject to a detection limit
A potential difficulty in the analysis of biomarker data occurs when data are subject to a detection limit. This detection limit is often defined as the point at which the true values cannot be measured reliably. Multiple, regression-type models designed to analyze such data exist. Studies have comp...
Saved in:
Published in | Statistical methods in medical research Vol. 25; no. 6; p. 2733 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
01.12.2016
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | A potential difficulty in the analysis of biomarker data occurs when data are subject to a detection limit. This detection limit is often defined as the point at which the true values cannot be measured reliably. Multiple, regression-type models designed to analyze such data exist. Studies have compared the bias among such models, but few have compared their statistical power. This simulation study provides a comparison of approaches for analyzing two-group, cross-sectional data with a Gaussian-distributed outcome by exploring statistical power and effect size confidence interval coverage of four models able to be implemented in standard software. We found using a Tobit model fit by maximum likelihood provides the best power and coverage. An example using human immunodeficiency virus type 1 ribonucleic acid data is used to illustrate the inferential differences in these models. |
---|---|
AbstractList | A potential difficulty in the analysis of biomarker data occurs when data are subject to a detection limit. This detection limit is often defined as the point at which the true values cannot be measured reliably. Multiple, regression-type models designed to analyze such data exist. Studies have compared the bias among such models, but few have compared their statistical power. This simulation study provides a comparison of approaches for analyzing two-group, cross-sectional data with a Gaussian-distributed outcome by exploring statistical power and effect size confidence interval coverage of four models able to be implemented in standard software. We found using a Tobit model fit by maximum likelihood provides the best power and coverage. An example using human immunodeficiency virus type 1 ribonucleic acid data is used to illustrate the inferential differences in these models. |
Author | Wiegand, Ryan E Rose, Charles E Karon, John M |
Author_xml | – sequence: 1 givenname: Ryan E surname: Wiegand fullname: Wiegand, Ryan E email: rwiegand@cdc.gov organization: Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, USA rwiegand@cdc.gov – sequence: 2 givenname: Charles E surname: Rose fullname: Rose, Charles E organization: Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, USA – sequence: 3 givenname: John M surname: Karon fullname: Karon, John M organization: Apex Systems, Inc., Richmond, Virginia, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24803511$$D View this record in MEDLINE/PubMed |
BookMark | eNo1kE1Lw0AYhBdR7IfePcn7A4zuZ7Y5StEqFLz0Xt7sR92SZEN2Q6m_3kD1NIdnZmBmQa672DlCHhh9ZkzrF1qVnK8oZ1IJVq7kFZkzqXVBhZAzskjpSCnVVFa3ZMbligrF2Jyc1rHtcQgpdhA9tNG6JoGPA2CHzfkndAfIp1gchjj2T2CGmFKRnMkhThwsZoRTyN-AsMExpYBTz5hNbB2ksT5OTshxotblSwqa0IZ8R248Nsnd_-mS7N7fduuPYvu1-Vy_bgszzciFMdpyzqXSAlXljRGupBpR29oqZ0ovJHrOqPLcOK2U8EoglmXlBWfC8SV5vNT2Y906u--H0OJw3v8fwH8BL9pfgA |
CitedBy_id | crossref_primary_10_1002_cpe_7014 crossref_primary_10_1002_sim_9343 crossref_primary_10_1002_pst_2125 crossref_primary_10_1097_JOM_0000000000001320 crossref_primary_10_1002_sim_6412 crossref_primary_10_1186_s12874_018_0609_4 crossref_primary_10_1080_02664763_2023_2235093 crossref_primary_10_1093_cid_cix228 crossref_primary_10_1080_10543406_2014_920858 |
ContentType | Journal Article |
Copyright | The Author(s) 2014. |
Copyright_xml | – notice: The Author(s) 2014. |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1177/0962280214531684 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Medicine Statistics Mathematics |
EISSN | 1477-0334 |
ExternalDocumentID | 24803511 |
Genre | Journal Article Comparative Study |
GrantInformation_xml | – fundername: Intramural CDC HHS grantid: CC999999 |
GroupedDBID | --- -TM .2G .2J .2N 0-V 01A 0R~ 123 1~K 29Q 31S 31U 31X 31Y 31Z 36B 4.4 53G 54M 5RE 5VS 6PF 7X7 88E 88I 8C1 8FE 8FG 8FI 8FJ 8R4 8R5 AABMB AABOD AACKU AACMV AACTG AADUE AAEJI AAEWN AAGGD AAGLT AAJIQ AAJOX AAJPV AANSI AAPEO AAPII AAQDB AAQXH AAQXI AARDL AARIX AATAA AATBZ AAWTL AAYTG ABAWP ABCCA ABCJG ABDLQ ABDWY ABEIX ABFWQ ABHKI ABHQH ABIDT ABJCF ABJIS ABKRH ABLUO ABPGX ABPNF ABQKF ABQXT ABRHV ABTDE ABUJY ABUWG ABVFX ABVVC ABYTW ACARO ACDSZ ACDXX ACFEJ ACFMA ACGBL ACGFS ACGOD ACGZU ACIWK ACJER ACLHI ACLZU ACOFE ACOXC ACROE ACRPL ACSIQ ACUAV ACUIR ACXKE ACXMB ADBBV ADDLC ADEBD ADEIA ADNMO ADNON ADRRZ ADSTG ADTBJ ADUKL ADVBO ADYCS AECGH AECVZ AEDTQ AENEX AEPTA AEQLS AERKM AESZF AEUHG AEWDL AEWHI AEXNY AFEET AFKBI AFKRA AFKRG AFMOU AFQAA AFUIA AFWMB AGKLV AGNHF AGQPQ AGWFA AGWNL AHDMH AHHFK AHMBA AJEFB AJGYC AJMMQ AJUZI AJVBE AJXAJ ALIPV ALKWR ALMA_UNASSIGNED_HOLDINGS ALSLI AMCVQ AMVHM ANDLU ARALO ARTOV ASOEW ASPBG AUTPY AUVAJ AVWKF AYAKG AZFZN AZQEC B8O B8R B8Z B93 B94 BBRGL BDDNI BENPR BGLVJ BKIIM BPACV BPHCQ BSEHC BVXVI BYIEH C45 CAG CBRKF CCPQU CFDXU CGR COF CORYS CQQTX CS3 CUY CVF DC- DD- DD0 DE- DF0 DO- DOPDO DU5 DV7 DWQXO D~Y EBS ECM EIF EJD EMOBN F5P FEDTE FHBDP FYUFA GNUQQ GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HCIFZ HEHIP HF~ HMCUK HVGLF HZ~ J8X K.F K.J L6V M1P M2P M2S M7S N9A NPM O9- OVD P.B P2P PHGZM PHGZT PJZUB POGQB PPXIY PQGLB PQQKQ PROAC PRQQA PSQYO PTHSS Q1R Q2X Q7K Q7L Q7X Q82 Q83 RIG ROL S01 SASJQ SAUOL SCNPE SDB SFB SFC SFK SFN SFT SGA SGP SGR SGV SGX SGZ SHG SNB SPJ SPV SQCSI STM TEORI TN5 UKHRP YHZ ZONMY ZPPRI ZRKOI |
ID | FETCH-LOGICAL-c453t-cc7d2224573a59fcc3e607aa7dbd5ec6f34af2105f2ce7553f53aa669f3213e2 |
IngestDate | Mon Jul 21 06:05:48 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | statistical power limit of detection regression |
Language | English |
License | The Author(s) 2014. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c453t-cc7d2224573a59fcc3e607aa7dbd5ec6f34af2105f2ce7553f53aa669f3213e2 |
PMID | 24803511 |
ParticipantIDs | pubmed_primary_24803511 |
PublicationCentury | 2000 |
PublicationDate | 2016-12-01 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Statistical methods in medical research |
PublicationTitleAlternate | Stat Methods Med Res |
PublicationYear | 2016 |
SSID | ssj0007049 |
Score | 2.174307 |
Snippet | A potential difficulty in the analysis of biomarker data occurs when data are subject to a detection limit. This detection limit is often defined as the point... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 2733 |
SubjectTerms | Anti-HIV Agents - therapeutic use Bias Cross-Sectional Studies - methods HIV Infections - drug therapy HIV Infections - virology HIV-1 - drug effects HIV-1 - genetics HIV-1 - isolation & purification Humans Likelihood Functions Limit of Detection Multivariate Analysis Normal Distribution Probability Raltegravir Potassium - therapeutic use RNA, Viral - analysis RNA, Viral - genetics Software Viral Load - drug effects |
Title | Comparison of models for analyzing two-group, cross-sectional data with a Gaussian outcome subject to a detection limit |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24803511 |
Volume | 25 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxELVSKqFyQDR8FUrlA7dgSNZeOzmiqlC1CgcURG-VP1GlNluxG1XtH-nfZcZ2NksAAb2sop1ssvG8eGfs92YIee2UF074IcO2A9jCjDMzkpKNhQ-2MMVYR4X39JM8_CKOTsqTXu-2w1paNOatvfmtruQuXoVz4FdUyf6HZ9sPhRPwGvwLR_AwHP_Jx_vdJoKpqU2daZH6_PomKqGuKhaVGziW8ZHI6si-wigU6aFZ3Tb4qBd1FFRWiwbu1Q_qhcE1GgxO9cD5Jl01OEdFVDekxXA1VnuOOhTsRx0pthd5ByhXE2pXnb-e-W-ZTPn5Gr6uVUIsezxmAsDKcKy_J2pAZPlMu-sUI9nhfPg0twql2JDntcs8-SbVcwbZTzOpSgUyfp3i4yYzZF5YyAfrrGPrLdF9Kzjp8iK6vBDjuFP6d-ta0e2laYNsQPqB_VRxESg_4BVkVasd73frt4L1pfPla7lKjFlmj8jDnGzQ9wk526Tn533yYNpW6q375P40kyv6ZKv1ZP2YXK2wRatAE7YoYIu22KIttt7QNWRRRBZFZFFNl8iiGVk0I4s2FVhbZNGIrCdk9uFgtn_IcpMOZuH3Nsxa5SDGFKXiupwEa7mXQ6W1csaV3srAhQ4FRPGhsF6VJQ8l11rKSeDFiPviKbk3r-b-OaGm1FIXmk8cpPDCWzNyZqi8EhDDB2f9DnmWBvP0MhViOV0O84s_Wl6SrRUWd8lmgH--fwVhZGP2olN_AD2pdWM |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+models+for+analyzing+two-group%2C+cross-sectional+data+with+a+Gaussian+outcome+subject+to+a+detection+limit&rft.jtitle=Statistical+methods+in+medical+research&rft.au=Wiegand%2C+Ryan+E&rft.au=Rose%2C+Charles+E&rft.au=Karon%2C+John+M&rft.date=2016-12-01&rft.eissn=1477-0334&rft.volume=25&rft.issue=6&rft.spage=2733&rft_id=info:doi/10.1177%2F0962280214531684&rft_id=info%3Apmid%2F24803511&rft_id=info%3Apmid%2F24803511&rft.externalDocID=24803511 |