On the use of rhodium mirrors for optical diagnostics in ITER
The first mirrors of optical diagnostics in ITER are exposed to high radiation and fluxes of particles which escape the plasma, in the order of 1020 m−2s−1. At the position of the mirror, the flux may still reach about 1018 m−2s−1. First mirrors are thus the most vulnerable in-vessel optical compone...
Saved in:
Published in | Fusion engineering and design Vol. 146; pp. 2514 - 2518 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article Web Resource |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.09.2019
Elsevier Science Ltd Elsevier Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0920-3796 1873-7196 1873-7196 |
DOI | 10.1016/j.fusengdes.2019.04.031 |
Cover
Abstract | The first mirrors of optical diagnostics in ITER are exposed to high radiation and fluxes of particles which escape the plasma, in the order of 1020 m−2s−1. At the position of the mirror, the flux may still reach about 1018 m−2s−1. First mirrors are thus the most vulnerable in-vessel optical components, being subject to erosion, esp. by fast charge-exchange neutrals, or to deposition of impurities at flux rates which can reach 0.05 nm/s. The material selected for the reflecting surface must combine a high optical reflectivity in a wide spectral range and a sufficient resistance to physical sputtering during normal operation and during mirror cleaning discharges, if any is installed. Rhodium (103Rh) was identified early as a possible or even promising candidate. It combines several attractive properties, for instance a mass which leads in most cases to low sputtering yields together with an optical reflectance (RRh≈75%) which is much higher than of some other options. RRh is insensitive to large temperature changes. Rhodium is fairly inert and its low oxidation is an appreciable advantage in case of steam ingress events.
The core-plasma CXRS diagnostic in ITER (UPP 3) have now turned to Rh as a baseline. The aim is to procure monocrystalline rhodium (SC-Rh) to mitigate the increase of the diffuse reflection with the damage due to physical sputtering. |
---|---|
AbstractList | The first mirrors of optical diagnostics in ITER are exposed to high radiation and fluxes of particles which escape the plasma, in the order of 1020 m−2s−1. At the position of the mirror, the flux may still reach about 1018 m−2s−1. First mirrors are thus the most vulnerable in-vessel optical components, being subject to erosion, esp. by fast charge-exchange neutrals, or to deposition of impurities at flux rates which can reach 0.05 nm/s. The material selected for the reflecting surface must combine a high optical reflectivity in a wide spectral range and a sufficient resistance to physical sputtering during normal operation and during mirror cleaning discharges, if any is installed. Rhodium (103Rh) was identified early as a possible or even promising candidate. It combines several attractive properties, for instance a mass which leads in most cases to low sputtering yields together with an optical reflectance (RRh≈75%) which is much higher than of some other options. RRh is insensitive to large temperature changes. Rhodium is fairly inert and its low oxidation is an appreciable advantage in case of steam ingress events. The core-plasma CXRS diagnostic in ITER (UPP 3) have now turned to Rh as a baseline. The aim is to procure monocrystalline rhodium (SC-Rh) to mitigate the increase of the diffuse reflection with the damage due to physical sputtering. The first mirrors of optical diagnostics in ITER are exposed to high radiation and fluxes of particles which escape the plasma, in the order of 1020 m−2s−1. At the position of the mirror, the flux may still reach about 1018 m−2s−1. First mirrors are thus the most vulnerable in-vessel optical components, being subject to erosion, esp. by fast charge-exchange neutrals, or to deposition of impurities at flux rates which can reach 0.05 nm/s. The material selected for the reflecting surface must combine a high optical reflectivity in a wide spectral range and a sufficient resistance to physical sputtering during normal operation and during mirror cleaning discharges, if any is installed. Rhodium (103Rh) was identified early as a possible or even promising candidate. It combines several attractive properties, for instance a mass which leads in most cases to low sputtering yields together with an optical reflectance (RRh≈75%) which is much higher than of some other options. RRh is insensitive to large temperature changes. Rhodium is fairly inert and its low oxidation is an appreciable advantage in case of steam ingress events. The core-plasma CXRS diagnostic in ITER (UPP 3) have now turned to Rh as a baseline. The aim is to procure monocrystalline rhodium (SC-Rh) to mitigate the increase of the diffuse reflection with the damage due to physical sputtering. The first mirrors of optical diagnostics in ITER are exposed to high radiation and fluxes of particles which escape the plasma, in the order of 10 20 m −2 s −1 . At the position of the mirror, the flux may still reach about 10 18 m −2 s −1 . First mirrors are thus the most vulnerable in-vessel optical components, being subject to erosion, esp. by fast charge-exchange neutrals, or to deposition of impurities at flux rates which can reach 0.05 nm/s. The material selected for the reflecting surface must combine a high optical reflectivity in a wide spectral range and a sufficient resistance to physical sputtering during normal operation and during mirror cleaning discharges, if any is installed. Rhodium ( 103 Rh) was identified early as a possible or even promising candidate. It combines several attractive properties, for instance a mass which leads in most cases to low sputtering yields together with an optical reflectance (R Rh ≈75%) which is much higher than of some other options. R Rh is insensitive to large temperature changes. Rhodium is fairly inert and its low oxidation is an appreciable advantage in case of steam ingress events. The core-plasma CXRS diagnostic in ITER (UPP 3) have now turned to Rh as a baseline. The aim is to procure monocrystalline rhodium (SC-Rh) to mitigate the increase of the diffuse reflection with the damage due to physical sputtering. © 2019 Elsevier B.V. |
Author | Litnovsky, Andrey Linsmeier, Christian Mertens, Philippe Krasikov, Yury De Bock, Maarten Boman, Romain Krimmer, Andreas Leichtle, Dieter Dickheuer, Sven Marchuk, Oleksander Liegeois, Kim Rasinski, Marcin |
Author_xml | – sequence: 1 givenname: Philippe orcidid: 0000-0002-5010-5316 surname: Mertens fullname: Mertens, Philippe email: Ph.Mertens@fz-juelich.de organization: Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany – sequence: 2 givenname: Romain surname: Boman fullname: Boman, Romain organization: Université de Liège, Faculté des Sciences Appliquées, Bât. B52 Allée de la Découverte, 9, 4000 Liege, Belgium – sequence: 3 givenname: Sven orcidid: 0000-0002-6826-2715 surname: Dickheuer fullname: Dickheuer, Sven organization: Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany – sequence: 4 givenname: Yury surname: Krasikov fullname: Krasikov, Yury organization: Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany – sequence: 5 givenname: Andreas orcidid: 0000-0002-1670-6345 surname: Krimmer fullname: Krimmer, Andreas organization: Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany – sequence: 6 givenname: Dieter surname: Leichtle fullname: Leichtle, Dieter organization: Karlsruher Institut für Technologie (KIT), Institut für Neutronenphysik und Reaktortechnik (INR), 76344 Eggenstein-Leopoldshafen, Germany – sequence: 7 givenname: Kim surname: Liegeois fullname: Liegeois, Kim organization: Université de Liège, Faculté des Sciences Appliquées, Bât. B52 Allée de la Découverte, 9, 4000 Liege, Belgium – sequence: 8 givenname: Christian orcidid: 0000-0003-0404-7191 surname: Linsmeier fullname: Linsmeier, Christian organization: Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany – sequence: 9 givenname: Andrey orcidid: 0000-0001-9791-4316 surname: Litnovsky fullname: Litnovsky, Andrey organization: Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany – sequence: 10 givenname: Oleksander surname: Marchuk fullname: Marchuk, Oleksander organization: Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany – sequence: 11 givenname: Marcin surname: Rasinski fullname: Rasinski, Marcin organization: Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany – sequence: 12 givenname: Maarten surname: De Bock fullname: De Bock, Maarten organization: ITER Organization, 13067 St.Paul-lez-Durance, France |
BookMark | eNqNkE1r3DAQhkVIoJttfkMFOdvVhyVZhxxCSNNAIFDS86CVxxstXmkr2YH--yq49NBLCwMzA_O8DM8lOY8pIiGfOGs54_rzoR2XgnE_YGkF47ZlXcskPyMb3hvZGG71OdkwK1gjjdUfyGUpB8a4qbUhN8-Rzq9IawRNI82vaQjLkR5DzikXOqZM02kO3k10CG4fU6lLoSHSx5f7bx_Jxeimgle_-5Z8_3L_cve1eXp-eLy7fWp8p-TcOD1gx6ziwjuLXDIlByetQK61s04qz6UcTG-1GpRFw_3Yj8ppqeW424lObolcc6eAe4SUdwHeBCQX1nmZ9uA87BCE0D0IqaTSlbpeqVNOPxYsMxzSkmN9tF4wI3vD6ntbYtYrn1MpGUc45XB0-SdwBu-G4QB_DMO7YWAdVMOVvPmL9GF2c0hxzi5M_8HfrjxWdW8BMxQfMHocQkY_w5DCPzN-AUzQnZU |
CitedBy_id | crossref_primary_10_1007_s41614_022_00098_w crossref_primary_10_3390_atoms7030081 crossref_primary_10_1016_j_fusengdes_2021_112460 crossref_primary_10_1016_j_fusengdes_2021_112408 crossref_primary_10_1595_205651324X16794770872879 crossref_primary_10_1063_5_0215575 crossref_primary_10_1016_j_fusengdes_2024_114416 crossref_primary_10_1007_s10894_018_0202_1 crossref_primary_10_1063_5_0219392 crossref_primary_10_1063_5_0083613 crossref_primary_10_3390_inorganics12120321 |
Cites_doi | 10.1088/0031-8949/2011/T145/014070 10.1016/0022-3697(63)90130-6 10.1063/1.1703109 10.1080/00337577508240805 10.1109/TPS.2011.2181539 10.1088/0029-5515/56/10/106027 10.6028/jres.022.050 10.1063/1.1661506 10.13182/FST14-906 10.1088/1402-4896/aa8f30 10.1007/BF00664336 10.1063/1.1708240 10.1063/1.5024995 10.1088/0031-8949/2014/T159/014011 10.1016/j.fusengdes.2017.04.038 10.1063/1.1316759 10.1103/PhysRevB.11.1416 10.1016/j.nme.2016.12.032 10.1088/1361-6463/aa81f3 10.1016/j.nme.2018.11.012 10.6000/2369-3355.2015.02.03.1 10.1016/j.fusengdes.2018.12.026 10.1007/s10894-018-0202-1 10.1088/1361-6455/aa987d 10.1016/j.fusengdes.2017.03.053 10.1016/j.nimb.2013.03.005 10.1063/1.1736012 |
ContentType | Journal Article Web Resource |
Copyright | 2019 Elsevier B.V. Copyright Elsevier Science Ltd. Sep 2019 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Sep 2019 |
DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M Q33 |
DOI | 10.1016/j.fusengdes.2019.04.031 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Université de Liège - Open Repository and Bibliography (ORBI) |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7196 |
EndPage | 2518 |
ExternalDocumentID | oai_orbi_ulg_ac_be_2268_235356 10_1016_j_fusengdes_2019_04_031 S0920379619305654 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HME HVGLF HZ~ IHE J1W JARJE JJJVA KOM LY6 LY7 LZ3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SES SET SEW SHN SPC SPCBC SSR SST SSZ T5K WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7TB 8FD EFKBS FR3 H8D KR7 L7M Q33 |
ID | FETCH-LOGICAL-c453t-a6de409512ca9e13053da392e166a9a35c133d78965d59e71cf8f5a6363fbb243 |
IEDL.DBID | AIKHN |
ISSN | 0920-3796 1873-7196 |
IngestDate | Fri Aug 01 18:35:46 EDT 2025 Sun Sep 07 03:27:49 EDT 2025 Tue Jul 01 01:13:41 EDT 2025 Thu Apr 24 22:53:39 EDT 2025 Fri Feb 23 02:32:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | First mirror CXRS ITER Diagnostics Rhodium |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c453t-a6de409512ca9e13053da392e166a9a35c133d78965d59e71cf8f5a6363fbb243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 scopus-id:2-s2.0-85064269165 |
ORCID | 0000-0001-9791-4316 0000-0002-6826-2715 0000-0003-0404-7191 0000-0002-1670-6345 0000-0002-5010-5316 |
PQID | 2307387045 |
PQPubID | 2047562 |
PageCount | 5 |
ParticipantIDs | liege_orbi_v2_oai_orbi_ulg_ac_be_2268_235356 proquest_journals_2307387045 crossref_primary_10_1016_j_fusengdes_2019_04_031 crossref_citationtrail_10_1016_j_fusengdes_2019_04_031 elsevier_sciencedirect_doi_10_1016_j_fusengdes_2019_04_031 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2019 2019-09-00 20190901 2019-09 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: September 2019 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Fusion engineering and design |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier Science Ltd Elsevier Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd – name: Elsevier Ltd |
References | Almazán, Pereira (bib0080) 2017 Litnovsky, Voitsenya, Reichle (bib0040) 2018 Weaver (bib0075) 1975; 11 Moser, Marot, Steiner (bib0110) 2017; T170 Dickheuer, Marchuk, Brandt (bib0180) 2018; 89 Snouse, Haughney (bib0130) 1966; 37 A. Litnovsky, J. Peng, A. Kreter et al., Optimization of single crystal mirrors for ITER diagnostics, Fusion Eng. Des. (Proc. 30th SOFT) in the present volume. Weaver, Frederikse (bib0070) 1998–1999 Ph. Mertens, Baseline for the First Mirror of the core CXRS diagnostic: Materials, Contamination and Cleaning, ITPA-31 (Nov. 2016) Pres. No. 10-02. Ujihara (bib0190) 1972; 43 Orsitto, Del Bugaro, DiFino (bib0015) 2001; 72 Krasikov (bib0100) 2018 Joanny, Travère, Salasca (bib0020) 2012; 40 Voitsenya, Balden, Bardamid (bib0105) 2013; 302 MaTecK, Material-Technologie & Kristalle GmbH, 52428 Jülich, Germany. Krasikov, Panin, Litnovsky, Mertens, Schrader (bib0095) 2017; 124 Carruthers (bib0120) 1975 Kreter, Brandt, Huber (bib0155) 2015; 68 (bib0065) 1998–1999 Laegreid, Wehner (bib0165) 1961; 32 Gestis Substance Database, information system on hazardous substances, under Marchuk, Brandt, Pospieszczyk (bib0175) 2018; 51 Rubel, Ivanova, Coad (bib0025) 2011; T145 Kotov (bib0055) 2016; 56 Zdanuk, Wolsky (bib0140) 1965; 36 Carol, Mann (bib0085) 1990; 34 Ph. Mertens, The core-plasma CXRS diagnostic for ITER – an introduction to the current design, Proc. 16th Ettore Majorana School on Diagnostics and Technology Developments, Journal of Fusion Energy, Springer Science+Business Media, LLC, part of Springer Nature (2018) Ogilvie, Sanders, Thomson (bib0135) 1963; 24 Garcia-Carrasco, Petersson, Rubel (bib0170) 2017; 12 A. Krimmer, I. Balboa, N.J. Conway et al. Design Status of the ITER Core CXRS Diagnostic Setup, Proc. 30th SOFT (this conference), Fusion Eng. Des., in press Litnovsky, Krasikov, Rasinski (bib0145) 2017; 123 . Coblentz, Stair (bib0005) 1939; 22 Dickheuer, Marchuk, Ertmer (bib0185) 2018; 17 Ivanova, Rubel, Widdowson (bib0030) 2014; T159 Marot, Arnoux, Huber (bib0035) 2015; 2 Minissale, Pardanaud, Bisson, Gallais (bib0195) 2017; 50 Orlinski, Bardamid, Konovalov (bib0010) 2000; 5 Tongson, Cooper (bib0160) 1975; 24 Robinson (bib0125) 1981 Joanny (10.1016/j.fusengdes.2019.04.031_bib0020) 2012; 40 Kreter (10.1016/j.fusengdes.2019.04.031_bib0155) 2015; 68 10.1016/j.fusengdes.2019.04.031_bib0050 Ujihara (10.1016/j.fusengdes.2019.04.031_bib0190) 1972; 43 10.1016/j.fusengdes.2019.04.031_bib0150 10.1016/j.fusengdes.2019.04.031_bib0090 Weaver (10.1016/j.fusengdes.2019.04.031_bib0075) 1975; 11 Carruthers (10.1016/j.fusengdes.2019.04.031_bib0120) 1975 10.1016/j.fusengdes.2019.04.031_bib0115 Litnovsky (10.1016/j.fusengdes.2019.04.031_bib0145) 2017; 123 Coblentz (10.1016/j.fusengdes.2019.04.031_bib0005) 1939; 22 Kotov (10.1016/j.fusengdes.2019.04.031_bib0055) 2016; 56 Garcia-Carrasco (10.1016/j.fusengdes.2019.04.031_bib0170) 2017; 12 Dickheuer (10.1016/j.fusengdes.2019.04.031_bib0180) 2018; 89 (10.1016/j.fusengdes.2019.04.031_bib0065) 1998 Minissale (10.1016/j.fusengdes.2019.04.031_bib0195) 2017; 50 Ivanova (10.1016/j.fusengdes.2019.04.031_bib0030) 2014; T159 Marchuk (10.1016/j.fusengdes.2019.04.031_bib0175) 2018; 51 Krasikov (10.1016/j.fusengdes.2019.04.031_bib0100) 2018 Rubel (10.1016/j.fusengdes.2019.04.031_bib0025) 2011; T145 Laegreid (10.1016/j.fusengdes.2019.04.031_bib0165) 1961; 32 Marot (10.1016/j.fusengdes.2019.04.031_bib0035) 2015; 2 Weaver (10.1016/j.fusengdes.2019.04.031_bib0070) 1998 10.1016/j.fusengdes.2019.04.031_bib0060 Robinson (10.1016/j.fusengdes.2019.04.031_bib0125) 1981 Krasikov (10.1016/j.fusengdes.2019.04.031_bib0095) 2017; 124 Litnovsky (10.1016/j.fusengdes.2019.04.031_bib0040) 2018 Voitsenya (10.1016/j.fusengdes.2019.04.031_bib0105) 2013; 302 Orlinski (10.1016/j.fusengdes.2019.04.031_bib0010) 2000; 5 Moser (10.1016/j.fusengdes.2019.04.031_bib0110) 2017; T170 Orsitto (10.1016/j.fusengdes.2019.04.031_bib0015) 2001; 72 10.1016/j.fusengdes.2019.04.031_bib0045 Ogilvie (10.1016/j.fusengdes.2019.04.031_bib0135) 1963; 24 Tongson (10.1016/j.fusengdes.2019.04.031_bib0160) 1975; 24 Almazán (10.1016/j.fusengdes.2019.04.031_bib0080) 2017 Dickheuer (10.1016/j.fusengdes.2019.04.031_bib0185) 2018; 17 Carol (10.1016/j.fusengdes.2019.04.031_bib0085) 1990; 34 Snouse (10.1016/j.fusengdes.2019.04.031_bib0130) 1966; 37 Zdanuk (10.1016/j.fusengdes.2019.04.031_bib0140) 1965; 36 |
References_xml | – volume: T159 year: 2014 ident: bib0030 article-title: An overview of the comprehensive First Mirror Test in JET with ITER-like wall publication-title: Phys. Scr. – volume: 11 start-page: 1416 year: 1975 end-page: 1425 ident: bib0075 article-title: Optical properties of Rh, Pd, Ir and Pt publication-title: Phys. Rev. B – volume: 124 start-page: 548 year: 2017 end-page: 552 ident: bib0095 article-title: Specific design and structural issues of single crystalline first mirrors for diagnostics publication-title: Fusion Eng. Des. – reference: A. Litnovsky, J. Peng, A. Kreter et al., Optimization of single crystal mirrors for ITER diagnostics, Fusion Eng. Des. (Proc. 30th SOFT) in the present volume. – volume: 37 start-page: 700 year: 1966 end-page: 704 ident: bib0130 article-title: Sputtering of single-crystal copper publication-title: J. Appl. Phys. – volume: 24 start-page: 187 year: 1975 end-page: 193 ident: bib0160 article-title: Low energy argon differential sputtering yields and thersholds along the <110> and <100> directions from the single crystal silver surfaces publication-title: Radiat. Effects – year: 2018 ident: bib0040 article-title: Diagnostic mirrors for ITER: research in the frame of International Tokamak Physics Activity publication-title: 27th Fusion Energy Conference – volume: T145 year: 2011 ident: bib0025 article-title: Overview of the second stage in the comprehensive mirrors test in JET publication-title: Phys. Scr. – volume: 34 start-page: 1 year: 1990 end-page: 12 ident: bib0085 article-title: High-temperature oxidation of rhodium publication-title: Oxid. Metals – volume: 17 start-page: 302 year: 2018 end-page: 306 ident: bib0185 article-title: measurement of the spectral reflectance of mirror-like metallic surfaces during plasma exposition publication-title: Nucl. Mat. and Energy – year: 2018 ident: bib0100 article-title: Private Communication – year: 1975 ident: bib0120 article-title: Crystal Growth from the melt publication-title: Treatise on Solid State Chemistry, Vol. 5 – Changes of State – volume: 32 start-page: 365 year: 1961 end-page: 369 ident: bib0165 article-title: Sputtering yields of metals for publication-title: J. Appl. Phys. – volume: T170 year: 2017 ident: bib0110 article-title: Plasma cleaning of ITER first mirrors publication-title: Phys. Scr. – volume: 50 year: 2017 ident: bib0195 article-title: The temperature dependence of optical properties of tungsten in the visible and near-infrared domains: an experimental and theoretical study publication-title: J. Phys. D: Appl. Phys. – start-page: 12 year: 1998–1999 end-page: 141 ident: bib0070 article-title: Optical properties of metals and semiconductors publication-title: Handbook of Chemistry and Physics – volume: 36 start-page: 1683 year: 1965 end-page: 1687 ident: bib0140 article-title: Sputtering of single crystal copper and aluminum with 20–600 eV argon ions publication-title: J. Appl. Phys. – year: 1981 ident: bib0125 article-title: Theoretical aspects of monocrystal sputtering publication-title: Sputtering by Particle Bombardment I, Topics in Applied Physics 47 – reference: MaTecK, Material-Technologie & Kristalle GmbH, 52428 Jülich, Germany. – reference: Ph. Mertens, The core-plasma CXRS diagnostic for ITER – an introduction to the current design, Proc. 16th Ettore Majorana School on Diagnostics and Technology Developments, Journal of Fusion Energy, Springer Science+Business Media, LLC, part of Springer Nature (2018) – reference: A. Krimmer, I. Balboa, N.J. Conway et al. Design Status of the ITER Core CXRS Diagnostic Setup, Proc. 30th SOFT (this conference), Fusion Eng. Des., in press, – year: 1998–1999 ident: bib0065 article-title: Sections 4&12: properties of the elements & properties of solids publication-title: Handbook of Chemistry and Physics – volume: 5 start-page: 67 year: 2000 end-page: 69 ident: bib0010 article-title: Rhodium as the promising material for the first mirrors of laser and spectroscopy methods of plasma diagnostics in a fusion reactor publication-title: Prob. Atom. Sci. Tech. 3 Ser.: Plasma Phys. – volume: 302 start-page: 32 year: 2013 end-page: 39 ident: bib0105 article-title: Development of surface relief on polycrystalline metals due to sputtering publication-title: Nucl. Instr. Methods Phys. Res. B – volume: 123 start-page: 674 year: 2017 end-page: 677 ident: bib0145 article-title: First direct comparative test of single crystal rhodium and molybdenum mirrors for ITER diagnostics publication-title: Fusion Eng. Des. – volume: 51 year: 2018 ident: bib0175 article-title: Emission of fast hydrogen atoms at a plasma-solid interface in a low density plasma containing noble gases publication-title: J. Phys. B: At. Mol. Opt. Phys. – reference: Gestis Substance Database, information system on hazardous substances, under – volume: 72 start-page: 540 year: 2001 end-page: 544 ident: bib0015 article-title: Optical characterization of plasma facing mirrors for a Thomson scattering system of a burning plasma experiment publication-title: Rev. Sci. Instrum. – volume: 43 start-page: 2376 year: 1972 end-page: 2383 ident: bib0190 article-title: Reflectivity of metals at high temperatures publication-title: J. Appl. Phys. – volume: 40 start-page: 692 year: 2012 end-page: 696 ident: bib0020 article-title: Achievements on engineering and manufacturing of ITER first-mirror mock-ups publication-title: IEEE Trans. Plasma Sci. – volume: 68 start-page: 8 year: 2015 end-page: 14 ident: bib0155 article-title: Linear plasma device PSI-2 for plasma-material interaction studies publication-title: Fusion Sci. Tech. – reference: Ph. Mertens, Baseline for the First Mirror of the core CXRS diagnostic: Materials, Contamination and Cleaning, ITPA-31 (Nov. 2016) Pres. No. 10-02. – reference: . – year: 2017 ident: bib0080 article-title: Internal F4E Report – volume: 24 start-page: 247 year: 1963 end-page: 259 ident: bib0135 article-title: The bombardment of gold films by inert gas ions publication-title: J. Phys. Chem. Solids – volume: 12 start-page: 506 year: 2017 end-page: 512 ident: bib0170 article-title: Plasma impact on diagnostic mirrors in JET publication-title: Nucl. Mater. Energy – volume: 89 start-page: 063112 year: 2018 ident: bib0180 article-title: In situ measurements of the spectral reflectance of metallic mirrors at the publication-title: Rev. Sci. Instrum. – volume: 22 start-page: 93 year: 1939 end-page: 95 ident: bib0005 article-title: Note on the Spectral Reflectivity of Rhodium publication-title: J. Res. Natl. Bureau Stand. – volume: 2 start-page: 72 year: 2015 end-page: 78 ident: bib0035 article-title: Optical coatings as mirrors for optical diagnostics publication-title: J. Coat. Sci Tech. – volume: 56 year: 2016 ident: bib0055 article-title: Engineering estimates of impurity fluxes on the ITER port plugs publication-title: Nucl. Fusion – year: 2018 ident: 10.1016/j.fusengdes.2019.04.031_bib0100 – volume: T145 year: 2011 ident: 10.1016/j.fusengdes.2019.04.031_bib0025 article-title: Overview of the second stage in the comprehensive mirrors test in JET publication-title: Phys. Scr. doi: 10.1088/0031-8949/2011/T145/014070 – volume: 24 start-page: 247 year: 1963 ident: 10.1016/j.fusengdes.2019.04.031_bib0135 article-title: The bombardment of gold films by inert gas ions publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(63)90130-6 – year: 1981 ident: 10.1016/j.fusengdes.2019.04.031_bib0125 article-title: Theoretical aspects of monocrystal sputtering – volume: 36 start-page: 1683 year: 1965 ident: 10.1016/j.fusengdes.2019.04.031_bib0140 article-title: Sputtering of single crystal copper and aluminum with 20–600 eV argon ions publication-title: J. Appl. Phys. doi: 10.1063/1.1703109 – volume: 24 start-page: 187 year: 1975 ident: 10.1016/j.fusengdes.2019.04.031_bib0160 article-title: Low energy argon differential sputtering yields and thersholds along the <110> and <100> directions from the single crystal silver surfaces publication-title: Radiat. Effects doi: 10.1080/00337577508240805 – volume: 40 start-page: 692 year: 2012 ident: 10.1016/j.fusengdes.2019.04.031_bib0020 article-title: Achievements on engineering and manufacturing of ITER first-mirror mock-ups publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2011.2181539 – volume: 56 year: 2016 ident: 10.1016/j.fusengdes.2019.04.031_bib0055 article-title: Engineering estimates of impurity fluxes on the ITER port plugs publication-title: Nucl. Fusion doi: 10.1088/0029-5515/56/10/106027 – volume: 22 start-page: 93 year: 1939 ident: 10.1016/j.fusengdes.2019.04.031_bib0005 article-title: Note on the Spectral Reflectivity of Rhodium publication-title: J. Res. Natl. Bureau Stand. doi: 10.6028/jres.022.050 – volume: 43 start-page: 2376 year: 1972 ident: 10.1016/j.fusengdes.2019.04.031_bib0190 article-title: Reflectivity of metals at high temperatures publication-title: J. Appl. Phys. doi: 10.1063/1.1661506 – volume: 5 start-page: 67 year: 2000 ident: 10.1016/j.fusengdes.2019.04.031_bib0010 article-title: Rhodium as the promising material for the first mirrors of laser and spectroscopy methods of plasma diagnostics in a fusion reactor publication-title: Prob. Atom. Sci. Tech. 3 Ser.: Plasma Phys. – volume: 68 start-page: 8 year: 2015 ident: 10.1016/j.fusengdes.2019.04.031_bib0155 article-title: Linear plasma device PSI-2 for plasma-material interaction studies publication-title: Fusion Sci. Tech. doi: 10.13182/FST14-906 – year: 1975 ident: 10.1016/j.fusengdes.2019.04.031_bib0120 article-title: Crystal Growth from the melt – volume: T170 year: 2017 ident: 10.1016/j.fusengdes.2019.04.031_bib0110 article-title: Plasma cleaning of ITER first mirrors publication-title: Phys. Scr. doi: 10.1088/1402-4896/aa8f30 – start-page: 12 year: 1998 ident: 10.1016/j.fusengdes.2019.04.031_bib0070 article-title: Optical properties of metals and semiconductors – ident: 10.1016/j.fusengdes.2019.04.031_bib0090 – ident: 10.1016/j.fusengdes.2019.04.031_bib0060 – volume: 34 start-page: 1 year: 1990 ident: 10.1016/j.fusengdes.2019.04.031_bib0085 article-title: High-temperature oxidation of rhodium publication-title: Oxid. Metals doi: 10.1007/BF00664336 – volume: 37 start-page: 700 year: 1966 ident: 10.1016/j.fusengdes.2019.04.031_bib0130 article-title: Sputtering of single-crystal copper publication-title: J. Appl. Phys. doi: 10.1063/1.1708240 – volume: 89 start-page: 063112 year: 2018 ident: 10.1016/j.fusengdes.2019.04.031_bib0180 article-title: In situ measurements of the spectral reflectance of metallic mirrors at the Hα line in a low density Ar-H plasma publication-title: Rev. Sci. Instrum. doi: 10.1063/1.5024995 – ident: 10.1016/j.fusengdes.2019.04.031_bib0115 – year: 2017 ident: 10.1016/j.fusengdes.2019.04.031_bib0080 – volume: T159 year: 2014 ident: 10.1016/j.fusengdes.2019.04.031_bib0030 article-title: An overview of the comprehensive First Mirror Test in JET with ITER-like wall publication-title: Phys. Scr. doi: 10.1088/0031-8949/2014/T159/014011 – volume: 124 start-page: 548 year: 2017 ident: 10.1016/j.fusengdes.2019.04.031_bib0095 article-title: Specific design and structural issues of single crystalline first mirrors for diagnostics publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2017.04.038 – ident: 10.1016/j.fusengdes.2019.04.031_bib0150 – volume: 72 start-page: 540 year: 2001 ident: 10.1016/j.fusengdes.2019.04.031_bib0015 article-title: Optical characterization of plasma facing mirrors for a Thomson scattering system of a burning plasma experiment publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1316759 – volume: 11 start-page: 1416 year: 1975 ident: 10.1016/j.fusengdes.2019.04.031_bib0075 article-title: Optical properties of Rh, Pd, Ir and Pt publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.11.1416 – volume: 12 start-page: 506 year: 2017 ident: 10.1016/j.fusengdes.2019.04.031_bib0170 article-title: Plasma impact on diagnostic mirrors in JET publication-title: Nucl. Mater. Energy doi: 10.1016/j.nme.2016.12.032 – volume: 50 year: 2017 ident: 10.1016/j.fusengdes.2019.04.031_bib0195 article-title: The temperature dependence of optical properties of tungsten in the visible and near-infrared domains: an experimental and theoretical study publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/aa81f3 – volume: 17 start-page: 302 year: 2018 ident: 10.1016/j.fusengdes.2019.04.031_bib0185 article-title: In situ measurement of the spectral reflectance of mirror-like metallic surfaces during plasma exposition publication-title: Nucl. Mat. and Energy doi: 10.1016/j.nme.2018.11.012 – volume: 2 start-page: 72 year: 2015 ident: 10.1016/j.fusengdes.2019.04.031_bib0035 article-title: Optical coatings as mirrors for optical diagnostics publication-title: J. Coat. Sci Tech. doi: 10.6000/2369-3355.2015.02.03.1 – ident: 10.1016/j.fusengdes.2019.04.031_bib0045 doi: 10.1016/j.fusengdes.2018.12.026 – ident: 10.1016/j.fusengdes.2019.04.031_bib0050 doi: 10.1007/s10894-018-0202-1 – volume: 51 year: 2018 ident: 10.1016/j.fusengdes.2019.04.031_bib0175 article-title: Emission of fast hydrogen atoms at a plasma-solid interface in a low density plasma containing noble gases publication-title: J. Phys. B: At. Mol. Opt. Phys. doi: 10.1088/1361-6455/aa987d – volume: 123 start-page: 674 year: 2017 ident: 10.1016/j.fusengdes.2019.04.031_bib0145 article-title: First direct comparative test of single crystal rhodium and molybdenum mirrors for ITER diagnostics publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2017.03.053 – year: 2018 ident: 10.1016/j.fusengdes.2019.04.031_bib0040 article-title: Diagnostic mirrors for ITER: research in the frame of International Tokamak Physics Activity – year: 1998 ident: 10.1016/j.fusengdes.2019.04.031_bib0065 article-title: Sections 4&12: properties of the elements & properties of solids – volume: 302 start-page: 32 year: 2013 ident: 10.1016/j.fusengdes.2019.04.031_bib0105 article-title: Development of surface relief on polycrystalline metals due to sputtering publication-title: Nucl. Instr. Methods Phys. Res. B doi: 10.1016/j.nimb.2013.03.005 – volume: 32 start-page: 365 year: 1961 ident: 10.1016/j.fusengdes.2019.04.031_bib0165 article-title: Sputtering yields of metals for Ar+ and Ne+ ions with energies from 50 to 600 eV publication-title: J. Appl. Phys. doi: 10.1063/1.1736012 |
RestrictionsOnAccess | restricted access |
SSID | ssj0017017 |
Score | 2.2823045 |
Snippet | The first mirrors of optical diagnostics in ITER are exposed to high radiation and fluxes of particles which escape the plasma, in the order of 1020 m−2s−1. At... The first mirrors of optical diagnostics in ITER are exposed to high radiation and fluxes of particles which escape the plasma, in the order of 1020 m−2s−1. At... The first mirrors of optical diagnostics in ITER are exposed to high radiation and fluxes of particles which escape the plasma, in the order of 10 20 m −2 s −1... |
SourceID | liege proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2514 |
SubjectTerms | Charge exchange Charge transfer CXRS Diagnostic systems Diagnostics Engineering, computing & technology Erosion rates First mirror Fluxes Ingénierie, informatique & technologie ITER Materials science & engineering Mirrors Optical components Optical diagnostics Optical reflectance Optical reflectivity Oxidation Physical sputtering Plasma diagnostics Reflectance Reflection Rhodium Rhodium isotopes Science des matériaux & ingénierie Sputtering Surface discharges Temperature changes |
Title | On the use of rhodium mirrors for optical diagnostics in ITER |
URI | https://dx.doi.org/10.1016/j.fusengdes.2019.04.031 https://www.proquest.com/docview/2307387045 http://orbi.ulg.ac.be/handle/2268/235356 |
Volume | 146 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61uxc4oPISSx_ygSNhEzt2YiQOVdVqAVEkoFJvll9pg7bJKuz2yG9n7CSrVgj1wC2JMon12f782TMeA7zRQmpblWnibHQzuiKR1GC_EsbnPtOijLv4v5yLxUX-6ZJf7sDJuBcmhFUO3N9zemTr4cl8QHO-quv591TSlBUSZwBBBvN8F6aUScEnMD3--HlxvnUmFGk8eDe8nwSDe2FeVVjpuHI-pO7OZEx7yrJ_DVLTZfBk_0XbcSw624Mng4gkx305n8KOb57B4zupBZ_Dh68NQW1H8L-krUh33bp6c0Nu6q5ru18EpSppV3Edm7g-2i7kayZ1Q5DLvr2Ai7PTHyeLZDgqIbE5Z-tEC-fzoJao1dLjuMSZ0yh9fCaElppxi3NRV5QIj-PSFxnWT8W1YIJVxtCcvYRJ0zb-FZDSCmHC9lWKmFrudVaVThpaldZnlFYzECM2yg55xMNxFks1Boz9VFtQVQBVpblCUGeQbg1XfSqNh03ej-Cre61CIeE_bPw2VpdqO1OrW6pCJu14vVleKW2V8QrFZ6ko44yLGRyMtaqGfoyfCxSIlJbz1_9TlH14FO762LQDmKy7jT9EMbM2R7D77nd2NDTZP4M18v8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V9gAcKp5ioYAPHAmb2LETV-KAKqrtEwlaqTfLr5SgbbIKuxz72zt2khUVQj30FiVxYo_tz5_tmc8AH7SQ2lZlmjgbtxldkUhqsF8J43OfaVHGKP6TUzE7zw8v-MUG7I2xMMGtcsD-HtMjWg93poM1p4u6nv5IJU1ZIXEGEGgwzx_AVs5ZEfz6Pl2v_TyC3niMmZYhVBhfv-XkVYV1jkvng3B3JqPoKcv-N0RtzcM-9j-gHUei_SewPVBI8qXP5VPY8M0zePyXsOBz-PytIcjsCP6XtBXpfrauXl2Rq7rr2u43QaJK2kVcxSau97ULas2kbggi2fcXcL7_9WxvlgwHJSQWS7xMtHA-D1yJWi09jkqcOY3Ex2dCaKkZtzgTdUUpBXdc-iLD2qm4Fkywyhias5ew2bSNfwWktEKYELxK0aKWe51VpZOGVqX1GaXVBMRoG2UHFfFwmMVcje5iv9TaqCoYVaW5QqNOIF0nXPRCGncn2R2Nr261CYVwf3fij7G6VNuZWv2hKuhox-vV_FJpq4xXSD1LRRlnXExgZ6xVNfRi_FwAQAS0nL--T1bew8PZ2cmxOj44PXoDj8KT3kttBzaX3cq_RVqzNO9is70Bj4Pzyg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+use+of+rhodium+mirrors+for+optical+diagnostics+in+ITER&rft.jtitle=Fusion+engineering+and+design&rft.au=Mertens%2C+Philippe&rft.au=Boman%2C+Romain&rft.au=Dickheuer%2C+Sven&rft.au=Krasikov%2C+Yury&rft.date=2019-09-01&rft.issn=0920-3796&rft.volume=146&rft.spage=2514&rft.epage=2518&rft_id=info:doi/10.1016%2Fj.fusengdes.2019.04.031&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fusengdes_2019_04_031 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-3796&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-3796&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-3796&client=summon |