Comparative Analyses of Vertebrate Gut Microbiomes Reveal Convergence between Birds and Bats

In this comprehensive survey of microbiomes of >900 species, including 315 mammals and 491 birds, we find a striking convergence of the microbiomes of birds and animals that fly. In nonflying mammals, diet and short-term evolutionary relatedness drive the microbiome, and many microbial species ar...

Full description

Saved in:
Bibliographic Details
Published inmBio Vol. 11; no. 1
Main Authors Song, Se Jin, Sanders, Jon G., Delsuc, Frédéric, Metcalf, Jessica, Amato, Katherine, Taylor, Michael W., Mazel, Florent, Lutz, Holly L., Winker, Kevin, Graves, Gary R., Humphrey, Gregory, Gilbert, Jack A., Hackett, Shannon J., White, Kevin P., Skeen, Heather R., Kurtis, Sarah M., Withrow, Jack, Braile, Thomas, Miller, Matthew, McCracken, Kevin G., Maley, James M., Ezenwa, Vanessa O., Williams, Allison, Blanton, Jessica M., McKenzie, Valerie J., Knight, Rob
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 07.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this comprehensive survey of microbiomes of >900 species, including 315 mammals and 491 birds, we find a striking convergence of the microbiomes of birds and animals that fly. In nonflying mammals, diet and short-term evolutionary relatedness drive the microbiome, and many microbial species are specific to a particular kind of mammal, but flying mammals and birds break this pattern with many microbes shared across different species, with little correlation either with diet or with relatedness of the hosts. This finding suggests that adaptation to flight breaks long-held relationships between hosts and their microbes. Diet and host phylogeny drive the taxonomic and functional contents of the gut microbiome in mammals, yet it is unknown whether these patterns hold across all vertebrate lineages. Here, we assessed gut microbiomes from ∼900 vertebrate species, including 315 mammals and 491 birds, assessing contributions of diet, phylogeny, and physiology to structuring gut microbiomes. In most nonflying mammals, strong correlations exist between microbial community similarity, host diet, and host phylogenetic distance up to the host order level. In birds, by contrast, gut microbiomes are only very weakly correlated to diet or host phylogeny. Furthermore, while most microbes resident in mammalian guts are present in only a restricted taxonomic range of hosts, most microbes recovered from birds show little evidence of host specificity. Notably, among the mammals, bats host especially bird-like gut microbiomes, with little evidence for correlation to host diet or phylogeny. This suggests that host-gut microbiome phylosymbiosis depends on factors convergently absent in birds and bats, potentially associated with physiological adaptations to flight. Our findings expose major variations in the behavior of these important symbioses in endothermic vertebrates and may signal fundamental evolutionary shifts in the cost/benefit framework of the gut microbiome. IMPORTANCE In this comprehensive survey of microbiomes of >900 species, including 315 mammals and 491 birds, we find a striking convergence of the microbiomes of birds and animals that fly. In nonflying mammals, diet and short-term evolutionary relatedness drive the microbiome, and many microbial species are specific to a particular kind of mammal, but flying mammals and birds break this pattern with many microbes shared across different species, with little correlation either with diet or with relatedness of the hosts. This finding suggests that adaptation to flight breaks long-held relationships between hosts and their microbes.
AbstractList ABSTRACT Diet and host phylogeny drive the taxonomic and functional contents of the gut microbiome in mammals, yet it is unknown whether these patterns hold across all vertebrate lineages. Here, we assessed gut microbiomes from ∼900 vertebrate species, including 315 mammals and 491 birds, assessing contributions of diet, phylogeny, and physiology to structuring gut microbiomes. In most nonflying mammals, strong correlations exist between microbial community similarity, host diet, and host phylogenetic distance up to the host order level. In birds, by contrast, gut microbiomes are only very weakly correlated to diet or host phylogeny. Furthermore, while most microbes resident in mammalian guts are present in only a restricted taxonomic range of hosts, most microbes recovered from birds show little evidence of host specificity. Notably, among the mammals, bats host especially bird-like gut microbiomes, with little evidence for correlation to host diet or phylogeny. This suggests that host-gut microbiome phylosymbiosis depends on factors convergently absent in birds and bats, potentially associated with physiological adaptations to flight. Our findings expose major variations in the behavior of these important symbioses in endothermic vertebrates and may signal fundamental evolutionary shifts in the cost/benefit framework of the gut microbiome. IMPORTANCE In this comprehensive survey of microbiomes of >900 species, including 315 mammals and 491 birds, we find a striking convergence of the microbiomes of birds and animals that fly. In nonflying mammals, diet and short-term evolutionary relatedness drive the microbiome, and many microbial species are specific to a particular kind of mammal, but flying mammals and birds break this pattern with many microbes shared across different species, with little correlation either with diet or with relatedness of the hosts. This finding suggests that adaptation to flight breaks long-held relationships between hosts and their microbes.
In this comprehensive survey of microbiomes of >900 species, including 315 mammals and 491 birds, we find a striking convergence of the microbiomes of birds and animals that fly. In nonflying mammals, diet and short-term evolutionary relatedness drive the microbiome, and many microbial species are specific to a particular kind of mammal, but flying mammals and birds break this pattern with many microbes shared across different species, with little correlation either with diet or with relatedness of the hosts. This finding suggests that adaptation to flight breaks long-held relationships between hosts and their microbes. Diet and host phylogeny drive the taxonomic and functional contents of the gut microbiome in mammals, yet it is unknown whether these patterns hold across all vertebrate lineages. Here, we assessed gut microbiomes from ∼900 vertebrate species, including 315 mammals and 491 birds, assessing contributions of diet, phylogeny, and physiology to structuring gut microbiomes. In most nonflying mammals, strong correlations exist between microbial community similarity, host diet, and host phylogenetic distance up to the host order level. In birds, by contrast, gut microbiomes are only very weakly correlated to diet or host phylogeny. Furthermore, while most microbes resident in mammalian guts are present in only a restricted taxonomic range of hosts, most microbes recovered from birds show little evidence of host specificity. Notably, among the mammals, bats host especially bird-like gut microbiomes, with little evidence for correlation to host diet or phylogeny. This suggests that host-gut microbiome phylosymbiosis depends on factors convergently absent in birds and bats, potentially associated with physiological adaptations to flight. Our findings expose major variations in the behavior of these important symbioses in endothermic vertebrates and may signal fundamental evolutionary shifts in the cost/benefit framework of the gut microbiome.
Diet and host phylogeny drive the taxonomic and functional contents of the gut microbiome in mammals, yet it is unknown whether these patterns hold across all vertebrate lineages. Here, we assessed gut microbiomes from ∼900 vertebrate species, including 315 mammals and 491 birds, assessing contributions of diet, phylogeny, and physiology to structuring gut microbiomes. In most nonflying mammals, strong correlations exist between microbial community similarity, host diet, and host phylogenetic distance up to the host order level. In birds, by contrast, gut microbiomes are only very weakly correlated to diet or host phylogeny. Furthermore, while most microbes resident in mammalian guts are present in only a restricted taxonomic range of hosts, most microbes recovered from birds show little evidence of host specificity. Notably, among the mammals, bats host especially bird-like gut microbiomes, with little evidence for correlation to host diet or phylogeny. This suggests that host-gut microbiome phylosymbiosis depends on factors convergently absent in birds and bats, potentially associated with physiological adaptations to flight. Our findings expose major variations in the behavior of these important symbioses in endothermic vertebrates and may signal fundamental evolutionary shifts in the cost/benefit framework of the gut microbiome.IMPORTANCE In this comprehensive survey of microbiomes of >900 species, including 315 mammals and 491 birds, we find a striking convergence of the microbiomes of birds and animals that fly. In nonflying mammals, diet and short-term evolutionary relatedness drive the microbiome, and many microbial species are specific to a particular kind of mammal, but flying mammals and birds break this pattern with many microbes shared across different species, with little correlation either with diet or with relatedness of the hosts. This finding suggests that adaptation to flight breaks long-held relationships between hosts and their microbes.Diet and host phylogeny drive the taxonomic and functional contents of the gut microbiome in mammals, yet it is unknown whether these patterns hold across all vertebrate lineages. Here, we assessed gut microbiomes from ∼900 vertebrate species, including 315 mammals and 491 birds, assessing contributions of diet, phylogeny, and physiology to structuring gut microbiomes. In most nonflying mammals, strong correlations exist between microbial community similarity, host diet, and host phylogenetic distance up to the host order level. In birds, by contrast, gut microbiomes are only very weakly correlated to diet or host phylogeny. Furthermore, while most microbes resident in mammalian guts are present in only a restricted taxonomic range of hosts, most microbes recovered from birds show little evidence of host specificity. Notably, among the mammals, bats host especially bird-like gut microbiomes, with little evidence for correlation to host diet or phylogeny. This suggests that host-gut microbiome phylosymbiosis depends on factors convergently absent in birds and bats, potentially associated with physiological adaptations to flight. Our findings expose major variations in the behavior of these important symbioses in endothermic vertebrates and may signal fundamental evolutionary shifts in the cost/benefit framework of the gut microbiome.IMPORTANCE In this comprehensive survey of microbiomes of >900 species, including 315 mammals and 491 birds, we find a striking convergence of the microbiomes of birds and animals that fly. In nonflying mammals, diet and short-term evolutionary relatedness drive the microbiome, and many microbial species are specific to a particular kind of mammal, but flying mammals and birds break this pattern with many microbes shared across different species, with little correlation either with diet or with relatedness of the hosts. This finding suggests that adaptation to flight breaks long-held relationships between hosts and their microbes.
Diet and host phylogeny drive the taxonomic and functional contents of the gut microbiome in mammals, yet it is unknown whether these patterns hold across all vertebrate lineages. Here, we assessed gut microbiomes from ∼900 vertebrate species, including 315 mammals and 491 birds, assessing contributions of diet, phylogeny, and physiology to structuring gut microbiomes. In most nonflying mammals, strong correlations exist between microbial community similarity, host diet, and host phylogenetic distance up to the host order level. In birds, by contrast, gut microbiomes are only very weakly correlated to diet or host phylogeny. Furthermore, while most microbes resident in mammalian guts are present in only a restricted taxonomic range of hosts, most microbes recovered from birds show little evidence of host specificity. Notably, among the mammals, bats host especially bird-like gut microbiomes, with little evidence for correlation to host diet or phylogeny. This suggests that host-gut microbiome phylosymbiosis depends on factors convergently absent in birds and bats, potentially associated with physiological adaptations to flight. Our findings expose major variations in the behavior of these important symbioses in endothermic vertebrates and may signal fundamental evolutionary shifts in the cost/benefit framework of the gut microbiome. In this comprehensive survey of microbiomes of >900 species, including 315 mammals and 491 birds, we find a striking convergence of the microbiomes of birds and animals that fly. In nonflying mammals, diet and short-term evolutionary relatedness drive the microbiome, and many microbial species are specific to a particular kind of mammal, but flying mammals and birds break this pattern with many microbes shared across different species, with little correlation either with diet or with relatedness of the hosts. This finding suggests that adaptation to flight breaks long-held relationships between hosts and their microbes.
In this comprehensive survey of microbiomes of >900 species, including 315 mammals and 491 birds, we find a striking convergence of the microbiomes of birds and animals that fly. In nonflying mammals, diet and short-term evolutionary relatedness drive the microbiome, and many microbial species are specific to a particular kind of mammal, but flying mammals and birds break this pattern with many microbes shared across different species, with little correlation either with diet or with relatedness of the hosts. This finding suggests that adaptation to flight breaks long-held relationships between hosts and their microbes. Diet and host phylogeny drive the taxonomic and functional contents of the gut microbiome in mammals, yet it is unknown whether these patterns hold across all vertebrate lineages. Here, we assessed gut microbiomes from ∼900 vertebrate species, including 315 mammals and 491 birds, assessing contributions of diet, phylogeny, and physiology to structuring gut microbiomes. In most nonflying mammals, strong correlations exist between microbial community similarity, host diet, and host phylogenetic distance up to the host order level. In birds, by contrast, gut microbiomes are only very weakly correlated to diet or host phylogeny. Furthermore, while most microbes resident in mammalian guts are present in only a restricted taxonomic range of hosts, most microbes recovered from birds show little evidence of host specificity. Notably, among the mammals, bats host especially bird-like gut microbiomes, with little evidence for correlation to host diet or phylogeny. This suggests that host-gut microbiome phylosymbiosis depends on factors convergently absent in birds and bats, potentially associated with physiological adaptations to flight. Our findings expose major variations in the behavior of these important symbioses in endothermic vertebrates and may signal fundamental evolutionary shifts in the cost/benefit framework of the gut microbiome. IMPORTANCE In this comprehensive survey of microbiomes of >900 species, including 315 mammals and 491 birds, we find a striking convergence of the microbiomes of birds and animals that fly. In nonflying mammals, diet and short-term evolutionary relatedness drive the microbiome, and many microbial species are specific to a particular kind of mammal, but flying mammals and birds break this pattern with many microbes shared across different species, with little correlation either with diet or with relatedness of the hosts. This finding suggests that adaptation to flight breaks long-held relationships between hosts and their microbes.
Author McKenzie, Valerie J.
White, Kevin P.
Gilbert, Jack A.
Taylor, Michael W.
Knight, Rob
Miller, Matthew
McCracken, Kevin G.
Williams, Allison
Sanders, Jon G.
Winker, Kevin
Humphrey, Gregory
Withrow, Jack
Ezenwa, Vanessa O.
Blanton, Jessica M.
Graves, Gary R.
Delsuc, Frédéric
Maley, James M.
Metcalf, Jessica
Amato, Katherine
Skeen, Heather R.
Mazel, Florent
Lutz, Holly L.
Braile, Thomas
Hackett, Shannon J.
Kurtis, Sarah M.
Song, Se Jin
Author_xml – sequence: 1
  givenname: Se Jin
  orcidid: 0000-0003-0750-5709
  surname: Song
  fullname: Song, Se Jin
  organization: Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
– sequence: 2
  givenname: Jon G.
  orcidid: 0000-0001-6077-4014
  surname: Sanders
  fullname: Sanders, Jon G.
  organization: Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
– sequence: 3
  givenname: Frédéric
  surname: Delsuc
  fullname: Delsuc, Frédéric
  organization: Institut des Sciences de l’Evolution de Montpellier (ISEM), CNRS, EPHE, IRD, Université de Montpellier, Montpellier, France
– sequence: 4
  givenname: Jessica
  surname: Metcalf
  fullname: Metcalf, Jessica
  organization: Department of Animal Sciences, Colorado State University, Fort Collins, Colorado, USA
– sequence: 5
  givenname: Katherine
  surname: Amato
  fullname: Amato, Katherine
  organization: Department of Anthropology, Northwestern University, Evanston, Illinois, USA
– sequence: 6
  givenname: Michael W.
  surname: Taylor
  fullname: Taylor, Michael W.
  organization: School of Biological Sciences, University of Auckland, Auckland, New Zealand
– sequence: 7
  givenname: Florent
  orcidid: 0000-0003-0572-9901
  surname: Mazel
  fullname: Mazel, Florent
  organization: Department of Botany, Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
– sequence: 8
  givenname: Holly L.
  orcidid: 0000-0001-6454-809X
  surname: Lutz
  fullname: Lutz, Holly L.
  organization: Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA, Integrative Research Center, Field Museum of Natural History, Chicago, Illinois, USA
– sequence: 9
  givenname: Kevin
  surname: Winker
  fullname: Winker, Kevin
  organization: University of Alaska Museum, Fairbanks, Alaska, USA
– sequence: 10
  givenname: Gary R.
  surname: Graves
  fullname: Graves, Gary R.
  organization: Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA, Center for Macroecology, Evolution and Climate National Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
– sequence: 11
  givenname: Gregory
  surname: Humphrey
  fullname: Humphrey, Gregory
  organization: Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
– sequence: 12
  givenname: Jack A.
  surname: Gilbert
  fullname: Gilbert, Jack A.
  organization: Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
– sequence: 13
  givenname: Shannon J.
  surname: Hackett
  fullname: Hackett, Shannon J.
  organization: Integrative Research Center, Field Museum of Natural History, Chicago, Illinois, USA
– sequence: 14
  givenname: Kevin P.
  surname: White
  fullname: White, Kevin P.
  organization: Institute for Genomics and Systems Biology, University of Chicago, Chicago, Illinois, USA
– sequence: 15
  givenname: Heather R.
  surname: Skeen
  fullname: Skeen, Heather R.
  organization: Integrative Research Center, Field Museum of Natural History, Chicago, Illinois, USA, Committee on Evolutionary Biology, University of Chicago, Chicago, Illinois, USA
– sequence: 16
  givenname: Sarah M.
  surname: Kurtis
  fullname: Kurtis, Sarah M.
  organization: Department of Biology, University of Florida, Gainesville, Florida, USA
– sequence: 17
  givenname: Jack
  surname: Withrow
  fullname: Withrow, Jack
  organization: University of Alaska Museum, Fairbanks, Alaska, USA
– sequence: 18
  givenname: Thomas
  surname: Braile
  fullname: Braile, Thomas
  organization: University of Alaska Museum, Fairbanks, Alaska, USA
– sequence: 19
  givenname: Matthew
  surname: Miller
  fullname: Miller, Matthew
  organization: University of Alaska Museum, Fairbanks, Alaska, USA, Sam Noble Oklahoma Museum of Natural History, Department of Biology, University of Oklahoma, Norman, Oklahoma, USA
– sequence: 20
  givenname: Kevin G.
  surname: McCracken
  fullname: McCracken, Kevin G.
  organization: University of Alaska Museum, Fairbanks, Alaska, USA, Department of Biology, University of Miami, Coral Gables, Florida, USA, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida, USA, Human Genetics and Genomics, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA, Institute of Arctic Biology, University of Alaska, Fairbanks, Fairbanks, Alaska, USA
– sequence: 21
  givenname: James M.
  surname: Maley
  fullname: Maley, James M.
  organization: Moore Laboratory of Zoology, Occidental College, Los Angeles, California, USA
– sequence: 22
  givenname: Vanessa O.
  surname: Ezenwa
  fullname: Ezenwa, Vanessa O.
  organization: Odum School of Ecology, University of Georgia, Athens, Georgia, USA, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
– sequence: 23
  givenname: Allison
  surname: Williams
  fullname: Williams, Allison
  organization: Odum School of Ecology, University of Georgia, Athens, Georgia, USA
– sequence: 24
  givenname: Jessica M.
  surname: Blanton
  fullname: Blanton, Jessica M.
  organization: Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
– sequence: 25
  givenname: Valerie J.
  surname: McKenzie
  fullname: McKenzie, Valerie J.
  organization: Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
– sequence: 26
  givenname: Rob
  surname: Knight
  fullname: Knight, Rob
  organization: Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA, Department of Computer Science & Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA, Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31911491$$D View this record in MEDLINE/PubMed
BookMark eNp1ksFvFCEUxompsbX26NXM0ctUHjCzcDHpbrQ2qTEx6smEAPNYaWaGFdg1_e9lu7WxJnKB8H38Hnnve06O5jgjIS-BngMw-WZahnhOmaLQgnpCThh0tF10AEf7cw8tA6aOyVnON7QuzkFy-owcc1AAQsEJ-b6K08YkU8IOm4vZjLcZcxN98w1TQVsFbC63pfkYXIo2xKmqn3GHZmxWcd5hWuPssLFYfiHOzTKkITdmHpqlKfkFeerNmPHsfj8lX9-_-7L60F5_urxaXVy3TnS8tJbRXnkJHJ03Sllm0DrVewHOopMOPfasE500RslB2YVBysF7yy1a1Xl-Sq4O3CGaG71JYTLpVkcT9N1FTGttUgluRC2clKJ2BhhQITuwxluz6ISQA_TS8cp6e2BttnbCweFckhkfQR8rc_ih13GneyV6SVkFvL4HpPhzi7noKWSH42hmjNusGeeiVz1Tslpf_V3rocif8VRDezDU5uec0D9YgOp9AvQ-AfouARpU9fN__C6UOtu4_2oY__PqN5DnthA
CitedBy_id crossref_primary_10_7717_peerj_16682
crossref_primary_10_1093_jmammal_gyac098
crossref_primary_10_1098_rspb_2023_2223
crossref_primary_10_1002_ece3_6934
crossref_primary_10_1111_1365_2656_13428
crossref_primary_10_1016_j_scitotenv_2022_156178
crossref_primary_10_1186_s42523_021_00141_0
crossref_primary_10_1093_nar_gkab1009
crossref_primary_10_1128_mSphere_01023_20
crossref_primary_10_3389_fmicb_2023_1207482
crossref_primary_10_1126_sciadv_adf5499
crossref_primary_10_1093_ismejo_wrae114
crossref_primary_10_1186_s42523_024_00291_x
crossref_primary_10_1186_s42523_021_00149_6
crossref_primary_10_3390_ani13213341
crossref_primary_10_1016_j_gecco_2024_e03041
crossref_primary_10_1038_s41598_022_07672_9
crossref_primary_10_3390_ijms242417301
crossref_primary_10_1128_aem_00747_23
crossref_primary_10_1098_rspb_2019_2988
crossref_primary_10_3389_fmicb_2021_619141
crossref_primary_10_1093_femsec_fiae141
crossref_primary_10_1093_ismejo_wrae104
crossref_primary_10_1038_s41598_022_04808_9
crossref_primary_10_1038_s41396_020_0671_x
crossref_primary_10_1051_medsci_2024190
crossref_primary_10_3390_insects11060332
crossref_primary_10_1098_rsos_240649
crossref_primary_10_1007_s00227_024_04442_1
crossref_primary_10_3390_ani14111566
crossref_primary_10_3390_ani14111688
crossref_primary_10_3389_fmicb_2022_858592
crossref_primary_10_1186_s42523_021_00139_8
crossref_primary_10_3390_toxics8040124
crossref_primary_10_1128_Spectrum_01525_21
crossref_primary_10_1002_ece3_9674
crossref_primary_10_1038_s41598_024_53645_5
crossref_primary_10_1016_j_tim_2021_12_009
crossref_primary_10_1093_molbev_msad144
crossref_primary_10_3389_fmicb_2020_592539
crossref_primary_10_1038_s41564_022_01125_9
crossref_primary_10_1016_j_tim_2021_12_002
crossref_primary_10_5141_jee_23_060
crossref_primary_10_3389_fmicb_2022_905668
crossref_primary_10_1093_icb_icac030
crossref_primary_10_1126_science_abb5352
crossref_primary_10_3390_microorganisms12050978
crossref_primary_10_1186_s42523_022_00204_w
crossref_primary_10_3390_microorganisms12102033
crossref_primary_10_1098_rspb_2022_0675
crossref_primary_10_1016_j_envres_2024_120040
crossref_primary_10_1186_s42523_024_00367_8
crossref_primary_10_1128_msystems_00388_23
crossref_primary_10_7717_peerj_16365
crossref_primary_10_1128_msphere_00442_23
crossref_primary_10_1080_01584197_2022_2114088
crossref_primary_10_1016_j_avrs_2023_100086
crossref_primary_10_1186_s12862_024_02329_9
crossref_primary_10_3389_fmicb_2022_973469
crossref_primary_10_1186_s40168_021_01113_x
crossref_primary_10_1007_s00338_020_02006_5
crossref_primary_10_1016_j_tree_2023_09_004
crossref_primary_10_1098_rspb_2024_0238
crossref_primary_10_1111_mec_15660
crossref_primary_10_1146_annurev_animal_091020_075907
crossref_primary_10_1038_s41598_024_77090_6
crossref_primary_10_1128_spectrum_03749_22
crossref_primary_10_3389_fmicb_2021_659918
crossref_primary_10_7717_peerj_15146
crossref_primary_10_1128_mBio_00153_20
crossref_primary_10_1016_j_copbio_2021_06_028
crossref_primary_10_1002_ece3_11073
crossref_primary_10_1038_s41598_022_24206_5
crossref_primary_10_1038_s41598_021_00604_z
crossref_primary_10_1038_s43705_022_00115_6
crossref_primary_10_1111_mec_17153
crossref_primary_10_1002_wlb3_01381
crossref_primary_10_1128_msystems_01342_20
crossref_primary_10_1111_ibi_13388
crossref_primary_10_3389_fvets_2024_1403932
crossref_primary_10_1016_j_jiph_2023_11_024
crossref_primary_10_1093_femsec_fiad069
crossref_primary_10_1007_s00284_024_03628_6
crossref_primary_10_1128_mSphere_00308_21
crossref_primary_10_1016_j_gecco_2025_e03480
crossref_primary_10_1128_mmbr_00080_23
crossref_primary_10_3354_esr01284
crossref_primary_10_1186_s40168_022_01233_y
crossref_primary_10_1111_mec_16170
crossref_primary_10_3389_fmicb_2022_1081468
crossref_primary_10_1002_ece3_70251
crossref_primary_10_1002_ece3_70372
crossref_primary_10_1016_j_tim_2021_07_003
crossref_primary_10_1038_s41598_023_31684_8
crossref_primary_10_1093_femsec_fiaf012
crossref_primary_10_1007_s00253_021_11448_y
crossref_primary_10_1186_s42523_021_00076_6
crossref_primary_10_1007_s11427_020_1847_7
crossref_primary_10_1242_jeb_224485
crossref_primary_10_3390_ani13050923
crossref_primary_10_1038_s41576_021_00421_0
crossref_primary_10_1093_ismeco_ycad013
crossref_primary_10_12677_OJNS_2023_113041
crossref_primary_10_1146_annurev_animal_020420_032054
crossref_primary_10_1360_SSV_2024_0025
crossref_primary_10_1016_j_crmicr_2023_100199
crossref_primary_10_1093_lifemeta_loac040
crossref_primary_10_1111_mec_16044
crossref_primary_10_1002_mbo3_1050
crossref_primary_10_3390_ani13050916
crossref_primary_10_1016_j_snb_2023_133785
crossref_primary_10_3389_fmicb_2022_966436
crossref_primary_10_3389_fmicb_2022_991998
crossref_primary_10_1111_1462_2920_15462
crossref_primary_10_1098_rspb_2021_0552
crossref_primary_10_1128_msystems_01104_21
crossref_primary_10_1002_ame2_12404
crossref_primary_10_1186_s42523_022_00223_7
crossref_primary_10_1098_rspb_2019_2900
crossref_primary_10_1038_s41396_021_01152_0
crossref_primary_10_1007_s00284_023_03274_4
crossref_primary_10_3390_ani15050685
crossref_primary_10_1098_rspb_2021_0446
crossref_primary_10_3389_fmicb_2022_1086058
crossref_primary_10_1186_s40168_023_01700_0
crossref_primary_10_7717_peerj_13559
crossref_primary_10_1111_mec_17477
crossref_primary_10_3389_fmicb_2023_1067240
crossref_primary_10_1186_s12862_022_02029_2
crossref_primary_10_1111_mec_17111
crossref_primary_10_1242_dev_200797
crossref_primary_10_1007_s00248_021_01720_z
crossref_primary_10_1098_rspb_2022_0609
crossref_primary_10_3389_fmicb_2022_917373
crossref_primary_10_1128_mbio_02444_22
crossref_primary_10_1038_s41598_023_31826_y
crossref_primary_10_1128_msystems_00707_21
crossref_primary_10_1098_rstb_2019_0597
crossref_primary_10_3389_fmicb_2022_826364
crossref_primary_10_1128_aem_00990_23
crossref_primary_10_1093_ismeco_ycae114
crossref_primary_10_1111_mec_16812
crossref_primary_10_1111_jzo_12981
crossref_primary_10_1111_brv_13161
crossref_primary_10_1128_mbio_01606_23
crossref_primary_10_1128_AEM_01864_20
crossref_primary_10_7717_peerj_15169
crossref_primary_10_1128_mbio_03342_23
crossref_primary_10_1186_s42523_023_00243_x
crossref_primary_10_1128_spectrum_01802_22
crossref_primary_10_1038_s41467_024_49559_5
crossref_primary_10_1093_jhered_esab078
crossref_primary_10_3390_ijms242115836
crossref_primary_10_1186_s12862_021_01773_1
crossref_primary_10_3389_fvets_2021_791287
crossref_primary_10_1111_eva_70025
crossref_primary_10_1073_pnas_2204146119
crossref_primary_10_3390_pathogens10030351
crossref_primary_10_1111_1365_2656_13229
crossref_primary_10_3390_s22031031
crossref_primary_10_1128_msphere_00087_24
crossref_primary_10_1007_s00239_023_10101_8
crossref_primary_10_1038_s41467_022_31038_4
crossref_primary_10_3390_ani13040642
crossref_primary_10_7717_peerj_13927
crossref_primary_10_1186_s12866_024_03227_2
crossref_primary_10_1186_s42523_021_00120_5
crossref_primary_10_1111_mec_16915
crossref_primary_10_1128_mSphere_00467_21
crossref_primary_10_1038_s41467_022_34557_2
crossref_primary_10_7554_eLife_76381
crossref_primary_10_1111_1751_7915_13687
crossref_primary_10_1016_j_gecco_2023_e02767
crossref_primary_10_1111_jav_02856
crossref_primary_10_1007_s10123_023_00372_y
crossref_primary_10_1016_j_heliyon_2023_e22351
crossref_primary_10_3389_fmicb_2022_953234
crossref_primary_10_1038_s41598_021_02015_6
crossref_primary_10_1073_pnas_2218900120
crossref_primary_10_3389_fmicb_2024_1489906
crossref_primary_10_1007_s13199_022_00843_2
crossref_primary_10_1002_ece3_9071
crossref_primary_10_1007_s00203_022_02953_3
crossref_primary_10_1016_j_ecoenv_2023_115480
crossref_primary_10_1016_j_scitotenv_2024_172943
crossref_primary_10_1111_1462_2920_16444
crossref_primary_10_1016_j_cbpa_2024_111690
crossref_primary_10_24072_pcjournal_179
crossref_primary_10_1111_jav_03019
crossref_primary_10_3390_microorganisms12122468
crossref_primary_10_1128_spectrum_00433_23
crossref_primary_10_1186_s42523_023_00271_7
crossref_primary_10_1002_ece3_11486
crossref_primary_10_1038_s41579_020_0328_9
crossref_primary_10_1038_s41522_020_00161_9
crossref_primary_10_1128_msystems_00478_22
crossref_primary_10_3389_fmicb_2022_848906
crossref_primary_10_1016_j_scitotenv_2020_142372
crossref_primary_10_1093_femsec_fiac021
Cites_doi 10.1371/journal.pbio.2000225
10.1128/mSystems.00021-18
10.1101/133462
10.1073/pnas.1707186114
10.18637/jss.v022.i07
10.1038/nature24621
10.1038/s41592-018-0141-9
10.1126/science.1198719
10.1093/femsle/fnz117
10.1038/s41467-019-10656-5
10.1111/j.1365-294X.2012.05552.x
10.1111/j.1365-294X.2012.05568.x
10.1890/13-1917.1
10.1073/pnas.0703159104
10.1371/journal.pone.0001425
10.1111/mec.14473
10.1016/j.chom.2018.01.006
10.1002/bimj.200810425
10.1142/9789814366496_0024
10.1098/rspb.2013.2780
10.1111/j.1558-5646.2011.01454.x
10.1038/s41396-018-0175-0
10.1111/mec.12501
10.1038/ncomms14319
10.1126/science.1230835
10.1038/s41467-019-10191-3
10.1128/AEM.71.12.8228-8235.2005
10.1128/mSystems.00097-18
10.1128/mSystems.00191-16
10.1186/2047-217X-2-16
10.1038/s41467-018-07275-x
10.1128/AEM.03006-05
10.1038/445153a
10.3389/fmicb.2015.00447
10.1093/icb/icx090
10.1186/s13059-014-0565-1
10.1093/nar/gkw290
10.1186/s40168-017-0244-z
10.1073/pnas.1812826115
10.1073/pnas.1616702114
10.1093/molbev/msx116
10.3389/fmicb.2015.01403
10.1073/pnas.1218525110
10.1073/pnas.1206721109
10.1126/science.1155725
10.1007/978-0-387-98141-3
10.3389/fmicb.2015.00673
10.1098/rstb.2018.0249
10.1038/s41587-019-0209-9
10.1038/ncomms9285
10.1111/j.1442-9993.2001.01070.pp.x
10.1111/mec.12611
10.1126/sciadv.aar6478
10.1073/pnas.1518240113
10.1038/srep21722
ContentType Journal Article
Copyright Copyright © 2020 Song et al.
Copyright © 2020 Song et al. 2020 Song et al.
Copyright_xml – notice: Copyright © 2020 Song et al.
– notice: Copyright © 2020 Song et al. 2020 Song et al.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1128/mBio.02901-19
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Convergence between Bird and Bat Microbiomes
EISSN 2150-7511
ExternalDocumentID oai_doaj_org_article_4c88416112104851bafba75448d168c3
PMC6946802
31911491
10_1128_mBio_02901_19
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: 44000
– fundername: ;
  grantid: DEB-1102493
– fundername: ;
  grantid: 1611948
– fundername: ;
  grantid: ERC-2015-CoG-683257
– fundername: ;
  grantid: DT061413
– fundername: ;
  grantid: IOS-1101836
– fundername: ;
  grantid: ANR-10-LABX-25-01
GroupedDBID ---
0R~
53G
5VS
AAFWJ
AAGFI
AAUOK
AAYXX
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BTFSW
CITATION
DIK
E3Z
EBS
FRP
GROUPED_DOAJ
GX1
H13
HYE
HZ~
KQ8
M48
O5R
O5S
O9-
OK1
P2P
PGMZT
RHI
RNS
RPM
RSF
M~E
NPM
RHF
7X8
5PM
ID FETCH-LOGICAL-c453t-b2069f813ecfa99b2aebc96f41cbec8cefe625458aa98d9b7ae031ffb3beb95f3
IEDL.DBID M48
ISSN 2161-2129
2150-7511
IngestDate Wed Aug 27 01:32:09 EDT 2025
Thu Aug 21 18:34:11 EDT 2025
Fri Jul 11 11:36:34 EDT 2025
Wed Feb 19 02:30:57 EST 2025
Tue Jul 01 01:52:42 EDT 2025
Thu Apr 24 22:53:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords vertebrate
flight
diet
evolution
microbiome
Language English
License Copyright © 2020 Song et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-b2069f813ecfa99b2aebc96f41cbec8cefe625458aa98d9b7ae031ffb3beb95f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Valerie J. McKenzie and Rob Knight contributed equally to this article.
Se Jin Song and Jon G. Sanders contributed equally to this article.
ORCID 0000-0001-6077-4014
0000-0001-6454-809X
0000-0003-0750-5709
0000-0003-0572-9901
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1128/mBio.02901-19
PMID 31911491
PQID 2334696298
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_4c88416112104851bafba75448d168c3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6946802
proquest_miscellaneous_2334696298
pubmed_primary_31911491
crossref_primary_10_1128_mBio_02901_19
crossref_citationtrail_10_1128_mBio_02901_19
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200107
PublicationDateYYYYMMDD 2020-01-07
PublicationDate_xml – month: 1
  year: 2020
  text: 20200107
  day: 7
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle mBio
PublicationTitleAlternate mBio
PublicationYear 2020
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_33_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_61_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
R Development Core Team (e_1_3_3_54_2) 2008
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
Oksanen J (e_1_3_3_56_2) 2010
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
Stevens CE (e_1_3_3_28_2) 2004
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_60_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
References_xml – ident: e_1_3_3_10_2
  doi: 10.1371/journal.pbio.2000225
– ident: e_1_3_3_48_2
  doi: 10.1128/mSystems.00021-18
– ident: e_1_3_3_31_2
  doi: 10.1101/133462
– ident: e_1_3_3_34_2
  doi: 10.1073/pnas.1707186114
– ident: e_1_3_3_57_2
  doi: 10.18637/jss.v022.i07
– ident: e_1_3_3_20_2
  doi: 10.1038/nature24621
– ident: e_1_3_3_43_2
  doi: 10.1038/s41592-018-0141-9
– ident: e_1_3_3_4_2
  doi: 10.1126/science.1198719
– ident: e_1_3_3_19_2
  doi: 10.1093/femsle/fnz117
– ident: e_1_3_3_61_2
  doi: 10.1038/s41467-019-10656-5
– ident: e_1_3_3_16_2
  doi: 10.1111/j.1365-294X.2012.05552.x
– ident: e_1_3_3_14_2
  doi: 10.1111/j.1365-294X.2012.05568.x
– ident: e_1_3_3_59_2
– ident: e_1_3_3_50_2
  doi: 10.1890/13-1917.1
– volume-title: R: a language and environment for statistical computing
  year: 2008
  ident: e_1_3_3_54_2
– ident: e_1_3_3_29_2
  doi: 10.1073/pnas.0703159104
– ident: e_1_3_3_30_2
  doi: 10.1371/journal.pone.0001425
– ident: e_1_3_3_13_2
  doi: 10.1111/mec.14473
– ident: e_1_3_3_41_2
  doi: 10.1016/j.chom.2018.01.006
– ident: e_1_3_3_58_2
  doi: 10.1002/bimj.200810425
– ident: e_1_3_3_47_2
  doi: 10.1142/9789814366496_0024
– ident: e_1_3_3_33_2
  doi: 10.1098/rspb.2013.2780
– ident: e_1_3_3_9_2
  doi: 10.1111/j.1558-5646.2011.01454.x
– ident: e_1_3_3_5_2
  doi: 10.1038/s41396-018-0175-0
– ident: e_1_3_3_21_2
  doi: 10.1111/mec.12501
– ident: e_1_3_3_6_2
  doi: 10.1038/ncomms14319
– ident: e_1_3_3_37_2
  doi: 10.1126/science.1230835
– ident: e_1_3_3_18_2
  doi: 10.1038/s41467-019-10191-3
– year: 2010
  ident: e_1_3_3_56_2
  article-title: vegan: community ecology package
  publication-title: R package version 1.17–
– ident: e_1_3_3_51_2
  doi: 10.1128/AEM.71.12.8228-8235.2005
– volume-title: Comparative physiology of the vertebrate digestive system
  year: 2004
  ident: e_1_3_3_28_2
– ident: e_1_3_3_26_2
  doi: 10.1128/mSystems.00097-18
– ident: e_1_3_3_44_2
  doi: 10.1128/mSystems.00191-16
– ident: e_1_3_3_52_2
  doi: 10.1186/2047-217X-2-16
– ident: e_1_3_3_12_2
  doi: 10.1038/s41467-018-07275-x
– ident: e_1_3_3_45_2
  doi: 10.1128/AEM.03006-05
– ident: e_1_3_3_8_2
  doi: 10.1038/445153a
– ident: e_1_3_3_15_2
  doi: 10.3389/fmicb.2015.00447
– ident: e_1_3_3_49_2
– ident: e_1_3_3_23_2
  doi: 10.1093/icb/icx090
– ident: e_1_3_3_39_2
  doi: 10.1186/s13059-014-0565-1
– ident: e_1_3_3_60_2
  doi: 10.1093/nar/gkw290
– ident: e_1_3_3_35_2
  doi: 10.1186/s40168-017-0244-z
– ident: e_1_3_3_36_2
  doi: 10.1073/pnas.1812826115
– ident: e_1_3_3_32_2
  doi: 10.1073/pnas.1616702114
– ident: e_1_3_3_25_2
  doi: 10.1093/molbev/msx116
– ident: e_1_3_3_24_2
  doi: 10.3389/fmicb.2015.01403
– ident: e_1_3_3_2_2
  doi: 10.1073/pnas.1218525110
– ident: e_1_3_3_27_2
  doi: 10.1073/pnas.1206721109
– ident: e_1_3_3_3_2
  doi: 10.1126/science.1155725
– ident: e_1_3_3_53_2
  doi: 10.1007/978-0-387-98141-3
– ident: e_1_3_3_17_2
  doi: 10.3389/fmicb.2015.00673
– ident: e_1_3_3_22_2
  doi: 10.1098/rstb.2018.0249
– ident: e_1_3_3_46_2
  doi: 10.1038/s41587-019-0209-9
– ident: e_1_3_3_7_2
  doi: 10.1038/ncomms9285
– ident: e_1_3_3_55_2
  doi: 10.1111/j.1442-9993.2001.01070.pp.x
– ident: e_1_3_3_11_2
  doi: 10.1111/mec.12611
– ident: e_1_3_3_42_2
  doi: 10.1126/sciadv.aar6478
– ident: e_1_3_3_40_2
  doi: 10.1073/pnas.1518240113
– ident: e_1_3_3_38_2
  doi: 10.1038/srep21722
SSID ssj0000331830
Score 2.6271877
Snippet In this comprehensive survey of microbiomes of >900 species, including 315 mammals and 491 birds, we find a striking convergence of the microbiomes of birds...
Diet and host phylogeny drive the taxonomic and functional contents of the gut microbiome in mammals, yet it is unknown whether these patterns hold across all...
ABSTRACT Diet and host phylogeny drive the taxonomic and functional contents of the gut microbiome in mammals, yet it is unknown whether these patterns hold...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms diet
Ecological and Evolutionary Science
Editor's Pick
evolution
flight
microbiome
vertebrate
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yIPgiflu_iCA-Wa9N2nw8uovnIZwP4sk9CCFJJ7hw15XdruB_70zaXXdF8cXXZqDpzCSZX2fyG8Ze1MHKVipVgg0IUMDI0hvvS_BSUdGi8oZuI599UKfnzfuL9mKv1RfVhI30wKPijptoKDNWE9FVg-FB8Cl4Ym0zXa1MzDyfeObtgam8B0vy1WpLqinM8dVssXxdUdawJFadvUMoc_X_KcD8vU5y7-A5ucVuThEjfzPO9Da7Bv0ddn3sIfnjLvsy_8XfzUeKEVjzZeKfYTVQVngA_m4z8LPFSLl0haMf4TvGh3xOFef58iXwqV6Lzxarbs193_GZH9b32PnJ20_z03JqmVDGppVDGUSlbDK1hJi8tUF4CNGq1NQRjWUiJEDA07RoDms6G7QHXNUpBRkg2DbJ--yoX_bwkPG2QyyjO52E102LKFpIrWNlgiE5DQV7tdWhixOfOLW1uHQZVwjjSOUuq9zVtmAvd-LfRiKNvwnOyCA7IeK_zg_QK9zkFe5fXlGw51tzOlwvlATxPSw3ayekxG9RwpqCPRjNu3sVbkcID21dMH1g-IO5HI70i6-Zk1vZRplKPPofk3_MbghC9fSjRz9hR8NqA08x9BnCs-zlPwFFQgGn
  priority: 102
  providerName: Directory of Open Access Journals
Title Comparative Analyses of Vertebrate Gut Microbiomes Reveal Convergence between Birds and Bats
URI https://www.ncbi.nlm.nih.gov/pubmed/31911491
https://www.proquest.com/docview/2334696298
https://pubmed.ncbi.nlm.nih.gov/PMC6946802
https://doaj.org/article/4c88416112104851bafba75448d168c3
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQEagXVN6hUBkJcSIlsRM_DhViV7QV0nJALNoDkmUnY1ipTSDJIvrv60myW7YqFy45xGMlmUc84xl_Q8ir1GmecyFi0C4EKKB4bJW1MVgusGhRWIWnkWefxOk8-7jIF1eQQiMD2xtDO-wnNW_ODv_8ungXDP5oOACj3p5PlvVhggnBGAFAb4dFSWIzg9no6fc_ZY7Km6xRNq_P2iV3gy6G2ECnWwtUj-N_k_N5vYbyr0XpeI_cG71J-n4Q_31yC6oH5M7QX_LiIfk2vcL2pgP8CLS09vQrNB1mjDugJ6uOzpYDHNN5GP0Mv4PvSKdYjd4fzAQ61nLRybIpW2qrkk5s1z4i8-MPX6an8dhOIS6ynHexY4nQXqUcCm-1dsyCK7TwWVoEQaoCPIRgKMuDqLQqtZMWgsV777gDp3PPH5Odqq7gKaF5GeIcWUrPrMzyEGEzLmWRKKeQTkJE3qx5aIoRaxxbXpyZPuZgyiD3Tc99k-qIvN6Q_xxANv5FOEGBbIgQG7u_UTffzWhqJisU5lJThEbLgkPprHcWcf5UmQpV8Ii8XIvTBFvCBImtoF61hnEevkUwrSLyZBDv5lFr9YiI3BL81rtsj1TLHz1et9CZUAl79t8z98kuwzAfd37kc7LTNSt4EXyhzh30ewjherJID3qNvwTDtAx6
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+Analyses+of+Vertebrate+Gut+Microbiomes+Reveal+Convergence+between+Birds+and+Bats&rft.jtitle=mBio&rft.au=Song%2C+Se+Jin&rft.au=Sanders%2C+Jon+G.&rft.au=Delsuc%2C+Fr%C3%A9d%C3%A9ric&rft.au=Metcalf%2C+Jessica&rft.date=2020-01-07&rft.pub=American+Society+for+Microbiology&rft.eissn=2150-7511&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1128%2FmBio.02901-19&rft_id=info%3Apmid%2F31911491&rft.externalDocID=PMC6946802
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-2129&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-2129&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-2129&client=summon