Comparative Analyses of Vertebrate Gut Microbiomes Reveal Convergence between Birds and Bats
In this comprehensive survey of microbiomes of >900 species, including 315 mammals and 491 birds, we find a striking convergence of the microbiomes of birds and animals that fly. In nonflying mammals, diet and short-term evolutionary relatedness drive the microbiome, and many microbial species ar...
Saved in:
Published in | mBio Vol. 11; no. 1 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
07.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this comprehensive survey of microbiomes of >900 species, including 315 mammals and 491 birds, we find a striking convergence of the microbiomes of birds and animals that fly. In nonflying mammals, diet and short-term evolutionary relatedness drive the microbiome, and many microbial species are specific to a particular kind of mammal, but flying mammals and birds break this pattern with many microbes shared across different species, with little correlation either with diet or with relatedness of the hosts. This finding suggests that adaptation to flight breaks long-held relationships between hosts and their microbes.
Diet and host phylogeny drive the taxonomic and functional contents of the gut microbiome in mammals, yet it is unknown whether these patterns hold across all vertebrate lineages. Here, we assessed gut microbiomes from ∼900 vertebrate species, including 315 mammals and 491 birds, assessing contributions of diet, phylogeny, and physiology to structuring gut microbiomes. In most nonflying mammals, strong correlations exist between microbial community similarity, host diet, and host phylogenetic distance up to the host order level. In birds, by contrast, gut microbiomes are only very weakly correlated to diet or host phylogeny. Furthermore, while most microbes resident in mammalian guts are present in only a restricted taxonomic range of hosts, most microbes recovered from birds show little evidence of host specificity. Notably, among the mammals, bats host especially bird-like gut microbiomes, with little evidence for correlation to host diet or phylogeny. This suggests that host-gut microbiome phylosymbiosis depends on factors convergently absent in birds and bats, potentially associated with physiological adaptations to flight. Our findings expose major variations in the behavior of these important symbioses in endothermic vertebrates and may signal fundamental evolutionary shifts in the cost/benefit framework of the gut microbiome.
IMPORTANCE
In this comprehensive survey of microbiomes of >900 species, including 315 mammals and 491 birds, we find a striking convergence of the microbiomes of birds and animals that fly. In nonflying mammals, diet and short-term evolutionary relatedness drive the microbiome, and many microbial species are specific to a particular kind of mammal, but flying mammals and birds break this pattern with many microbes shared across different species, with little correlation either with diet or with relatedness of the hosts. This finding suggests that adaptation to flight breaks long-held relationships between hosts and their microbes. |
---|---|
AbstractList | ABSTRACT Diet and host phylogeny drive the taxonomic and functional contents of the gut microbiome in mammals, yet it is unknown whether these patterns hold across all vertebrate lineages. Here, we assessed gut microbiomes from ∼900 vertebrate species, including 315 mammals and 491 birds, assessing contributions of diet, phylogeny, and physiology to structuring gut microbiomes. In most nonflying mammals, strong correlations exist between microbial community similarity, host diet, and host phylogenetic distance up to the host order level. In birds, by contrast, gut microbiomes are only very weakly correlated to diet or host phylogeny. Furthermore, while most microbes resident in mammalian guts are present in only a restricted taxonomic range of hosts, most microbes recovered from birds show little evidence of host specificity. Notably, among the mammals, bats host especially bird-like gut microbiomes, with little evidence for correlation to host diet or phylogeny. This suggests that host-gut microbiome phylosymbiosis depends on factors convergently absent in birds and bats, potentially associated with physiological adaptations to flight. Our findings expose major variations in the behavior of these important symbioses in endothermic vertebrates and may signal fundamental evolutionary shifts in the cost/benefit framework of the gut microbiome. IMPORTANCE In this comprehensive survey of microbiomes of >900 species, including 315 mammals and 491 birds, we find a striking convergence of the microbiomes of birds and animals that fly. In nonflying mammals, diet and short-term evolutionary relatedness drive the microbiome, and many microbial species are specific to a particular kind of mammal, but flying mammals and birds break this pattern with many microbes shared across different species, with little correlation either with diet or with relatedness of the hosts. This finding suggests that adaptation to flight breaks long-held relationships between hosts and their microbes. In this comprehensive survey of microbiomes of >900 species, including 315 mammals and 491 birds, we find a striking convergence of the microbiomes of birds and animals that fly. In nonflying mammals, diet and short-term evolutionary relatedness drive the microbiome, and many microbial species are specific to a particular kind of mammal, but flying mammals and birds break this pattern with many microbes shared across different species, with little correlation either with diet or with relatedness of the hosts. This finding suggests that adaptation to flight breaks long-held relationships between hosts and their microbes. Diet and host phylogeny drive the taxonomic and functional contents of the gut microbiome in mammals, yet it is unknown whether these patterns hold across all vertebrate lineages. Here, we assessed gut microbiomes from ∼900 vertebrate species, including 315 mammals and 491 birds, assessing contributions of diet, phylogeny, and physiology to structuring gut microbiomes. In most nonflying mammals, strong correlations exist between microbial community similarity, host diet, and host phylogenetic distance up to the host order level. In birds, by contrast, gut microbiomes are only very weakly correlated to diet or host phylogeny. Furthermore, while most microbes resident in mammalian guts are present in only a restricted taxonomic range of hosts, most microbes recovered from birds show little evidence of host specificity. Notably, among the mammals, bats host especially bird-like gut microbiomes, with little evidence for correlation to host diet or phylogeny. This suggests that host-gut microbiome phylosymbiosis depends on factors convergently absent in birds and bats, potentially associated with physiological adaptations to flight. Our findings expose major variations in the behavior of these important symbioses in endothermic vertebrates and may signal fundamental evolutionary shifts in the cost/benefit framework of the gut microbiome. Diet and host phylogeny drive the taxonomic and functional contents of the gut microbiome in mammals, yet it is unknown whether these patterns hold across all vertebrate lineages. Here, we assessed gut microbiomes from ∼900 vertebrate species, including 315 mammals and 491 birds, assessing contributions of diet, phylogeny, and physiology to structuring gut microbiomes. In most nonflying mammals, strong correlations exist between microbial community similarity, host diet, and host phylogenetic distance up to the host order level. In birds, by contrast, gut microbiomes are only very weakly correlated to diet or host phylogeny. Furthermore, while most microbes resident in mammalian guts are present in only a restricted taxonomic range of hosts, most microbes recovered from birds show little evidence of host specificity. Notably, among the mammals, bats host especially bird-like gut microbiomes, with little evidence for correlation to host diet or phylogeny. This suggests that host-gut microbiome phylosymbiosis depends on factors convergently absent in birds and bats, potentially associated with physiological adaptations to flight. Our findings expose major variations in the behavior of these important symbioses in endothermic vertebrates and may signal fundamental evolutionary shifts in the cost/benefit framework of the gut microbiome.IMPORTANCE In this comprehensive survey of microbiomes of >900 species, including 315 mammals and 491 birds, we find a striking convergence of the microbiomes of birds and animals that fly. In nonflying mammals, diet and short-term evolutionary relatedness drive the microbiome, and many microbial species are specific to a particular kind of mammal, but flying mammals and birds break this pattern with many microbes shared across different species, with little correlation either with diet or with relatedness of the hosts. This finding suggests that adaptation to flight breaks long-held relationships between hosts and their microbes.Diet and host phylogeny drive the taxonomic and functional contents of the gut microbiome in mammals, yet it is unknown whether these patterns hold across all vertebrate lineages. Here, we assessed gut microbiomes from ∼900 vertebrate species, including 315 mammals and 491 birds, assessing contributions of diet, phylogeny, and physiology to structuring gut microbiomes. In most nonflying mammals, strong correlations exist between microbial community similarity, host diet, and host phylogenetic distance up to the host order level. In birds, by contrast, gut microbiomes are only very weakly correlated to diet or host phylogeny. Furthermore, while most microbes resident in mammalian guts are present in only a restricted taxonomic range of hosts, most microbes recovered from birds show little evidence of host specificity. Notably, among the mammals, bats host especially bird-like gut microbiomes, with little evidence for correlation to host diet or phylogeny. This suggests that host-gut microbiome phylosymbiosis depends on factors convergently absent in birds and bats, potentially associated with physiological adaptations to flight. Our findings expose major variations in the behavior of these important symbioses in endothermic vertebrates and may signal fundamental evolutionary shifts in the cost/benefit framework of the gut microbiome.IMPORTANCE In this comprehensive survey of microbiomes of >900 species, including 315 mammals and 491 birds, we find a striking convergence of the microbiomes of birds and animals that fly. In nonflying mammals, diet and short-term evolutionary relatedness drive the microbiome, and many microbial species are specific to a particular kind of mammal, but flying mammals and birds break this pattern with many microbes shared across different species, with little correlation either with diet or with relatedness of the hosts. This finding suggests that adaptation to flight breaks long-held relationships between hosts and their microbes. Diet and host phylogeny drive the taxonomic and functional contents of the gut microbiome in mammals, yet it is unknown whether these patterns hold across all vertebrate lineages. Here, we assessed gut microbiomes from ∼900 vertebrate species, including 315 mammals and 491 birds, assessing contributions of diet, phylogeny, and physiology to structuring gut microbiomes. In most nonflying mammals, strong correlations exist between microbial community similarity, host diet, and host phylogenetic distance up to the host order level. In birds, by contrast, gut microbiomes are only very weakly correlated to diet or host phylogeny. Furthermore, while most microbes resident in mammalian guts are present in only a restricted taxonomic range of hosts, most microbes recovered from birds show little evidence of host specificity. Notably, among the mammals, bats host especially bird-like gut microbiomes, with little evidence for correlation to host diet or phylogeny. This suggests that host-gut microbiome phylosymbiosis depends on factors convergently absent in birds and bats, potentially associated with physiological adaptations to flight. Our findings expose major variations in the behavior of these important symbioses in endothermic vertebrates and may signal fundamental evolutionary shifts in the cost/benefit framework of the gut microbiome. In this comprehensive survey of microbiomes of >900 species, including 315 mammals and 491 birds, we find a striking convergence of the microbiomes of birds and animals that fly. In nonflying mammals, diet and short-term evolutionary relatedness drive the microbiome, and many microbial species are specific to a particular kind of mammal, but flying mammals and birds break this pattern with many microbes shared across different species, with little correlation either with diet or with relatedness of the hosts. This finding suggests that adaptation to flight breaks long-held relationships between hosts and their microbes. In this comprehensive survey of microbiomes of >900 species, including 315 mammals and 491 birds, we find a striking convergence of the microbiomes of birds and animals that fly. In nonflying mammals, diet and short-term evolutionary relatedness drive the microbiome, and many microbial species are specific to a particular kind of mammal, but flying mammals and birds break this pattern with many microbes shared across different species, with little correlation either with diet or with relatedness of the hosts. This finding suggests that adaptation to flight breaks long-held relationships between hosts and their microbes. Diet and host phylogeny drive the taxonomic and functional contents of the gut microbiome in mammals, yet it is unknown whether these patterns hold across all vertebrate lineages. Here, we assessed gut microbiomes from ∼900 vertebrate species, including 315 mammals and 491 birds, assessing contributions of diet, phylogeny, and physiology to structuring gut microbiomes. In most nonflying mammals, strong correlations exist between microbial community similarity, host diet, and host phylogenetic distance up to the host order level. In birds, by contrast, gut microbiomes are only very weakly correlated to diet or host phylogeny. Furthermore, while most microbes resident in mammalian guts are present in only a restricted taxonomic range of hosts, most microbes recovered from birds show little evidence of host specificity. Notably, among the mammals, bats host especially bird-like gut microbiomes, with little evidence for correlation to host diet or phylogeny. This suggests that host-gut microbiome phylosymbiosis depends on factors convergently absent in birds and bats, potentially associated with physiological adaptations to flight. Our findings expose major variations in the behavior of these important symbioses in endothermic vertebrates and may signal fundamental evolutionary shifts in the cost/benefit framework of the gut microbiome. IMPORTANCE In this comprehensive survey of microbiomes of >900 species, including 315 mammals and 491 birds, we find a striking convergence of the microbiomes of birds and animals that fly. In nonflying mammals, diet and short-term evolutionary relatedness drive the microbiome, and many microbial species are specific to a particular kind of mammal, but flying mammals and birds break this pattern with many microbes shared across different species, with little correlation either with diet or with relatedness of the hosts. This finding suggests that adaptation to flight breaks long-held relationships between hosts and their microbes. |
Author | McKenzie, Valerie J. White, Kevin P. Gilbert, Jack A. Taylor, Michael W. Knight, Rob Miller, Matthew McCracken, Kevin G. Williams, Allison Sanders, Jon G. Winker, Kevin Humphrey, Gregory Withrow, Jack Ezenwa, Vanessa O. Blanton, Jessica M. Graves, Gary R. Delsuc, Frédéric Maley, James M. Metcalf, Jessica Amato, Katherine Skeen, Heather R. Mazel, Florent Lutz, Holly L. Braile, Thomas Hackett, Shannon J. Kurtis, Sarah M. Song, Se Jin |
Author_xml | – sequence: 1 givenname: Se Jin orcidid: 0000-0003-0750-5709 surname: Song fullname: Song, Se Jin organization: Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA – sequence: 2 givenname: Jon G. orcidid: 0000-0001-6077-4014 surname: Sanders fullname: Sanders, Jon G. organization: Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA – sequence: 3 givenname: Frédéric surname: Delsuc fullname: Delsuc, Frédéric organization: Institut des Sciences de l’Evolution de Montpellier (ISEM), CNRS, EPHE, IRD, Université de Montpellier, Montpellier, France – sequence: 4 givenname: Jessica surname: Metcalf fullname: Metcalf, Jessica organization: Department of Animal Sciences, Colorado State University, Fort Collins, Colorado, USA – sequence: 5 givenname: Katherine surname: Amato fullname: Amato, Katherine organization: Department of Anthropology, Northwestern University, Evanston, Illinois, USA – sequence: 6 givenname: Michael W. surname: Taylor fullname: Taylor, Michael W. organization: School of Biological Sciences, University of Auckland, Auckland, New Zealand – sequence: 7 givenname: Florent orcidid: 0000-0003-0572-9901 surname: Mazel fullname: Mazel, Florent organization: Department of Botany, Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada – sequence: 8 givenname: Holly L. orcidid: 0000-0001-6454-809X surname: Lutz fullname: Lutz, Holly L. organization: Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA, Integrative Research Center, Field Museum of Natural History, Chicago, Illinois, USA – sequence: 9 givenname: Kevin surname: Winker fullname: Winker, Kevin organization: University of Alaska Museum, Fairbanks, Alaska, USA – sequence: 10 givenname: Gary R. surname: Graves fullname: Graves, Gary R. organization: Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA, Center for Macroecology, Evolution and Climate National Museum of Denmark, University of Copenhagen, Copenhagen, Denmark – sequence: 11 givenname: Gregory surname: Humphrey fullname: Humphrey, Gregory organization: Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA – sequence: 12 givenname: Jack A. surname: Gilbert fullname: Gilbert, Jack A. organization: Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA – sequence: 13 givenname: Shannon J. surname: Hackett fullname: Hackett, Shannon J. organization: Integrative Research Center, Field Museum of Natural History, Chicago, Illinois, USA – sequence: 14 givenname: Kevin P. surname: White fullname: White, Kevin P. organization: Institute for Genomics and Systems Biology, University of Chicago, Chicago, Illinois, USA – sequence: 15 givenname: Heather R. surname: Skeen fullname: Skeen, Heather R. organization: Integrative Research Center, Field Museum of Natural History, Chicago, Illinois, USA, Committee on Evolutionary Biology, University of Chicago, Chicago, Illinois, USA – sequence: 16 givenname: Sarah M. surname: Kurtis fullname: Kurtis, Sarah M. organization: Department of Biology, University of Florida, Gainesville, Florida, USA – sequence: 17 givenname: Jack surname: Withrow fullname: Withrow, Jack organization: University of Alaska Museum, Fairbanks, Alaska, USA – sequence: 18 givenname: Thomas surname: Braile fullname: Braile, Thomas organization: University of Alaska Museum, Fairbanks, Alaska, USA – sequence: 19 givenname: Matthew surname: Miller fullname: Miller, Matthew organization: University of Alaska Museum, Fairbanks, Alaska, USA, Sam Noble Oklahoma Museum of Natural History, Department of Biology, University of Oklahoma, Norman, Oklahoma, USA – sequence: 20 givenname: Kevin G. surname: McCracken fullname: McCracken, Kevin G. organization: University of Alaska Museum, Fairbanks, Alaska, USA, Department of Biology, University of Miami, Coral Gables, Florida, USA, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida, USA, Human Genetics and Genomics, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA, Institute of Arctic Biology, University of Alaska, Fairbanks, Fairbanks, Alaska, USA – sequence: 21 givenname: James M. surname: Maley fullname: Maley, James M. organization: Moore Laboratory of Zoology, Occidental College, Los Angeles, California, USA – sequence: 22 givenname: Vanessa O. surname: Ezenwa fullname: Ezenwa, Vanessa O. organization: Odum School of Ecology, University of Georgia, Athens, Georgia, USA, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA – sequence: 23 givenname: Allison surname: Williams fullname: Williams, Allison organization: Odum School of Ecology, University of Georgia, Athens, Georgia, USA – sequence: 24 givenname: Jessica M. surname: Blanton fullname: Blanton, Jessica M. organization: Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA – sequence: 25 givenname: Valerie J. surname: McKenzie fullname: McKenzie, Valerie J. organization: Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA – sequence: 26 givenname: Rob surname: Knight fullname: Knight, Rob organization: Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA, Department of Computer Science & Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA, Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31911491$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ksFvFCEUxompsbX26NXM0ctUHjCzcDHpbrQ2qTEx6smEAPNYaWaGFdg1_e9lu7WxJnKB8H38Hnnve06O5jgjIS-BngMw-WZahnhOmaLQgnpCThh0tF10AEf7cw8tA6aOyVnON7QuzkFy-owcc1AAQsEJ-b6K08YkU8IOm4vZjLcZcxN98w1TQVsFbC63pfkYXIo2xKmqn3GHZmxWcd5hWuPssLFYfiHOzTKkITdmHpqlKfkFeerNmPHsfj8lX9-_-7L60F5_urxaXVy3TnS8tJbRXnkJHJ03Sllm0DrVewHOopMOPfasE500RslB2YVBysF7yy1a1Xl-Sq4O3CGaG71JYTLpVkcT9N1FTGttUgluRC2clKJ2BhhQITuwxluz6ISQA_TS8cp6e2BttnbCweFckhkfQR8rc_ih13GneyV6SVkFvL4HpPhzi7noKWSH42hmjNusGeeiVz1Tslpf_V3rocif8VRDezDU5uec0D9YgOp9AvQ-AfouARpU9fN__C6UOtu4_2oY__PqN5DnthA |
CitedBy_id | crossref_primary_10_7717_peerj_16682 crossref_primary_10_1093_jmammal_gyac098 crossref_primary_10_1098_rspb_2023_2223 crossref_primary_10_1002_ece3_6934 crossref_primary_10_1111_1365_2656_13428 crossref_primary_10_1016_j_scitotenv_2022_156178 crossref_primary_10_1186_s42523_021_00141_0 crossref_primary_10_1093_nar_gkab1009 crossref_primary_10_1128_mSphere_01023_20 crossref_primary_10_3389_fmicb_2023_1207482 crossref_primary_10_1126_sciadv_adf5499 crossref_primary_10_1093_ismejo_wrae114 crossref_primary_10_1186_s42523_024_00291_x crossref_primary_10_1186_s42523_021_00149_6 crossref_primary_10_3390_ani13213341 crossref_primary_10_1016_j_gecco_2024_e03041 crossref_primary_10_1038_s41598_022_07672_9 crossref_primary_10_3390_ijms242417301 crossref_primary_10_1128_aem_00747_23 crossref_primary_10_1098_rspb_2019_2988 crossref_primary_10_3389_fmicb_2021_619141 crossref_primary_10_1093_femsec_fiae141 crossref_primary_10_1093_ismejo_wrae104 crossref_primary_10_1038_s41598_022_04808_9 crossref_primary_10_1038_s41396_020_0671_x crossref_primary_10_1051_medsci_2024190 crossref_primary_10_3390_insects11060332 crossref_primary_10_1098_rsos_240649 crossref_primary_10_1007_s00227_024_04442_1 crossref_primary_10_3390_ani14111566 crossref_primary_10_3390_ani14111688 crossref_primary_10_3389_fmicb_2022_858592 crossref_primary_10_1186_s42523_021_00139_8 crossref_primary_10_3390_toxics8040124 crossref_primary_10_1128_Spectrum_01525_21 crossref_primary_10_1002_ece3_9674 crossref_primary_10_1038_s41598_024_53645_5 crossref_primary_10_1016_j_tim_2021_12_009 crossref_primary_10_1093_molbev_msad144 crossref_primary_10_3389_fmicb_2020_592539 crossref_primary_10_1038_s41564_022_01125_9 crossref_primary_10_1016_j_tim_2021_12_002 crossref_primary_10_5141_jee_23_060 crossref_primary_10_3389_fmicb_2022_905668 crossref_primary_10_1093_icb_icac030 crossref_primary_10_1126_science_abb5352 crossref_primary_10_3390_microorganisms12050978 crossref_primary_10_1186_s42523_022_00204_w crossref_primary_10_3390_microorganisms12102033 crossref_primary_10_1098_rspb_2022_0675 crossref_primary_10_1016_j_envres_2024_120040 crossref_primary_10_1186_s42523_024_00367_8 crossref_primary_10_1128_msystems_00388_23 crossref_primary_10_7717_peerj_16365 crossref_primary_10_1128_msphere_00442_23 crossref_primary_10_1080_01584197_2022_2114088 crossref_primary_10_1016_j_avrs_2023_100086 crossref_primary_10_1186_s12862_024_02329_9 crossref_primary_10_3389_fmicb_2022_973469 crossref_primary_10_1186_s40168_021_01113_x crossref_primary_10_1007_s00338_020_02006_5 crossref_primary_10_1016_j_tree_2023_09_004 crossref_primary_10_1098_rspb_2024_0238 crossref_primary_10_1111_mec_15660 crossref_primary_10_1146_annurev_animal_091020_075907 crossref_primary_10_1038_s41598_024_77090_6 crossref_primary_10_1128_spectrum_03749_22 crossref_primary_10_3389_fmicb_2021_659918 crossref_primary_10_7717_peerj_15146 crossref_primary_10_1128_mBio_00153_20 crossref_primary_10_1016_j_copbio_2021_06_028 crossref_primary_10_1002_ece3_11073 crossref_primary_10_1038_s41598_022_24206_5 crossref_primary_10_1038_s41598_021_00604_z crossref_primary_10_1038_s43705_022_00115_6 crossref_primary_10_1111_mec_17153 crossref_primary_10_1002_wlb3_01381 crossref_primary_10_1128_msystems_01342_20 crossref_primary_10_1111_ibi_13388 crossref_primary_10_3389_fvets_2024_1403932 crossref_primary_10_1016_j_jiph_2023_11_024 crossref_primary_10_1093_femsec_fiad069 crossref_primary_10_1007_s00284_024_03628_6 crossref_primary_10_1128_mSphere_00308_21 crossref_primary_10_1016_j_gecco_2025_e03480 crossref_primary_10_1128_mmbr_00080_23 crossref_primary_10_3354_esr01284 crossref_primary_10_1186_s40168_022_01233_y crossref_primary_10_1111_mec_16170 crossref_primary_10_3389_fmicb_2022_1081468 crossref_primary_10_1002_ece3_70251 crossref_primary_10_1002_ece3_70372 crossref_primary_10_1016_j_tim_2021_07_003 crossref_primary_10_1038_s41598_023_31684_8 crossref_primary_10_1093_femsec_fiaf012 crossref_primary_10_1007_s00253_021_11448_y crossref_primary_10_1186_s42523_021_00076_6 crossref_primary_10_1007_s11427_020_1847_7 crossref_primary_10_1242_jeb_224485 crossref_primary_10_3390_ani13050923 crossref_primary_10_1038_s41576_021_00421_0 crossref_primary_10_1093_ismeco_ycad013 crossref_primary_10_12677_OJNS_2023_113041 crossref_primary_10_1146_annurev_animal_020420_032054 crossref_primary_10_1360_SSV_2024_0025 crossref_primary_10_1016_j_crmicr_2023_100199 crossref_primary_10_1093_lifemeta_loac040 crossref_primary_10_1111_mec_16044 crossref_primary_10_1002_mbo3_1050 crossref_primary_10_3390_ani13050916 crossref_primary_10_1016_j_snb_2023_133785 crossref_primary_10_3389_fmicb_2022_966436 crossref_primary_10_3389_fmicb_2022_991998 crossref_primary_10_1111_1462_2920_15462 crossref_primary_10_1098_rspb_2021_0552 crossref_primary_10_1128_msystems_01104_21 crossref_primary_10_1002_ame2_12404 crossref_primary_10_1186_s42523_022_00223_7 crossref_primary_10_1098_rspb_2019_2900 crossref_primary_10_1038_s41396_021_01152_0 crossref_primary_10_1007_s00284_023_03274_4 crossref_primary_10_3390_ani15050685 crossref_primary_10_1098_rspb_2021_0446 crossref_primary_10_3389_fmicb_2022_1086058 crossref_primary_10_1186_s40168_023_01700_0 crossref_primary_10_7717_peerj_13559 crossref_primary_10_1111_mec_17477 crossref_primary_10_3389_fmicb_2023_1067240 crossref_primary_10_1186_s12862_022_02029_2 crossref_primary_10_1111_mec_17111 crossref_primary_10_1242_dev_200797 crossref_primary_10_1007_s00248_021_01720_z crossref_primary_10_1098_rspb_2022_0609 crossref_primary_10_3389_fmicb_2022_917373 crossref_primary_10_1128_mbio_02444_22 crossref_primary_10_1038_s41598_023_31826_y crossref_primary_10_1128_msystems_00707_21 crossref_primary_10_1098_rstb_2019_0597 crossref_primary_10_3389_fmicb_2022_826364 crossref_primary_10_1128_aem_00990_23 crossref_primary_10_1093_ismeco_ycae114 crossref_primary_10_1111_mec_16812 crossref_primary_10_1111_jzo_12981 crossref_primary_10_1111_brv_13161 crossref_primary_10_1128_mbio_01606_23 crossref_primary_10_1128_AEM_01864_20 crossref_primary_10_7717_peerj_15169 crossref_primary_10_1128_mbio_03342_23 crossref_primary_10_1186_s42523_023_00243_x crossref_primary_10_1128_spectrum_01802_22 crossref_primary_10_1038_s41467_024_49559_5 crossref_primary_10_1093_jhered_esab078 crossref_primary_10_3390_ijms242115836 crossref_primary_10_1186_s12862_021_01773_1 crossref_primary_10_3389_fvets_2021_791287 crossref_primary_10_1111_eva_70025 crossref_primary_10_1073_pnas_2204146119 crossref_primary_10_3390_pathogens10030351 crossref_primary_10_1111_1365_2656_13229 crossref_primary_10_3390_s22031031 crossref_primary_10_1128_msphere_00087_24 crossref_primary_10_1007_s00239_023_10101_8 crossref_primary_10_1038_s41467_022_31038_4 crossref_primary_10_3390_ani13040642 crossref_primary_10_7717_peerj_13927 crossref_primary_10_1186_s12866_024_03227_2 crossref_primary_10_1186_s42523_021_00120_5 crossref_primary_10_1111_mec_16915 crossref_primary_10_1128_mSphere_00467_21 crossref_primary_10_1038_s41467_022_34557_2 crossref_primary_10_7554_eLife_76381 crossref_primary_10_1111_1751_7915_13687 crossref_primary_10_1016_j_gecco_2023_e02767 crossref_primary_10_1111_jav_02856 crossref_primary_10_1007_s10123_023_00372_y crossref_primary_10_1016_j_heliyon_2023_e22351 crossref_primary_10_3389_fmicb_2022_953234 crossref_primary_10_1038_s41598_021_02015_6 crossref_primary_10_1073_pnas_2218900120 crossref_primary_10_3389_fmicb_2024_1489906 crossref_primary_10_1007_s13199_022_00843_2 crossref_primary_10_1002_ece3_9071 crossref_primary_10_1007_s00203_022_02953_3 crossref_primary_10_1016_j_ecoenv_2023_115480 crossref_primary_10_1016_j_scitotenv_2024_172943 crossref_primary_10_1111_1462_2920_16444 crossref_primary_10_1016_j_cbpa_2024_111690 crossref_primary_10_24072_pcjournal_179 crossref_primary_10_1111_jav_03019 crossref_primary_10_3390_microorganisms12122468 crossref_primary_10_1128_spectrum_00433_23 crossref_primary_10_1186_s42523_023_00271_7 crossref_primary_10_1002_ece3_11486 crossref_primary_10_1038_s41579_020_0328_9 crossref_primary_10_1038_s41522_020_00161_9 crossref_primary_10_1128_msystems_00478_22 crossref_primary_10_3389_fmicb_2022_848906 crossref_primary_10_1016_j_scitotenv_2020_142372 crossref_primary_10_1093_femsec_fiac021 |
Cites_doi | 10.1371/journal.pbio.2000225 10.1128/mSystems.00021-18 10.1101/133462 10.1073/pnas.1707186114 10.18637/jss.v022.i07 10.1038/nature24621 10.1038/s41592-018-0141-9 10.1126/science.1198719 10.1093/femsle/fnz117 10.1038/s41467-019-10656-5 10.1111/j.1365-294X.2012.05552.x 10.1111/j.1365-294X.2012.05568.x 10.1890/13-1917.1 10.1073/pnas.0703159104 10.1371/journal.pone.0001425 10.1111/mec.14473 10.1016/j.chom.2018.01.006 10.1002/bimj.200810425 10.1142/9789814366496_0024 10.1098/rspb.2013.2780 10.1111/j.1558-5646.2011.01454.x 10.1038/s41396-018-0175-0 10.1111/mec.12501 10.1038/ncomms14319 10.1126/science.1230835 10.1038/s41467-019-10191-3 10.1128/AEM.71.12.8228-8235.2005 10.1128/mSystems.00097-18 10.1128/mSystems.00191-16 10.1186/2047-217X-2-16 10.1038/s41467-018-07275-x 10.1128/AEM.03006-05 10.1038/445153a 10.3389/fmicb.2015.00447 10.1093/icb/icx090 10.1186/s13059-014-0565-1 10.1093/nar/gkw290 10.1186/s40168-017-0244-z 10.1073/pnas.1812826115 10.1073/pnas.1616702114 10.1093/molbev/msx116 10.3389/fmicb.2015.01403 10.1073/pnas.1218525110 10.1073/pnas.1206721109 10.1126/science.1155725 10.1007/978-0-387-98141-3 10.3389/fmicb.2015.00673 10.1098/rstb.2018.0249 10.1038/s41587-019-0209-9 10.1038/ncomms9285 10.1111/j.1442-9993.2001.01070.pp.x 10.1111/mec.12611 10.1126/sciadv.aar6478 10.1073/pnas.1518240113 10.1038/srep21722 |
ContentType | Journal Article |
Copyright | Copyright © 2020 Song et al. Copyright © 2020 Song et al. 2020 Song et al. |
Copyright_xml | – notice: Copyright © 2020 Song et al. – notice: Copyright © 2020 Song et al. 2020 Song et al. |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1128/mBio.02901-19 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Convergence between Bird and Bat Microbiomes |
EISSN | 2150-7511 |
ExternalDocumentID | oai_doaj_org_article_4c88416112104851bafba75448d168c3 PMC6946802 31911491 10_1128_mBio_02901_19 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: 44000 – fundername: ; grantid: DEB-1102493 – fundername: ; grantid: 1611948 – fundername: ; grantid: ERC-2015-CoG-683257 – fundername: ; grantid: DT061413 – fundername: ; grantid: IOS-1101836 – fundername: ; grantid: ANR-10-LABX-25-01 |
GroupedDBID | --- 0R~ 53G 5VS AAFWJ AAGFI AAUOK AAYXX ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BTFSW CITATION DIK E3Z EBS FRP GROUPED_DOAJ GX1 H13 HYE HZ~ KQ8 M48 O5R O5S O9- OK1 P2P PGMZT RHI RNS RPM RSF M~E NPM RHF 7X8 5PM |
ID | FETCH-LOGICAL-c453t-b2069f813ecfa99b2aebc96f41cbec8cefe625458aa98d9b7ae031ffb3beb95f3 |
IEDL.DBID | M48 |
ISSN | 2161-2129 2150-7511 |
IngestDate | Wed Aug 27 01:32:09 EDT 2025 Thu Aug 21 18:34:11 EDT 2025 Fri Jul 11 11:36:34 EDT 2025 Wed Feb 19 02:30:57 EST 2025 Tue Jul 01 01:52:42 EDT 2025 Thu Apr 24 22:53:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | vertebrate flight diet evolution microbiome |
Language | English |
License | Copyright © 2020 Song et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c453t-b2069f813ecfa99b2aebc96f41cbec8cefe625458aa98d9b7ae031ffb3beb95f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Valerie J. McKenzie and Rob Knight contributed equally to this article. Se Jin Song and Jon G. Sanders contributed equally to this article. |
ORCID | 0000-0001-6077-4014 0000-0001-6454-809X 0000-0003-0750-5709 0000-0003-0572-9901 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1128/mBio.02901-19 |
PMID | 31911491 |
PQID | 2334696298 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4c88416112104851bafba75448d168c3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6946802 proquest_miscellaneous_2334696298 pubmed_primary_31911491 crossref_primary_10_1128_mBio_02901_19 crossref_citationtrail_10_1128_mBio_02901_19 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200107 |
PublicationDateYYYYMMDD | 2020-01-07 |
PublicationDate_xml | – month: 1 year: 2020 text: 20200107 day: 7 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | mBio |
PublicationTitleAlternate | mBio |
PublicationYear | 2020 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_33_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_61_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 R Development Core Team (e_1_3_3_54_2) 2008 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 Oksanen J (e_1_3_3_56_2) 2010 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_51_2 Stevens CE (e_1_3_3_28_2) 2004 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_60_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 |
References_xml | – ident: e_1_3_3_10_2 doi: 10.1371/journal.pbio.2000225 – ident: e_1_3_3_48_2 doi: 10.1128/mSystems.00021-18 – ident: e_1_3_3_31_2 doi: 10.1101/133462 – ident: e_1_3_3_34_2 doi: 10.1073/pnas.1707186114 – ident: e_1_3_3_57_2 doi: 10.18637/jss.v022.i07 – ident: e_1_3_3_20_2 doi: 10.1038/nature24621 – ident: e_1_3_3_43_2 doi: 10.1038/s41592-018-0141-9 – ident: e_1_3_3_4_2 doi: 10.1126/science.1198719 – ident: e_1_3_3_19_2 doi: 10.1093/femsle/fnz117 – ident: e_1_3_3_61_2 doi: 10.1038/s41467-019-10656-5 – ident: e_1_3_3_16_2 doi: 10.1111/j.1365-294X.2012.05552.x – ident: e_1_3_3_14_2 doi: 10.1111/j.1365-294X.2012.05568.x – ident: e_1_3_3_59_2 – ident: e_1_3_3_50_2 doi: 10.1890/13-1917.1 – volume-title: R: a language and environment for statistical computing year: 2008 ident: e_1_3_3_54_2 – ident: e_1_3_3_29_2 doi: 10.1073/pnas.0703159104 – ident: e_1_3_3_30_2 doi: 10.1371/journal.pone.0001425 – ident: e_1_3_3_13_2 doi: 10.1111/mec.14473 – ident: e_1_3_3_41_2 doi: 10.1016/j.chom.2018.01.006 – ident: e_1_3_3_58_2 doi: 10.1002/bimj.200810425 – ident: e_1_3_3_47_2 doi: 10.1142/9789814366496_0024 – ident: e_1_3_3_33_2 doi: 10.1098/rspb.2013.2780 – ident: e_1_3_3_9_2 doi: 10.1111/j.1558-5646.2011.01454.x – ident: e_1_3_3_5_2 doi: 10.1038/s41396-018-0175-0 – ident: e_1_3_3_21_2 doi: 10.1111/mec.12501 – ident: e_1_3_3_6_2 doi: 10.1038/ncomms14319 – ident: e_1_3_3_37_2 doi: 10.1126/science.1230835 – ident: e_1_3_3_18_2 doi: 10.1038/s41467-019-10191-3 – year: 2010 ident: e_1_3_3_56_2 article-title: vegan: community ecology package publication-title: R package version 1.17– – ident: e_1_3_3_51_2 doi: 10.1128/AEM.71.12.8228-8235.2005 – volume-title: Comparative physiology of the vertebrate digestive system year: 2004 ident: e_1_3_3_28_2 – ident: e_1_3_3_26_2 doi: 10.1128/mSystems.00097-18 – ident: e_1_3_3_44_2 doi: 10.1128/mSystems.00191-16 – ident: e_1_3_3_52_2 doi: 10.1186/2047-217X-2-16 – ident: e_1_3_3_12_2 doi: 10.1038/s41467-018-07275-x – ident: e_1_3_3_45_2 doi: 10.1128/AEM.03006-05 – ident: e_1_3_3_8_2 doi: 10.1038/445153a – ident: e_1_3_3_15_2 doi: 10.3389/fmicb.2015.00447 – ident: e_1_3_3_49_2 – ident: e_1_3_3_23_2 doi: 10.1093/icb/icx090 – ident: e_1_3_3_39_2 doi: 10.1186/s13059-014-0565-1 – ident: e_1_3_3_60_2 doi: 10.1093/nar/gkw290 – ident: e_1_3_3_35_2 doi: 10.1186/s40168-017-0244-z – ident: e_1_3_3_36_2 doi: 10.1073/pnas.1812826115 – ident: e_1_3_3_32_2 doi: 10.1073/pnas.1616702114 – ident: e_1_3_3_25_2 doi: 10.1093/molbev/msx116 – ident: e_1_3_3_24_2 doi: 10.3389/fmicb.2015.01403 – ident: e_1_3_3_2_2 doi: 10.1073/pnas.1218525110 – ident: e_1_3_3_27_2 doi: 10.1073/pnas.1206721109 – ident: e_1_3_3_3_2 doi: 10.1126/science.1155725 – ident: e_1_3_3_53_2 doi: 10.1007/978-0-387-98141-3 – ident: e_1_3_3_17_2 doi: 10.3389/fmicb.2015.00673 – ident: e_1_3_3_22_2 doi: 10.1098/rstb.2018.0249 – ident: e_1_3_3_46_2 doi: 10.1038/s41587-019-0209-9 – ident: e_1_3_3_7_2 doi: 10.1038/ncomms9285 – ident: e_1_3_3_55_2 doi: 10.1111/j.1442-9993.2001.01070.pp.x – ident: e_1_3_3_11_2 doi: 10.1111/mec.12611 – ident: e_1_3_3_42_2 doi: 10.1126/sciadv.aar6478 – ident: e_1_3_3_40_2 doi: 10.1073/pnas.1518240113 – ident: e_1_3_3_38_2 doi: 10.1038/srep21722 |
SSID | ssj0000331830 |
Score | 2.6271877 |
Snippet | In this comprehensive survey of microbiomes of >900 species, including 315 mammals and 491 birds, we find a striking convergence of the microbiomes of birds... Diet and host phylogeny drive the taxonomic and functional contents of the gut microbiome in mammals, yet it is unknown whether these patterns hold across all... ABSTRACT Diet and host phylogeny drive the taxonomic and functional contents of the gut microbiome in mammals, yet it is unknown whether these patterns hold... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | diet Ecological and Evolutionary Science Editor's Pick evolution flight microbiome vertebrate |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yIPgiflu_iCA-Wa9N2nw8uovnIZwP4sk9CCFJJ7hw15XdruB_70zaXXdF8cXXZqDpzCSZX2fyG8Ze1MHKVipVgg0IUMDI0hvvS_BSUdGi8oZuI599UKfnzfuL9mKv1RfVhI30wKPijptoKDNWE9FVg-FB8Cl4Ym0zXa1MzDyfeObtgam8B0vy1WpLqinM8dVssXxdUdawJFadvUMoc_X_KcD8vU5y7-A5ucVuThEjfzPO9Da7Bv0ddn3sIfnjLvsy_8XfzUeKEVjzZeKfYTVQVngA_m4z8LPFSLl0haMf4TvGh3xOFef58iXwqV6Lzxarbs193_GZH9b32PnJ20_z03JqmVDGppVDGUSlbDK1hJi8tUF4CNGq1NQRjWUiJEDA07RoDms6G7QHXNUpBRkg2DbJ--yoX_bwkPG2QyyjO52E102LKFpIrWNlgiE5DQV7tdWhixOfOLW1uHQZVwjjSOUuq9zVtmAvd-LfRiKNvwnOyCA7IeK_zg_QK9zkFe5fXlGw51tzOlwvlATxPSw3ayekxG9RwpqCPRjNu3sVbkcID21dMH1g-IO5HI70i6-Zk1vZRplKPPofk3_MbghC9fSjRz9hR8NqA08x9BnCs-zlPwFFQgGn priority: 102 providerName: Directory of Open Access Journals |
Title | Comparative Analyses of Vertebrate Gut Microbiomes Reveal Convergence between Birds and Bats |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31911491 https://www.proquest.com/docview/2334696298 https://pubmed.ncbi.nlm.nih.gov/PMC6946802 https://doaj.org/article/4c88416112104851bafba75448d168c3 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQEagXVN6hUBkJcSIlsRM_DhViV7QV0nJALNoDkmUnY1ipTSDJIvrv60myW7YqFy45xGMlmUc84xl_Q8ir1GmecyFi0C4EKKB4bJW1MVgusGhRWIWnkWefxOk8-7jIF1eQQiMD2xtDO-wnNW_ODv_8ungXDP5oOACj3p5PlvVhggnBGAFAb4dFSWIzg9no6fc_ZY7Km6xRNq_P2iV3gy6G2ECnWwtUj-N_k_N5vYbyr0XpeI_cG71J-n4Q_31yC6oH5M7QX_LiIfk2vcL2pgP8CLS09vQrNB1mjDugJ6uOzpYDHNN5GP0Mv4PvSKdYjd4fzAQ61nLRybIpW2qrkk5s1z4i8-MPX6an8dhOIS6ynHexY4nQXqUcCm-1dsyCK7TwWVoEQaoCPIRgKMuDqLQqtZMWgsV777gDp3PPH5Odqq7gKaF5GeIcWUrPrMzyEGEzLmWRKKeQTkJE3qx5aIoRaxxbXpyZPuZgyiD3Tc99k-qIvN6Q_xxANv5FOEGBbIgQG7u_UTffzWhqJisU5lJThEbLgkPprHcWcf5UmQpV8Ii8XIvTBFvCBImtoF61hnEevkUwrSLyZBDv5lFr9YiI3BL81rtsj1TLHz1et9CZUAl79t8z98kuwzAfd37kc7LTNSt4EXyhzh30ewjherJID3qNvwTDtAx6 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+Analyses+of+Vertebrate+Gut+Microbiomes+Reveal+Convergence+between+Birds+and+Bats&rft.jtitle=mBio&rft.au=Song%2C+Se+Jin&rft.au=Sanders%2C+Jon+G.&rft.au=Delsuc%2C+Fr%C3%A9d%C3%A9ric&rft.au=Metcalf%2C+Jessica&rft.date=2020-01-07&rft.pub=American+Society+for+Microbiology&rft.eissn=2150-7511&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1128%2FmBio.02901-19&rft_id=info%3Apmid%2F31911491&rft.externalDocID=PMC6946802 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-2129&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-2129&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-2129&client=summon |