On the use of rhodium mirrors for optical diagnostics in ITER

The first mirrors of optical diagnostics in ITER are exposed to high radiation and fluxes of particles which escape the plasma, in the order of 1020 m−2s−1. At the position of the mirror, the flux may still reach about 1018 m−2s−1. First mirrors are thus the most vulnerable in-vessel optical compone...

Full description

Saved in:
Bibliographic Details
Published inFusion engineering and design Vol. 146; pp. 2514 - 2518
Main Authors Mertens, Philippe, Boman, Romain, Dickheuer, Sven, Krasikov, Yury, Krimmer, Andreas, Leichtle, Dieter, Liegeois, Kim, Linsmeier, Christian, Litnovsky, Andrey, Marchuk, Oleksander, Rasinski, Marcin, De Bock, Maarten
Format Journal Article Web Resource
LanguageEnglish
Published Amsterdam Elsevier B.V 01.09.2019
Elsevier Science Ltd
Elsevier Ltd
Subjects
Online AccessGet full text
ISSN0920-3796
1873-7196
1873-7196
DOI10.1016/j.fusengdes.2019.04.031

Cover

Abstract The first mirrors of optical diagnostics in ITER are exposed to high radiation and fluxes of particles which escape the plasma, in the order of 1020 m−2s−1. At the position of the mirror, the flux may still reach about 1018 m−2s−1. First mirrors are thus the most vulnerable in-vessel optical components, being subject to erosion, esp. by fast charge-exchange neutrals, or to deposition of impurities at flux rates which can reach 0.05 nm/s. The material selected for the reflecting surface must combine a high optical reflectivity in a wide spectral range and a sufficient resistance to physical sputtering during normal operation and during mirror cleaning discharges, if any is installed. Rhodium (103Rh) was identified early as a possible or even promising candidate. It combines several attractive properties, for instance a mass which leads in most cases to low sputtering yields together with an optical reflectance (RRh≈75%) which is much higher than of some other options. RRh is insensitive to large temperature changes. Rhodium is fairly inert and its low oxidation is an appreciable advantage in case of steam ingress events. The core-plasma CXRS diagnostic in ITER (UPP 3) have now turned to Rh as a baseline. The aim is to procure monocrystalline rhodium (SC-Rh) to mitigate the increase of the diffuse reflection with the damage due to physical sputtering.
AbstractList The first mirrors of optical diagnostics in ITER are exposed to high radiation and fluxes of particles which escape the plasma, in the order of 1020 m−2s−1. At the position of the mirror, the flux may still reach about 1018 m−2s−1. First mirrors are thus the most vulnerable in-vessel optical components, being subject to erosion, esp. by fast charge-exchange neutrals, or to deposition of impurities at flux rates which can reach 0.05 nm/s. The material selected for the reflecting surface must combine a high optical reflectivity in a wide spectral range and a sufficient resistance to physical sputtering during normal operation and during mirror cleaning discharges, if any is installed. Rhodium (103Rh) was identified early as a possible or even promising candidate. It combines several attractive properties, for instance a mass which leads in most cases to low sputtering yields together with an optical reflectance (RRh≈75%) which is much higher than of some other options. RRh is insensitive to large temperature changes. Rhodium is fairly inert and its low oxidation is an appreciable advantage in case of steam ingress events. The core-plasma CXRS diagnostic in ITER (UPP 3) have now turned to Rh as a baseline. The aim is to procure monocrystalline rhodium (SC-Rh) to mitigate the increase of the diffuse reflection with the damage due to physical sputtering.
The first mirrors of optical diagnostics in ITER are exposed to high radiation and fluxes of particles which escape the plasma, in the order of 1020 m−2s−1. At the position of the mirror, the flux may still reach about 1018 m−2s−1. First mirrors are thus the most vulnerable in-vessel optical components, being subject to erosion, esp. by fast charge-exchange neutrals, or to deposition of impurities at flux rates which can reach 0.05 nm/s. The material selected for the reflecting surface must combine a high optical reflectivity in a wide spectral range and a sufficient resistance to physical sputtering during normal operation and during mirror cleaning discharges, if any is installed. Rhodium (103Rh) was identified early as a possible or even promising candidate. It combines several attractive properties, for instance a mass which leads in most cases to low sputtering yields together with an optical reflectance (RRh≈75%) which is much higher than of some other options. RRh is insensitive to large temperature changes. Rhodium is fairly inert and its low oxidation is an appreciable advantage in case of steam ingress events. The core-plasma CXRS diagnostic in ITER (UPP 3) have now turned to Rh as a baseline. The aim is to procure monocrystalline rhodium (SC-Rh) to mitigate the increase of the diffuse reflection with the damage due to physical sputtering.
The first mirrors of optical diagnostics in ITER are exposed to high radiation and fluxes of particles which escape the plasma, in the order of 10 20 m −2 s −1 . At the position of the mirror, the flux may still reach about 10 18 m −2 s −1 . First mirrors are thus the most vulnerable in-vessel optical components, being subject to erosion, esp. by fast charge-exchange neutrals, or to deposition of impurities at flux rates which can reach 0.05 nm/s. The material selected for the reflecting surface must combine a high optical reflectivity in a wide spectral range and a sufficient resistance to physical sputtering during normal operation and during mirror cleaning discharges, if any is installed. Rhodium ( 103 Rh) was identified early as a possible or even promising candidate. It combines several attractive properties, for instance a mass which leads in most cases to low sputtering yields together with an optical reflectance (R Rh ≈75%) which is much higher than of some other options. R Rh is insensitive to large temperature changes. Rhodium is fairly inert and its low oxidation is an appreciable advantage in case of steam ingress events. The core-plasma CXRS diagnostic in ITER (UPP 3) have now turned to Rh as a baseline. The aim is to procure monocrystalline rhodium (SC-Rh) to mitigate the increase of the diffuse reflection with the damage due to physical sputtering. © 2019 Elsevier B.V.
Author Litnovsky, Andrey
Linsmeier, Christian
Mertens, Philippe
Krasikov, Yury
De Bock, Maarten
Boman, Romain
Krimmer, Andreas
Leichtle, Dieter
Dickheuer, Sven
Marchuk, Oleksander
Liegeois, Kim
Rasinski, Marcin
Author_xml – sequence: 1
  givenname: Philippe
  orcidid: 0000-0002-5010-5316
  surname: Mertens
  fullname: Mertens, Philippe
  email: Ph.Mertens@fz-juelich.de
  organization: Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
– sequence: 2
  givenname: Romain
  surname: Boman
  fullname: Boman, Romain
  organization: Université de Liège, Faculté des Sciences Appliquées, Bât. B52 Allée de la Découverte, 9, 4000 Liege, Belgium
– sequence: 3
  givenname: Sven
  orcidid: 0000-0002-6826-2715
  surname: Dickheuer
  fullname: Dickheuer, Sven
  organization: Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
– sequence: 4
  givenname: Yury
  surname: Krasikov
  fullname: Krasikov, Yury
  organization: Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
– sequence: 5
  givenname: Andreas
  orcidid: 0000-0002-1670-6345
  surname: Krimmer
  fullname: Krimmer, Andreas
  organization: Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
– sequence: 6
  givenname: Dieter
  surname: Leichtle
  fullname: Leichtle, Dieter
  organization: Karlsruher Institut für Technologie (KIT), Institut für Neutronenphysik und Reaktortechnik (INR), 76344 Eggenstein-Leopoldshafen, Germany
– sequence: 7
  givenname: Kim
  surname: Liegeois
  fullname: Liegeois, Kim
  organization: Université de Liège, Faculté des Sciences Appliquées, Bât. B52 Allée de la Découverte, 9, 4000 Liege, Belgium
– sequence: 8
  givenname: Christian
  orcidid: 0000-0003-0404-7191
  surname: Linsmeier
  fullname: Linsmeier, Christian
  organization: Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
– sequence: 9
  givenname: Andrey
  orcidid: 0000-0001-9791-4316
  surname: Litnovsky
  fullname: Litnovsky, Andrey
  organization: Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
– sequence: 10
  givenname: Oleksander
  surname: Marchuk
  fullname: Marchuk, Oleksander
  organization: Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
– sequence: 11
  givenname: Marcin
  surname: Rasinski
  fullname: Rasinski, Marcin
  organization: Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
– sequence: 12
  givenname: Maarten
  surname: De Bock
  fullname: De Bock, Maarten
  organization: ITER Organization, 13067 St.Paul-lez-Durance, France
BookMark eNqNkE1r3DAQhkVIoJttfkMFOdvVhyVZhxxCSNNAIFDS86CVxxstXmkr2YH--yq49NBLCwMzA_O8DM8lOY8pIiGfOGs54_rzoR2XgnE_YGkF47ZlXcskPyMb3hvZGG71OdkwK1gjjdUfyGUpB8a4qbUhN8-Rzq9IawRNI82vaQjLkR5DzikXOqZM02kO3k10CG4fU6lLoSHSx5f7bx_Jxeimgle_-5Z8_3L_cve1eXp-eLy7fWp8p-TcOD1gx6ziwjuLXDIlByetQK61s04qz6UcTG-1GpRFw_3Yj8ppqeW424lObolcc6eAe4SUdwHeBCQX1nmZ9uA87BCE0D0IqaTSlbpeqVNOPxYsMxzSkmN9tF4wI3vD6ntbYtYrn1MpGUc45XB0-SdwBu-G4QB_DMO7YWAdVMOVvPmL9GF2c0hxzi5M_8HfrjxWdW8BMxQfMHocQkY_w5DCPzN-AUzQnZU
CitedBy_id crossref_primary_10_1007_s41614_022_00098_w
crossref_primary_10_3390_atoms7030081
crossref_primary_10_1016_j_fusengdes_2021_112460
crossref_primary_10_1016_j_fusengdes_2021_112408
crossref_primary_10_1595_205651324X16794770872879
crossref_primary_10_1063_5_0215575
crossref_primary_10_1016_j_fusengdes_2024_114416
crossref_primary_10_1007_s10894_018_0202_1
crossref_primary_10_1063_5_0219392
crossref_primary_10_1063_5_0083613
crossref_primary_10_3390_inorganics12120321
Cites_doi 10.1088/0031-8949/2011/T145/014070
10.1016/0022-3697(63)90130-6
10.1063/1.1703109
10.1080/00337577508240805
10.1109/TPS.2011.2181539
10.1088/0029-5515/56/10/106027
10.6028/jres.022.050
10.1063/1.1661506
10.13182/FST14-906
10.1088/1402-4896/aa8f30
10.1007/BF00664336
10.1063/1.1708240
10.1063/1.5024995
10.1088/0031-8949/2014/T159/014011
10.1016/j.fusengdes.2017.04.038
10.1063/1.1316759
10.1103/PhysRevB.11.1416
10.1016/j.nme.2016.12.032
10.1088/1361-6463/aa81f3
10.1016/j.nme.2018.11.012
10.6000/2369-3355.2015.02.03.1
10.1016/j.fusengdes.2018.12.026
10.1007/s10894-018-0202-1
10.1088/1361-6455/aa987d
10.1016/j.fusengdes.2017.03.053
10.1016/j.nimb.2013.03.005
10.1063/1.1736012
ContentType Journal Article
Web Resource
Copyright 2019 Elsevier B.V.
Copyright Elsevier Science Ltd. Sep 2019
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Sep 2019
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
Q33
DOI 10.1016/j.fusengdes.2019.04.031
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Université de Liège - Open Repository and Bibliography (ORBI)
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7196
EndPage 2518
ExternalDocumentID oai_orbi_ulg_ac_be_2268_235356
10_1016_j_fusengdes_2019_04_031
S0920379619305654
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HME
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
LY6
LY7
LZ3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SHN
SPC
SPCBC
SSR
SST
SSZ
T5K
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7TB
8FD
EFKBS
FR3
H8D
KR7
L7M
Q33
ID FETCH-LOGICAL-c453t-a6de409512ca9e13053da392e166a9a35c133d78965d59e71cf8f5a6363fbb243
IEDL.DBID AIKHN
ISSN 0920-3796
1873-7196
IngestDate Fri Aug 01 18:35:46 EDT 2025
Sun Sep 07 03:27:49 EDT 2025
Tue Jul 01 01:13:41 EDT 2025
Thu Apr 24 22:53:39 EDT 2025
Fri Feb 23 02:32:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords First mirror
CXRS
ITER
Diagnostics
Rhodium
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-a6de409512ca9e13053da392e166a9a35c133d78965d59e71cf8f5a6363fbb243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
scopus-id:2-s2.0-85064269165
ORCID 0000-0001-9791-4316
0000-0002-6826-2715
0000-0003-0404-7191
0000-0002-1670-6345
0000-0002-5010-5316
PQID 2307387045
PQPubID 2047562
PageCount 5
ParticipantIDs liege_orbi_v2_oai_orbi_ulg_ac_be_2268_235356
proquest_journals_2307387045
crossref_primary_10_1016_j_fusengdes_2019_04_031
crossref_citationtrail_10_1016_j_fusengdes_2019_04_031
elsevier_sciencedirect_doi_10_1016_j_fusengdes_2019_04_031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2019
2019-09-00
20190901
2019-09
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: September 2019
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Fusion engineering and design
PublicationYear 2019
Publisher Elsevier B.V
Elsevier Science Ltd
Elsevier Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
– name: Elsevier Ltd
References Almazán, Pereira (bib0080) 2017
Litnovsky, Voitsenya, Reichle (bib0040) 2018
Weaver (bib0075) 1975; 11
Moser, Marot, Steiner (bib0110) 2017; T170
Dickheuer, Marchuk, Brandt (bib0180) 2018; 89
Snouse, Haughney (bib0130) 1966; 37
A. Litnovsky, J. Peng, A. Kreter et al., Optimization of single crystal mirrors for ITER diagnostics, Fusion Eng. Des. (Proc. 30th SOFT) in the present volume.
Weaver, Frederikse (bib0070) 1998–1999
Ph. Mertens, Baseline for the First Mirror of the core CXRS diagnostic: Materials, Contamination and Cleaning, ITPA-31 (Nov. 2016) Pres. No. 10-02.
Ujihara (bib0190) 1972; 43
Orsitto, Del Bugaro, DiFino (bib0015) 2001; 72
Krasikov (bib0100) 2018
Joanny, Travère, Salasca (bib0020) 2012; 40
Voitsenya, Balden, Bardamid (bib0105) 2013; 302
MaTecK, Material-Technologie & Kristalle GmbH, 52428 Jülich, Germany.
Krasikov, Panin, Litnovsky, Mertens, Schrader (bib0095) 2017; 124
Carruthers (bib0120) 1975
Kreter, Brandt, Huber (bib0155) 2015; 68
(bib0065) 1998–1999
Laegreid, Wehner (bib0165) 1961; 32
Gestis Substance Database, information system on hazardous substances, under
Marchuk, Brandt, Pospieszczyk (bib0175) 2018; 51
Rubel, Ivanova, Coad (bib0025) 2011; T145
Kotov (bib0055) 2016; 56
Zdanuk, Wolsky (bib0140) 1965; 36
Carol, Mann (bib0085) 1990; 34
Ph. Mertens, The core-plasma CXRS diagnostic for ITER – an introduction to the current design, Proc. 16th Ettore Majorana School on Diagnostics and Technology Developments, Journal of Fusion Energy, Springer Science+Business Media, LLC, part of Springer Nature (2018)
Ogilvie, Sanders, Thomson (bib0135) 1963; 24
Garcia-Carrasco, Petersson, Rubel (bib0170) 2017; 12
A. Krimmer, I. Balboa, N.J. Conway et al. Design Status of the ITER Core CXRS Diagnostic Setup, Proc. 30th SOFT (this conference), Fusion Eng. Des., in press
Litnovsky, Krasikov, Rasinski (bib0145) 2017; 123
.
Coblentz, Stair (bib0005) 1939; 22
Dickheuer, Marchuk, Ertmer (bib0185) 2018; 17
Ivanova, Rubel, Widdowson (bib0030) 2014; T159
Marot, Arnoux, Huber (bib0035) 2015; 2
Minissale, Pardanaud, Bisson, Gallais (bib0195) 2017; 50
Orlinski, Bardamid, Konovalov (bib0010) 2000; 5
Tongson, Cooper (bib0160) 1975; 24
Robinson (bib0125) 1981
Joanny (10.1016/j.fusengdes.2019.04.031_bib0020) 2012; 40
Kreter (10.1016/j.fusengdes.2019.04.031_bib0155) 2015; 68
10.1016/j.fusengdes.2019.04.031_bib0050
Ujihara (10.1016/j.fusengdes.2019.04.031_bib0190) 1972; 43
10.1016/j.fusengdes.2019.04.031_bib0150
10.1016/j.fusengdes.2019.04.031_bib0090
Weaver (10.1016/j.fusengdes.2019.04.031_bib0075) 1975; 11
Carruthers (10.1016/j.fusengdes.2019.04.031_bib0120) 1975
10.1016/j.fusengdes.2019.04.031_bib0115
Litnovsky (10.1016/j.fusengdes.2019.04.031_bib0145) 2017; 123
Coblentz (10.1016/j.fusengdes.2019.04.031_bib0005) 1939; 22
Kotov (10.1016/j.fusengdes.2019.04.031_bib0055) 2016; 56
Garcia-Carrasco (10.1016/j.fusengdes.2019.04.031_bib0170) 2017; 12
Dickheuer (10.1016/j.fusengdes.2019.04.031_bib0180) 2018; 89
(10.1016/j.fusengdes.2019.04.031_bib0065) 1998
Minissale (10.1016/j.fusengdes.2019.04.031_bib0195) 2017; 50
Ivanova (10.1016/j.fusengdes.2019.04.031_bib0030) 2014; T159
Marchuk (10.1016/j.fusengdes.2019.04.031_bib0175) 2018; 51
Krasikov (10.1016/j.fusengdes.2019.04.031_bib0100) 2018
Rubel (10.1016/j.fusengdes.2019.04.031_bib0025) 2011; T145
Laegreid (10.1016/j.fusengdes.2019.04.031_bib0165) 1961; 32
Marot (10.1016/j.fusengdes.2019.04.031_bib0035) 2015; 2
Weaver (10.1016/j.fusengdes.2019.04.031_bib0070) 1998
10.1016/j.fusengdes.2019.04.031_bib0060
Robinson (10.1016/j.fusengdes.2019.04.031_bib0125) 1981
Krasikov (10.1016/j.fusengdes.2019.04.031_bib0095) 2017; 124
Litnovsky (10.1016/j.fusengdes.2019.04.031_bib0040) 2018
Voitsenya (10.1016/j.fusengdes.2019.04.031_bib0105) 2013; 302
Orlinski (10.1016/j.fusengdes.2019.04.031_bib0010) 2000; 5
Moser (10.1016/j.fusengdes.2019.04.031_bib0110) 2017; T170
Orsitto (10.1016/j.fusengdes.2019.04.031_bib0015) 2001; 72
10.1016/j.fusengdes.2019.04.031_bib0045
Ogilvie (10.1016/j.fusengdes.2019.04.031_bib0135) 1963; 24
Tongson (10.1016/j.fusengdes.2019.04.031_bib0160) 1975; 24
Almazán (10.1016/j.fusengdes.2019.04.031_bib0080) 2017
Dickheuer (10.1016/j.fusengdes.2019.04.031_bib0185) 2018; 17
Carol (10.1016/j.fusengdes.2019.04.031_bib0085) 1990; 34
Snouse (10.1016/j.fusengdes.2019.04.031_bib0130) 1966; 37
Zdanuk (10.1016/j.fusengdes.2019.04.031_bib0140) 1965; 36
References_xml – volume: T159
  year: 2014
  ident: bib0030
  article-title: An overview of the comprehensive First Mirror Test in JET with ITER-like wall
  publication-title: Phys. Scr.
– volume: 11
  start-page: 1416
  year: 1975
  end-page: 1425
  ident: bib0075
  article-title: Optical properties of Rh, Pd, Ir and Pt
  publication-title: Phys. Rev. B
– volume: 124
  start-page: 548
  year: 2017
  end-page: 552
  ident: bib0095
  article-title: Specific design and structural issues of single crystalline first mirrors for diagnostics
  publication-title: Fusion Eng. Des.
– reference: A. Litnovsky, J. Peng, A. Kreter et al., Optimization of single crystal mirrors for ITER diagnostics, Fusion Eng. Des. (Proc. 30th SOFT) in the present volume.
– volume: 37
  start-page: 700
  year: 1966
  end-page: 704
  ident: bib0130
  article-title: Sputtering of single-crystal copper
  publication-title: J. Appl. Phys.
– volume: 24
  start-page: 187
  year: 1975
  end-page: 193
  ident: bib0160
  article-title: Low energy argon differential sputtering yields and thersholds along the <110> and <100> directions from the single crystal silver surfaces
  publication-title: Radiat. Effects
– year: 2018
  ident: bib0040
  article-title: Diagnostic mirrors for ITER: research in the frame of International Tokamak Physics Activity
  publication-title: 27th Fusion Energy Conference
– volume: T145
  year: 2011
  ident: bib0025
  article-title: Overview of the second stage in the comprehensive mirrors test in JET
  publication-title: Phys. Scr.
– volume: 34
  start-page: 1
  year: 1990
  end-page: 12
  ident: bib0085
  article-title: High-temperature oxidation of rhodium
  publication-title: Oxid. Metals
– volume: 17
  start-page: 302
  year: 2018
  end-page: 306
  ident: bib0185
  article-title: measurement of the spectral reflectance of mirror-like metallic surfaces during plasma exposition
  publication-title: Nucl. Mat. and Energy
– year: 2018
  ident: bib0100
  article-title: Private Communication
– year: 1975
  ident: bib0120
  article-title: Crystal Growth from the melt
  publication-title: Treatise on Solid State Chemistry, Vol. 5 – Changes of State
– volume: 32
  start-page: 365
  year: 1961
  end-page: 369
  ident: bib0165
  article-title: Sputtering yields of metals for
  publication-title: J. Appl. Phys.
– volume: T170
  year: 2017
  ident: bib0110
  article-title: Plasma cleaning of ITER first mirrors
  publication-title: Phys. Scr.
– volume: 50
  year: 2017
  ident: bib0195
  article-title: The temperature dependence of optical properties of tungsten in the visible and near-infrared domains: an experimental and theoretical study
  publication-title: J. Phys. D: Appl. Phys.
– start-page: 12
  year: 1998–1999
  end-page: 141
  ident: bib0070
  article-title: Optical properties of metals and semiconductors
  publication-title: Handbook of Chemistry and Physics
– volume: 36
  start-page: 1683
  year: 1965
  end-page: 1687
  ident: bib0140
  article-title: Sputtering of single crystal copper and aluminum with 20–600 eV argon ions
  publication-title: J. Appl. Phys.
– year: 1981
  ident: bib0125
  article-title: Theoretical aspects of monocrystal sputtering
  publication-title: Sputtering by Particle Bombardment I, Topics in Applied Physics 47
– reference: MaTecK, Material-Technologie & Kristalle GmbH, 52428 Jülich, Germany.
– reference: Ph. Mertens, The core-plasma CXRS diagnostic for ITER – an introduction to the current design, Proc. 16th Ettore Majorana School on Diagnostics and Technology Developments, Journal of Fusion Energy, Springer Science+Business Media, LLC, part of Springer Nature (2018)
– reference: A. Krimmer, I. Balboa, N.J. Conway et al. Design Status of the ITER Core CXRS Diagnostic Setup, Proc. 30th SOFT (this conference), Fusion Eng. Des., in press,
– year: 1998–1999
  ident: bib0065
  article-title: Sections 4&12: properties of the elements & properties of solids
  publication-title: Handbook of Chemistry and Physics
– volume: 5
  start-page: 67
  year: 2000
  end-page: 69
  ident: bib0010
  article-title: Rhodium as the promising material for the first mirrors of laser and spectroscopy methods of plasma diagnostics in a fusion reactor
  publication-title: Prob. Atom. Sci. Tech. 3 Ser.: Plasma Phys.
– volume: 302
  start-page: 32
  year: 2013
  end-page: 39
  ident: bib0105
  article-title: Development of surface relief on polycrystalline metals due to sputtering
  publication-title: Nucl. Instr. Methods Phys. Res. B
– volume: 123
  start-page: 674
  year: 2017
  end-page: 677
  ident: bib0145
  article-title: First direct comparative test of single crystal rhodium and molybdenum mirrors for ITER diagnostics
  publication-title: Fusion Eng. Des.
– volume: 51
  year: 2018
  ident: bib0175
  article-title: Emission of fast hydrogen atoms at a plasma-solid interface in a low density plasma containing noble gases
  publication-title: J. Phys. B: At. Mol. Opt. Phys.
– reference: Gestis Substance Database, information system on hazardous substances, under
– volume: 72
  start-page: 540
  year: 2001
  end-page: 544
  ident: bib0015
  article-title: Optical characterization of plasma facing mirrors for a Thomson scattering system of a burning plasma experiment
  publication-title: Rev. Sci. Instrum.
– volume: 43
  start-page: 2376
  year: 1972
  end-page: 2383
  ident: bib0190
  article-title: Reflectivity of metals at high temperatures
  publication-title: J. Appl. Phys.
– volume: 40
  start-page: 692
  year: 2012
  end-page: 696
  ident: bib0020
  article-title: Achievements on engineering and manufacturing of ITER first-mirror mock-ups
  publication-title: IEEE Trans. Plasma Sci.
– volume: 68
  start-page: 8
  year: 2015
  end-page: 14
  ident: bib0155
  article-title: Linear plasma device PSI-2 for plasma-material interaction studies
  publication-title: Fusion Sci. Tech.
– reference: Ph. Mertens, Baseline for the First Mirror of the core CXRS diagnostic: Materials, Contamination and Cleaning, ITPA-31 (Nov. 2016) Pres. No. 10-02.
– reference: .
– year: 2017
  ident: bib0080
  article-title: Internal F4E Report
– volume: 24
  start-page: 247
  year: 1963
  end-page: 259
  ident: bib0135
  article-title: The bombardment of gold films by inert gas ions
  publication-title: J. Phys. Chem. Solids
– volume: 12
  start-page: 506
  year: 2017
  end-page: 512
  ident: bib0170
  article-title: Plasma impact on diagnostic mirrors in JET
  publication-title: Nucl. Mater. Energy
– volume: 89
  start-page: 063112
  year: 2018
  ident: bib0180
  article-title: In situ measurements of the spectral reflectance of metallic mirrors at the
  publication-title: Rev. Sci. Instrum.
– volume: 22
  start-page: 93
  year: 1939
  end-page: 95
  ident: bib0005
  article-title: Note on the Spectral Reflectivity of Rhodium
  publication-title: J. Res. Natl. Bureau Stand.
– volume: 2
  start-page: 72
  year: 2015
  end-page: 78
  ident: bib0035
  article-title: Optical coatings as mirrors for optical diagnostics
  publication-title: J. Coat. Sci Tech.
– volume: 56
  year: 2016
  ident: bib0055
  article-title: Engineering estimates of impurity fluxes on the ITER port plugs
  publication-title: Nucl. Fusion
– year: 2018
  ident: 10.1016/j.fusengdes.2019.04.031_bib0100
– volume: T145
  year: 2011
  ident: 10.1016/j.fusengdes.2019.04.031_bib0025
  article-title: Overview of the second stage in the comprehensive mirrors test in JET
  publication-title: Phys. Scr.
  doi: 10.1088/0031-8949/2011/T145/014070
– volume: 24
  start-page: 247
  year: 1963
  ident: 10.1016/j.fusengdes.2019.04.031_bib0135
  article-title: The bombardment of gold films by inert gas ions
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(63)90130-6
– year: 1981
  ident: 10.1016/j.fusengdes.2019.04.031_bib0125
  article-title: Theoretical aspects of monocrystal sputtering
– volume: 36
  start-page: 1683
  year: 1965
  ident: 10.1016/j.fusengdes.2019.04.031_bib0140
  article-title: Sputtering of single crystal copper and aluminum with 20–600 eV argon ions
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1703109
– volume: 24
  start-page: 187
  year: 1975
  ident: 10.1016/j.fusengdes.2019.04.031_bib0160
  article-title: Low energy argon differential sputtering yields and thersholds along the <110> and <100> directions from the single crystal silver surfaces
  publication-title: Radiat. Effects
  doi: 10.1080/00337577508240805
– volume: 40
  start-page: 692
  year: 2012
  ident: 10.1016/j.fusengdes.2019.04.031_bib0020
  article-title: Achievements on engineering and manufacturing of ITER first-mirror mock-ups
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2011.2181539
– volume: 56
  year: 2016
  ident: 10.1016/j.fusengdes.2019.04.031_bib0055
  article-title: Engineering estimates of impurity fluxes on the ITER port plugs
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/56/10/106027
– volume: 22
  start-page: 93
  year: 1939
  ident: 10.1016/j.fusengdes.2019.04.031_bib0005
  article-title: Note on the Spectral Reflectivity of Rhodium
  publication-title: J. Res. Natl. Bureau Stand.
  doi: 10.6028/jres.022.050
– volume: 43
  start-page: 2376
  year: 1972
  ident: 10.1016/j.fusengdes.2019.04.031_bib0190
  article-title: Reflectivity of metals at high temperatures
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1661506
– volume: 5
  start-page: 67
  year: 2000
  ident: 10.1016/j.fusengdes.2019.04.031_bib0010
  article-title: Rhodium as the promising material for the first mirrors of laser and spectroscopy methods of plasma diagnostics in a fusion reactor
  publication-title: Prob. Atom. Sci. Tech. 3 Ser.: Plasma Phys.
– volume: 68
  start-page: 8
  year: 2015
  ident: 10.1016/j.fusengdes.2019.04.031_bib0155
  article-title: Linear plasma device PSI-2 for plasma-material interaction studies
  publication-title: Fusion Sci. Tech.
  doi: 10.13182/FST14-906
– year: 1975
  ident: 10.1016/j.fusengdes.2019.04.031_bib0120
  article-title: Crystal Growth from the melt
– volume: T170
  year: 2017
  ident: 10.1016/j.fusengdes.2019.04.031_bib0110
  article-title: Plasma cleaning of ITER first mirrors
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/aa8f30
– start-page: 12
  year: 1998
  ident: 10.1016/j.fusengdes.2019.04.031_bib0070
  article-title: Optical properties of metals and semiconductors
– ident: 10.1016/j.fusengdes.2019.04.031_bib0090
– ident: 10.1016/j.fusengdes.2019.04.031_bib0060
– volume: 34
  start-page: 1
  year: 1990
  ident: 10.1016/j.fusengdes.2019.04.031_bib0085
  article-title: High-temperature oxidation of rhodium
  publication-title: Oxid. Metals
  doi: 10.1007/BF00664336
– volume: 37
  start-page: 700
  year: 1966
  ident: 10.1016/j.fusengdes.2019.04.031_bib0130
  article-title: Sputtering of single-crystal copper
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1708240
– volume: 89
  start-page: 063112
  year: 2018
  ident: 10.1016/j.fusengdes.2019.04.031_bib0180
  article-title: In situ measurements of the spectral reflectance of metallic mirrors at the Hα line in a low density Ar-H plasma
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.5024995
– ident: 10.1016/j.fusengdes.2019.04.031_bib0115
– year: 2017
  ident: 10.1016/j.fusengdes.2019.04.031_bib0080
– volume: T159
  year: 2014
  ident: 10.1016/j.fusengdes.2019.04.031_bib0030
  article-title: An overview of the comprehensive First Mirror Test in JET with ITER-like wall
  publication-title: Phys. Scr.
  doi: 10.1088/0031-8949/2014/T159/014011
– volume: 124
  start-page: 548
  year: 2017
  ident: 10.1016/j.fusengdes.2019.04.031_bib0095
  article-title: Specific design and structural issues of single crystalline first mirrors for diagnostics
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2017.04.038
– ident: 10.1016/j.fusengdes.2019.04.031_bib0150
– volume: 72
  start-page: 540
  year: 2001
  ident: 10.1016/j.fusengdes.2019.04.031_bib0015
  article-title: Optical characterization of plasma facing mirrors for a Thomson scattering system of a burning plasma experiment
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1316759
– volume: 11
  start-page: 1416
  year: 1975
  ident: 10.1016/j.fusengdes.2019.04.031_bib0075
  article-title: Optical properties of Rh, Pd, Ir and Pt
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.11.1416
– volume: 12
  start-page: 506
  year: 2017
  ident: 10.1016/j.fusengdes.2019.04.031_bib0170
  article-title: Plasma impact on diagnostic mirrors in JET
  publication-title: Nucl. Mater. Energy
  doi: 10.1016/j.nme.2016.12.032
– volume: 50
  year: 2017
  ident: 10.1016/j.fusengdes.2019.04.031_bib0195
  article-title: The temperature dependence of optical properties of tungsten in the visible and near-infrared domains: an experimental and theoretical study
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/aa81f3
– volume: 17
  start-page: 302
  year: 2018
  ident: 10.1016/j.fusengdes.2019.04.031_bib0185
  article-title: In situ measurement of the spectral reflectance of mirror-like metallic surfaces during plasma exposition
  publication-title: Nucl. Mat. and Energy
  doi: 10.1016/j.nme.2018.11.012
– volume: 2
  start-page: 72
  year: 2015
  ident: 10.1016/j.fusengdes.2019.04.031_bib0035
  article-title: Optical coatings as mirrors for optical diagnostics
  publication-title: J. Coat. Sci Tech.
  doi: 10.6000/2369-3355.2015.02.03.1
– ident: 10.1016/j.fusengdes.2019.04.031_bib0045
  doi: 10.1016/j.fusengdes.2018.12.026
– ident: 10.1016/j.fusengdes.2019.04.031_bib0050
  doi: 10.1007/s10894-018-0202-1
– volume: 51
  year: 2018
  ident: 10.1016/j.fusengdes.2019.04.031_bib0175
  article-title: Emission of fast hydrogen atoms at a plasma-solid interface in a low density plasma containing noble gases
  publication-title: J. Phys. B: At. Mol. Opt. Phys.
  doi: 10.1088/1361-6455/aa987d
– volume: 123
  start-page: 674
  year: 2017
  ident: 10.1016/j.fusengdes.2019.04.031_bib0145
  article-title: First direct comparative test of single crystal rhodium and molybdenum mirrors for ITER diagnostics
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2017.03.053
– year: 2018
  ident: 10.1016/j.fusengdes.2019.04.031_bib0040
  article-title: Diagnostic mirrors for ITER: research in the frame of International Tokamak Physics Activity
– year: 1998
  ident: 10.1016/j.fusengdes.2019.04.031_bib0065
  article-title: Sections 4&12: properties of the elements & properties of solids
– volume: 302
  start-page: 32
  year: 2013
  ident: 10.1016/j.fusengdes.2019.04.031_bib0105
  article-title: Development of surface relief on polycrystalline metals due to sputtering
  publication-title: Nucl. Instr. Methods Phys. Res. B
  doi: 10.1016/j.nimb.2013.03.005
– volume: 32
  start-page: 365
  year: 1961
  ident: 10.1016/j.fusengdes.2019.04.031_bib0165
  article-title: Sputtering yields of metals for Ar+ and Ne+ ions with energies from 50 to 600 eV
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1736012
RestrictionsOnAccess restricted access
SSID ssj0017017
Score 2.2823045
Snippet The first mirrors of optical diagnostics in ITER are exposed to high radiation and fluxes of particles which escape the plasma, in the order of 1020 m−2s−1. At...
The first mirrors of optical diagnostics in ITER are exposed to high radiation and fluxes of particles which escape the plasma, in the order of 1020 m−2s−1. At...
The first mirrors of optical diagnostics in ITER are exposed to high radiation and fluxes of particles which escape the plasma, in the order of 10 20 m −2 s −1...
SourceID liege
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2514
SubjectTerms Charge exchange
Charge transfer
CXRS
Diagnostic systems
Diagnostics
Engineering, computing & technology
Erosion rates
First mirror
Fluxes
Ingénierie, informatique & technologie
ITER
Materials science & engineering
Mirrors
Optical components
Optical diagnostics
Optical reflectance
Optical reflectivity
Oxidation
Physical sputtering
Plasma diagnostics
Reflectance
Reflection
Rhodium
Rhodium isotopes
Science des matériaux & ingénierie
Sputtering
Surface discharges
Temperature changes
Title On the use of rhodium mirrors for optical diagnostics in ITER
URI https://dx.doi.org/10.1016/j.fusengdes.2019.04.031
https://www.proquest.com/docview/2307387045
http://orbi.ulg.ac.be/handle/2268/235356
Volume 146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61uxc4oPISSx_ygSNhEzt2YiQOVdVqAVEkoFJvll9pg7bJKuz2yG9n7CSrVgj1wC2JMon12f782TMeA7zRQmpblWnibHQzuiKR1GC_EsbnPtOijLv4v5yLxUX-6ZJf7sDJuBcmhFUO3N9zemTr4cl8QHO-quv591TSlBUSZwBBBvN8F6aUScEnMD3--HlxvnUmFGk8eDe8nwSDe2FeVVjpuHI-pO7OZEx7yrJ_DVLTZfBk_0XbcSw624Mng4gkx305n8KOb57B4zupBZ_Dh68NQW1H8L-krUh33bp6c0Nu6q5ru18EpSppV3Edm7g-2i7kayZ1Q5DLvr2Ai7PTHyeLZDgqIbE5Z-tEC-fzoJao1dLjuMSZ0yh9fCaElppxi3NRV5QIj-PSFxnWT8W1YIJVxtCcvYRJ0zb-FZDSCmHC9lWKmFrudVaVThpaldZnlFYzECM2yg55xMNxFks1Boz9VFtQVQBVpblCUGeQbg1XfSqNh03ej-Cre61CIeE_bPw2VpdqO1OrW6pCJu14vVleKW2V8QrFZ6ko44yLGRyMtaqGfoyfCxSIlJbz1_9TlH14FO762LQDmKy7jT9EMbM2R7D77nd2NDTZP4M18v8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V9gAcKp5ioYAPHAmb2LETV-KAKqrtEwlaqTfLr5SgbbIKuxz72zt2khUVQj30FiVxYo_tz5_tmc8AH7SQ2lZlmjgbtxldkUhqsF8J43OfaVHGKP6TUzE7zw8v-MUG7I2xMMGtcsD-HtMjWg93poM1p4u6nv5IJU1ZIXEGEGgwzx_AVs5ZEfz6Pl2v_TyC3niMmZYhVBhfv-XkVYV1jkvng3B3JqPoKcv-N0RtzcM-9j-gHUei_SewPVBI8qXP5VPY8M0zePyXsOBz-PytIcjsCP6XtBXpfrauXl2Rq7rr2u43QaJK2kVcxSau97ULas2kbggi2fcXcL7_9WxvlgwHJSQWS7xMtHA-D1yJWi09jkqcOY3Ex2dCaKkZtzgTdUUpBXdc-iLD2qm4Fkywyhias5ew2bSNfwWktEKYELxK0aKWe51VpZOGVqX1GaXVBMRoG2UHFfFwmMVcje5iv9TaqCoYVaW5QqNOIF0nXPRCGncn2R2Nr261CYVwf3fij7G6VNuZWv2hKuhox-vV_FJpq4xXSD1LRRlnXExgZ6xVNfRi_FwAQAS0nL--T1bew8PZ2cmxOj44PXoDj8KT3kttBzaX3cq_RVqzNO9is70Bj4Pzyg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+use+of+rhodium+mirrors+for+optical+diagnostics+in+ITER&rft.jtitle=Fusion+engineering+and+design&rft.au=Mertens%2C+Philippe&rft.au=Boman%2C+Romain&rft.au=Dickheuer%2C+Sven&rft.au=Krasikov%2C+Yury&rft.date=2019-09-01&rft.issn=0920-3796&rft.volume=146&rft.spage=2514&rft.epage=2518&rft_id=info:doi/10.1016%2Fj.fusengdes.2019.04.031&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fusengdes_2019_04_031
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-3796&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-3796&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-3796&client=summon