Low Photon Count Phase Retrieval Using Deep Learning

Imaging systems' performance at low light intensity is affected by shot noise, which becomes increasingly strong as the power of the light source decreases. In this Letter, we experimentally demonstrate the use of deep neural networks to recover objects illuminated with weak light and demonstra...

Full description

Saved in:
Bibliographic Details
Published inPhysical review letters Vol. 121; no. 24; p. 243902
Main Authors Goy, Alexandre, Arthur, Kwabena, Li, Shuai, Barbastathis, George
Format Journal Article
LanguageEnglish
Published United States 14.12.2018
Online AccessGet more information

Cover

Loading…
Abstract Imaging systems' performance at low light intensity is affected by shot noise, which becomes increasingly strong as the power of the light source decreases. In this Letter, we experimentally demonstrate the use of deep neural networks to recover objects illuminated with weak light and demonstrate better performance than with the classical Gerchberg-Saxton phase retrieval algorithm for equivalent signal over noise ratio. The prior contained in the training image set can be leveraged by the deep neural network to detect features with a signal over noise ratio close to one. We apply this principle to a phase retrieval problem and show successful recovery of the object's most salient features with as little as one photon per detector pixel on average in the illumination beam. We also show that the phase reconstruction is significantly improved by training the neural network with an initial estimate of the object, as opposed to training it with the raw intensity measurement.
AbstractList Imaging systems' performance at low light intensity is affected by shot noise, which becomes increasingly strong as the power of the light source decreases. In this Letter, we experimentally demonstrate the use of deep neural networks to recover objects illuminated with weak light and demonstrate better performance than with the classical Gerchberg-Saxton phase retrieval algorithm for equivalent signal over noise ratio. The prior contained in the training image set can be leveraged by the deep neural network to detect features with a signal over noise ratio close to one. We apply this principle to a phase retrieval problem and show successful recovery of the object's most salient features with as little as one photon per detector pixel on average in the illumination beam. We also show that the phase reconstruction is significantly improved by training the neural network with an initial estimate of the object, as opposed to training it with the raw intensity measurement.
Author Arthur, Kwabena
Barbastathis, George
Li, Shuai
Goy, Alexandre
Author_xml – sequence: 1
  givenname: Alexandre
  surname: Goy
  fullname: Goy, Alexandre
  organization: Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
– sequence: 2
  givenname: Kwabena
  surname: Arthur
  fullname: Arthur, Kwabena
  organization: Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
– sequence: 3
  givenname: Shuai
  surname: Li
  fullname: Li, Shuai
  organization: Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
– sequence: 4
  givenname: George
  surname: Barbastathis
  fullname: Barbastathis, George
  organization: Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30608745$$D View this record in MEDLINE/PubMed
BookMark eNo1jl1LwzAUhoMo7kP_wsgfaD0nSdP0UqpOoeAY7nqkzamrbOlossn-vQX15nl5bl6eGbv2vSfGFggpIsiH1e4S1nSuKMYUBaZCyQLEFZsi5EWSI6oJm4XwBQAotLllEwkaTK6yKVNV_81Xuz72npf9ycdRbCC-pjh0dLZ7vgmd_-RPREdekR38aHfsprX7QPd_O2ebl-eP8jWp3pdv5WOVNCqTcaRT4KhGk7WmMWTAtgjKEDagrM5QOeewMQUUWguZE8miNjLXTmlwphFztvj9PZ7qA7ntcegOdrhs__PFD8deSLU
CitedBy_id crossref_primary_10_1038_s41377_020_0302_3
crossref_primary_10_1038_s41377_022_00949_8
crossref_primary_10_1364_OE_498073
crossref_primary_10_1088_1361_6501_ab44d8
crossref_primary_10_1073_pnas_1821378116
crossref_primary_10_1016_j_optlaseng_2022_107196
crossref_primary_10_1109_TCI_2022_3209936
crossref_primary_10_1364_OE_424165
crossref_primary_10_1038_s42256_023_00704_7
crossref_primary_10_1109_TSP_2022_3156014
crossref_primary_10_1364_AO_390256
crossref_primary_10_1109_ACCESS_2020_2978435
crossref_primary_10_1016_j_optlastec_2024_111726
crossref_primary_10_1364_OE_434014
crossref_primary_10_1109_TSP_2022_3203228
crossref_primary_10_1364_PRJ_440123
crossref_primary_10_3390_ai3020020
crossref_primary_10_1080_09500340_2021_1896815
crossref_primary_10_1364_OPTICA_392465
crossref_primary_10_1007_s00340_022_07764_4
crossref_primary_10_1021_acsphotonics_1c00337
crossref_primary_10_1007_s40042_022_00412_2
crossref_primary_10_1098_rsta_2023_0346
crossref_primary_10_1038_s41598_020_76764_1
crossref_primary_10_1364_OE_445498
crossref_primary_10_1364_OPTICA_470712
crossref_primary_10_1063_5_0009493
crossref_primary_10_1364_PRJ_412965
crossref_primary_10_1088_2040_8986_abe18a
crossref_primary_10_1002_adpr_202200264
crossref_primary_10_1088_0256_307X_42_3_030205
crossref_primary_10_1063_1_5125252
crossref_primary_10_1063_5_0076022
crossref_primary_10_1364_OE_397790
crossref_primary_10_1038_s42256_022_00584_3
crossref_primary_10_1364_OSAC_383527
crossref_primary_10_1109_TCI_2024_3458418
crossref_primary_10_1038_s41467_023_41496_z
crossref_primary_10_1109_JSTQE_2021_3060762
crossref_primary_10_1364_OL_441441
crossref_primary_10_1038_s41566_020_00716_4
crossref_primary_10_1038_s44172_023_00103_1
crossref_primary_10_1364_OL_420388
crossref_primary_10_1063_5_0176874
crossref_primary_10_1016_j_scitotenv_2024_177084
crossref_primary_10_1080_09500340_2021_1977860
crossref_primary_10_1364_OL_440900
crossref_primary_10_3390_s19112462
crossref_primary_10_1364_OPTICA_453748
crossref_primary_10_1117_1_APN_3_5_056002
crossref_primary_10_3390_cells11152394
crossref_primary_10_1364_OL_487000
crossref_primary_10_1038_s41592_023_02041_4
crossref_primary_10_1088_1361_6463_ac2ad4
crossref_primary_10_1364_OE_395000
crossref_primary_10_1016_j_optlaseng_2021_106641
crossref_primary_10_1109_TIP_2024_3445739
crossref_primary_10_1016_j_optlaseng_2020_106449
crossref_primary_10_1109_TPAMI_2021_3138897
crossref_primary_10_1186_s43593_022_00037_9
crossref_primary_10_1364_BOE_395302
crossref_primary_10_1364_JOSAB_489100
crossref_primary_10_1364_OE_27_025560
crossref_primary_10_1364_OE_513556
crossref_primary_10_1364_PRJ_447862
crossref_primary_10_1016_j_imavis_2024_105282
crossref_primary_10_1364_BOE_464367
crossref_primary_10_3938_jkps_76_401
crossref_primary_10_1109_TTHZ_2024_3349482
crossref_primary_10_1364_BOE_444488
crossref_primary_10_1364_OPTICA_374026
crossref_primary_10_1016_j_optlaseng_2021_106619
crossref_primary_10_1007_s12551_019_00554_x
crossref_primary_10_1088_2515_7647_abf02c
crossref_primary_10_1038_s41377_020_0267_2
crossref_primary_10_1364_OE_381301
crossref_primary_10_1145_3689037
crossref_primary_10_1364_OPTICA_6_000921
crossref_primary_10_1038_s41598_020_62484_z
crossref_primary_10_1016_j_optcom_2025_131632
crossref_primary_10_1109_LSP_2019_2935814
crossref_primary_10_1364_OE_518249
crossref_primary_10_1088_1361_6560_acc2aa
crossref_primary_10_1038_s41377_022_00714_x
crossref_primary_10_1364_OE_390413
crossref_primary_10_1038_s41377_023_01340_x
crossref_primary_10_1364_OE_412009
crossref_primary_10_3390_s22218366
crossref_primary_10_1103_PhysRevApplied_19_034005
crossref_primary_10_1063_5_0049111
crossref_primary_10_1103_PhysRevE_102_011001
crossref_primary_10_1038_s41598_021_90312_5
crossref_primary_10_3390_app122211436
crossref_primary_10_37188_lam_2022_013
crossref_primary_10_1088_2515_7620_aba6d1
crossref_primary_10_1021_acs_analchem_3c00274
crossref_primary_10_1103_PhysRevA_99_053419
crossref_primary_10_1364_OE_27_033120
crossref_primary_10_3389_fphy_2021_710351
crossref_primary_10_1016_j_optlaseng_2020_106233
crossref_primary_10_1364_OE_397430
crossref_primary_10_1038_s41377_019_0196_0
crossref_primary_10_1038_s41377_023_01181_8
crossref_primary_10_1364_OL_411564
crossref_primary_10_1021_acsphotonics_4c01863
crossref_primary_10_1364_OE_520066
crossref_primary_10_1364_OL_397717
crossref_primary_10_1088_2399_6528_ac016a
crossref_primary_10_1364_OE_461367
crossref_primary_10_1364_OE_520788
crossref_primary_10_1103_PhysRevResearch_3_043066
crossref_primary_10_1364_AO_544424
crossref_primary_10_1364_PRJ_415590
crossref_primary_10_1038_s41586_020_2973_6
crossref_primary_10_1016_j_optlaseng_2022_107010
crossref_primary_10_1364_OE_395204
crossref_primary_10_29026_oea_2024_230034
crossref_primary_10_1364_OPTICA_506572
crossref_primary_10_3390_rs12081289
crossref_primary_10_1117_1_OE_63_7_073102
crossref_primary_10_1063_5_0014725
crossref_primary_10_1021_acsphotonics_1c01365
crossref_primary_10_1364_OE_460208
crossref_primary_10_1364_PRJ_416551
crossref_primary_10_1016_j_pacs_2024_100645
crossref_primary_10_1103_PhysRevLett_123_183902
crossref_primary_10_1103_PhysRevA_101_063417
crossref_primary_10_1038_s41524_025_01569_7
crossref_primary_10_1364_OL_411228
crossref_primary_10_1109_JPROC_2019_2949575
crossref_primary_10_1364_JOSAA_440610
crossref_primary_10_1002_lpor_202300939
crossref_primary_10_1038_s41377_021_00512_x
crossref_primary_10_1364_OE_528687
crossref_primary_10_1515_nanoph_2021_0601
ContentType Journal Article
DBID NPM
DOI 10.1103/PhysRevLett.121.243902
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID 30608745
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
2-P
29O
3MX
5VS
85S
ACBEA
ACGFO
ACNCT
AENEX
AEQTI
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CS3
D0L
DU5
EBS
EJD
ER.
F5P
MVM
N9A
NPBMV
NPM
OK1
P2P
ROL
S7W
SJN
TN5
UBE
WH7
XSW
YNT
ZPR
~02
ID FETCH-LOGICAL-c453t-c4d40deb185f8c8e80af1048e1c04a6514ddd1c890966237ee39b8376d460d8c2
IngestDate Thu Apr 03 06:59:48 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c453t-c4d40deb185f8c8e80af1048e1c04a6514ddd1c890966237ee39b8376d460d8c2
OpenAccessLink http://link.aps.org/pdf/10.1103/PhysRevLett.121.243902
PMID 30608745
ParticipantIDs pubmed_primary_30608745
PublicationCentury 2000
PublicationDate 2018-Dec-14
PublicationDateYYYYMMDD 2018-12-14
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-Dec-14
  day: 14
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2018
SSID ssj0001268
Score 2.6419384
Snippet Imaging systems' performance at low light intensity is affected by shot noise, which becomes increasingly strong as the power of the light source decreases. In...
SourceID pubmed
SourceType Index Database
StartPage 243902
Title Low Photon Count Phase Retrieval Using Deep Learning
URI https://www.ncbi.nlm.nih.gov/pubmed/30608745
Volume 121
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9-oOxF_P6WPPgmnemadumj-DVERXQD36RNLk7QbcxOwb_eS9J2Y078eAlrQrM29-vl7rjfhZD9iCfaZtTIlAmPh6C9OADpaa5CNHdBp9Jwh6-uo0aLX9yH98NcVcsuydKq_JjIK_mPVLEP5WpYsn-QbDkpduBvlC-2KGFsfyXjS8Nja3dNZQzDLc_wAjclXDJzShb-0YFLCDgB6BWFVB9HrdGbQkg5geXZcntKK_vcxelyDkx_BBxZe-ByMd6TFDqlZr-0qQF37UHyNIyQ9nGjzMpzj10MfjTW4AuTt-E4nlVw-pHVY6_u532FAnUc5xwpNT6qD9HesYzqCaqamZIR5kVv4c1wl0yhi-rXG3DJey9WgOjdMFOd_-fRsRLaxdA0mUZnwpyOakI6lSIQF4mcOo6PdDj5gSpkvphkzP-wdkhzkSzkDgQ9cmhYIlPQWSZzTpKvK4QjJqjDBLWYoBYTtMQEtZigBhO0wMQqaZ2dNo8bXn4yhid5GGTYKs4UbrMi1EIKEAy_ONTF4EvGkwiNYKWUL0WMDirat3WAIE4F7iWKR0wJWVsjM51uBzYITUApHQpA1xLnjpJYgqrVwQ8CGWim1SZZd6_70HPlTx6Khdj6dmSbVIbo2SGzGr832EXjLUv37OJ_AmxwQ90
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+Photon+Count+Phase+Retrieval+Using+Deep+Learning&rft.jtitle=Physical+review+letters&rft.au=Goy%2C+Alexandre&rft.au=Arthur%2C+Kwabena&rft.au=Li%2C+Shuai&rft.au=Barbastathis%2C+George&rft.date=2018-12-14&rft.eissn=1079-7114&rft.volume=121&rft.issue=24&rft.spage=243902&rft_id=info:doi/10.1103%2FPhysRevLett.121.243902&rft_id=info%3Apmid%2F30608745&rft_id=info%3Apmid%2F30608745&rft.externalDocID=30608745