Fairness-Oriented Semichaotic Genetic Algorithm-Based Channel Assignment Technique for Node Starvation Problem in Wireless Mesh Networks

Wireless mesh networks (WMNs) have emerged as a scalable, reliable, and agile wireless network that supports many types of innovative technologies such as the Internet of Things (IoT), Wireless Sensor Networks (WSN), and Internet of Vehicles (IoV). Due to the limited number of orthogonal channels, i...

Full description

Saved in:
Bibliographic Details
Published inComputational intelligence and neuroscience Vol. 2021; no. 1; p. 2977954
Main Authors Ghaleb, Fuad A., Al-Rimy, Bander Ali Saleh, Boulila, Wadii, Saeed, Faisal, Kamat, Maznah, Foad Rohani, Mohd, Razak, Shukor Abd
Format Journal Article
LanguageEnglish
Published New York Hindawi 2021
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Wireless mesh networks (WMNs) have emerged as a scalable, reliable, and agile wireless network that supports many types of innovative technologies such as the Internet of Things (IoT), Wireless Sensor Networks (WSN), and Internet of Vehicles (IoV). Due to the limited number of orthogonal channels, interference between channels adversely affects the fair distribution of bandwidth among mesh clients, causing node starvation in terms of insufficient bandwidth distribution, which impedes the adoption of WMN as an efficient access technology. Therefore, a fair channel assignment is crucial for the mesh clients to utilize the available resources. However, the node starvation problem due to unfair channel distribution has been vastly overlooked during channel assignment by the extant research. Instead, existing channel assignment algorithms equally distribute the interference reduction on the links to achieve fairness which neither guarantees a fair distribution of the network bandwidth nor eliminates node starvation. In addition, the metaheuristic-based solutions such as genetic algorithm, which is commonly used for WMN, use randomness in creating initial population and selecting the new generation usually leading the search to local minima. To this end, this study proposes a Fairness-Oriented Semichaotic Genetic Algorithm-Based Channel Assignment Technique (FA-SCGA-CAA) to solve node starvation problem in wireless mesh networks. FA-SCGA-CAA maximizes link fairness while minimizing link interference using a genetic algorithm (GA) with a novel nonlinear fairness-oriented fitness function. The primary chromosome with powerful genes is created based on multicriterion links ranking channel assignment algorithm. Such a chromosome was used with a proposed semichaotic technique to create a strong population that directs the search towards the global minima effectively and efficiently. The proposed semichaotic technique was also used during the mutation and parent selection of the new genes. Extensive experiments were conducted to evaluate the proposed algorithm. A comparison with related work shows that the proposed FA-SCGA-CAA reduced the potential node starvation by 22% and improved network capacity utilization by 23%. It can be concluded that the proposed FA-SCGA-CAA is reliable to maintain high node-level fairness while maximizing the utilization of the network resources, which is the ultimate goal of many wireless networks.
AbstractList Wireless mesh networks (WMNs) have emerged as a scalable, reliable, and agile wireless network that supports many types of innovative technologies such as the Internet of Things (IoT), Wireless Sensor Networks (WSN), and Internet of Vehicles (IoV). Due to the limited number of orthogonal channels, interference between channels adversely affects the fair distribution of bandwidth among mesh clients, causing node starvation in terms of insufficient bandwidth distribution, which impedes the adoption of WMN as an efficient access technology. Therefore, a fair channel assignment is crucial for the mesh clients to utilize the available resources. However, the node starvation problem due to unfair channel distribution has been vastly overlooked during channel assignment by the extant research. Instead, existing channel assignment algorithms equally distribute the interference reduction on the links to achieve fairness which neither guarantees a fair distribution of the network bandwidth nor eliminates node starvation. In addition, the metaheuristic-based solutions such as genetic algorithm, which is commonly used for WMN, use randomness in creating initial population and selecting the new generation usually leading the search to local minima. To this end, this study proposes a Fairness-Oriented Semichaotic Genetic Algorithm-Based Channel Assignment Technique (FA-SCGA-CAA) to solve node starvation problem in wireless mesh networks. FA-SCGA-CAA maximizes link fairness while minimizing link interference using a genetic algorithm (GA) with a novel nonlinear fairness-oriented fitness function. The primary chromosome with powerful genes is created based on multicriterion links ranking channel assignment algorithm. Such a chromosome was used with a proposed semichaotic technique to create a strong population that directs the search towards the global minima effectively and efficiently. The proposed semichaotic technique was also used during the mutation and parent selection of the new genes. Extensive experiments were conducted to evaluate the proposed algorithm. A comparison with related work shows that the proposed FA-SCGA-CAA reduced the potential node starvation by 22% and improved network capacity utilization by 23%. It can be concluded that the proposed FA-SCGA-CAA is reliable to maintain high node-level fairness while maximizing the utilization of the network resources, which is the ultimate goal of many wireless networks.Wireless mesh networks (WMNs) have emerged as a scalable, reliable, and agile wireless network that supports many types of innovative technologies such as the Internet of Things (IoT), Wireless Sensor Networks (WSN), and Internet of Vehicles (IoV). Due to the limited number of orthogonal channels, interference between channels adversely affects the fair distribution of bandwidth among mesh clients, causing node starvation in terms of insufficient bandwidth distribution, which impedes the adoption of WMN as an efficient access technology. Therefore, a fair channel assignment is crucial for the mesh clients to utilize the available resources. However, the node starvation problem due to unfair channel distribution has been vastly overlooked during channel assignment by the extant research. Instead, existing channel assignment algorithms equally distribute the interference reduction on the links to achieve fairness which neither guarantees a fair distribution of the network bandwidth nor eliminates node starvation. In addition, the metaheuristic-based solutions such as genetic algorithm, which is commonly used for WMN, use randomness in creating initial population and selecting the new generation usually leading the search to local minima. To this end, this study proposes a Fairness-Oriented Semichaotic Genetic Algorithm-Based Channel Assignment Technique (FA-SCGA-CAA) to solve node starvation problem in wireless mesh networks. FA-SCGA-CAA maximizes link fairness while minimizing link interference using a genetic algorithm (GA) with a novel nonlinear fairness-oriented fitness function. The primary chromosome with powerful genes is created based on multicriterion links ranking channel assignment algorithm. Such a chromosome was used with a proposed semichaotic technique to create a strong population that directs the search towards the global minima effectively and efficiently. The proposed semichaotic technique was also used during the mutation and parent selection of the new genes. Extensive experiments were conducted to evaluate the proposed algorithm. A comparison with related work shows that the proposed FA-SCGA-CAA reduced the potential node starvation by 22% and improved network capacity utilization by 23%. It can be concluded that the proposed FA-SCGA-CAA is reliable to maintain high node-level fairness while maximizing the utilization of the network resources, which is the ultimate goal of many wireless networks.
Wireless mesh networks (WMNs) have emerged as a scalable, reliable, and agile wireless network that supports many types of innovative technologies such as the Internet of Things (IoT), Wireless Sensor Networks (WSN), and Internet of Vehicles (IoV). Due to the limited number of orthogonal channels, interference between channels adversely affects the fair distribution of bandwidth among mesh clients, causing node starvation in terms of insufficient bandwidth distribution, which impedes the adoption of WMN as an efficient access technology. Therefore, a fair channel assignment is crucial for the mesh clients to utilize the available resources. However, the node starvation problem due to unfair channel distribution has been vastly overlooked during channel assignment by the extant research. Instead, existing channel assignment algorithms equally distribute the interference reduction on the links to achieve fairness which neither guarantees a fair distribution of the network bandwidth nor eliminates node starvation. In addition, the metaheuristic-based solutions such as genetic algorithm, which is commonly used for WMN, use randomness in creating initial population and selecting the new generation usually leading the search to local minima. To this end, this study proposes a Fairness-Oriented Semichaotic Genetic Algorithm-Based Channel Assignment Technique (FA-SCGA-CAA) to solve node starvation problem in wireless mesh networks. FA-SCGA-CAA maximizes link fairness while minimizing link interference using a genetic algorithm (GA) with a novel nonlinear fairness-oriented fitness function. The primary chromosome with powerful genes is created based on multicriterion links ranking channel assignment algorithm. Such a chromosome was used with a proposed semichaotic technique to create a strong population that directs the search towards the global minima effectively and efficiently. The proposed semichaotic technique was also used during the mutation and parent selection of the new genes. Extensive experiments were conducted to evaluate the proposed algorithm. A comparison with related work shows that the proposed FA-SCGA-CAA reduced the potential node starvation by 22% and improved network capacity utilization by 23%. It can be concluded that the proposed FA-SCGA-CAA is reliable to maintain high node-level fairness while maximizing the utilization of the network resources, which is the ultimate goal of many wireless networks.
Audience Academic
Author Razak, Shukor Abd
Ghaleb, Fuad A.
Boulila, Wadii
Kamat, Maznah
Al-Rimy, Bander Ali Saleh
Saeed, Faisal
Foad Rohani, Mohd
AuthorAffiliation 4 College of Computer Science and Engineering, Taibah University, Medina 42353, Saudi Arabia
2 Department of Computer and Electronic Engineering, Sana'a Community College, Sana'a 5695, Yemen
1 School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
3 RIADI Laboratory, National School of Computer Sciences, University of Manouba, Manouba 2010, Tunisia
AuthorAffiliation_xml – name: 3 RIADI Laboratory, National School of Computer Sciences, University of Manouba, Manouba 2010, Tunisia
– name: 4 College of Computer Science and Engineering, Taibah University, Medina 42353, Saudi Arabia
– name: 2 Department of Computer and Electronic Engineering, Sana'a Community College, Sana'a 5695, Yemen
– name: 1 School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
Author_xml – sequence: 1
  givenname: Fuad A.
  orcidid: 0000-0002-1468-0655
  surname: Ghaleb
  fullname: Ghaleb, Fuad A.
  organization: School of ComputingFaculty of EngineeringUniversiti Teknologi MalaysiaJohor Bahru 81310Malaysiautm.my
– sequence: 2
  givenname: Bander Ali Saleh
  orcidid: 0000-0003-3048-5961
  surname: Al-Rimy
  fullname: Al-Rimy, Bander Ali Saleh
  organization: School of ComputingFaculty of EngineeringUniversiti Teknologi MalaysiaJohor Bahru 81310Malaysiautm.my
– sequence: 3
  givenname: Wadii
  orcidid: 0000-0003-2133-0757
  surname: Boulila
  fullname: Boulila, Wadii
  organization: RIADI LaboratoryNational School of Computer SciencesUniversity of ManoubaManouba 2010Tunisiauma.rnu.tn
– sequence: 4
  givenname: Faisal
  surname: Saeed
  fullname: Saeed, Faisal
  organization: College of Computer Science and EngineeringTaibah UniversityMedina 42353Saudi Arabiataibahu.edu.sa
– sequence: 5
  givenname: Maznah
  surname: Kamat
  fullname: Kamat, Maznah
  organization: School of ComputingFaculty of EngineeringUniversiti Teknologi MalaysiaJohor Bahru 81310Malaysiautm.my
– sequence: 6
  givenname: Mohd
  surname: Foad Rohani
  fullname: Foad Rohani, Mohd
  organization: School of ComputingFaculty of EngineeringUniversiti Teknologi MalaysiaJohor Bahru 81310Malaysiautm.my
– sequence: 7
  givenname: Shukor Abd
  orcidid: 0000-0002-8824-6069
  surname: Razak
  fullname: Razak, Shukor Abd
  organization: School of ComputingFaculty of EngineeringUniversiti Teknologi MalaysiaJohor Bahru 81310Malaysiautm.my
BookMark eNp9ks1u1DAUhSNURH9gxwNYYoMEof6JY2eDNIxoQSotUotYWo5zPXFJ7NbOtOob9LFxOgOISrCwriV_51wf--4XOz54KIqXBL8jhPNDiik5pI0QDa-eFHuklqLkVLCd3_ua7xb7KV1izAXH9Fmxy6qKMCn5XnF_pF30kFJ5Fh34CTp0DqMzvQ6TM-gYPMx1MaxCdFM_lh90ysyy197DgBYpuZUfsxBdgOm9u14DsiGi09ABOp90vNGTCx59jaEdYETOo-8uwpA7oi-QenQK022IP9Lz4qnVQ4IX23pQfDv6eLH8VJ6cHX9eLk5KU3E2lS2TrZDAmsY2oiWyoli0IKtGcisszauRBlhrDbFtbcGausMSs852WmresYPi_cb3at2O0Jl89agHdRXdqOOdCtqpv0-869Uq3CjJBJakyQavtwYx5LRpUqNLBoZBewjrpCivWUUlwTSjrx6hl2EdfY73QLGaNaL6Q630AMp5G3JfM5uqRd3kL6wJnim6oUwMKUWwyrjp4W0z7QZFsJrHQc3joLbjkEVvH4l-5fwH_maD9853-tb9n_4JhnjFNg
CitedBy_id crossref_primary_10_3390_biotech13030033
crossref_primary_10_3390_math11204243
crossref_primary_10_3390_s22041652
Cites_doi 10.1109/TNET.2014.2326153
10.1155/2021/9962697
10.1109/TVT.2010.2102057
10.1109/TWC.2016.2623308
10.1109/JLT.2016.2604864
10.1109/iWEM.2017.7968828
10.1007/s11276-019-01955-2
10.1016/j.comnet.2017.09.016
10.1016/j.cosrev.2020.100303
10.1002/dac.3824
10.1002/spe.2785
10.1109/TVT.2019.2929035
10.1109/TVT.2017.2753772
10.1016/s1005-8885(14)60331-9
10.1049/iet-com.2015.0757
10.1109/ACCESS.2018.2789423
10.1109/ACCESS.2020.2986078
10.1007/s11277-019-06214-3
10.1016/j.jnca.2016.07.008
10.1109/COMST.2015.2510164
10.1016/j.jnca.2016.06.008
10.1109/JSAC.2016.2520238
10.1007/s00521-017-3164-8
10.1109/SURV.2013.050113.00015
10.1109/JIOT.2017.2727517
10.1016/j.compeleceng.2018.09.004
10.1186/1687-1499-2013-163
10.1007/s11277-018-5776-4
10.1016/j.neucom.2020.09.042
10.1186/1687-1499-2012-155
10.1109/JCN.2016.000123
10.1109/TII.2013.2250910
10.1109/TITS.2018.2853165
10.1007/s11276-019-02216-y
10.1109/ICSPCC.2017.8242517
10.1007/s11036-018-1123-y
10.1109/MAP.2015.2480078
10.1145/3234698.3234726
10.1016/j.cosrev.2020.100318
10.1007/978-981-15-0058-9_51
10.1007/s00500-016-2270-3
10.1109/LCOMM.2013.071013.130585
10.1016/j.jnca.2018.07.018
10.1109/TVT.2012.2191166
10.3390/sym12030328
10.1016/j.comcom.2020.01.024
10.1109/COMST.2018.2873088
10.1109/ACCESS.2018.2808479
10.1109/TITS.2018.2889746
10.1109/ICICES.2016.7518914
10.1002/dac.1344
10.1109/CC.2015.7084389
10.1109/TSC.2014.2370642
10.1007/s11036-017-0878-x
10.1109/TMC.2011.252
10.1109/ACCESS.2019.2950266
10.1007/s11277-017-5132-0
10.1109/TWC.2019.2897296
10.1016/j.camwa.2012.03.023
10.3390/rs11232852
10.1186/s13638-018-1176-4
ContentType Journal Article
Copyright Copyright © 2021 Fuad A. Ghaleb et al.
COPYRIGHT 2021 John Wiley & Sons, Inc.
Copyright © 2021 Fuad A. Ghaleb et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright © 2021 Fuad A. Ghaleb et al. 2021
Copyright_xml – notice: Copyright © 2021 Fuad A. Ghaleb et al.
– notice: COPYRIGHT 2021 John Wiley & Sons, Inc.
– notice: Copyright © 2021 Fuad A. Ghaleb et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
– notice: Copyright © 2021 Fuad A. Ghaleb et al. 2021
DBID RHU
RHW
RHX
AAYXX
CITATION
3V.
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
8AL
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
CWDGH
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KR7
L6V
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
7X8
5PM
DOI 10.1155/2021/2977954
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
Middle East & Africa Database
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Middle East & Africa Database
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1687-5273
Editor Bai, Yu-Ting
Editor_xml – sequence: 1
  givenname: Yu-Ting
  surname: Bai
  fullname: Bai, Yu-Ting
ExternalDocumentID PMC8370819
A696876104
10_1155_2021_2977954
GrantInformation_xml – fundername: Universiti Teknologi Malaysia
  grantid: R.J130000.7828.4L852
GroupedDBID ---
188
29F
2WC
3V.
4.4
53G
5GY
5VS
6J9
7X7
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAFWJ
AAJEY
AAKPC
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIWK
ACM
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AHMBA
AINHJ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CS3
CWDGH
DIK
DWQXO
E3Z
EBD
EBS
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
I-F
IAO
ICD
INH
INR
IPY
ITC
K6V
K7-
KQ8
L6V
LK8
M0N
M1P
M48
M7P
M7S
MK~
O5R
O5S
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
Q2X
RHU
RHW
RHX
RNS
RPM
SV3
TR2
TUS
UKHRP
XH6
~8M
0R~
24P
2UF
AAYXX
ACCMX
ACUHS
C1A
CITATION
EJD
H13
IHR
IL9
OVT
PGMZT
PHGZM
PHGZT
UZ4
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c453t-b38b78e399f97b184207be84985f7f2f7f98ce3bfc1fb6fefc6d0803dfda8a5d3
IEDL.DBID M48
ISSN 1687-5265
1687-5273
IngestDate Thu Aug 21 14:00:10 EDT 2025
Tue Aug 05 11:01:32 EDT 2025
Fri Jul 25 09:32:57 EDT 2025
Tue Jun 17 22:02:57 EDT 2025
Tue Jul 01 01:38:54 EDT 2025
Thu Apr 24 23:12:13 EDT 2025
Sun Jun 02 18:51:56 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-b38b78e399f97b184207be84985f7f2f7f98ce3bfc1fb6fefc6d0803dfda8a5d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Academic Editor: Yu-Ting Bai
ORCID 0000-0003-3048-5961
0000-0003-2133-0757
0000-0002-8824-6069
0000-0002-1468-0655
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1155/2021/2977954
PMID 34413885
PQID 2563363974
PQPubID 237303
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8370819
proquest_miscellaneous_2563428102
proquest_journals_2563363974
gale_infotracmisc_A696876104
crossref_citationtrail_10_1155_2021_2977954
crossref_primary_10_1155_2021_2977954
hindawi_primary_10_1155_2021_2977954
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Computational intelligence and neuroscience
PublicationYear 2021
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References e_1_2_13_24_2
e_1_2_13_47_2
e_1_2_13_26_2
e_1_2_13_45_2
e_1_2_13_20_2
e_1_2_13_43_2
e_1_2_13_22_2
e_1_2_13_41_2
e_1_2_13_8_2
e_1_2_13_62_2
e_1_2_13_6_2
e_1_2_13_60_2
e_1_2_13_17_2
e_1_2_13_38_2
e_1_2_13_19_2
e_1_2_13_13_2
e_1_2_13_34_2
e_1_2_13_59_2
e_1_2_13_15_2
e_1_2_13_36_2
e_1_2_13_57_2
e_1_2_13_30_2
e_1_2_13_55_2
e_1_2_13_11_2
e_1_2_13_32_2
e_1_2_13_53_2
e_1_2_13_51_2
e_1_2_13_4_2
e_1_2_13_2_2
e_1_2_13_27_2
e_1_2_13_29_2
e_1_2_13_23_2
e_1_2_13_48_2
e_1_2_13_25_2
e_1_2_13_46_2
e_1_2_13_44_2
e_1_2_13_21_2
e_1_2_13_42_2
e_1_2_13_63_2
e_1_2_13_61_2
e_1_2_13_7_2
e_1_2_13_40_2
e_1_2_13_5_2
e_1_2_13_9_2
e_1_2_13_16_2
e_1_2_13_39_2
e_1_2_13_18_2
e_1_2_13_12_2
e_1_2_13_35_2
e_1_2_13_58_2
e_1_2_13_14_2
e_1_2_13_37_2
e_1_2_13_56_2
e_1_2_13_31_2
e_1_2_13_54_2
e_1_2_13_10_2
e_1_2_13_33_2
e_1_2_13_52_2
e_1_2_13_50_2
e_1_2_13_3_2
e_1_2_13_1_2
e_1_2_13_28_2
e_1_2_13_49_2
References_xml – ident: e_1_2_13_29_2
  doi: 10.1109/TNET.2014.2326153
– ident: e_1_2_13_25_2
  doi: 10.1155/2021/9962697
– ident: e_1_2_13_51_2
  doi: 10.1109/TVT.2010.2102057
– ident: e_1_2_13_47_2
  doi: 10.1109/TWC.2016.2623308
– ident: e_1_2_13_35_2
  doi: 10.1109/JLT.2016.2604864
– ident: e_1_2_13_22_2
  doi: 10.1109/iWEM.2017.7968828
– ident: e_1_2_13_30_2
  doi: 10.1007/s11276-019-01955-2
– ident: e_1_2_13_36_2
  doi: 10.1016/j.comnet.2017.09.016
– ident: e_1_2_13_27_2
  doi: 10.1016/j.cosrev.2020.100303
– ident: e_1_2_13_42_2
  doi: 10.1002/dac.3824
– ident: e_1_2_13_6_2
  doi: 10.1002/spe.2785
– ident: e_1_2_13_56_2
  doi: 10.1109/TVT.2019.2929035
– ident: e_1_2_13_9_2
  doi: 10.1109/TVT.2017.2753772
– ident: e_1_2_13_44_2
  doi: 10.1016/s1005-8885(14)60331-9
– ident: e_1_2_13_40_2
  doi: 10.1049/iet-com.2015.0757
– ident: e_1_2_13_24_2
– ident: e_1_2_13_48_2
  doi: 10.1109/ACCESS.2018.2789423
– ident: e_1_2_13_14_2
  doi: 10.1109/ACCESS.2020.2986078
– ident: e_1_2_13_63_2
  doi: 10.1007/s11277-019-06214-3
– ident: e_1_2_13_2_2
  doi: 10.1016/j.jnca.2016.07.008
– ident: e_1_2_13_20_2
  doi: 10.1109/COMST.2015.2510164
– ident: e_1_2_13_1_2
  doi: 10.1016/j.jnca.2016.06.008
– ident: e_1_2_13_38_2
  doi: 10.1109/JSAC.2016.2520238
– ident: e_1_2_13_54_2
  doi: 10.1007/s00521-017-3164-8
– ident: e_1_2_13_43_2
  doi: 10.1109/SURV.2013.050113.00015
– ident: e_1_2_13_58_2
  doi: 10.1109/JIOT.2017.2727517
– ident: e_1_2_13_34_2
  doi: 10.1016/j.compeleceng.2018.09.004
– ident: e_1_2_13_62_2
  doi: 10.1186/1687-1499-2013-163
– ident: e_1_2_13_53_2
  doi: 10.1007/s11277-018-5776-4
– ident: e_1_2_13_23_2
  doi: 10.1016/j.neucom.2020.09.042
– ident: e_1_2_13_55_2
  doi: 10.1186/1687-1499-2012-155
– ident: e_1_2_13_13_2
  doi: 10.1109/JCN.2016.000123
– ident: e_1_2_13_3_2
  doi: 10.1109/COMST.2015.2510164
– ident: e_1_2_13_61_2
  doi: 10.1109/TII.2013.2250910
– ident: e_1_2_13_59_2
  doi: 10.1109/TITS.2018.2853165
– ident: e_1_2_13_11_2
  doi: 10.1007/s11276-019-02216-y
– ident: e_1_2_13_37_2
  doi: 10.1109/ICSPCC.2017.8242517
– ident: e_1_2_13_19_2
  doi: 10.1007/s11036-018-1123-y
– ident: e_1_2_13_50_2
  doi: 10.1109/MAP.2015.2480078
– ident: e_1_2_13_33_2
  doi: 10.1145/3234698.3234726
– ident: e_1_2_13_26_2
  doi: 10.1016/j.cosrev.2020.100318
– ident: e_1_2_13_32_2
  doi: 10.1007/978-981-15-0058-9_51
– ident: e_1_2_13_16_2
  doi: 10.1007/s00500-016-2270-3
– ident: e_1_2_13_49_2
  doi: 10.1109/LCOMM.2013.071013.130585
– ident: e_1_2_13_31_2
  doi: 10.1016/j.jnca.2018.07.018
– ident: e_1_2_13_41_2
  doi: 10.1109/TVT.2012.2191166
– ident: e_1_2_13_5_2
  doi: 10.3390/sym12030328
– ident: e_1_2_13_15_2
  doi: 10.1016/j.comcom.2020.01.024
– ident: e_1_2_13_52_2
  doi: 10.1109/COMST.2018.2873088
– ident: e_1_2_13_57_2
  doi: 10.1109/ACCESS.2018.2808479
– ident: e_1_2_13_10_2
  doi: 10.1109/TITS.2018.2889746
– ident: e_1_2_13_39_2
  doi: 10.1109/ICICES.2016.7518914
– ident: e_1_2_13_46_2
  doi: 10.1002/dac.1344
– ident: e_1_2_13_7_2
  doi: 10.1109/CC.2015.7084389
– ident: e_1_2_13_18_2
  doi: 10.1109/TSC.2014.2370642
– ident: e_1_2_13_17_2
  doi: 10.1007/s11036-017-0878-x
– ident: e_1_2_13_45_2
  doi: 10.1109/TMC.2011.252
– ident: e_1_2_13_12_2
  doi: 10.1109/ACCESS.2019.2950266
– ident: e_1_2_13_21_2
  doi: 10.1007/s11277-017-5132-0
– ident: e_1_2_13_28_2
  doi: 10.1109/TWC.2019.2897296
– ident: e_1_2_13_8_2
  doi: 10.1016/j.camwa.2012.03.023
– ident: e_1_2_13_60_2
  doi: 10.3390/rs11232852
– ident: e_1_2_13_4_2
  doi: 10.1186/s13638-018-1176-4
SSID ssj0057502
Score 2.2775104
Snippet Wireless mesh networks (WMNs) have emerged as a scalable, reliable, and agile wireless network that supports many types of innovative technologies such as the...
SourceID pubmedcentral
proquest
gale
crossref
hindawi
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2977954
SubjectTerms Access control
Algorithms
Analysis
Assignment problem
Bandwidths
Channels
Chromosomes
Clients
Communication
Connectivity
Genes
Genetic algorithms
Genetic research
Heuristic methods
Interference
Internet of Things
Internet of Vehicles
Mesh networks
Methods
Minima
Nodes
Optimization
Rankings
Starvation
Telecommunication systems
Wireless networks
Wireless sensor networks
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fi9QwEA7egeCLqKe4ekqE0xcJ7iZNmj6u4rIItwrewb6V_HQLe61s9zjuP_DPdqZNF6uIPpRSJmlKJzP5Jpl8IeRsGqXkPnMsznxgGc8M00XmGUQCzjsjuO020p6v1PIy-7SW60SS1P65hA-jHYbns3cccEohsyNyBB0Mg_LlenC4ADj61EIF9oJs70N--291RyNP8r93Nxj53lQjfDnOjvxluFk8IPcTTqTzXrEPyZ1QPyIn8xpi5Ktb-oZ2mZvdlPgJ-bEw1Q5dFvuMrMWAIenXjtPXNFCbIrM03ufbb82u2m-u2HsYujzFjQV1gDZaTOLAWUJ6MTC6UsCydNX4QAGNpmlb-qU_fIZWNcWk2S20SM9Du6GrPpe8fUwuFx8vPixZOmGBuUyKPbNC21wHACmxyC0Ee3ya26CzQsuYRw5XoV0QNrpZtCqG6JQHiCl89EYb6cUTclw3dXhKKOfRW-WUNoaD81VGeT3LvSqE9nyq9IS8Hf5-6RL9OJ6CsS27METKEnVVJl1NyOtD6e897cZfyp2iIku0RnibA9tw5RwJf3LAhSA-Swr-11sG7ZfJhNsSsKAQuOwJ4lcHMTaAaWl1aK77MhC_AUibkHzUaw7tIX33WFJXm47GG2mHAI89-79vfE7u4WM_-3NKjve76_AC8NDevuys4SeIdgU6
  priority: 102
  providerName: Hindawi Publishing
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Nb9NAEF1BERIXVCiIQIsWqXBBqyb75fWpCoioQmpAopVys7xfJFJqt3Uq1H_Qn90Zex3wAThEOezam3g8s2_Gz28IORxHpbiXjsWJD0xyWTKTS88gE3DelYLb9kXa07k-OZdfF2qRCm5NolX2MbEN1L52WCM_gq1ZCHwKJY8vrxh2jcKnq6mFxkPyCKXLkNKVLbYJFyCRjnOowZFQBr4nviuFOf_kiAP4yZUcbEkpMD9eYkr8azUAnkPa5B_70GyXPE0Akk47iz8jD0L1nOxNK0ieL27pB9pSOtta-R65m5Wra4xl7BvKGQO4pD9asd-yhqMpSk7j93T9E_7pZnnBPsGe5im-cVAFWKNBdgeWD-lZL_VKAeTSee0DBZia6rn0e9eVhq4qimzaNaxIT0OzpPOOZN68IOezL2efT1hqvcCcVGLDrDA2MwHQS8wzC1kgH2c2GJkbFbPI4ZMbF4SNbhKtjiE67QF7Ch99aUrlxUuyU9VVeEUo59Fb7bQpSw5RWZfam0nmdS6M52NtRuRjf_ULl3TJsT3GumjzE6UKtFWRbDUi77ezLzs9jr_M20dDFuimcDYHTuOKKSoBZQAYYfgwGfh_Z-mtXyTfborfd-KIvNsO4wLIV6tCfdPNgcQO0NuIZIO7Zrse6noPR6rVstX3Rj0iAGqv_734G_IEf2pXDtonO5vrm3AAAGlj37ZecA8v3Q94
  priority: 102
  providerName: ProQuest
Title Fairness-Oriented Semichaotic Genetic Algorithm-Based Channel Assignment Technique for Node Starvation Problem in Wireless Mesh Networks
URI https://dx.doi.org/10.1155/2021/2977954
https://www.proquest.com/docview/2563363974
https://www.proquest.com/docview/2563428102
https://pubmed.ncbi.nlm.nih.gov/PMC8370819
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFB56QfBFWqu4ti4jVF8kuplkLnmQsi3dLsKupXYhbyGZSzewTXR3i_Yf-LM9J5elEUUfkhBmkgk5c-Z8Z-bMdwg5HjjOmQm153xjvZCFqaei0HjgCWij04Bl1UbayVSMZ-GnmMdbpM022vzA1R9dO8wnNVsu3v_4dn8CCv-xUnjO0X_3PzAAMhEPt8ku2CSJKjoJN-sJgEnq6EMBKoWE8G0I_G9Pd4xTM0Q_mqNz_D3vQNBuAOUDizTaI08aKEmHtez3yZYtnpKDYQFu9O09fUur4M5q1vyA_Byl-RJHNe8zEhsDzKRfKtrftISnKZJP43W4uCmX-Xp-652CdTMU9x4UFtpYYZwHTiTS65b0lQLcpdPSWAqAtZnZpZd1fhqaFxTjahfQIp3Y1ZxO63Dz1TMyG51fn429JgmDp0MerL0sUJlUFnCMi2QG_iAbyMyqMFLcScfgiJS2Qea07zLhrNPCAAoNjDOpSrkJnpOdoizsC0IZcyYTWqg0ZTA-i1QY5UsjokAZNhCqR961fz_RDUM5JspYJJWnwnmCskoaWfXIm03trzUzx1_qHaEgE-xC8DYN6qOTIXICSYCOUHzcCPhfb2mln7SdNAG4GAS4MgrFrzfF2ABGrhW2vKvrgIsHOK5HZKfXbNpDhu9uSZHPK6ZvZCYCyPby_77xkDzG23qC6IjsrJd39hVApnXWJ9sylnBWo4s-2T09n15ewd1F7PcrPYHz1Tj-BX6FGBs
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtNAEF6VVohe-CuogQKL1HJBbpO1114fOISWkNImIJGqvZn1_hCL1Eaxo6o8Ae_Aq_BwzPgnYCTgVIlDlMNudq3N7Mw342-_JWS7azln2lOO7WnjeMyTjgg97UAmoLSSLovLg7SjsT888d6c8bMV8q05C4O0ysYnlo5aZwpr5HsQml0X30J5NYPyyFxeQH6Wvzg8gD9zh7HBq8n-0KmvEHCUx93CiV0RB8JAFLZhEEM2w7pBbIQXCm4Dy-ATCmXc2KqejX1rrPI1YChXWy2F5NqFca-RNcgqOGyftf3Tg9fDxtED0KkojT7sU1SZb3j1nGNJobfHAFuF3GtFvNrvX59ixn2RtHBtm5X5S5gb3CLfmwWq2C2fdhdFvKu-_KYd-Z-u4G1ys4bXtF_thztkxaR3yUY_lUV2fkmf0ZLwWr5J2CBfBzKZo6d33qLYM0Bv-r6UQpYZ_JqiIDd-92cfs3lSTM-dlxDxNcXzGKmBOXLkvmBxlU4aIVwKKQAdZ9pQAPF1tZu-q-7soUlKkWs8gxnpyORTOq4o-Pk9cnIla3KfrKZZajYJZczq2Fe-kJJBzPKlr0Uv0H7oCs26vuiQ543xRKpWbcfLQ2ZRmb1xHqGpRbWpdcjOsvfnSq3kD_220A4jdGIwmgKXoqI-6iQFAKehebu2z3-N0hhaVHu-PPppZR3ydNmMEyCbLzXZouoDaS9g2w4JWka_nA9Vz9staTIt1c9RrQlg7IO_T_6E3BhORsfR8eH46CFZx8euCmdbZLWYL8wjgJJF_Lje0pR8uOo98AMU4YSm
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VVCAu_BVEoMAitVyQm2TttdcHhEJDSCkNlWhFb8beHxKR2qV2VJUn4Jl4FV6GGf8EggSceuAQ5bDr3WQ9u_PN7rffAGx0rRBce8qxPW0cj3uxI0NPOxgJKK1ilyflRdq9sT869F4fiaMV-NbchSFaZbMmlgu1zhTtkXfQNbsunUJ5HVvTIvYHw-cnnx3KIEUnrU06jcpEds35GYZv-bOdAb7rTc6HLw-2R06dYcBRnnALJ3FlEkiDTtqGQYLBDu8GiZFeKIUNLMdPKJVxE6t6NvGtscrXCLFcbXUsY6FdbPcSrFJWJ68Fq9vvB69GjR9AHFQxHn2cxiRC39DuhaAdh16HI_QKhbfkEGu3cHlCAfnZdAn2LpM2f_GCw-vwvRm_ivzyaWteJFvqy2_Skv_nAN-AazU4Z_1qNt2EFZPegrV-GhfZ8Tl7wkq6bHkOsQZfh_H0lPyE85akohG4s3elkHKc4dOM5Lzpuz_7iH-smBw7LxAvaEa3OVKDfeTEnKGtWXbQyOgyDCDYONOGYQhQ75Wz_SrjD5umjJjKM-yR7Zl8wsYVgT-_DYcXMiZ3oJVmqbkLjHOrE1_5Mo45ejw_9rXsBdoPXal515dteNrYVqRqzXdKPTKLythPiIgsMaotsQ2bi9onldbJH-qtk5lGtARiawoXJBX1SWUpQDCOxRu1-f6rlcYOo3rdzKOfRtiGx4ti6oC4gKnJ5lUdDJoRGbchWJoTi_5IM325JJ1OSu100npCEHzv750_gito-9GbnfHufbhKv7radVuHVnE6Nw8QhxbJw3rCM_hw0VPgB8D8nHY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fairness-Oriented+Semichaotic+Genetic+Algorithm-Based+Channel+Assignment+Technique+for+Node+Starvation+Problem+in+Wireless+Mesh+Networks&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Ghaleb%2C+Fuad+A.&rft.au=Al-Rimy%2C+Bander+Ali+Saleh&rft.au=Boulila%2C+Wadii&rft.au=Saeed%2C+Faisal&rft.date=2021&rft.pub=Hindawi&rft.issn=1687-5265&rft.eissn=1687-5273&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F2977954&rft.externalDocID=10_1155_2021_2977954
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon